
Distributing Python Modules

Greg Ward

July 19, 2001

E-mail: gward@python.net

Abstract

This document describes the Python Distribution Utilities (“Distutils”) from the module developer’s
point-of-view, describing how to use the Distutils to make Python modules and extensions easily available
to a wider audience with very little overhead for build/release/install mechanics.

Contents

1 Introduction 2

2 Concepts & Terminology 2
2.1 A simple example . 2
2.2 General Python terminology . 4
2.3 Distutils-specific terminology . 4

3 Writing the Setup Script 5
3.1 Listing whole packages . 5
3.2 Listing individual modules . 6
3.3 Describing extension modules . 6

Extension names and packages . 7
Extension source files . 7
Preprocessor options . 8
Library options . 9
Other options . 9

3.4 Listing scripts . 10
3.5 Listing additional files . 10

4 Writing the Setup Configuration File 10

5 Creating a Source Distribution 12
5.1 Specifying the files to distribute . 13
5.2 Manifest-related options . 14

6 Creating Built Distributions 15
6.1 Creating dumb built distributions . 16
6.2 Creating RPM packages . 16
6.3 Creating Windows installers . 18

7 Reference 19
7.1 Installing modules: the install command family . 19

install data . 19

install scripts . 19
7.2 Creating a source distribution: the sdist command . 19

1 Introduction

In the past, Python module developers have not had much infrastructure support for distributing modules,
nor have Python users had much support for installing and maintaining third-party modules. With the
introduction of the Python Distribution Utilities (Distutils for short) in Python 1.6, this situation should
start to improve.

This document only covers using the Distutils to distribute your Python modules. Using the Distutils does
not tie you to Python 1.6, though: the Distutils work just fine with Python 1.5.2, and it is reasonable (and
expected to become commonplace) to expect users of Python 1.5.2 to download and install the Distutils
separately before they can install your modules. Python 1.6 (or later) users, of course, won’t have to add
anything to their Python installation in order to use the Distutils to install third-party modules.

This document concentrates on the role of developer/distributor: if you’re looking for information on in-
stalling Python modules, you should refer to the Installing Python Modules manual.

2 Concepts & Terminology

Using the Distutils is quite simple, both for module developers and for users/administrators installing third-
party modules. As a developer, your responsibilities (apart from writing solid, well-documented and well-
tested code, of course!) are:

• write a setup script (‘setup.py’ by convention)

• (optional) write a setup configuration file

• create a source distribution

• (optional) create one or more built (binary) distributions

Each of these tasks is covered in this document.

Not all module developers have access to a multitude of platforms, so it’s not always feasible to expect them
to create a multitude of built distributions. It is hoped that a class of intermediaries, called packagers, will
arise to address this need. Packagers will take source distributions released by module developers, build them
on one or more platforms, and release the resulting built distributions. Thus, users on the most popular
platforms will be able to install most popular Python module distributions in the most natural way for their
platform, without having to run a single setup script or compile a line of code.

2.1 A simple example

The setup script is usually quite simple, although since it’s written in Python, there are no arbitrary limits
to what you can do with it.1 If all you want to do is distribute a module called foo, contained in a file
‘foo.py’, then your setup script can be as little as this:

1But be careful about putting arbitrarily expensive operations in your setup script; unlike, say, Autoconf-style configure
scripts, the setup script may be run multiple times in the course of building and installing your module distribution. If you
need to insert potentially expensive processing steps into the Distutils chain, see section ?? on extending the Distutils.

2 2 Concepts & Terminology

from distutils.core import setup

setup(name="foo",

version="1.0",

py_modules=["foo"])

Some observations:

• most information that you supply to the Distutils is supplied as keyword arguments to the setup()
function

• those keyword arguments fall into two categories: package meta-data (name, version number) and
information about what’s in the package (a list of pure Python modules, in this case)

• modules are specified by module name, not filename (the same will hold true for packages and exten-
sions)

• it’s recommended that you supply a little more meta-data, in particular your name, email address and
a URL for the project (see section 3 for an example)

To create a source distribution for this module, you would create a setup script, ‘setup.py’, containing the
above code, and run:

python setup.py sdist

which will create an archive file (e.g., tarball on Unix, ZIP file on Windows) containing your setup script,
‘setup.py’, and your module, ‘foo.py’. The archive file will be named ‘Foo-1.0.tar.gz’ (or ‘.zip’), and will unpack
into a directory ‘Foo-1.0’.

If an end-user wishes to install your foo module, all she has to do is download ‘Foo-1.0.tar.gz’ (or ‘.zip’),
unpack it, and—from the ‘Foo-1.0’ directory—run

python setup.py install

which will ultimately copy ‘foo.py’ to the appropriate directory for third-party modules in their Python
installation.

This simple example demonstrates some fundamental concepts of the Distutils: first, both developers and
installers have the same basic user interface, i.e. the setup script. The difference is which Distutils commands
they use: the sdist command is almost exclusively for module developers, while install is more often for
installers (although most developers will want to install their own code occasionally).

If you want to make things really easy for your users, you can create one or more built distributions for
them. For instance, if you are running on a Windows machine, and want to make things easy for other
Windows users, you can create an executable installer (the most appropriate type of built distribution for
this platform) with the bdist wininst command. For example:

python setup.py bdist_wininst

will create an executable installer, ‘Foo-1.0.win32.exe’, in the current directory.

Currently (Distutils 0.9.2), the only other useful built distribution format is RPM, implemented by
the bdist rpm command. For example, the following command will create an RPM file called ‘Foo-

1.0.noarch.rpm’:

2.1 A simple example 3

python setup.py bdist_rpm

(This uses the rpm command, so has to be run on an RPM-based system such as Red Hat Linux, SuSE
Linux, or Mandrake Linux.)

You can find out what distribution formats are available at any time by running

python setup.py bdist --help-formats

2.2 General Python terminology

If you’re reading this document, you probably have a good idea of what modules, extensions, and so forth
are. Nevertheless, just to be sure that everyone is operating from a common starting point, we offer the
following glossary of common Python terms:

module the basic unit of code reusability in Python: a block of code imported by some other code. Three
types of modules concern us here: pure Python modules, extension modules, and packages.

pure Python module a module written in Python and contained in a single ‘.py’ file (and possibly asso-
ciated ‘.pyc’ and/or ‘.pyo’ files). Sometimes referred to as a “pure module.”

extension module a module written in the low-level language of the Python implementation: C/C++ for
Python, Java for JPython. Typically contained in a single dynamically loadable pre-compiled file, e.g.
a shared object (‘.so’) file for Python extensions on Unix, a DLL (given the ‘.pyd’ extension) for Python
extensions on Windows, or a Java class file for JPython extensions. (Note that currently, the Distutils
only handles C/C++ extensions for Python.)

package a module that contains other modules; typically contained in a directory in the filesystem and
distinguished from other directories by the presence of a file ‘ init .py’.

root package the root of the hierarchy of packages. (This isn’t really a package, since it doesn’t have an
‘ init .py’ file. But we have to call it something.) The vast majority of the standard library is in the
root package, as are many small, standalone third-party modules that don’t belong to a larger module
collection. Unlike regular packages, modules in the root package can be found in many directories: in
fact, every directory listed in sys.path can contribute modules to the root package.

2.3 Distutils-specific terminology

The following terms apply more specifically to the domain of distributing Python modules using the Distutils:

module distribution a collection of Python modules distributed together as a single downloadable resource
and meant to be installed en masse. Examples of some well-known module distributions are Numeric
Python, PyXML, PIL (the Python Imaging Library), or mxDateTime. (This would be called a package,
except that term is already taken in the Python context: a single module distribution may contain
zero, one, or many Python packages.)

pure module distribution a module distribution that contains only pure Python modules and packages.
Sometimes referred to as a “pure distribution.”

non-pure module distribution a module distribution that contains at least one extension module. Some-
times referred to as a “non-pure distribution.”

4 2 Concepts & Terminology

distribution root the top-level directory of your source tree (or source distribution); the directory where
‘setup.py’ exists and is run from

3 Writing the Setup Script

The setup script is the centre of all activity in building, distributing, and installing modules using the
Distutils. The main purpose of the setup script is to describe your module distribution to the Distutils, so
that the various commands that operate on your modules do the right thing. As we saw in section 2.1 above,
the setup script consists mainly of a call to setup(), and most information supplied to the Distutils by the
module developer is supplied as keyword arguments to setup().

Here’s a slightly more involved example, which we’ll follow for the next couple of sections: the Distutils’ own
setup script. (Keep in mind that although the Distutils are included with Python 1.6 and later, they also
have an independent existence so that Python 1.5.2 users can use them to install other module distributions.
The Distutils’ own setup script, shown here, is used to install the package into Python 1.5.2.)

#!/usr/bin/env python

from distutils.core import setup

setup(name="Distutils",

version="1.0",

description="Python Distribution Utilities",

author="Greg Ward",

author_email="gward@python.net",

url="http://www.python.org/sigs/distutils-sig/",

packages=[’distutils’, ’distutils.command’],

)

There are only two differences between this and the trivial one-file distribution presented in section 2.1:
more meta-data, and the specification of pure Python modules by package, rather than by module. This is
important since the Distutils consist of a couple of dozen modules split into (so far) two packages; an explicit
list of every module would be tedious to generate and difficult to maintain.

Note that any pathnames (files or directories) supplied in the setup script should be written using the
Unix convention, i.e. slash-separated. The Distutils will take care of converting this platform-neutral
representation into whatever is appropriate on your current platform before actually using the pathname.
This makes your setup script portable across operating systems, which of course is one of the major goals
of the Distutils. In this spirit, all pathnames in this document are slash-separated (MacOS programmers
should keep in mind that the absence of a leading slash indicates a relative path, the opposite of the MacOS
convention with colons).

This, of course, only applies to pathnames given to Distutils functions. If you, for example, use standard
python functions such as glob.glob or os.listdir to specify files, you should be careful to write portable code
instead of hardcoding path separators:

glob.glob(os.path.join(’mydir’, ’subdir’, ’*.html’))

os.listdir(os.path.join(’mydir’, ’subdir’))

3.1 Listing whole packages

The packages option tells the Distutils to process (build, distribute, install, etc.) all pure Python modules
found in each package mentioned in the packages list. In order to do this, of course, there has to be a

5

correspondence between package names and directories in the filesystem. The default correspondence is the
most obvious one, i.e. package distutils is found in the directory ‘distutils’ relative to the distribution root.
Thus, when you say packages = [’foo’] in your setup script, you are promising that the Distutils will find
a file ‘foo/ init .py’ (which might be spelled differently on your system, but you get the idea) relative to
the directory where your setup script lives. (If you break this promise, the Distutils will issue a warning but
process the broken package anyways.)

If you use a different convention to lay out your source directory, that’s no problem: you just have to supply
the package dir option to tell the Distutils about your convention. For example, say you keep all Python
source under ‘lib’, so that modules in the “root package” (i.e., not in any package at all) are right in ‘lib’,
modules in the foo package are in ‘lib/foo’, and so forth. Then you would put

package_dir = {’’: ’lib’}

in your setup script. (The keys to this dictionary are package names, and an empty package name stands
for the root package. The values are directory names relative to your distribution root.) In this case, when
you say packages = [’foo’], you are promising that the file ‘lib/foo/ init .py’ exists.

Another possible convention is to put the foo package right in ‘lib’, the foo.bar package in ‘lib/bar’, etc.
This would be written in the setup script as

package_dir = {’foo’: ’lib’}

A package: dir entry in the package dir dictionary implicitly applies to all packages below package, so the
foo.bar case is automatically handled here. In this example, having packages = [’foo’, ’foo.bar’] tells
the Distutils to look for ‘lib/ init .py’ and ‘lib/bar/ init .py’. (Keep in mind that although package dir

applies recursively, you must explicitly list all packages in packages: the Distutils will not recursively scan
your source tree looking for any directory with an ‘ init .py’ file.)

3.2 Listing individual modules

For a small module distribution, you might prefer to list all modules rather than listing packages—especially
the case of a single module that goes in the “root package” (i.e., no package at all). This simplest case was
shown in section 2.1; here is a slightly more involved example:

py_modules = [’mod1’, ’pkg.mod2’]

This describes two modules, one of them in the “root” package, the other in the pkg package. Again, the
default package/directory layout implies that these two modules can be found in ‘mod1.py’ and ‘pkg/mod2.py’,
and that ‘pkg/ init .py’ exists as well. And again, you can override the package/directory correspondence
using the package dir option.

3.3 Describing extension modules

Just as writing Python extension modules is a bit more complicated than writing pure Python modules,
describing them to the Distutils is a bit more complicated. Unlike pure modules, it’s not enough just to
list modules or packages and expect the Distutils to go out and find the right files; you have to specify the
extension name, source file(s), and any compile/link requirements (include directories, libraries to link with,
etc.).

6 3 Writing the Setup Script

All of this is done through another keyword argument to setup(), the extensions option. extensions is just a
list of Extension instances, each of which describes a single extension module. Suppose your distribution
includes a single extension, called foo and implemented by ‘foo.c’. If no additional instructions to the
compiler/linker are needed, describing this extension is quite simple:

Extension("foo", ["foo.c"])

The Extension class can be imported from distutils.core, along with setup(). Thus, the setup script
for a module distribution that contains only this one extension and nothing else might be:

from distutils.core import setup, Extension

setup(name="foo", version="1.0",

ext_modules=[Extension("foo", ["foo.c"])])

The Extension class (actually, the underlying extension-building machinery implemented by the build ext
command) supports a great deal of flexibility in describing Python extensions, which is explained in the
following sections.

Extension names and packages

The first argument to the Extension constructor is always the name of the extension, including any package
names. For example,

Extension("foo", ["src/foo1.c", "src/foo2.c"])

describes an extension that lives in the root package, while

Extension("pkg.foo", ["src/foo1.c", "src/foo2.c"])

describes the same extension in the pkg package. The source files and resulting object code are identical
in both cases; the only difference is where in the filesystem (and therefore where in Python’s namespace
hierarchy) the resulting extension lives.

If you have a number of extensions all in the same package (or all under the same base package), use the
ext package keyword argument to setup(). For example,

setup(...

ext_package="pkg",

ext_modules=[Extension("foo", ["foo.c"]),

Extension("subpkg.bar", ["bar.c"])]

)

will compile ‘foo.c’ to the extension pkg.foo, and ‘bar.c’ to pkg.subpkg.bar.

Extension source files

The second argument to the Extension constructor is a list of source files. Since the Distutils currently only
support C/C++ extensions, these are normally C/C++ source files. (Be sure to use appropriate extensions
to distinguish C++ source files: ‘.cc’ and ‘.cpp’ seem to be recognized by both Unix and Windows compilers.)

3.3 Describing extension modules 7

However, you can also include SWIG interface (‘.i’) files in the list; the build ext command knows how to
deal with SWIG extensions: it will run SWIG on the interface file and compile the resulting C/C++ file
into your extension.

**SWIG support is rough around the edges and largely untested; especially SWIG support of
C++ extensions! Explain in more detail here when the interface firms up.**

On some platforms, you can include non-source files that are processed by the compiler and included in your
extension. Currently, this just means Windows message text (‘.mc’) files and resource definition (‘.rc’) files
for Visual C++. These will be compiled to binary resource (‘.res’) files and linked into the executable.

Preprocessor options

Three optional arguments to Extension will help if you need to specify include directories to search or
preprocessor macros to define/undefine: include dirs, define macros, and undef macros.

For example, if your extension requires header files in the ‘include’ directory under your distribution root,
use the include dirs option:

Extension("foo", ["foo.c"], include_dirs=["include"])

You can specify absolute directories there; if you know that your extension will only be built on Unix systems
with X11R6 installed to ‘/usr’, you can get away with

Extension("foo", ["foo.c"], include_dirs=["/usr/include/X11"])

You should avoid this sort of non-portable usage if you plan to distribute your code: it’s probably better to
write your code to include (e.g.) <X11/Xlib.h>.

If you need to include header files from some other Python extension, you can take advantage of the fact
that the Distutils install extension header files in a consistent way. For example, the Numerical Python
header files are installed (on a standard Unix installation) to ‘/usr/local/include/python1.5/Numerical’. (The
exact location will differ according to your platform and Python installation.) Since the Python include
directory—‘/usr/local/include/python1.5’ in this case—is always included in the search path when building
Python extensions, the best approach is to include (e.g.) <Numerical/arrayobject.h>. If you insist on
putting the ‘Numerical’ include directory right into your header search path, though, you can find that
directory using the Distutils sysconfig module:

from distutils.sysconfig import get_python_inc

incdir = os.path.join(get_python_inc(plat_specific=1), "Numerical")

setup(...,

Extension(..., include_dirs=[incdir]))

Even though this is quite portable—it will work on any Python installation, regardless of platform—it’s
probably easier to just write your C code in the sensible way.

You can define and undefine pre-processor macros with the define macros and undef macros options.
define macros takes a list of (name, value) tuples, where name is the name of the macro to define (a
string) and value is its value: either a string or None. (Defining a macro FOO to None is the equivalent of a
bare #define FOO in your C source: with most compilers, this sets FOO to the string 1.) undef macros is
just a list of macros to undefine.

For example:

8 3 Writing the Setup Script

Extension(...,

define_macros=[(’NDEBUG’, ’1’)],

(’HAVE_STRFTIME’, None),

undef_macros=[’HAVE_FOO’, ’HAVE_BAR’])

is the equivalent of having this at the top of every C source file:

#define NDEBUG 1

#define HAVE_STRFTIME

#undef HAVE_FOO

#undef HAVE_BAR

Library options

You can also specify the libraries to link against when building your extension, and the directories to search
for those libraries. The libraries option is a list of libraries to link against, library dirs is a list of
directories to search for libraries at link-time, and runtime library dirs is a list of directories to search
for shared (dynamically loaded) libraries at run-time.

For example, if you need to link against libraries known to be in the standard library search path on target
systems

Extension(...,

libraries=["gdbm", "readline"])

If you need to link with libraries in a non-standard location, you’ll have to include the location in
library dirs:

Extension(...,

library_dirs=["/usr/X11R6/lib"],

libraries=["X11", "Xt"])

(Again, this sort of non-portable construct should be avoided if you intend to distribute your code.)

Should mention clib libraries here or somewhere else!

Other options

There are still some other options which can be used to handle special cases.

The extra objects option is a list of object files to be passed to the linker. These files must not have extensions,
as the default extension for the compiler is used.

extra compile args and extra link args can be used to specify additional command line options for the compiler
resp. the linker command line.

export symbols is only useful on windows, it can contain a list of symbols (functions or variables) to be
exported. This option is not needed when building compiled extensions: the initmodule function will
automatically be added to the exported symbols list by Distutils.

3.3 Describing extension modules 9

3.4 Listing scripts

So far we have been dealing with pure and non-pure Python modules, which are usually not run by themselves
but imported by scripts.

Scripts are files containing Python source code, indended to be started from the command line. Distutils
doesn’t provide much functionality for the scripts: the only support Distutils gives is to adjust the first line
of the script if it starts with #! and contains the word “python” to refer to the current interpreter location.

The scripts option simply is a list of files to be handled in this way.

3.5 Listing additional files

The data files option can be used to specify additional files needed by the module distribution: configuration
files, data files, anything which does not fit in the previous categories.

data files specify a sequence of (directory, files) pairs in the following way:

setup(...

data_files=[(’bitmaps’, [’bm/b1.gif’, ’bm/b2.gif’]),

(’config’, [’cfg/data.cfg’])])

Note that you can specify the directory names where the data files will be installed, but you cannot rename
the data files themselves.

You can specify the data files options as a simple sequence of files without specifying a target directory, but
this is not recommended, and the install command will print a warning in this case. To install data files
directly in the target directory, an empty string should be given as the directory.

4 Writing the Setup Configuration File

Often, it’s not possible to write down everything needed to build a distribution a priori: you may need to get
some information from the user, or from the user’s system, in order to proceed. As long as that information
is fairly simple—a list of directories to search for C header files or libraries, for example—then providing a
configuration file, ‘setup.cfg’, for users to edit is a cheap and easy way to solicit it. Configuration files also
let you provide default values for any command option, which the installer can then override either on the
command-line or by editing the config file.

(If you have more advanced needs, such as determining which extensions to build based on what capabilities
are present on the target system, then you need the Distutils “auto-configuration” facility. This started to
appear in Distutils 0.9 but, as of this writing, isn’t mature or stable enough yet for real-world use.)

The setup configuration file is a useful middle-ground between the setup script—which, ideally, would be
opaque to installers2—and the command-line to the setup script, which is outside of your control and entirely
up to the installer. In fact, ‘setup.cfg’ (and any other Distutils configuration files present on the target system)
are processed after the contents of the setup script, but before the command-line. This has several useful
consequences:

• installers can override some of what you put in ‘setup.py’ by editing ‘setup.cfg’

• you can provide non-standard defaults for options that are not easily set in ‘setup.py’

• installers can override anything in ‘setup.cfg’ using the command-line options to ‘setup.py’
2This ideal probably won’t be achieved until auto-configuration is fully supported by the Distutils.

10 4 Writing the Setup Configuration File

The basic syntax of the configuration file is simple:

[command]

option=value

...

where command is one of the Distutils commands (e.g. build py, install), and option is one of the options
that command supports. Any number of options can be supplied for each command, and any number of
command sections can be included in the file. Blank lines are ignored, as are comments (from a ‘#’ character
to end-of-line). Long option values can be split across multiple lines simply by indenting the continuation
lines.

You can find out the list of options supported by a particular command with the universal --help option,
e.g.

> python setup.py --help build_ext

[...]

Options for ’build_ext’ command:

--build-lib (-b) directory for compiled extension modules

--build-temp (-t) directory for temporary files (build by-products)

--inplace (-i) ignore build-lib and put compiled extensions into the

source directory alongside your pure Python modules

--include-dirs (-I) list of directories to search for header files

--define (-D) C preprocessor macros to define

--undef (-U) C preprocessor macros to undefine

[...]

Or consult section 7 of this document (the command reference).

Note that an option spelled --foo-bar on the command-line is spelled foo bar in configuration files.

For example, say you want your extensions to be built “in-place”—that is, you have an extension pkg.ext,
and you want the compiled extension file (‘ext.so’ on Unix, say) to be put in the same source directory
as your pure Python modules pkg.mod1 and pkg.mod2. You can always use the --inplace option on the
command-line to ensure this:

python setup.py build_ext --inplace

But this requires that you always specify the build ext command explicitly, and remember to provide
--inplace. An easier way is to “set and forget” this option, by encoding it in ‘setup.cfg’, the configuration
file for this distribution:

[build_ext]

inplace=1

This will affect all builds of this module distribution, whether or not you explcitly specify build ext. If
you include ‘setup.cfg’ in your source distribution, it will also affect end-user builds—which is probably a
bad idea for this option, since always building extensions in-place would break installation of the module
distribution. In certain peculiar cases, though, modules are built right in their installation directory, so this
is conceivably a useful ability. (Distributing extensions that expect to be built in their installation directory
is almost always a bad idea, though.)

Another example: certain commands take a lot of options that don’t change from run-to-run; for example,

11

bdist rpm needs to know everything required to generate a “spec” file for creating an RPM distribution.
Some of this information comes from the setup script, and some is automatically generated by the Distutils
(such as the list of files installed). But some of it has to be supplied as options to bdist rpm, which would
be very tedious to do on the command-line for every run. Hence, here is a snippet from the Distutils’ own
‘setup.cfg’:

[bdist_rpm]

release = 1

packager = Greg Ward <gward@python.net>

doc_files = CHANGES.txt

README.txt

USAGE.txt

doc/

examples/

Note that the doc files option is simply a whitespace-separated string split across multiple lines for readability.

See Also:

Installing Python Modules
(../inst/config-syntax.html)

More information on the configuration files is available in the manual for system administrators.

5 Creating a Source Distribution

As shown in section 2.1, you use the sdist command to create a source distribution. In the simplest case,

python setup.py sdist

(assuming you haven’t specified any sdist options in the setup script or config file), sdist creates the
archive of the default format for the current platform. The default format is gzip’ed tar file (‘.tar.gz’) on
Unix, and ZIP file on Windows. **no MacOS support here**

You can specify as many formats as you like using the --formats option, for example:

python setup.py sdist --formats=gztar,zip

to create a gzipped tarball and a zip file. The available formats are:

Format Description Notes
zip zip file (‘.zip’) (1),(3)
gztar gzip’ed tar file (‘.tar.gz’) (2),(4)
bztar bzip2’ed tar file (‘.tar.gz’) (4)
ztar compressed tar file (‘.tar.Z’) (4)
tar tar file (‘.tar’) (4)

Notes:

(1) default on Windows

(2) default on Unix

(3) requires either external zip utility or zipfile module (not part of the standard Python library)

12 5 Creating a Source Distribution

(4) requires external utilities: tar and possibly one of gzip, bzip2, or compress

5.1 Specifying the files to distribute

If you don’t supply an explicit list of files (or instructions on how to generate one), the sdist command puts
a minimal default set into the source distribution:

• all Python source files implied by the py modules and packages options

• all C source files mentioned in the ext modules or libraries options (**getting C library sources
currently broken – no get source files() method in build clib.py!**)

• anything that looks like a test script: ‘test/test*.py’ (currently, the Distutils don’t do anything with
test scripts except include them in source distributions, but in the future there will be a standard for
testing Python module distributions)

• ‘README.txt’ (or ‘README’), ‘setup.py’ (or whatever you called your setup script), and ‘setup.cfg’

Sometimes this is enough, but usually you will want to specify additional files to distribute. The typical way
to do this is to write a manifest template, called ‘MANIFEST.in’ by default. The manifest template is just
a list of instructions for how to generate your manifest file, ‘MANIFEST’, which is the exact list of files to
include in your source distribution. The sdist command processes this template and generates a manifest
based on its instructions and what it finds in the filesystem.

If you prefer to roll your own manifest file, the format is simple: one filename per line, regular files (or
symlinks to them) only. If you do supply your own ‘MANIFEST’, you must specify everything: the default
set of files described above does not apply in this case.

The manifest template has one command per line, where each command specifies a set of files to include or
exclude from the source distribution. For an example, again we turn to the Distutils’ own manifest template:

include *.txt

recursive-include examples *.txt *.py

prune examples/sample?/build

The meanings should be fairly clear: include all files in the distribution root matching *.txt, all files
anywhere under the ‘examples’ directory matching *.txt or *.py, and exclude all directories matching
examples/sample?/build. All of this is done after the standard include set, so you can exclude files from
the standard set with explicit instructions in the manifest template. (Or, you can use the --no-defaults
option to disable the standard set entirely.) There are several other commands available in the manifest
template mini-language; see section 7.2.

The order of commands in the manifest template matters: initially, we have the list of default files as
described above, and each command in the template adds to or removes from that list of files. Once we have
fully processed the manifest template, we remove files that should not be included in the source distribution:

• all files in the Distutils “build” tree (default ‘build/’)

• all files in directories named ‘RCS’ or ‘CVS’

Now we have our complete list of files, which is written to the manifest for future reference, and then used
to build the source distribution archive(s).

You can disable the default set of included files with the --no-defaults option, and you can disable the
standard exclude set with --no-prune.

5.1 Specifying the files to distribute 13

Following the Distutils’ own manifest template, let’s trace how the sdist command builds the list of files to
include in the Distutils source distribution:

1. include all Python source files in the ‘distutils’ and ‘distutils/command’ subdirectories (because packages
corresponding to those two directories were mentioned in the packages option in the setup script—see
section 3)

2. include ‘README.txt’, ‘setup.py’, and ‘setup.cfg’ (standard files)

3. include ‘test/test*.py’ (standard files)

4. include ‘*.txt’ in the distribution root (this will find ‘README.txt’ a second time, but such redundancies
are weeded out later)

5. include anything matching ‘*.txt’ or ‘*.py’ in the sub-tree under ‘examples’,

6. exclude all files in the sub-trees starting at directories matching ‘examples/sample?/build’—this may
exclude files included by the previous two steps, so it’s important that the prune command in the
manifest template comes after the recursive-include command

7. exclude the entire ‘build’ tree, and any ‘RCS’ or ‘CVS’ directories

Just like in the setup script, file and directory names in the manifest template should always be slash-
separated; the Distutils will take care of converting them to the standard representation on your platform.
That way, the manifest template is portable across operating systems.

5.2 Manifest-related options

The normal course of operations for the sdist command is as follows:

• if the manifest file, ‘MANIFEST’ doesn’t exist, read ‘MANIFEST.in’ and create the manifest

• if neither ‘MANIFEST’ nor ‘MANIFEST.in’ exist, create a manifest with just the default file set3

• if either ‘MANIFEST.in’ or the setup script (‘setup.py’) are more recent than ‘MANIFEST’, recreate
‘MANIFEST’ by reading ‘MANIFEST.in’

• use the list of files now in ‘MANIFEST’ (either just generated or read in) to create the source distribution
archive(s)

There are a couple of options that modify this behaviour. First, use the --no-defaults and --no-prune to
disable the standard “include” and “exclude” sets.4

Second, you might want to force the manifest to be regenerated—for example, if you have added or removed
files or directories that match an existing pattern in the manifest template, you should regenerate the
manifest:

python setup.py sdist --force-manifest

Or, you might just want to (re)generate the manifest, but not create a source distribution:
3In versions of the Distutils up to and including 0.9.2 (Python 2.0b1), this feature was broken; use the -f (--force-manifest)

option to work around the bug.
4Note that if you have no manifest template, no manifest, and use the --no-defaults, you will get an empty manifest.

Another bug in Distutils 0.9.2 and earlier causes an uncaught exception in this case. The workaround is: Don’t Do That.

14 5 Creating a Source Distribution

python setup.py sdist --manifest-only

--manifest-only implies --force-manifest. -o is a shortcut for --manifest-only, and -f for --force-
manifest.

6 Creating Built Distributions

A “built distribution” is what you’re probably used to thinking of either as a “binary package” or an
“installer” (depending on your background). It’s not necessarily binary, though, because it might contain
only Python source code and/or byte-code; and we don’t call it a package, because that word is already
spoken for in Python. (And “installer” is a term specific to the Windows world. **do Mac people use
it?**)

A built distribution is how you make life as easy as possible for installers of your module distribution: for users
of RPM-based Linux systems, it’s a binary RPM; for Windows users, it’s an executable installer; for Debian-
based Linux users, it’s a Debian package; and so forth. Obviously, no one person will be able to create built
distributions for every platform under the sun, so the Distutils are designed to enable module developers
to concentrate on their specialty—writing code and creating source distributions—while an intermediary
species of packager springs up to turn source distributions into built distributions for as many platforms as
there are packagers.

Of course, the module developer could be his own packager; or the packager could be a volunteer “out
there” somewhere who has access to a platform which the original developer does not; or it could be software
periodically grabbing new source distributions and turning them into built distributions for as many platforms
as the software has access to. Regardless of the nature of the beast, a packager uses the setup script and the
bdist command family to generate built distributions.

As a simple example, if I run the following command in the Distutils source tree:

python setup.py bdist

then the Distutils builds my module distribution (the Distutils itself in this case), does a “fake” installation
(also in the ‘build’ directory), and creates the default type of built distribution for my platform. The default
format for built distributions is a “dumb” tar file on Unix, and an simple executable installer on Windows.
(That tar file is considered “dumb” because it has to be unpacked in a specific location to work.)

Thus, the above command on a Unix system creates ‘Distutils-0.9.1.plat.tar.gz’; unpacking this tarball from the
right place installs the Distutils just as though you had downloaded the source distribution and run python
setup.py install. (The “right place” is either the root of the filesystem or Python’s prefix directory,
depending on the options given to the bdist dumb command; the default is to make dumb distributions
relative to prefix.)

Obviously, for pure Python distributions, this isn’t a huge win—but for non-pure distributions, which include
extensions that would need to be compiled, it can mean the difference between someone being able to use
your extensions or not. And creating “smart” built distributions, such as an RPM package or an executable
installer for Windows, is a big win for users even if your distribution doesn’t include any extensions.

The bdist command has a --formats option, similar to the sdist command, which you can use to select
the types of built distribution to generate: for example,

python setup.py bdist --format=zip

15

would, when run on a Unix system, create ‘Distutils-0.8.plat.zip’—again, this archive would be unpacked from
the root directory to install the Distutils.

The available formats for built distributions are:

Format Description Notes
gztar gzipped tar file (‘.tar.gz’) (1),(3)
ztar compressed tar file (‘.tar.Z’) (3)
tar tar file (‘.tar’) (3)
zip zip file (‘.zip’) (4)
rpm RPM (5)
srpm source RPM (5) **to do!**
wininst self-extracting ZIP file for Windows (2),(4)

Notes:

(1) default on Unix

(2) default on Windows **to-do!**

(3) requires external utilities: tar and possibly one of gzip, bzip2, or compress

(4) requires either external zip utility or zipfile module (not part of the standard Python library)

(5) requires external rpm utility, version 3.0.4 or better (use rpm --version to find out which version you
have)

You don’t have to use the bdist command with the --formats option; you can also use the command
that directly implements the format you’re interested in. Some of these bdist “sub-commands” actually
generate several similar formats; for instance, the bdist dumb command generates all the “dumb” archive
formats (tar, ztar, gztar, and zip), and bdist rpm generates both binary and source RPMs. The bdist
sub-commands, and the formats generated by each, are:

Command Formats
bdist dumb tar, ztar, gztar, zip
bdist rpm rpm, srpm
bdist wininst wininst

The following sections give details on the individual bdist * commands.

6.1 Creating dumb built distributions

**Need to document absolute vs. prefix-relative packages here, but first I have to implement
it!**

6.2 Creating RPM packages

The RPM format is used by many of popular Linux distributions, including Red Hat, SuSE, and Mandrake.
If one of these (or any of the other RPM-based Linux distributions) is your usual environment, creating
RPM packages for other users of that same distribution is trivial. Depending on the complexity of your
module distribution and differences between Linux distributions, you may also be able to create RPMs that
work on different RPM-based distributions.

The usual way to create an RPM of your module distribution is to run the bdist rpm command:

16 6 Creating Built Distributions

python setup.py bdist_rpm

or the bdist command with the --format option:

python setup.py bdist --formats=rpm

The former allows you to specify RPM-specific options; the latter allows you to easily specify multiple formats
in one run. If you need to do both, you can explicitly specify multiple bdist * commands and their options:

python setup.py bdist_rpm --packager="John Doe <jdoe@python.net>" \

bdist_wininst --target_version="2.0"

Creating RPM packages is driven by a ‘.spec’ file, much as using the Distutils is driven by the setup script.
To make your life easier, the bdist rpm command normally creates a ‘.spec’ file based on the information
you supply in the setup script, on the command line, and in any Distutils configuration files. Various options
and sections in the ‘.spec’ file are derived from options in the setup script as follows:

RPM ‘.spec’ file option or section Distutils setup script option
Name name

Summary (in preamble) description

Version version

Vendor author and author email, or
maintainer and maintainer email

Copyright licence

Url url

%description (section) long description

Additionally, there many options in ‘.spec’ files that don’t have corresponding options in the setup script.
Most of these are handled through options to the bdist rpm command as follows:

RPM ‘.spec’ file option or section bdist rpm option default value
Release release “1”
Group group “Development/Libraries”
Vendor vendor (see above)
Packager packager (none)
Provides provides (none)
Requires requires (none)
Conflicts conflicts (none)
Obsoletes obsoletes (none)
Distribution distribution name (none)
BuildRequires build requires (none)
Icon icon (none)

Obviously, supplying even a few of these options on the command-line would be tedious and error-prone, so
it’s usually best to put them in the setup configuration file, ‘setup.cfg’—see section 4. If you distribute or
package many Python module distributions, you might want to put options that apply to all of them in your
personal Distutils configuration file (‘˜/.pydistutils.cfg’).

There are three steps to building a binary RPM package, all of which are handled automatically by the
Distutils:

6.2 Creating RPM packages 17

1. create a ‘.spec’ file, which describes the package (analogous to the Distutils setup script; in fact, much
of the information in the setup script winds up in the ‘.spec’ file)

2. create the source RPM

3. create the “binary” RPM (which may or may not contain binary code, depending on whether your
module distribution contains Python extensions)

Normally, RPM bundles the last two steps together; when you use the Distutils, all three steps are typically
bundled together.

If you wish, you can separate these three steps. You can use the --spec-only option to make bdist rpm
just create the ‘.spec’ file and exit; in this case, the ‘.spec’ file will be written to the “distribution directory”—
normally ‘dist/’, but customizable with the --dist-dir option. (Normally, the ‘.spec’ file winds up deep in the
“build tree,” in a temporary directory created by bdist rpm.)

this isn’t implemented yet—is it needed?! You can also specify a custom ‘.spec’ file with the
--spec-file option; used in conjunction with --spec-only, this gives you an opportunity to customize the
‘.spec’ file manually:

> python setup.py bdist_rpm --spec-only

...edit dist/FooBar-1.0.spec

> python setup.py bdist_rpm --spec-file=dist/FooBar-1.0.spec

(Although a better way to do this is probably to override the standard bdist rpm command with one that
writes whatever else you want to the ‘.spec’ file; see section ?? for information on extending the Distutils.)

6.3 Creating Windows installers

Executable Windows installers are the natural format for binary distributions on Windows. They display
a nice GUI interface, display some information of the module distribution to be installed, taken from the
meta-dada in the setup script, let the user select a few (currently maybe too few) options, and start or cancel
the installation.

Since the meta-data is taken from the setup script, creating Windows installers is usually as easy as running:

python setup.py bdist_wininst

or the bdist command with the --format option:

python setup.py bdist --formats=wininst

If you have a pure module distribution (only containing pure Python modules and packages), the resulting
installer will be version independent and have a name like ‘Foo-1.0.win32.exe’. These installers can even be
created on Unix or MacOS platforms.

If you have a non-pure distribution, the extensions can only be created on a Windows platform, and will
be Python version dependend. The installer filename will reflect this and now has the form ‘Foo-1.0.win32-

py2.0.exe’. You have to create a separate installer for every Python version you want to support.

The installer will try to compile pure modules into bytecode after installation on the target system in normal
and optimizing mode. If you don’t want this to happen for some reason, you can run the bdist wininst
command with the --no-target-compile and/or the --no-target-optimize option.

18 6 Creating Built Distributions

7 Reference

7.1 Installing modules: the install command family

The install command ensures that the build commands have been run and then runs the subcommands
install lib, install data and install scripts.

install data

This command installs all data files provided with the distribution.

install scripts

This command installs all (Python) scripts in the distribution.

7.2 Creating a source distribution: the sdist command

fragment moved down from above: needs context!

The manifest template commands are:

Command Description
include pat1 pat2 ... include all files matching any of the listed patterns
exclude pat1 pat2 ... exclude all files matching any of the listed patterns
recursive-include dir pat1 pat2 ... include all files under dir matching any of the listed patterns
recursive-exclude dir pat1 pat2 ... exclude all files under dir matching any of the listed patterns
global-include pat1 pat2 ... include all files anywhere in the source tree matching

any of the listed patterns
global-exclude pat1 pat2 ... exclude all files anywhere in the source tree matching

any of the listed patterns
prune dir exclude all files under dir
graft dir include all files under dir

The patterns here are Unix-style “glob” patterns: * matches any sequence of regular filename characters,
? matches any single regular filename character, and [range] matches any of the characters in range (e.g.,
a-z, a-zA-Z, a-f0-9 .). The definition of “regular filename character” is platform-specific: on Unix it is
anything except slash; on Windows anything except backslash or colon; on MacOS anything except colon.

Windows and MacOS support not there yet

19

	1 Introduction
	2 Concepts & Terminology
	2.1 A simple example
	2.2 General Python terminology
	2.3 Distutils-specific terminology

	3 Writing the Setup Script
	3.1 Listing whole packages
	3.2 Listing individual modules
	3.3 Describing extension modules
	Extension names and packages
	Extension source files
	Preprocessor options
	Library options
	Other options

	3.4 Listing scripts
	3.5 Listing additional files

	4 Writing the Setup Configuration File
	5 Creating a Source Distribution
	5.1 Specifying the files to distribute
	5.2 Manifest-related options

	6 Creating Built Distributions
	6.1 Creating dumb built distributions
	6.2 Creating RPM packages
	6.3 Creating Windows installers

	7 Reference
	7.1 Installing modules: the install command family
	installprotect unhbox voidb@x kern .06emvbox {hrule width.55em}data
	installprotect unhbox voidb@x kern .06emvbox {hrule width.55em}scripts

	7.2 Creating a source distribution: the sdist command

