agena »>

a programming language

primer and reference
for version 2.3.3

by alexander walz

december 05, 2014

agena Copyright 2006 to 2014 by alexander walz. bundeshauptstadt bonn.
All rights reserved.Portions Copyright 2006 Lua.org, PUC-Rio. All rights reserved.

None of the Agena project memlbers or anyone else connected with this
documentation, in any way whatsoever, can be responsible for your use of the
information contained in or linked from it.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as frademarks. Where those designations appear in this
manual, and the author was aware of a trademark claim, the designations have
been printed in inifial caps or all caps.

The latest release of Agena can be found at http://sourceforge.net/projects/agena.
This manual has been created with Lotus Word Pro 98 running on Sun Microsystems

VirtualBox and Microsoft Windows 2000, yWorks yEd Graph Editor 3.12.2, and PDF
Creator 1.2.3.

agena >> 3

Credits

The Sources
Agena has been developed on the ANSI C sources of Lua 5.1, written by
Roberto lerusalimschy, Luiz Henrigue de Figueiredo, and Waldemar Celes. Used
by their kind permission back in 2006.

Chapter 7: Standard Library documentation
Many portions of Chapter 7 have been taken from the Lua 5.1 Reference
Manual written by Roberto lerusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes. Used by kind permission.

environ.anames
environ.anames has been invented by Joe Riel, put to the Maple community
back in the early nineties.

case of statement
The original code has been written by Andreas Falkenhahn and posted to the
Lua mailing list on September 01, 2004. In Agena, the functionality has been
extended to check multiple values in the of branches.

skip statement
The skip functionality for loops has been written by Wolfgang Oertl and posted to
the Lua Mailing List on Septemloer 12, 2005.

environ. globals base library function
The original Lua and C code for environ.globals has been wiitten by David
Manura for Lua 5.1 in 2008 and published on www.lua.org. The C source has
been changed so that in Agena, C functions are no longer checked.

mkdir, chdir, and rmdir functions in the os library
These functions are based on code taken from the "lposix.c” file of the POSIX

library written by Luiz Henrique de Figueiredo for Lua 5.0. These functions are
themselves based on the original ones written by Claudio Terra for Lua 3.X.

No automatic auto-conversion of strings to numbers
was inspired by Thomas Reuben's no auto conversion.patch available at
lua.org.

Kilobyte/Megabyte Number Suffix ('k', 'm)

taken from Eric Tetz's k-m-number-suffix.patch available at lua.org.

Binary and octal numbers ('0b', '00)

taken from John Hind's Lua 5.1.4 patch available at lua.org.

Integer division

taken from Thierry Grellier's newluaoperators.patch available at lua.org.

math.fraction

was originally written in ANSI C by Robert J. Craig, AT&T Bell Laboratories.

math.nextafter

uses a modified version of the C function nextafter that has originally been
published by Sun Microsystems with the fdliom IEEE 754 floating-point C library.
The author of the modifications is unknown, but the modified code can be
found at http://www.koders.com (file s nextafter.c). See Appendix B3 for the
licence.

calc.diff

based on Conte and de Boor's *Coefficients of Newton form of polynomial of
degree 3.

Advanced precision algorithm used in for/to loops, calc.fsum, linalg.frace, nseq,
stats.amean, skycrane.counter, stats.cumsum, and stafs.sum.

The method to prevent round-off errors in iterations with non-integral step sizes
has been developed by Wiliom Kahan and published in his paper " Further
remarks on reducing truncation erors™ as of January 1965. Agena mostly uses a
modified version of the Kahan algorithm developed by Kazufumi Ozawa,

agena >> 5

published in his paper "Analysis and Improvement of Kahan's Summation
Algorithm ",

calc.minimum, calc.maximum
use the subroutine calc.fminbr originally written by Dr. Oleg Keselyov in ANSI C
which implements an algorithm published by G. Forsythe, M. Malcolm, and C.
Moler, "Computer methods for mathematical computations™, M., Mir, 1980,
page 202 of the Russian edition.

besselj, bessely
The complex versions of the functions use procedures originally written in
FORTRAN by Shanjie Zhang and Jianming Jin, Computation of Special Functions,
Copyright 1996 by John Wiey & Sons, Inc. Used by Jianming Jin's kind
permission.

Graphics
The graphical capabilities of Agena in the Solaris, Linux, Mac, and Windows
versions have been made possible through a Lua binding of Alexandre Erwin
lttner to the g2 graphical library which has been written by Ljulbomir Milanovic
and Horst Wagner.

ADS package
The core ANSI C functions to create, insert, delete and close the database have
been written by Dr. F. H. Toor.

MAPM binding

Mike's Arbitrary Precision Math Library has been written by Michael C. Ring. See
Appendix B6 for the licence.

The MAPM Agena binding is an adaptation of the Lua binding written by Luiz
Henrigue de Figueiredo, put fo the public domain.
Year 2038 fix for 32-bit machines

was written by Michael G. Schwern, and has been published under the MIT
licence at http://github.com/schwerm/y2038.

6 Contents

Qzip package
and its description of the binding has originally been written and published
under the MIT licence by Tiago Dionizio for Lua 5.0.

Internal string concatenation
Some intemnal initialisation routines use a C function written by Solar Designer
placed in the public domain.

Functions arctan, expx2, gamma, Ingamma, calc.dawson, calc.dilog. calc.Ci,

calc.Chi, calc.fresnelc, calc.fresnels, calc.Psi, calc.Si, calc.Shi, and calc.Ssi
use algorithms written in ANSI C by Stephen L. Moshier for the Cephes Math
Library Release 2.9 as of June, 2000. Copyright by Stephen L. Moshier.

erf, erfc, calc.intde, calc.intdei, calc.intdeo
These functions use procedures originally written in C by Takuya Ooura, Kyoto,
Copyright(C) 1996 Takuya OOURA: "You may use, copy, modify this code for any
purpose and without fee."

math.random
The algorithm used to compute random numibers has been written by George
Marsaglia and published on en.wikipedia.org.

io.anykey
The Linux version uses code written by Johnathon in 2008 which was published
under the MIT licence.

XBASE file support
The xbase package is a binding to xBASE functions written by Frank Warmerdam

in ANSI C for the Shapelib 1.2.10 library. The Shapelib library has been published
under the MIT licence.

agena >> 7

Agenakdit GUI
The GUl is based on an editor published under the GPL licence and written by Bill
Spitzak and others for FLTK 1.3 http://www.fitk.org. Thanks to Albrecht Schlosser for
making the editor work with Agena.

The net package

Most of the functions are based on Jurgen Wolf's C examples published in his
ook "C von A bis Z*, 3rd Edition, Galileo Computing, Bonn, 2009.

"Beej's Guide to Network Programming, Using Intemet Sockets ", written by Brian
"Beej Jorgensen” Hall, was of great help. Some of the net functions use part of
Mr. Hall's public domain code published in his tutorial. Copyright © 2009 Brian
"Beej Jorgensen” Hall.
Studying the code of the LuaSocket 2.0.2 package, Copyright © 2004-2007 by
Diego Nehab, and published under the MIT licence, was very worthwhile.

strings.dleven
The implementation of Damerau-Levenshtein Distance is a blend of C code
written by Lorenzo Seidenari and Anders Sewerin Johansen.

utils.readxml
The original version of the core XML parser has been wriffen in Lua 5.1 by
Roberto lerusalimschy, published on LuaWiki.

utils.decodebé4 and utils.encodebb4
The Baseb4 functions have been originally written in pure ANSI C by Bob Trower,
Copyright (c) 2001, published under the MIT licence.

printf
was taken from the compat.lua file shipped with the Lua 5.1 sources published
under the MIT licence.

.. operator

has been written by Sven Olsen and published in Lua Wiki/Power Patches.

8 Contents

copy

The deep copying mechanism has originally been written by Kurt Jung and by
Aaron Brown for Lua, and published in their book '‘Beginning Lua Programming',
Wiley Publishing, Indianapolis, Indiana, 2007, page 151.

0s.getenv, os.setenv, o0s.environ
have been writften by Mark Edgar, Copyright 2007, published under the MIT
licence, and were taken from http://lua-ex-api.googlecode.com/svn.

bags package
The idea and its core implementation - ported to C - has been taken from the
ook “Programming in Lua® by Roberto lerusalimschy, 2nd Edition, Lua.org, p.
102.

xml package
The xml package actually is the LuaExpat binding to the expat library with some
few Agena-specific non-OOP modifications. LuaExpat 1.0 was designed by
Roberto lerusalimschy, André Carregal and Tomds Guisasola as part of the
Kepler Project which holds ifs copyright. The implementation was coded by

Roberto lerusalimschy, based on a previous design by Jay Carlson.

LuaExpat development was sponsored by Fabrica Digital and FINEP.

bintersect, bminus, bisequal, stats.obcount

The algorithm for binary comparison has been taken from Niklaus Wirth's book,
*Algorithmen und Datenstrukturen mit Modula-2°, 4th ed., 1986, p. 58.

linalg.mulrow, linalg.mulrowadd, stats.deltalist, stats.cumsum, stats.colnorm,
stats.rownorm, stats.sum

These functions have been inspired by the deltalist, and cumulativeSum,
colNorm, rowNorm, mrow, and mrowdd functions available on the TI-Nspire™
CX CAS.

agena >> 9

linalg.scale, stats.scale

is a port of function REASCL, included in the ALGOL 60 NUMAL package
published by The Stichting Centrum Wiskunde & Informatica (Stichting CWI) (legall
successor of Stichting Mathematisch Centrum) at Amsterdam. Original authors:
T. J. Dekker, W. Hoffmann; contributors: W. Hoffrnann, S. P. N. van Kampen.

0Os.Now

uses C routines of the IAU Standards of Fundamental Astronomy (SOFA) Libraries,
See Appendix B5 for the licence.

Functions calc.clampedspline , calc.clampedsplinecoeffs , calc.interp,
calc.neville, calc.newtoncoeffs, calc.nokspline, calc.noksplinecoeffs

use C++ routines (ported to C) provided or written by Professor Brian Bradie,
Department of Mathematics, Christopher Newport University, VA, to the course
"An Infroduction to Numerical Analysis with Applications to the Physical, Natural
and Social Sciences’. There have been no copyright remarks, so at least
Agena's MIT licence is not applicable to the source files ‘interp.c™ and
‘interp.h .

stats.smallest
is based on N. Devillard's C implementation of an algorithm published in various
books written by Niklaus Wirth, published for example in "Algorithmen und
Datenstrukturen mit Modula-2 . Mr. Devillard put his code in the public domain.
strings.isiso* and strings.iso* functions
use ISO 8859/1 Latin-1 bit vector tables taken from the entropy utility ENT written
by John Walker, January 28th, 2008, Fourmilab, put in the public domain.
astro.moonriseset
Uses C functions Copyright © 2010 Guido Trentalancia IZ6RDB. This program is
freeware - however, it is provided as is, without any warranty.
astro.phase

Uses C functions taken from: http://www.voidware.com/moon_phase.htm. There
have not been any copyright remarks.

10 Contents

astro.sunriseset
Uses C functions written as DAYLEN.C, 1989-08-16. Modified to SUNRISET.C,
1992-12-01, (c) Paul Schiyter, 1989, 1992. Released to the public domain by
Paul Schliyter, December 1992,

astro.cdate & astro.jdate
uses C routines of the IAU Standards of Fundamental Astronomy (SOFA) Libraries,
See Appendix B5 for the licence.

strings. utf8size
of the core C code procedure has been written by mpez0O, published at
StackOverflow.

strings. isutf8
of the core C code procedure has been written by written by Christoph,
published on StackOverflow.

strings.isotolatin & strings.isotoutf8
of the core C code procedures have been written by Nominal Animal published
on StackOverflow.

strings.glob

uses C code wiritten by Arjan Kenter, Copyright 1995, Arjan Kenter.

stats.sorted

uses an iterative Quicksort algorithm written by Nicolas Devillard in 1998, put to
the public domain.

1%, *%, +%, -% operators, math.dd, math.dms, math.splitdms, polar, stats.cdf,
stats.numbcomb, stats.numbperm, and stats.pdf

have been inspired by the TI™-30 ECO RS, TI™-30X Pro, and Sharp™ EL-W531XG
pocket calculators.

agena >> 11

as a constant, defines the former Maple V Release 3 implementation of E =
exp(1) = 2.71828182845904523536.
Complex arithmetic
for various mathematical functions and operators has been implemented by
primarily using Maple V Release 3, and Maple V Release 4, and Maple 7.
io.getclip and io.putclip

are based on C code written by banders7, published on Daniweb.

fry/catch statement
has been invented and written by Hu Qiwei for Lua 5.1 back in 2008, and was
extended for Agena.

debug.getinfo

the 'a'/arity extension has been written by Rob Hoelz in 2012.

calc.polyfit & calc.linterp

uses C code published by Harika in 2013 at http://programbank4u.blogspot.de.

Review of the Agena interpreter at the Web

Many thanks to softpedia.com for the very kind critique and fine ranking.

linalg.det & linalg.inverse
are based on C functions written by Edward Popko published on Paul Bourke's
website at http://paulbourke.net/miscellaneous.

redo & relaunch

have been inspired by the Ruby programming language.

12 Contents

linalg.gsolve
is based on C functions written by Edward Popko and Alexander Evans; for the
former see the link above, and for the latter the following address:
http://www.dailyfreecode.com/code/basic-gauss-elimination-method-gauss-29
49.aspx.

calc.simaptive and linalg.ludecomp
ae based on C functions written by RLH, available at
http://www.mymathlib.com, Copyright © 2004 RLH. All rights reserved.

~=, ApProx

use a numerical approximation method developed by Donald Knuth.

calc.Ei

uses a combination of C algorithms written by Stephen L. Moshier and RLH.

linalg. ref

is based on a C# function published at http://rosettacode.org.

linalg.forsub
is based on an algorithm explained by Timothy Vismor found on his site
http://vismor.com.

cordic package
is based on a C package wiitten by John Burkardf, taken from
http://people.sc.fsu.edu/~jourkardt/c_src/cordic/cordic.c, with modifications
using Maple V Release 4 and TI-Nspire CX CAS. Sources provided separately.

libusb binding

is based on lualibusb1 - Lua binding for libusb 1.0, written by Tom N Harris. See:
http://lualibusb 1.googlecode.com.

agena >> 13

stats.extrema

is the Agena port of the “peakdet” function written by Eli Billauer for MATLAB.

mdf, xdf

have been inspired by the Sharp PC-1403H pocket computer,

os.cpuload & os.drivestat
The Windows version of os.cpuload and the UNIX version of os.drivestat have
been taken from Nodir Temirkhodjaev's LuaSys package.

utils.readini
uses modified C sources written by Nicolas Devillard for his iniparser 3.1
package.

Various eComéStation - OS/2 systemnahe functions

have been made possible by the website hitp://www.edm2.com/o0s2api.

list package

The C implementation has been accomplished by reading Michal Kottman's tip
at nabble.com on how to code new data sfructures using Lua's userdata.

stats.dbscan & stats.neighbours

The dbscan algorithm has been invented by Martin Ester, Hans-Peter Kriegel,
Jorg Sander, and Xiaowei Xu, published at University of Munich. The Agena port
is based on a Matlab implementation written by Peter Kovesi, Centre for
Exploratfion Targeting, The University of Western Australia, with stats.neighbbours a
C-based split-off,

hashes package

uses code published by RSA Data Security, Inc. Copyright (C) 1990. All rights
reserved. For further credits, please see the hashes.c file in the Agena sources.

14 Contents

math.ceilpow2 and math.ilog10
use code presented by Sean Eron Anderson at his “Bit Twiddling Hacks®
webpage http://graphics.stanford.edu/~seander/bithacks.html.

0s.cdrom, os.ismounted, os.isremovable, os.isvaliddrive

The Windows versions are based on code published at MSDN, page
http://support.microsoft.com/klo/165721#.

Finally, due to very kind help and feedback, and in chronological order

Many thanks to the Lua team at PUC-Rio, Brasil, and to Agena users in Israel, Italy,
Australia, Palestine, Poland, the eComStation - OS/2 community around the world,
and to many other users of various nations.

agena >> 15

Table of Contents

1IN OAUCTION . 23
LIPS I Y @ 3 (@ [23
T2 FEOTUIES ot 23
1. 3 N D Al 24
T HIS OMY it 26
1.0 OGNS ottt 26
2 Installing and RUNNING AGENA ... 31
2.1 SUN SOIANS T ottt 31
2 1| P 31
2. 3 WO S ottt 32
2.4 eComStation aNA OS/2 WA 4 ...t e e 34
2.0 DS i 34
2.6 Mac OS X 10.5 and higher ... 35
2. 7 HOIKU vt 35
2.8 AQeNa INIHAlSAHON . . 35
2.9 Installing Library UpAates ... 36
S SUMIMNIAIY ittt 41
3.1 Input Conventions in the Console Edition ... 41
3.2 Input Conventions in AQENAEdIT i 41
3.3 Geting FAMIlIAr .. o 42
3.4 UsefUl STATEMIENTS .. 43
3.5 Assignment and UNAsSigNMIENt ...t 44
3.6 ANTNMIE C o 44
R 1111 44
3.8 BOOIEANS it 45
3. Tl it 45
.10 SIS L 46
. T T SEOUENCES ottt ittt 46
3. 2 Pl it 47
3. 18 CONAI I ONS 1ottt 47
R T 17 1 T 1P 47
3.1 PIOCEAUIES .\ttt 49
3. 16 COMMIENTS ottt 50
3.17 Writing, Saving, and RUNNING ProgramIMEsvvvvv i 50
3.18 USING PACKAGES .ot it 51
4 DAtA & OPEIAtIONS ..o 55
4.1 Names, Keywords, anNd TOKENS . vttt 56
(@]] T o 56
4, 3 ENUMIEION ON o 58
4.4 Deletion and the null Constant ... e 58
4, PIECEAENCE 1\ttt 60

o Y A (1181 15 1 60

16 Contents

4,6, T NUMDEIS o 60
4.6.2 AthmetiC OPEIatONS vttt 62
4.6.3 Increment, Decrement, Multiplication, Divisiono 64
4.6.4 Mathematical CoNSIANTS ...ttt e 65
4.6.5 CompPleXx MOt o 65
4.6.6 CompPanNg VAIUES ... v v 66
A 1 (]8T T 68
4,7, 1 REPIESENTION ON ittt 68
4.7 2 SUDSIIINGS vttt e 68
4.7.3 ESCOPE SEAUENCES 1\ttt ittt ittt 69
4, 7.4 CONCAIENAHON Lttt 70
4.7.5 MOIE ON SIHNGS .+ vttt et 70
4.7.6 String Operators and FUNCHONSo 71
4.7.7 CoOmMPANNG SHNGS ottt 73
4.7.8 Pafterns AN COptUIES .t 74
4.8 BOOIEAN EXIESSIONS '+ vttt vttt ettt ettt e 79
A, T S i 81
R I £ (@ 1Y/ P 81
4,9, 2 DI ONAIES .+ttt 86
4.9.3 Table, Set and Sequence OPEIatOrS ...ttt 87
4.9.4 TADIE FUNCHONS 1.t 89
4.9.5 TADIE REIEIENCES .. i Q1
O T £ 92
AT] SEBOUENCES ottt ittt et 95
4,12 STACK PrOGIOmMIMING .« vttt 100
4,13 More on the create Statemento i 101
I 0 1 P 102
.1 REQIST OIS ittt 104
4.16 Exploring the Infernals of Structures ... 109
O A 1 TS 1Y/ 109
O CON Ol 113
Bl CONAI I ONS ittt 113
T I I] (@ 1= 1) | P 113
L T P22 1 1 (] (] 115
B.1.3 CASE StAtEMIENT L 116
D2 L0 S ittt 117
5.2, 1 WhIlE OO vttt 117
Lo T (0] 12 1 T 0 1) 119
5.2.3 fOr/AOWNTIO LOODS vttt ittt ittt 121
5.2.4 for/in LOOPS OVEI TADIES ..\ttt e e 121
5.2.5 fOr/in LOOPS OVEI SEQUENCES .\ vttt ittt ittt ettt e 122
5.2.6 fOr/in LOOPS OV SHINGS vttt ettt e 123
5.2.7 fOr/iN LOOPS OVEl SEIS L\ttt 123
5.2.8 for/in LOOPS OVEI PTOCEAUIES ...\ttt ittt ittt 124
5.2.9 fOr/WhIIE LOOIS vttt 124
5.2.10 for/as & for/Until LOODS v ..t vi it 125

5.2.17T LOOP JUMP CONIIOl ot 126

agena >> 17

6 PrOgIOMIMING o 131
6.1 PrOCEAUIES .. 131
6.2 LOCAIVANADIES ... 132
6.3 Global VarabDIes ... 134
6.4 Changing Parameter VAIUES 134
6.5 OptioNAl ATQUMIENTS ..ot 134
6.6 Passing Options in any Order 136
6.7 TYPE CNECKING vt 137
6.8 EMOr HANAING oo 138
6.8.1 The ermOr FUNCHON . e e e 138
6.8.2 Type Checks in Procedure Parameter Lists ..., 139
6.8.3 Checking the Type of Return of Procedures ..., 139
6.8.4The assumMe FUNCHION .. .o 140
6.8.5 Trapping Errors with protect/lasternror ... 140
6.8.6 Trapping Errors with the try/catch Statement ... s, 141
6.9 MURIDIE RETUINS ..t e 142
6.10 Procedures that Return Procedures ... 144
6.11 Shortcut Procedure Definition ... 145
6.12 User-Defined Procedure TYES ...t 145
6. 13 SCOPING RUIES ...t 146
6.14 Access to Loop Control Variables within Procedures cocvvvuas 148
.15 SANADOXES ..ot 149
6.16 Altering the Environment at Run-TiMe ... 150
6.17 PACKOGES .. 151
6.17.1 Wrting @ New PACKAQEo 151
6.17.2The With FUNCHON ... s 152
6. 18 Remember TADIES 154
6.18.1 Standard Remember Tables ... 155
6.18.2 Read-Only RememberTables ... 156
6.18.3 Functions for Administering RememberTablescovent, 158
6.19 Overloading Operators with Metamethods ..., 158
6.20 Memory Management, Garbage Collection, and Weak Structures 163
6.21 Extending Built-in FUNCTIONSot 165
6.22 Closures: Procedures that Remember their State ..., 166
6.23 SUMMANY ON PrOCEAUIES ...ttt 168
B, 24 1 168
6.24.1 Reading Text Files ... o i 168
6.24.2 WrtING TexXt FIles ... 169
6.24.3 Keyboard INteraCtiOoN ... 170
6.24.4 Default Input, Output, and Error Streams ... 171
6.24.5 LOCKING FileS ..o i 171
6.24.6 Interaction with APPIICATIONSo 171
6.24. 7 GOV FIES oot 172
6. 24,8 XML FllES o\t 172
6.24.9 ABASE Il FIlES .. it 172
.24, 1O NI FIlES i 172

6.25 LINKEA LISTS ..\ v i 173

18 Contents

7 STANAArd LIDrANeso 179
7.1 BASIC FUNCHONS o 179
22 111111 T 211
7.2.1 Kernel Operators and Basic Library Functionsc.cooiiiiiiiinn. . 212
7.2.2 The StNGS LIDIANY ... 215
7 2. 3 PO OIS o 229
7 3 TS i 231
7.3. 1 Kernel OO OrS ottt ittt 231
7.3.21ables LIDrary ... 236
7 SIS i 237
78 S OUENCES ittt 240
76 PaIIS ot e 245
7.7 llist - LINKed LiStS ..o 247
7.7.1 Infroduction and an EXamPleo 247
7.7 2 FUNC I ONS o 247
7.8 DAgS - MUITSETS .. 249
7.8.1 Infroduction and EXAmMPIES ... it 250
7.8 2 FUNCHONS ottt 251
7.9 Mathematical FUNCHIONS i e 253
7.9.1 Operators and Basic FUNCHONSo 255
7.9, 2 MO LIy o 270
7.10 mapm - Arbitrary Precision Library ... 276
7.11 calc - CAICUIUS PACKAQGE ... v 278
7.12linalg - Linear Algebra POCKAQEoi i 289
7.13 stats - STATSTICS ..o 301
7.14 10 - Input and Output FACIlIIES ... oo 326
7.15 binio - Binary File PACKAQEo 339
7.16 xbase - Library to Read and Write xBase Files ..o 346
7. 07 XN - XML PO i 355
7.0 7. T INOAUCTHON 356
7. 17 2 PAISEr Ol S it 356
7.0 7.3 SO CULS 356
717 4 CONSIUC O e e 357
717 D FUNCHONS e e 357
7.07.6 CalOCKS . 358
7.18 Qzip - Library to Read and Write UNIX gzip Compressed Files 362
7.19 net - Network LIorary ... 363
7.19.7 Introduction ANA EXOMIPIES ..ot 364
7.1, 2 FUNCHONS ittt e e 369
7.20 0s - Access to the Operating System ... 378
7.21environ - Access 1o the Agena Environment ... 394
7.22 pACKAGE - MOAUIES ..o 400
7.23 fable - RememberTables ... 401
724 COIOUNINES ottt e e 404
7.25 debug - DEDUGOING 1.t 405
7.26 Utils - UTIHES .o 409
7.27 skycrane - Auxiliary FUNCHONSo e 419

7.28 CloCk - CIOCK PACKAQE ... v 425

agena >> 19

7.29 astro - ASTTONOMY FUNCHONS ...t e 428
7.30 ads - Agena Database System ... 432
7.31 gdi - Graphic Device Interface package ..o 441
7.31.1 Opening a File or WINAOW ..ot 441
7.31.2 PlotHiNg FUNCHONS . oo e 441
7.31.3 ColoUrs, Pam T oo 442
7.31.4 Closing A File Or WINAOW ... v 442
7.31.5 SUPPROMEA File TV S vttt e 442
7.31.6 Plotting Graphs of Univariate Functions ... 443
7.31.7 Plotting Geometric Objects EQsily ... 443
7.31.8 ColoUrs, PAM 2 i 444
7.31.9 Gl FUNCHONS i 444
7.32 fractals - Library to Create Fractals ... e 457
7.32.1 Escape-time Iteration FUNCHONS ... oo 457
7.32.2 Auxiliary Mathematical FUNCHONS ... 459
7.32.3 The Drawing Function fractals.draw ... 459
7.3 2. 4 EXOMIIES vttt ittt 461
7.33 divs - Library 1o Process Fractionso 463
7.34 cordic - Numerical CORDIC Libranyovvvrii i 467
7.35 USD - IOUSD BINAING 0ttt 469
7.35. 1 CTX FUNCHONS ottt e 469
7.35.2 DEV FUNCHONS .t e 469
7. 30, 3 HONAIES .ttt 470
7.35.4 Transfer FUNCHONS o\ttt e 470
7.35.5 Miscellaneous FUNCHIONS ... vt 470
730 REGISIOIS o\t 471
7.36. 71 KeEl OEIaT0IS .\ttt ittt ittt e 471
7.36.2 1€QISTErS LTIy . 475
7.37 NASNES - HOSNES .. 477
7. 37 1IN OAUCTON o 477
7037 2 FUNCHONS ottt e 477
8 CAPLFUNCHONS ...\ 483
AN A o 515
N IO 7T (6 1 (] - 515
A2 METAMETINOAS vt 515
A3 SYSTEM VAN S ..t 517
A4 CommaNd LINE USOQE ..t 519
A4 T UsINg The -8 OptiON L. i e 519
Ad.2 Using the infernal args TAbIE 520
A4.3 Running a Script and then Entering Interactive Mode 520
A4.4 Running Scripts iN UNIX and Mac OS X ..o 521
A4.5 Command LINE SWITCNES ... i 521
A5 Define Your Own Printing RUles fOr Types ... 522
A6 The Agena Initialisation File ... 523
A7 ESCAPE SEAUENCES ..ttt ittt 525

A8 Backward Compatibility ... 525

20 Contents

A9 MathematiCal CoONSIANTS 526
A10 Some Few TeChniCAl NOTES ... it e e 526
ARRENAIX B o 527
Bl AQENA LICENCE ..t 527
B2 GNU GPL V2 LiCENCE 1. it 527
B3 Sun Microsystems Licence for the fdliom IEEE 754 Style Arithmetic Library 534
B4 GNU Lesser General PUBIIC LICENCE ... i 534
B5 SOFA SOfWAIE LICENCE .\ttt s 543
B6 MAPM Copyright Remark (Mike's Arbitrary Precision Math Library) 545
B7 RSA SECUNTY/MDS LIiCENCE ..ttt e e 546
B8 Other Copyright REMAIKS ...t e 546
ARPENAIX C 548
Cl FURNEr REAAING vttt 548

agena >>

21

Chapter One

Introduction

22

1 Agena

agena >> 23

1 Infroduction

1.1 Abstract

Agena is a procedural programming language designed to be used in scientific,
educational, network, linguistic, and many other applications, including scripting.

Agena provides fast real and complex arithmetic, graphics, efficient text
processing, flexible data structures, infelligent procedures, package management,
plus various mulfi-user configuration facilities.

Its syntax looks like very simplified Algol 68 with elements taken primarily from Maple,
Lua and SQL. It has been implemented on the ANSI C sources of Lua 5.1 created
by Roberto lerusalimschy, Luiz Henrigue de Figueiredo, and Waldemar Celes.

Agena binaries are available for Solaris, Linux, Windows, eComStation & OS/2, Mac
OS X, Haiku, and DOS.

You may download Agena, its sources, and its manual from

http://sourceforge.net/projects/agena.

1.2 Features

Agena combines features of Lua 5, Maple, Algol 60, Algol 68, ABC, SQL, ANSI C,
Sinclair ZX Spectrum BASIC, and SuperBASIC for Sinclair QL.

Agena supports all of the common functionality found in imperative languages:

e Qassignments,
* |oops,

e conditions,

e procedures.

Besides providing these basic operations, it has extended programming features
described later in this manual, such as

* high-speed processing of extended data structures,

» fast string and mathematical operators,

* extended conditionals,

* abridged and extended syntax for loops,

* special variable increment, decrement and deletion statements,
e efficient recursion techniques,

e an arbitrary precision mathematical library,

* a network package to exchange data over the Internet and LANS,
* eaqsy-to-use package handling,

* and much more.

24 1 Agena

Like Lua, Agena is untyped and includes the following basic data structures:
numbers, strings, booleans, tables, and procedures. In addition o these types, it
also supports Cantor sets, sequences, registers, pairs, complex numbers, linked lists,
and multisets. With all of these types, you can build fast applications easily.

1.3 In Detail

Agena offers various flow control facilities such as

if/elif/else conditions,

case of/else conditions similar to C's switch/case statements,

if operator to return alternative values,

numerical for/from/to/downto/by loops with optional start and step values, and
automatic round-off error correction of iteration variables,

combined for/while loops,

for/in loops over strings and complex data structures,

while and do/as loops similar fo Modula's while and repeat/until not() iterators,
do/od loops equal to the ones in Maple,

a skip statement to prematurely trigger the next iteration of a loop,

a break statement to prematurely leave a loop,

fast and easy data type validation with the optional double colon facility in
parameter lists.

Data types provided are:

e rational and complex numbers with extensions such as infinity and undefined,

e sfrings,

* booleans such as true, false, and fail,

* the null value meaning the albsence of a value,

* multipurpose tables implemented as associative arrays to hold any kind of data,
taken from Luq,

e Cantor sets as collections of unique items,

* sequences, i.e. vectors, to internally store items in strict sequential order,

* pairs o hold two values or pass arguments in any order to procedures,

]

threads, userdata, and lightuserdata inherited from Lua.

For performance, most basic operations on these types were built info the Agena
kernel.

Procedures with full lexical scoping are supported, as well, and provide the following
extensions:

* the << (args) -> expression >> syntax to easily define simple functions,

* user-defined types for procedures to allow individual handling (the same feature
is available to the above mentioned tables, sets, sequences, and pairs),

* q facility to return predefined results,

* remember tables for conducting recursion at high speed and at low memory
consumption,

* closures, a features to let functions remember their state, taken from Lua,

agena >> 25

* the nargs system variable which holds the number of arguments actually
passed to a procedure,

e metamethods to define operations for tables, sets, sequences, and pairs,
inherited from Lua.

Some other features are:

* graphical capabilities in the Solaris, Mac, Linux, and Windows editions, provided
by the gdi package,

* networking with the Internet and LANS,

* functions to support fast text processing (see in, atendof, replace, lower, and
upper operators, as well as the functions in the strings and utils packages),

* easy configuration of your personal environment via the Agena initialisation file,

* an easy-fo-use package system also providing a means to both load a library
and define short names for all package procedures at a stroke (with function),

* the binio package to easily write and read files in binary mode,

* facility to store any data to a file and read it back later (save and read

functions),

undergraduate Calculus, Linear Algebra, and Statistics packages,

enumeration and multiple assignment,

transfer of the last iteration value of a numeric for loop to its surrounding block,

scope conftrol via the scope/epocs keywords,

efficient stack programming faciliies with the insert/into and pop/from

statements,

bitwise operators,

direct access 1o the file system,

an arbitrary precision mathematical library,

XML import,

xBase file support,

a simple editor called Agenakdit for Solaris, Linux, and Windows.

Agena is shipped with the packages mentioned above and all Lua C packages
that are part of Lua 5.1. Some of the very basic Lua library functions have been
fransformed to Agena operators 1o speed up execution of programmes and thus
have been removed from the Lua packages. The Lua mathematical and stfring
handling packages have been tuned and extended with new functions.

Agena code is not compatible to Lua. Its C API, however, has been left unchanged
and many new API functions have been added. As such, you can integrate any C
package you have already written for Lua by just replacing the Lua- specific header
files, see Chapter 8.

26 1 Agena

1.4 History

| have been dreaming of creating my own programming language for the last 25
years, my first rather unsuccessful attempt tried on a Sinclair ZX Spectrum in the
early 1980s.

Plans became more serious in 2005 when | learned Lua to write procedures for
phonetic analysis and also learned ANSI C to transfer them into a C package. In
autumn 2006 the first modifications of the Lua parser began with extensive
modifications and extensions of the lexer, parser and the Lua Virtual Machine in
summer 2007. Most of Agena's functionality had been completed in March 2008,
followed by the first new data structure, Cantor sets, one month later, some more
data structures, and a lot of fine-tuning and testing thereafter. Finally, in January
2009, the first release of Agena was published at Sourceforge.

Study of many books and websites on various programming languages such as
Algol 68, Maple, Algol 60, and ABC, and my various ideas on the “perfect’
language helped to conceive a completely new Algol 68-syntax based
language with high-speed functionality for arithmetic and text processing.

You may find that at least the goal of designing a perfect language has not yet
been met. For example, the syntax is not always consistent: you will find
Algol 68-style elements in most cases, but also ABC/SQL-like syntax for basic
operations with structures. The primary reason for this is that sometimes natural
language statements are better to reminisce. | have stopped bothering on this
inconsistency issue.

Agena has been designed on Windows 2000, NT 4.0, Vista, and Windows 7 using
the MInGW GCC 3.4.6 and 4.4.0 compilers. Further programming has been done
on a Sun Sparc Ultra 5, a Sun Blade 150, and a Sun Blade 1500 running Solaris 10,
and on openSUSE 10.3 for x86 and on Xubuntu 10.04 for Mac Mini PowerPC to
make the interpreter work in UNIX environments. The original x86 Mac Version has
been developed on an x86 Mac Mini. A lot of testing has been done on an Acer
Aspire ONE netbook running Linpus Linux/Fedora 8.

After almost four years of development, Agena 1.0 has been released in August
2010.

1.5 Origins

Most of all functionality stems from Lua, Maple and C. Some of my favourite
additions to the Lua C sources include:

Maple V Release 3 and later

» if/elif/else/fi, for/while, map, remove, select, selectremove, subs, with, readlib,
package management, library.agn, agena.ini, read, save, substrings, Cantor
sets and its operators, sequences, remember tables, in, nargs, op(s). restart,
tables.indices, the linalg package, maybe all the prefty printers, argument type

agena >>

27

checks, i type check, and multiple ::
mathematical functions and complex arithmetic, and much, much more.

type parameter checks surely all

The Maple V Release 3 language has been designed by Michael B. Monagan,
Keith O. Geddes, K. M. Heal, George Labahn, and S. M. Vorkoetter for Waterloo
Maple Inc./Maplesoft, Waterloo, Ontario. Very kind thanks to WMI's support back

in the 1990s.

This is also why Agena looks a lot like Maple, and thus somewhat like:

Algol 68

has many times been called the queen of all programming languages,

* case/of/esac.

has been infroduced with Algol 68.

Algol 60
e entier.

Algol 60 is the parent of Algol 68.

Modula-2

* jnc and dec.

C

* printf, and most of Lua's system functions.

C actually is a descendent of Algol 68.

Sinclair ZX Spectrum BASIC

e clear, cls, int.

SQL and ABC

* insert/info and thus indirectly create, delete/from, and pop/from.

28 1 Agena

PL/l and REXX

 Some of the strings library functions have been taken from the symbiosis of
BASIC and Algol 60, expressed with PL/I and REXX.

Eiffel

* Checking the type of return of procedures by the proc(-+) :: <typename> is
statement sequence has been taken from this language.

Ada

* inspired the skip when and break when statements.

agena >>

29

Chapter Two

Installing & Running Agena

30

2 Installing and Running Agena

agena >> 31

2 Installing and Running Agena

2.1 Sun Solaris 10

In Sun Solaris, and some of its forks, e.g. OpenSolaris, put the gzipped Agena
package info any directory. Assuming you want to install the Sparc version,
uncompress the package by entering:

> gzip -d agena-x.y.z-sol10-sparc-local.gz
Then install it with the Solaris package manager:
> pkgadd -d agena-x.y.z-sol10-sparc-local

This installs the executable into the /usr/local/bin folder and the rest of dll files intfo
lusr/agena . The /usr/agenallib directory is called the “main Agena library folder .

Make sure you have the expat, fonfconfig, freetype, joegq., libgcce, libgd, libiconv,
libintl, libncurses, libpng, readline, xom, and zlib libraries installed. From the
command line, type agena and press RETURN.

= Terminal

Window Edit Options ﬂelp|

AGEMA »: 2,0, 020 2008-2013 http: ffagena. sourceforge, net,

e |

Image 1: Start-up message in Solaris

The procedure for OpenSolaris and Solaris for x86 CPUs is the same. The package
always installs as SMCagena

2.2 Linux
On Debian based distributions, install the deb installer by typing:

> sudo dpkg -i --force-depends agena-x.y.z-linux-i3 86.deb
On Red Hat systems, install the rom distribution by typing as rooft:
> rpm -ihv --nodeps agena-x.y.z-linux-i386.rpm

This installs the executable into the /usr/local/bin folder and the rest of dll files intfo
lusr/agena . The /usr/agenallib directory is called the “main Agena library folder .

Note that you must have the expaf, fonfconfig, freetype, joeg. libgcc, libgd,
libiconv, libintl, libncurses, libpng, readline, xom, and zlib libraries installed before.

32 2 Installing and Running Agena

From the command line, type agena and press RETURN.

The name of the Linux package is agena .

2.3 Windows
Just execute the Windows installer, and choose the components you want 1o instaill.

Make sure you either let the installer automatically set the environment variable
called AGENAPATH containing the path fo the main Agena library folder (the
default) or set it later manually in the Windows Control Panel, via the " System ™ icon.

Il]

Choose Components

'C] g EE n G } > Choose which Features of Agena wou wank ko install,

Check the components you want ko install and uncheck the components wou don't wank ko
install, Click Mext ta cantinue,

Select the type of instal: -
Or, select Ehe ':'pti':_'nl_‘?lt - [] Agena Core Files (required) -
companents you wish ko .

inskalls Agenakdit

i |w| Diocurmentakion

Sek Environment Yariable AGENAPATH
Append path ko Agena binary bo PATH
' Deskiop Shortout ;I

-—- = . -1
—Descripkion

Space required: 5.7ME Posibiomn Yaur mouse over & companent to see ks
description,

rullsoft Install System w2, 46

< Back. I Mexk = I Cancel

Image 2: Leave the framed settings checked

You may start Agena either via the Start Menu, or by typing agena in a shell.

¢ |NT Shell - agena

ISnAgena

GENA >» 2.8. <G> 2886-2813 http:-/sagena.sourceforge.net.

Image 3: Start-up message in Windows

>

agena >> 33

Alternatively you may start Agenakdit, the Agena editor and runtime environment,
via the Start Menu or by typing agenaedit in a shell.

If you do not have admin rights to start the installer, or want to use the interpreter on
a removable stick, download the portable version of Agena available at
Sourceforge.net and study the readme.w32 file.

For the portable version:

If you would like to use Agena on a removable drive or do not have Admin rights to
run the binary Windows installer, just install this portable release.

In a NT shell, create a folder called ‘agenda’ anywhere on your drive, change into
this directory and decompress this file into this folder preserving the subdirectory
structure of the ZIP file.
(Only if you use Windows 2000 or earlier. Now set the environment variable
AGENAPATH, referring to the main Agena library “agenallib” file. For example, if you
install Agena info the folder c:\agena, the liorary files will reside in the c:\agenallib
subfolder, so enter the following statement:

set AGENAPATH=c:/agena/lib
Note the forward slashes in the path and the variable name in capital lefters.
In XP and later, Agena determines the path to the main Agena library
automatically, provided you do not alter the subbdirectory structure of the portable
distrioution.
For all Windows versions:
Also append the path to the folder where the agena.exe binary resides to the PATH
system variable, this time using backslashes, so that the statement looks something
like this:

PATH=%path%;c:\agena\bin
In the NT shell, type

agena
to start Agena.
If you installed Agena on a fixed drive, you can permanently set these two values in

Windows. Start the online help of Windows, search for “environment variable™ and
set the following two values in the “current user’ section as follows:

34 2 Installing and Running Agena

Create a new environment variable AGENAPATH and set it o c:/agena/lib (with
slashes).

Search for the already existing PATH variable and append the path c¢:\agena\bin
(with backslashes) to it putting a semicolon in front of this path to separate it from all
the other paths already existing.

2.4 eComéStation and OS/2 Warp 4

The WarpIN installer allows you to choose a proper directory for the interpreter, and
installs all files into it.

Make sure you either let the installer automatically set the environment variable
called AGENAPATH containing the path to the main Agena library folder (the WarpIN
default) by leaving the "Modify CONFIG.SYS" entry in the System Configuration
window checked, or set it later by manually editing config.sys.

Just enter agena in an eCS shell to run the interpreter, or doubleclick the Agena icon
in the programme folder. Agena may require EMX runtime 0.9d fix 4 or higher in
0S/2.

2.5 DOS

In DOS, create a folder called agena anywhere on your drive, change into this
directory and decompress the agenazip file into this folder preserving the
subdirectory structure of the ZIP file.

Now set the environment variable AGENAPATHN the autoexec.bat file. Use a text
editor for this. For example, if you installed Agena into the folder c:\agena , and the
library.agn file is in the lib subfolder, enter the following line into the autoexec.bat
file:

set AGENAPATH=c:/agena/lib
Note the forward slash in the path and the variable name in capital letters.

Also append the path to the agena folder to the PATH system variable using
backslashes, so that the entry looks something like this:

PATH C:\;C:\NWDOS;C:\AGENA\BIN

Although it is not necessary in FreeDOS 1.1, af least with Novell DOS 7, you must
install cwsbpPmMI.EXEdelivered with the DJPGG edition of GCC as a TSR programme
before starting Agena. The binary can be found in the DJGPP distribution.

In order to always load this TSR when booting your computer, open the
autoexec.bat file with a text editor. Assuming the cwsbPMI.EXEfile is in the c:\tools
folder, add the following line:

agena >> 35

loadhigh c:\tools\cwsdpmi.exe -p

Novell DOS's command line history works correctly on the Agena prompt.

2.6 Mac OS X 10.5 and higher

Simply double-click the agena-x.y.z-mac.pkg installer in the file manager and follow
the instructions. Do not choose an alternative destination for the package.

The Agena executable is copied into the /usr/local/bin folder, supporting files into
lusr/agena , and the documentation to /Library/Documentation/Agena . The
lusr/agena/lib directory is called the “main Agena library folder .

Note that you may have 1o install the readline library before.

From the command line, type agena and press RETURN.

2.8 Agena Initialisation
When you start Agena, the following actions are taken:

1. The package tables for the C libraries shipped with the standard edition of
Agena (e.g. math, strings, efc.) are created so that these package procedures
become available to the user.

2. All global values are copied from the G table to ifs copy _origG, so that the
restart function can restore the original environment if invoked.

3. The system variables libname and mainliboname pointing to the main Agena
library folder and optionally to other folders is set by either querying the
environment variable AGENAPATH or - if not set - checking whether the current
working directory contains the string /agena , building the path accordingly.

The main Agena library folder contains library files with file suffix agn written in the
Agena language, or binary files with the file suffix so or dil originally written in
ANSI C.

36

2 Installing and Running Agena

In UNIX, Mac OS X, Haiku and Windows, if the path could not be determined as
described before, libname and mainlibname are by default set to
lusr/agenallib in UNIX and Mac OS X, /boot/common/share/agenallib in Haiku,
and %ProgramFiles%\agenallib in Windows, if these directories exist and if the
user has at least read permissions for the respective folder. The liboname variable
is used extensively by the with and readlib functions that initialise packages. If it
could not be set, many package functions will not be available.

Searching all paths in liboname from left fo right, Agena tries fo find the standard
Agena library library.agn and if successful, loads and runs it. The library.agn
file includes functions written in the Agena language that complement the C
libraries. If the standard Agena library could not be found, a warning message,
bbut no error, is issued. If there are multiple library.agn files in your path, only the
first one found is inifialised.

The global Agena initialisation file - if present - called agena.ini in DOS based
systems and .agenainit in UNIX based systems including Haiku is searched by
fraversing all paths in lioname from left to right. As with library.agn , this file
contains code witten in the Agena language that an administrator may
customise with pre-set variables, auxiliary procedures, etc. that shall always be
available to every Agena user. If the initialisation file does not exist, no error is
issued. If there are multiple Agena initialisation files in your libname path, only
the first one found is processed.

The user's personal Agena initialisation file called .agenainit on UNIX-based
platforms including Haiku, and agena.ini on DOS-based platforms - if present - is
searched in the user's home folder and run. If this initialisation file does not exist,
no eror is issued. After that the Agena session begqins. See Appendix A6 for
further details.

The path to the current user's home directory is assigned to the environ.homedir
environment variable.

2.9 Installing Library Updates

Sometimes, library updates will be provided at Sourceforge if library functions written
in the Agena language have been patched or also if new functions written in the
language have been developed.

For insfructions on how to easily install such an update, have a look at the
libupdate.read.me file residing on the root of the agena-x.y.z-updaten.zip archive
which can be downloaded from the Binaries Agena Sourceforge folder.

In general, the updates can be installed by just unpacking the ZIP archive into the
main Agena folder.

agena >> 37

A library update can be installed on every supported operating system, but you
mMay need administrative rights.

38

2 Installing and Running Agena

agena >>

39

Chapter Three

Overview

40

3 Overview

agena >> 41

3 Summary

Let us start by just entering some commands that will be described later in this
manual so that you can become acquainted with Agena as fast as possible. In this
chapter, you will also learn about some of the basic data types available.

On UNIX-based systems, Haiku, or DOS, type agena in a shell to start the interpreter.
On eComéStation - OS/2 and Windows, either click the Agena icon in the
programme folder or type agena in a shell.

Alternatively, in Solaris, Linux, and Windows, you may start Agenakdit, the Agena
editor and runtime environment, by typing agenaedit in a shell or via the
Programme Manager (Windows only).

3.1 Input Conventions in the Console Edition

Any valid Agena code can be enfered at the console with or without a frailing
colon or semicolon:

e |f an expression is finished with a colon, it is evaluated and its value is printed at
the console.

* |f the expression ends with a semicolon or neither with a colon nor a semicolon,
it is evaluated, but nothing is printed on screen.

You may opftionally insert one or more white spaces between operands in your
statements.

3.2 Input Conventions in Agenakdit

The Intel Solaris, Linux, Windows, and Mac distributions contain an editor providing
syntax-highlighting and the facility to run the code you edited.

Any valid Agena code can be entered in the editor with or without a frailing
semicolon.

The output of an Agena programme typed into the editor is displayed in a second
window:

e Hit the F5 key to compute all statements you entered.

* Consecutive statements can be executed by selecting them and hitting the Fé6
key.

e To display results in the output window, pass the respective expression to the
print function, e.g.:

print(exp(2*Pi*)) Or a := 1, print(a);

42 3 Overview

'l y

| Agenadit - Untitled (modified) = B X

File Edit Search Run Help

f = w2 x > exp(=in{x)) >>;

for x from -2 to 2 by 0.25 do

print{x, f(=x))
B (1) AGENA > > 0.34.0 (Done) =3 | =
-2 0.40280712612353
i 0.37381810622153
=Y.5 0.368B0213330276
+¥:25 0.38713391223618
=1 0.43107595064558
0. 7% 0.505787T4485886
-0.5 0.615813896108773
-0.25 0.78082520824503
0 1
0.25 1.2806963574442
0.5 1.6151462964421
P 1.8771150960557
1 2.3197768247159
1.25 2.5830855122552
1.5 2.7114810176B22
Y15 2.6750978172454
2 2.482577728015
L —_—

You may optionally insert one or more white spaces between operands in your
statements.

3.3 Getting Familiar

From this point on, this manual will deal with the console (and not Agenakdit) edition
only.

Assume you would like Agena to add the numbers 1 and 2 and show the result.
Then type:

> print(1+2)
3

If you want to store a value to a variable, type:
>c:=25;

Now the value 25 is stored to the name ¢, and you can refer to this number by the
name c in subbsequent calculations.

Assume that ¢ is 25° Celsius. If you want to convert it to Fahrenheit, enter:

> print(1.8*c + 32);
77

There are many functions available in the kemel and various libraries. To compute
the inverse sine, use the arcsin operator:

agena >> 43

> print(arcsin(1));
1.5707963267949

The root function determines the n-th root of a value:

> print(root(2, 3));
1.2599210498949

3.4 Useful Statements

Instead of using print, you may also output results by entering an expression and
completing it with a colon:

> root(2, 3):
1.2599210498949

The global variable ans always holds the result of the last statement you completed
with a colon.

> In(2*Pi):
1.8378770664093

> ans:
1.8378770664093

The console screen can be cleared in the Solaris, Windows, UNIX, Mac OS X, Haiku,
eComStation - OS/2, and DOS versions by just entering the keyword cls':

> cls

The restart statement? resets Agena to its initial state, i.e. clears all variables you
defined in a session.

> restart

The bye statement quits a session - but could also press CTRL+C.

> bye

If you prefer another Agena prompt instead of the predefined one, assign:

> PROMPT :='Agena$’
Agena$ _

You may put this statement into the initialisation file in the Agena lib or your home
folder, if you do not want to change the prompt manually every time you start
Agena. See Appendix A6 for further detail.

Agenas$ restart;

! The statement is not supported by AgenaEdit.
2
dito.

44 3 Overview

Let us have a closer look af the functionality and data types available in Agena:

3.5 Assignment and Unassignment

As we have already seen, to assign a number, say 1, to a variable called q, type:
>a:=1;

Variables can be deleted by assigning null or using the clear statement. The latter
also performs a garbage collection.

>a = null:
null

> clear a;

> a:
null

3.6 Arithmetic

Agena supports both real and complex arithmetic with the + (addition), -
(subtraction), * (multiplication), / (division) and ~ (exponentiation) operators:

> 1+2:
3

Complex numbers can be input using the | constant or the | operator:

> exp(1+2*):
-1.1312043837568+2.4717266720048%|

> exp(1'2):

-1.1312043837568+2.4717266720048*|

3.7 Strings

A text can be put between single or double quotes:

> str ;= 'a string’":
a string

Substrings are extracted by passing their indexes:

> str[3 to 6]:
stri

Concatenation, search, and replace operations:

> str ;= str & ' and another one, too":
a string and another one, too

> instr(str, 'another’):
14

agena >> 45

> replace(str, ‘and’, '&"):
a string & another one, too

There are various other string operators and functions available.

3.8 Booleans

Agena features the true, false, and fail 1o represent Boolean values. fail may be
used to indicate a failed computation. The operators <, >, =, <>, <=, and >=
compare values and return either frue or false. The operators and, or, not, and xor
combine Boolean values.

>1<2:
true

> true or false:
true

3.9 Tables

Tables are used to represent more complex data structures. Tables consist of zero,
one or more key-value pairs: the key referencing to the position of the value in the
table, and the value the data itself.

>thl:=[

> 1-~[a,7.71]

> 2~[b, 7.70]

> 3~[c, 7.59]

>,

To get the subtable [a, 7.71] indexed with key 1, and the second value 7.71 in

this first subtable, input:

> thi[1]:
[a, 7.71]

> thi[1, 2]:
7.71

The insert statement adds further values into a table.

> insert ['d’, 8.01] into tbl

> thl:
[[a, 7.71], [b, 7.7], [c, 7.59], [d, 8.01]]

Alternatively, values may be added by using the indexing method:

> tbl[5] :=['e', 8.04];

> thl:
[[a, 7.71], [b, 7.7], [c, 7.59], [d, 8.01], [e, 8.0 Al

Of course, values can be replaced:

46 3 Overview

> tbl[3] :=['2', -5];

> tbl:
[[a, 7.71], [b, 7.7], [z, -5], [d, 8.01], [e, 8.04] |

Another form of a table is the dictionary, which indices can be any kind of data -
not only positive integers. Key-value pairs are entered with tildes.

> dic:= ['donald’ ~ 'duck’, 'mickey' ~ 'mouseT;

> dic['donald:
duck

3.10 Sets

Sets are collections of unique items: numbers, strings, and any other data except
null. Any item is stored only once and in random order.

> s ;= {'"donald’, 'mickey’', 'donald'}:
{donald, mickey}

If you want 1o check whether 'donald' is part of the set s, just index it or use the in
operator:

> s['donald']:
true

> s['daisy']:
false

> 'donald' in s:
true

The insert statement adds new values to a set, the delete statement deletes them.

> insert 'daisy’ into s;
> delete 'donald' from s;
>s:

{daisy, mickey}

Three operators exist to conduct Cantor set operations: minus, intersect, and union.

3.11 Sequences

Sequences can hold any number of items except null. All elements are indexed
with infegers starting with number 1. Compared to tables, sequences are twice as
fast when adding values to them. The insert, delete, indexing, and assignment
statements as well as the operators described above can be applied to
sequences, 100.

> s :=seq(l, 1, 'donald', true):
seq(1, 1, donald, true)

agena >> 47

> s[2]:
1

> s[4] :={1, 2, 2};
> insert [1, 2, 2] into S;

>s:
seq(l, 1, donald, {1, 2}, [1, 2, 2])

3.12 Pairs

Pairs hold exactly two values of any type (including null and other pairs). Values can
be retrieved by indexing them or using the left and right operators. Values may be
exchanged by using assignments to indexed names.

>p:=10:11;

> left(p), right(p), p[1], p[2]:
10 11 10 11

> p[1] :=-10;

3.13 Conditions

Conditions can be checked with the if statement. The elif and else clauses are
optional. The closing fi is obligatory.

> if 1 <2 then

> print('valid)

> elif 1 = 2 then

> print(invalid’)

> else

> print(invalid, too")
> fi;

valid

The case statement facilitates comparing values and executing corresponding
statements.

> c :='agena’;

> case C
of 'agena’ then
print(Agenal’)
of 'lua’ then
print('Lual!’)
else
> print(Another programming language !")
> esac;
Agena!

VVYVYVYV

3.14 Loops

A for loop iterates over one or more statements. It begins with an initial numeric
value (from clause), and proceeds up to and including a given numeric value (to

48 3 Overview

clause). The step size can also be given (step clause). The od keyword indicates the
end of the loop body.

The from and step clauses are optional. If the from clause is omitted, the loop starts
with the initial value 1. If the step clause is omitted, the step size is 1.

The current iteration value is stored to a control variable (i in this example) which
can be used in the loop body.

> forifrom1to3by1do
> print(i, i*2, i"3)

> od;

1 1 1
2 4 8
3 9 27

A while loop first checks a condition and if this condition is frue or any other value
except false, fail, or null, it iterates the loop body again and again as long as the
condition remains frue. The following statfements calculate the largest Fibonacci
numiber less than 1000.

>a:=0;b:=1;

> while b < 1000 do

> c:=b;b:=a+b;a:=c
> od;

> print(c);

987

A variation of while is the do/as loop which checks a condition at the end of the
iteration. Thus the loop body will always be executed at least once.

>c:=0;

>do
> incc
>as c<10;

> print(c);
10

All flavours of for loops can be combined with a while condition. As long as the
while condition is satisfied, i.e. is true, the for loop iterates.

> for x to 10 while In(x) <= 1 do
> print(x, In(x))

> od;

10

2 0.69314718055995

The skip statement causes another iteration of the loop to begin at once, thus
skipping all of the following loop statements after the skip keyword for the current
iteration.

agena >> 49

The break statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop. Thus the above loop could also be
written as:

> for x to 10 do

> if In(x) > 1 then break fi;
> print(x, In(x))

> od;

10

2 0.69314718055995

which of course is equivalent 1o

> for x to 10 while In(x) <= 1 do
> print(x, In(x))

>od

1 0

2 0.69314718055995

for loops can also be combined with a closing as or until condition. In this case, the
loop body is always executed at least once. The loop is iterated as long as the as
condition remains true, or the until condition evaluates to false.

> for x to 10 do

> print(x, In(x))
>aslIn(x) <=1

1 0

2 0.69314718055995
3 1.0986122886681

> for x to 10 do

> print(x, In(x))

> until In(x) > 1

1 0

2 0.69314718055995
3 1.0986122886681

3.15 Procedures

Procedures cluster a sequence of statements into abstract units which then can be
repeatedly invoked.

Local variables are accessible 1o its procedure only and can be declared with the
local statement.

The return statement passes the result of a computation.

> fact := proc(n) is

> |ocal result;

> result:=1;

> forifrom 1tondo
> result ;= result * i
> od;

> return result

> end;

> print(fact(10));
3628800

50 3 Overview

A procedure can call itself.
If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as if, for, insert, etc.

> deg = << (x) -> x * 180/ Pi >>;

To compute the value of the function at %, just input:

> print(deg(Pi/4));
45

A function with two arguments:

>sum :=<< (X, y) -> X +y>>;

> print(sum(1, 2));
3

3.16 Comments

You should always document the code you have written so that you and others will
understand its meaning if reviewed later.

A single line comment starts with a single hash. Agena ignores all characters
following the hash up to the end of the current line.

> # this is a single-line comment

> a = 1; # a contains a number

A mulfi-line comment, also called the 'long comment is starfed with the token
sequence #/ and ends with the closing /# token sequence®.

> #/ this is a long comment,
> split over two lines /#

3.17 Wiiting, Saving, and Running Programmes

While short statements can be entered directly at the Agena prompt, it is quite
useful o write larger programmes in a text editor (or with Agenakdit that is shipped
with the interpreter) and save them to a text file so that they can be reused in future
sessions.

Note that Agena comes with language scheme files for some common text editors.
Look into the schemes subdirectory of your Agena installation.

Let us assume that a programme has been saved to a file called myprog.agn in the
directory /home/alex in UNIX, or c:\Users\alex in Windows. Then you can execute it
at the Agena prompt by typing:

® Multi-line comments cannot begin in the very first line of a programme file. Use a single comment,
i.e. #, instead.

agena >> 51

> run ''home/alex/myprog.agn’

in UNIX or

> run 'c:/users/alex/myprog.agn’
in Windows. Note the forward slashes used in Agena for Windows.

If you both want to start an Agena session and also run a programme from a shell,
then enter:

$ agena -i /home/alex/myprog.agn
in UNIX or

C:\>agena -i c:\users\alex\myprog.agn

in Windows. See Appendix A4 for further command-line switches.

3.18 Using Packages
Many functions are included in packages, also called libraries, which must af first
be initialised so that the package functions can be used.

For example, all statistics functions are included in the stats package which can be
invoked with the import statement:

> import stats;

> stats.amean([1, 2, 3, 4]):

All packages 1o be initially initialised in such a way are marked in Chapter 7.

Shortcuts to the package functions can be defined by passing the alias option to
the import statement.

>amean([1, 2, 3, 4]):
Error in stdin, at line 1:
attempt to call global "amean” (a null value)

> import stats alias
Warning: iqr, sorted have been reassigned.

> amean([1, 2, 3, 4]):
2.5

If you want to define shortcuts to certain package functions, pass their names right
after the alias option. You may specify one or more function names:

> import stats alias amean, smm;

52 3 Overview

You may also have a look at the readlib and with functions described in Chapter
7.1,

agena >>

53

Chapter Four

Data & Operations

54

4 Data

agena >> 55

4 Data & Operations

Agena features a set of data types and operations on them that are suited for both
general and specialised needs. While providing all the general types inherited from
Lua - numbers, strings, booleans, nulls, tables, and procedures - it also has four
additional data types that allow very fast operations: sets, sequences, pairs, and
complex numbers.

Type Description
number any integral or rational numiber, plus undefined and infinity
string any ftext
boolean booleans (e.g. frue, false, and fail)
null a value representing the absence of a value
table a multipurpose structure storing numbers, strings, booleans,
tables, and any other data type
procedure a predefined collection of one or more Agena statements
the classical Cantor set storing numbers, strings, booleans, and all
set .
other data types available
a vector storing numbers, strings, booleans, and all other data
sequence :)
types except null in sequential order
. a fixed-size vector storing any value including null and featuring @
reqister " . .
top position pointer to prevent access to elements above it
pair a pair of two values of any type
complex a complex number consisting of a real and an imaginary number
part of system memory containing user-defined data; userdata
userdata objects can only be created by modifying the ANSI C sources of
the interpreter
. a value representing a C pointer; available only if you modify the
lightuserdata ANSI C sources of the interpreter
thread a non-preemptive multithread object (a coroutine)

Table 1: Available types

Tables, sets, sequences, reqisters, and pairs are also called sfructures in this
manual.

You can determine the type of a value with the type operator which returns a string:

> type(0):
number

> type(‘a text'):
string

There is also a structure derived from both tables and sets: bags, see Chapter 7.8;
also linked lists have been implemented using tables, see Chapter 7.7.

56 4 Data

4.1 Names, Keywords, and Tokens

In Chapter 3, we have already assigned data - such as numbers and procedures -
to names, also called “variables . These names refer to the respective values and
can be used conveniently as a reference to the actual data.

A name always begins with an upper-case or lower-case lefter or an underscore,
followed by one or more upper-case or lower-case letters, underscores or numbers
in any order.

Since Agena is a dynamically typed language, no declarations of variable names
are needed.

Valid names Invalid names
var lvar

_var 1
varl
_varln

1
ValueOne

valueTwo

Table 2: Examples for valid and invalid names

The following keywords are reserved and cannot be used as names:

abs alias and arccos arcsec arcsin arctan as ass igned atendof bea bottom
break by bye case catch char clear cls conjugate copy cos cosh cosxx dec
delete dict div do downto duplicate elif else en d entier enum esac even
exchange exp fail false fi filled first finite f lip for from gethigh
getlow global if imag import in inc infinity ins ert int intersect into

is join keys last left In Ingamma local lower mi nus mul nan nargs not
numeric od of onsuccess or pop proc gsadd real r edo reg relaunch replace
restart return right rotate sadd seq sethigh set low shift si sign sin

sinh size skip smul split sqrt subset tan tanh t hen to top trim true try
type typeof unassigned undefined union unique un til upper values when

while xor xsubset yrt

boolean complex lightuserdata null number pair r egister procedure
sequence set string table thread userdata

The following symbols denote other tokens:

+ R RR K00 /% +% %6\ & && ||~~~ % A M $ # =<><=>=<>=z==-=
<«<<>>>(){}[];:n->@%,...7°
4.2 Assignment

Values can be assigned to names in the following fashions:

name = value
name;, hame,, --- , hamey .= value,, value,, --- , valuey
name, hame,, --- , namey -> value

agena >> 57

In the first form, one value is stored in one variable, whereas in the second form,
called "multiple assignment statement’, name, is set fo value;, name: is assigned
value,, etc. In the third form, called the “short-cut multiple assignment statement
a single value is set to each name to the left of the -> token.

First steps:
>a:=1;

> a.

1

An assignment statement can be finished with a colon to both conduct the
assignment and print the right-hand side value at the console.

>a:=1
1
> a = exp(a):

2.718281828459

Multiple assignments:

>a,b:i=1,2

If the left-hand side contains more names than the number of values on the
right-nand side, then the excess names are set to null.

>c,d=1

>c
1

>d:
null

If the right-hand side of a multiple assignment contains extra values, they are simply
ignored.

The multiple assignment statement can also be used to swap or shiff values in
names without using temporary variables.

>a,b:i=1,2;

>a,b:=b a
2 1

58 4 Data

A short-cut multiple assignment statement:

> X
2.718281828459

>y
2.718281828459

4.3 Enumeration

Enumeration with step size 1 is supported with the enum statement:

enum name; [, namey, -+ |
enum name; [, name,, --- | from value

In the first form, name,;, name,, etc. are enumerated staring with the numeric
value 1.

> enum ONE, TWO;

> ONE:
1

> TWO:
2

In the second form, enumeration starts with the numeric value passed right after the
from keyword.
> enum THREE, FOUR from 3

> THREE:
3

> FOUR:
4

4.4 Deletion and the null Constant

You may delete the contenfs of one or more variables with one of the following
methods: Either use the clear command:

clear name; [, name,, --- , namex]

>a:=1;

> clear a;

agena >> 59

> a.
null

which also performs a garbage collection useful if large structures shall be removed
frorn memory, or set the variable to be deleted to null:

>b:=1;

> b= null:
null

The null value represents the absence of a value. All names that are unassigned
evaluate to null. Assigning names to null quickly clears their values, but does not
garbage collect them.

The null constant has its own type: 'null’.

> type(null):
null

If you want to test whether a value is of type 'null, contrary to all other types, you
have to put the type name in brackets:

> type(null) = 'null”;
true

In all cases - whether using the clear statement or assigning fo null - the memory
freed is not given back to the operating system but can be used by Agena for
values yet to be created.

There are two operators that quickly check whether a value is assigned or not:
assigned and unassigned.

> assigned(v):
false

> unassigned(v):
true

60 4 Data

4.5 Precedence

Operator precedence in Agena follows the table below, from lower to higher
priority:

or xor

and

<>SK<=>= === ~=<> -

in subset xsubset union minus intersect atendof
&:@%

+ - || ™M split

* [% \ && shift *% /% +% -% <<< >>>

not - (unary minus)

N k%

I and all unary operators including ~~

As usual, you can use parentheses to change the precedence of an expression.
The concatenation (&), exponentiation (», *+), pair (:), Mmapping (@, and selction ($)
operators are right associative, e.g. x~y~z = x™(y” z). All other binary operators
are left associative.

> 14344
13

> (1+3)*4:
16

4.6 Arithmetic

4.6.1 Numbers

In the ‘real” domain, Agena internally only knows floating point numbers which can
represent integral or rational numeric values. All numbers are of type number.

An integral value consists of one or more numbers, with an optional sign in front of .

e 1

. 20
. 0
. +4

A rational value consists of one or more numbers, an obligatory decimal point at
any position and an optional sign in front of it:

e -1.12
0.1
e .1

Negative integral or rafional values must always be entered with a minus sign, but
positive numbers do not need to have a plus sign.

agena >> 61

You may optionally include one or more single quotes within a number 1o group
digifs:

> 10'000'000:
10000000

You can alternatively enter numbers in scientific notatfion using the e symbol.

> le4.
10000

> -le-4:
-0.0001

If a number ends in the letter K, M, G, T, or D, then the number is multiplied by 1,024,
1,048,576 (= 1,024%), 1,073,741,824 (= 1,024%, 1,099,511,627,776 (= 1,024%, or
12, respectively. If a number ends in the lefter k, m g, or t, then the number is
multiplied by 1,000, 1,000,000, 1,000,000,000, 1,000,000,000,000 or respectively.

> 2k:
2000

> 1M:
1048576

> 12D:
144

Besides decimal numbers, Agena supports binary, octal, and hexadecimal
numibers. They are represented by the first two lefters ob or 0B, 0o Or 00, 0x Or 0X,
respectively:

System Syntax Examples
; Ob<binary number> or _ i
binary OB<binary number> 0b10 = decimal 2
Oo<octal number> or _ ;
octal 00<octal numbers 0b10 = decimal 9@
hexadecimal | Jx<hexadecimal number> —OF | o, — gecimal 10

0X<hexadecimal number>

If you use only real numbers in your programmes, then Agena will calculate only in
the real domain. If you use at least one complex value (see Chapter 4.6.5), then
Agena will calculate in the complex domain.

Since Agena internally stores numlbers in double or complex double precision, you
will sometimes encounter round-off errors. For example, some values such as /2 or
% cannot be accurately represented on a machine.

The mapm package can be used in such situations because it provides arbitrary
precision arithmetic. See Chapter 7.10 for more information.

62 4 Data

4.6.2 Arithmetic Operations
Agena has the following arithmetical operators:

Operator | Operation Details / Example
+ Addition 1+2»3
- Subtraction 3-2»1
* Multiplication 2%3»6
/ Division 4/2»2
N Exponentiation with rational power 2"3»8
*x Exponentiation with integer power, fasterthan ~ | 2**3» 8
% Modulus 5%2»1
\ Integer division 5\2»2
% Percents, percentage 100% 2»2
/% Percents, ratio 100 /% 2 »5k
+% Percents, add-on (premium) 100 +% 2» 102
-% Percents, discount 100 -% 2»98

Table 3. Arithmetic operators

The modulus operator is defined as a % b = a - entier(a/b)*b, the integer division as
a\ b = sign(a) * sign(b) * entier(abs(a/b)).

Agena has a lot of mathematical functions both built info the kemel and also
available in the math, stats, linalg, and calc lioraries. Table 4 shows some of the
mMost common.

The mathematical procedures that reside in packages must always be entered by
passing the name of the package followed by a dot and the name of the
procedure. Use the import statement to activate the package before using these
functions, e.qQ. to initialise the statistics package called stafts, type:

> import stats;

Unary operators® like In, exp, efc. can be entered with or without simple brackets.

Procedure Operation Library | Example and result
sin(x) Sine (x in radians) Kemel |sin(0) »0

COs(X) Cosine (x in radians) Kermnel |cos(0) »1

tan(x) Tangent (x in radians) Kernel |tan(l) » 1.557407..
arcsin(x) Inverse sine (x in radians) | Kernel | arcsin(0) »0
Qarccos(x) Arc cosine (x in radians) Kemel | arccos(0) » 1.570796..
arctan(x) Arc tangent (x in radians) | Kernel | arctan(Pi) » 1.262627..
sinh(x) Hyperbolic sine Kernel |sinh(0) »0

cosh(x) Hyperbolic cosine Kernel | cosh(0) »1

tanh(x) Hyperbolic tangent Kermnel |tanh(0) »0

abs(x) Absolute value of x Kemel |abs(-1]) »1

4 See Appendix Al for a list of all unary operators.

agena >> 63

Procedure Operation Library | Example and result
entier(x Rounds x downwards to Kernel ent?er(2.9) » 2

the nearest integer entier(-2.9) » -3
even(x) Checks whether x is even | Kernel | even(2) » true
exp(X) Exponentiation e* Kemel |exp(0) »1
Ingamma(x) InIT" X Kernel | exp(lngamma(3+1)) » 6
int(x Rounds x to the nearest Kemel int(2.9) » 2

infeger towards zero int(-2.9) » -2
In(X) Natural logarithm Kemel |In(1) »0
log(x, b) Ik_)cz]gggrghm ofxtothe Kemel | log(s, 2) » 3
roundf(x, d) Rounds the real value x 1o Base roundf(

' the d-th digit sqrt(2), 2) » 1.41

sign(x) Sign of x Kermnel | sign(-1) »-1
sqri(x) Square root of x Kernel | sart(2) » 1.414213..
sadd([--- 1) Sum Kernel | sadd([1, 2, 3]) » 6
mean([---]) Arithmetic mean stats stats.mean([1, 2, 3]) » 2
median([---]) | Median stats St[allt,sér'n;dﬁ)n(» 95

Table 4. Common mathematical functions

In addition, Agena can conduct bitwise operations on numbers.

Operator | Operation Details / Example
&& Bitwise “and” operation 78&8&2»2
| | Bitwise “or” operation 1112»3
~A Bitwise “exclusive-or’ operation 7TM2»5
~~ Bitwise complementary operation | ~~7» -8
If the right-hand side is positive,
the bits are shiffted to the left
shift Bitwise shift (multiplication with 2), else they

are shiffed to the right (division
by 2).

Table 5: Bitwise operators

By default, the operators internally calculate with signed integers. You can change
this behaviour to unsigned infegers by using the environ.kermnel function:

> environ.kernel(signedbits = false);

The default is restored as follows:

> environ.kernel(signedbits = true);

You can query the higher and lower bits of a number with the gethigh and getlow
operators and change them with the sethigh and setlow operators.

64 4 Data

> a ;= gethigh(Pi):
1074340347

> b := getlow(Pi):
1413754136

>x:=0;

> x := sethigh(x, a):
3.1415920257568

> x := setlow(x, b):
3.1415926535898

> Pi=x:
true

4.6.3 Increment, Decrement, Multiplication, Division

Instead of incrementing or decrementing a value, say

>a:=1;
by entering a statement like

>a=za+1:
2

you can use the inc and dec commands® which are also around 10% faster:

inc name [, value]
dec name [, value]

If value is omitted, name is increased or decreased by 1.

>inc a;

® Finishing an inc or dec statement with a colon instead of a semicolon is refused.

agena >> 65

Likewise, the mul and div statements multiply or divide their argument by a scalar,
its default also being 1.

4.6.4 Mathematical Constants

Agena features arithmetic constants mentioned in Appendix A9.

All mathematical functions return the constant undefined instead of issuing an error
if they are not defined at a given point:

> In(0):
undefined

With values of type number, the finite function can determine whether a value is
neither +infinity nor undefined.

> finite(fact(1000)), finite(sqrt(-1)):
false false

The float function checks whether a value is a float and not an integer.

> float(1):
false

> float(1.1):
true

4.6.5 Complex Math

Complex numbers can be defined in two ways: by using the ! constfructor or the
imaginary unit represented by the capital letter 1. Most of Agena's mathematical
operators and functions know how to handle complex numibers and will always
return a result that is in the complex domain. Complex values are of type complex.

>a:=111;
> b= 2+3%;

> a+b:
3+4%|

> a*b:
-1+5%|

The following operators work on rational numbers as well as complex values: +, -, *,
/[, ™, * ,= <> abs, arccos , arcsec , arcsin , arctan , conjugate , cos, cosh, entier ,
exp, flip , Ingamma, In, log , sign, sin , sinh , sqgrt , tan , tanh , And unary minus. With
these operators, you can also mix numbers and complex numbers in expressions.
You will find that most mathematical functions are also applicable 1o complex
values.

> ¢ = In(-1+l) + In(0.5):
-0.34657359027997+2.3561944901923*|

66 4 Data

The real and imaginary parts of a complex value can be extracted with the real
and imag operators.

> real(c), imag(c):
-0.34657359027997 2.3561944901923

Three further functions may also be of interest: abs returns the absolute value of a
complex number, argument returns its phase angle in radians, and conjugate
computes the complex conjugate.

Note that the | operator has the same precedence as unary operators like -, sin ,
cos, etc. This means that -112 = -1+2% , but dlso that sin 112 = (sin 1)!12 . It is
advised that you use brackets when applying unary operators on complex values.

The setting environ.kernel(zeroedcomplex = true) makes Agena print complex
values that are close to zero as just 0 in the output region of the console. Internally,
however, complex values are not rounded by this or any other sefting.

4.6.6 Comparing Values

Relational operators can compare both numeric and complex values. Whereas all
relational operators work on numbers, complex numibers can only be compared for
equality or inequadlity.

Operator | Description Complex values supported
< less than no
> greater than no
<= less than or equals no
>= greater than or equals no
= equals yes
<> not equals yes

>1<2:

true

>1=1:

true

>1<>1:

false

The result true indicates that a comparison is valid, and false indicates that it is
invalid. See Chapter 4.8 for more information.

Most computer architectures cannot accurately store numiboer values unless they
can be expressed as halves, quarters, eighths, and so on. For example, 0.5 is
represented accurately, but 0.1 or 0.2 are not.

agena >> 67

Since Agena is not a computer algebra system, you will sometimes encounter
round-off errors in computations with numibers and complex numbers:

>0.2+0.2+0.2=0.6:
false

In such cases, the approx function might be of some help since it compares values
approximately.

> approx(0.2 + 0.2 + 0.2, 0.6):
true

>0.210.2 + 0.210.2 + 0.2!0.2 = 0.6!0.6:
false

> approx(0.210.2 + 0.210.2 + 0.210.2, 0.6!0.6):
true

To determine whether a number is part of a closed interval, use the in operator:

>2in 0:10:
true

68 4 Data

4.7 Strings

4.7.1 Representation
Any text can be represented by including it in single or double quotes:

> 'This is a string":
This is a string

Of course, strings - like numbers - can be assigned to variables.

> str := "l am a string.";
> str:
| am a string.

Strings - regardless whether included in single or double gquotes - are all of type
string.,

> type(str):

string

and can be of amost unlimited length. Strings can be concatenated, characters
or sequences of characters can be replaced by other ones, and there are various
ofher functions to work on strings.

Multiline-strings can be entered by just pressing the RETURN key at the end of each
line:

> str .= "Two

lines";

which prints as

> str:
Two
lines

A string may contain no text at all - called an emplty string -, represented by two
consecutive single quotes with no spaces or characters between them:

>

4.7.2 Substrings

You may obtain a specific character by passing its position in square brackets right
behind the string name. If you use a negative index n, then the |n|-th character
from the right end of the string is refurned.

> str :='l am a string.";

> str[1];
I

agena >> 69

In general, parts of a string consisting of one or more consecutive characters can
e obtained as with the notation:

string| start [10 end] |

You must at least pass the start position of the substring. If only sfart is given then the
single character at position start is returned. If end is given too, then the substring
starting af position sfart up to and including position end is returned.

> str := 'string’

> str[3]:
r

> str[3 to 5]:
rin

> str[3 to 3]:
r

You may also pass negative values for starf and/or end. In these cases, the
positions are determined with respect to the right end of the string.

> str[3 to -1]:
ring

> str[3 to -2]:
rin

> str[-3 to -2]:
in

> str[-3]:
[

4.7.3 Escape Sequences

In Agena, a text can include any escape sequences® known from ANSI C, e.g.:

* \n :inserts a new line,
e \t :inserts a tabulator
* \b : puts the cursor one position to the left but does not delete any characters.

> 'l am a string.\nMe too."
| am a string.
Me too.

> 'These are numbers: 1\t2\t3":
These are numbers: 1 2 3

> 'Example with backspaces:\b but without the colon
Example with backspaces but without the colon.

% See also Appendix A7.

70 4 Data

If you want to put a single or double quote into a string, put a backslash right in front
of it:

>'A quote: \'":
A quote: "’

> "A quote: \"":
A quote: "

Likewise, a backslash is inserted by typing it twice.

4.7.4 Concatenation
Two or more strings can be concatenated with the & operator:

> 'First string, ' & 'second string, ' & 'third str ing"
First string, second string, third string

Numbers (bout not complex ones) are supported, as well, so you do not need to
convert them with the tostring function before applying &:

>1 & ' duck":
1 duck

4.7.5 More on Strings

Instead of putting single or double quotes around a text, you may also use a back
quote in front of the text, but not af its end. The string then automatically ends with
one of the following tokens’:

<space>",~[]{}();:#'=2&% $8§\! A@<>|\rint

This also allows UNIX-style filenames 1o be entered using this shor-cut method.

> “text:
text

> */proglang/agena/lib/library.agn:
/proglang/agena/lib llibrary.agn

If you want o include double quotes in a string that is delimited by single quotes,
backslashes may be omitted:

> "Agena""
"Agena"

And vice versa:

> "Agena":
'‘Agena’

7 For the current settings of your Agena version see the bottom of the agnconfh file in the src
directory of the distribution.

agena >>

71

4.7.6 String Operators and Functions

Agena has basic operators useful for text processing:

Operator Return Function
Checks whether a substring s is included in
, sting t. If frue, the position of the first
sint numiber or null L , .
occurrence of s in 1 is returned; otherwise null
is returned.
Checks whether a string t ends in a substring s.
s atendof t number or null | If frue, the position of the position of s in tis
returned; otherwise null is returned.
Replaces all patterns p in string s with substring
replace(s, p, 1) | sfing r. If pis notin s, then s is returned unchanged.
e p might also be the position (a positive
intfeger) of the character to be replaced.
sequence of Splits a string into its words with d as the
s split d strings delimiting character(s). The items are returned
as a seguence of strings.
, Returns the length of string s. If s is the empty
size(s) number string, O is returned.
Returns the numeric ASCII code of character
abs(s) number s
char(n) string Retuns the character corresponding to the
given numeric ASCIl code n.
lower(s) string Converts a sftring to lowercase. Western
European diacritics are recognised.
upper(s) string Converts a string to uppercase. Westemn
European diacritics are recognised.
number or Converts a sfring info a number or complex
tonumber(s)
complex value | number.
Converts a number to one string. If a complex
tostring(n) string value is passed, the real and imaginary parts
are retuned separately as two strings.
. , Deletes leading and frailing spaces as well as
trim(s) string

excess embedded spaces.

Some examples:

> str :='a string’;

Table 7: String operators

The character s is at the third position:

>'s'in str:
3

Let us split a string into its components that are separated by white spaces:

72

4 Data

> strosplit' "
seq(a, string)

stris eight characters long:

> size(str):
8

The ASCII code of the first character in str , a, is:

> abs(str[1]):
97

franslated back to

> char(ans):
a

Put all characters in str 10 uppercase:

> upper(str):
A STRING

And now the reverse:

> lower(ans):
a string

The following functions can e used to find and replace characters in a string:

Function Functionality Example
Returns the first position of a substring (left | 't in 'string’ » 2
in operand) in a string (right operand); if the
substring cannoft e found, it returns null.
Looks for the first match of a pattemn i”?;r(ena,
(second argument) in a sting (first -[a%]g-,'
argument). If it finds a match, then instr| 1)»1
returns its position; otherwise, it returns null.
An optional numerical argument specifies
where to start the search. The function
supports paffern matching, almost similar
fo regular expressions. The operator is
instr more than twice as fast as strings.find. If

true is given as a fourth argument, patftern
matching is switched off to speed up the
search.

If the opftion 'reverse' is given, then starting
from the right end and always running to
its left beginning, the operator looks for the
first match of the substring and returns the
position where the pattern starts with

instr(‘agena’, 'a,

'reverse’) » 5

agena >> 73
Function Functionality Example
respect to its left beginning. When
searching from right to left, pattem
mathing is not supported.
Checks whether a sting (right operand) 'i”,?;r‘]tiﬁgfmf
ends in a substring (left operand). If true, | ,, 5
atendof e , . .
the position is returned; otherwise null is
returned.
Retumns the first match of a substring St,r"gg_s-f,i”fg(,
(second argument) in a sting (first |, ;iréng’ ")
argument) and returns the positions where |
the pattem starts and ends. An optional St.”sr:rgirf'f.'”.?ﬁ
third argument specifies the position | 3) 9.t
where to start the search. If it does not find | » null
strings.find a pattemn, the function refurns null. strings.find(
'string’, 't.")
The function supports pattern matching | » 2, 3
facilities described in Chapter 7.2.3.
See also: strings.mfind. which retumns all
occurrences.
replace(str,
In a string (first argument) replaces all | 'string’, ‘text)
occurences of a substing (second | ” X
argument) with another one (third
argument) and retuns a new string.
replace Pattern matching facilites are not
supported.

A sequence of replacement pairs can be
passed to the operator, too.

replace('string’,
seq('s"'S',
ltl:ITl))
» STring

Table 8: Search and replace functions and operators

For more information on these functions, check Chapter 7.2.1 and Chapter 7.2.2.
See also the descriptions of strings.match and strings.gmatch.

The replace operator can be used to find and replace characters in a string.

4.7.7 Comparing Strings

Like numbers, single or multiple character strings can be compared with the familiar

relational operators based on their sorfing order which is determined by your current

locale.

> lal < lbl:
true

> 'aa' > 'bb":
false

74 4 Data

If the sizes of two strings differ, the missing character is considered less than an
existing character.

> lbal > Ibl:
true

4.7.8 Patterns and Captures

Sometimes, just looking for a fixed pattemn, e.g. a simple substring, in a string does
not suffice. You may want to search for a pattern of different kinds of characters -
e.g. both numbers and lefters, or either lefters or numbers, or a subset of them -, or
of variable number of characters, or both of them.

Agena provides both character classes and modifiers to accomplish this. While
common Regular Expressions are not supported, Agena offers quite similar facilities,
all taken from Lua.

For performance reasons, you may use the following rule of thumb?:

* If you would like to determine the start position of the very first match of a fixed
pattern only, use the in operator, for in is the fastest.

* If you want to look as fast as possible only for the start position of the very first
match of a “variable' pattern, using character classes and/or modifiers, or
would like to give the position where to start the quickest search, use instr.

* If both the start and end position is needed, prefer strings.find. The instr operator
can also return the start and end position, with or without variable patterns, but
may be slower than strings.find in mMost situations.

Character classes represent certain sets of tokens, e.qg. the class %drepresents one
digit, and %arepresents one upper-case or lower-case letter. Assume we would like
to determine the position of the hour 00:00:00 in the following date/time string:

> date :='23.05.1949 00:00:00'

We could use the instr operator to determine the start position of the hour,

> instr(date, '%d%d:%d%d:%d%d"):
12

or strings.find to get the start and end position of it.

> strings.find(date, '%d%d:%d%d:%d%d"):
12 19

8 Different kinds of paftern matching facilities have been infroduced in Agena deliberately, for the
kind of search can significantly influence performance when processing a large number of strings. If
you want to parse a large number of files and know where 1o look, io.skiplines may boost
performance on slow drives, as well.

agena >> 75

strings.match extracts the hour.

> strings.match(date, '%d%d:%d%d:%d%d"):
00:00:00

For a complete list of all supported classes, please have a look at the end of this
chapter or Chapter 7.2.3.

Character sets define user-defined classes determined by any character class
and/or single tokens, put in square brackets. For example, [01] may represent a
binary, and [%l -] any lower-case letter, white space or hyphen. A range of
characters is represented by a hyphen, thus[A-Ca-c] represents one of the first
three upper and lower case letters in the alphabet.

> instr(‘binary: 10, '[01]):
9

A caret in front of a class indicates that a string should begin with this class, and a
dollar trailing a class denotes that it should end with the given class.

> instr('1l is a number', ""[%l]):
null

> instr('1 is a number’, '%I$"):
13

Patterns also support modifiers for repetition or optional parts. The plus sign indicates
one or more repetitions of a class, the asterisk zero or more repetitions, and the
question mark zero or one occurrence.

> date :='23.05.1949 00:00:00'

> strings.find(date, '%d+.%d+.%d+"): # find the da te 23.05.1949
1 10

> date := '23.05. 00:00:00

> strings.find(date, '%d+.%d+.%d*"): # find 23.05. , optionally the year
1 6

The single doft represents any occurrence of any character in a string, regardless
whether the character is a cipher, a letter, or special character. If you would like to
search for one of the special characters *, +, 2, ., [,], efc. in a string, just escape it
with the percentage sign.

> instr(date, '%."): # find the first dot in the d ate string
3

instr and strings.find also allow to switch off pattern matching by passing true as the
last argument:

> instr(date, ".', true):
3

76 4 Data

If a pattern is put in parentheses, one or more portions of a string Matching this
pattern are extracted from a string, to be optionally assigned to names. This feature
is also called a capture. Two examples:

> strings.match('<id>1234</id>', '<id>(.*)</id>"):
1234

> date :='May 23, 1949 12:15:00";

> strings.find(date, '(%ow+) (%d+), ?(%d+)"):
1 12 May 23 1949

> year, day, month ;= strings.match(date, '(%w+) (% d+), ?(%d+)"):
May 23 1949

> year, month, day:

May 1949 23

Another useful function is strings.gmatch which returns a function that iterates over
all occurrences of a pattern in a string:

> f ;= strings.gmatch('1 10, '(%d+)"):
procedure(008E1278)

> £():
1

> f():
10

You may also use the wrapper function strings.gmatches which returns a sequence
of all the substrings matching a given pattem.

> strings.gmatches('1 10', '(%d+)"):
seq(1, 10)

There is a small difference between the * and - modifiers for matching zero or
more occurrences which may influence execution time significantly: while * looks
for the longest match, - does for the shortest:

> strings.match('<p> a</p><p>2</p>', '<p>(.-)</p>'); # - shortest
a

> strings.match('<p> a</ p><p>h</p>', '<p>(.*)</p>'): # * longest
a</p><p>b

With captures, and with captures only, strings.find not only returns the start and end
position of the match, but also the match itself as a third return.

> strings.find('<p>a</p><p=>b</p>', '<p>(.-)</p>'):
1 8 a

To check whether one of the characters is in a given set, use square brackets. In the
next example, we check whether the first character in a pattern is either '1', '2', or '3',
and the rest of the pattern is '‘abc'.

agena >> 77

> strings.match('2abc’, '[123]abc"):
2abc

The pattern in the above example, e.qg. its second argument, in general matches a
substring in a string. If you would like to make sure that a pattern matches an entire
string, put a caret in front of the pattern and a dollar sign at its end:

> strings.match(‘'2abc’, '""[123]abc$'):
2abc

Thus, since the string to be searched is longer,

> strings.match(‘'y2abcy’, \[123]abc$"):

returns:

null

Concerning recognising one or more ligatures and umlauts, along with one or more
Latin letters, also just use square brackets and combine them with a modifier:

> strings.match('Selcuk, Turkey', '([cé68%al*)"):
Selcuk

Refrieve a value either residing in a conventional XML tag or its worst-case (though
here invalid) SOAP variant:

> pattern := '<.*Data.*>(%a+)</.*Data>";

> str ;= strings.match(

> '<soap:Data attr=\'foo\'>value</soap:Data>',
> pattern);

> str:
value

> str ;= strings.match('<Data>value</Data>', patter n);

> str:
value

78

4 Data

Summary’ of character classes and pattern modifiers:

Classes
%a

%A
%c
%C
%d
%D
%k
%K
%l
%L
%p
%P
%s
%S
%u
%U

%V
%V

%w
%W
%X
%X
%z
%Z

Modifiers +

any character

leftersatozorAto Z

anything not matching the letters a to z or Afo Z

control characters

anything not matching control characters

digits 0 to @

anything not matching digits O to 9

upper and lower-case consonants (y is considered a vowel)
anything not matching upper and lower-case consonants
lower-case letters

anything not matching lower-case letters

special characters,e.Q., .., -+ *~?21# ()[1{}"
anything not representing special characters

spaces including \t, \n, and \r

anything not matching spaces including \f, \n, and \r
upper-case letters

anything not representing upper-case letters

upper and lower-case vowels including y and Y

anything not representing upper and lower-case vowels
includingy and Y

alphanumeric charactersato z, Ato Z, and 0 to 9
anything not matching he class %w

hexadecimal digits 0 to 9, Ato F, and a to f

anything not matching he class %x

an embedded zero, i.e. \O.

anything not matching an embedded zero

one or more occurrences
zero or more occurrences, returning the largest match
zero or more occurrences, returning the smallest match
Zero or one occurrences

Table 9: Character classes and modifiers

? Based on: Programming in Lua”, 2nd edition, by Roberto lerusalimschy, lua.org, pages 180f.

agena >> 79

4.8 Boolean Expressions

Agena supports the logical values true and false, also called "booleans . Any
condition, e.g. a < b, results fo one of these logical values. They are often used fo
tell a programme which statfements to execute and thus which statements not to
execute.

Boolean expressions mostly result to the Boolean values true or false. Boolean
expressions are created by:

* relational operators (>, <, =, ==, ~=, <=, >=, <>),
* logical names: true, false, fail, and null,
* in, subset, xsubset, and various functions.

Agena supports the following relational operators:

Operator | Description Example

< less than 1<2

> greater than 2>1

<= less than or equals 1<=2

>= greater than or equals 2>=1

= equals 1=1

== strict equality for structures'® [11];:1[1]
. approximate equality for real and 1~=1

T complex numbers, and structures | [11~=1[1]

<> not equals 1<>2

Table 10: Relational operators

The logical operators and, or, and xor behave a little bit differently: They consider
anything except false, fail, and null as frue, and false otherwise. They return either
the first or second operand, which can be any data - not just true or false - subject
tfo the following rules:

Operator | Description Examples
Returns its first operand if it is or evaluates | rue and 1 » 1
. . . false and 1 » false
and to false, fail or null, otherwise returns its

true and false » false

second operand.

false and true » false

Returns its first operand if it is not or does
or not evaluate to false, fail, or null,
otherwise it returns its second operand.

true or true » true
true or false » true
2 or true » 2
nullor2» 2

With Booleans: Returns the first operand if
the second one evaluates or is false,
fail, or null. It retuns the second
operand if the first operand evaluates 1o
false, fail, or null and if the second
operand is neither false, fail, or null.

xor

true xor false» true
true xor true » false
false xor true » true
1 xor null » 1
1xor2»2

10 See Chapter 4.9.3.

80

4 Data

Operator | Description

Examples

operand

With non-Booleans: refurns the first

if the second operand

evaluates to null, otherwise the second
operand is returned

not
versa.

Tumns a true expression 1o false and vice

not true » false
not false » true
not 1 » false
not null » true

Table 11: Logical operators

As expected, you can assign Boolean expressions to names

>cond: =1<2:
true

>cond:=1<2orl>2and1=1:

true

or use them in if statements, described in Chapter 5.

In many situations, the null value can be used synonymously for false.

The additional Boolean constant fail can be used to denote an error. With Boolean
operators (and, or, not), fail behaves like the false constant, e.g. nof(fail) = false,
but remember that fail is always unlike false, i.e. the expression fail = false results to

false.

true, false, and fail are of type boolean. null, however, has its own type: the string

'null'.

The and and or operators only evaluate their second argument if necessary, called

short-circuit evaluation. Thus the following statement does not issue an error:

>a = null

> if a :: number and a > 0 then print(In(a)) fi

They are also handy to define defaults for unassigned names:

>a = null
>a:=aor0
>a:

0

agena >> 81

4.9 Tables

Tables are used to represent more complex data structures. Tables consist of zero,
one or more key-value pairs: the key referencing to the position of the value in the
table, and the value the data itself.

Keys and values can be numbers, strings, and any other data type except null.
Here is a first example: Suppose you want to create a table with the following
meteorological data recorded by Viking Lander 1 which touched down on Mars in
1976:

Sol Pressure in mb | Temperature in °C
1.02 | 7.71 -78.28
1.06 | 7.70 -81.10
1.10 | 7.70 -82.96

>VLL:=[

> 1.02~[7.71, -78.28],
> 1.06 ~ [7.70, -81.10],
> 1.10 ~ [7.70, -82.96]
>];

To get the data of Sol 1.02 (the Martian day #1.2) input:

> VL1[1.02]:
[7.71, -78.28]

Tables may be empty, or include other tables - even nested ones.

You can control how tables are printed af the console in two ways: If the setting

environ.kernel('longtable’) is ftrue (e.g. by enfering the statement
environ.kernel(longtable = true) , then each key~value pair is printed at a
separate line. If the setting environ.kernel('longtable’) is false, all key~value

pairs will be printed in one consecutive line, as in the example above. Also, you
can define your own printing function that fells the interpreter how to print a table (or
other structures). See Appendix A5 for further information on how to do this and
other settings.

Stripped down versions of tables are sets and sequences which are described later.
Most operations on tables introduced in this chapter are also applicable to sets and
seguences.

4.9.1 Arrays

Agena features two types of tables, the simplest one being the array. Arrays are
created by putting their values in square brackets:

[[value; [, values,-- 111

82 4 Data

>A:=[4,5, 6]
[4, 5, 6]

The table values are 4, 5, and 6; the numbers 1, 2, and 3 are the corresponding
keys or indices of table A, with key 1 referencing value 4, key 2 referencing value 5,
etc. With arrays, the indices always start with 1 and count upwards sequentially. The
keys are always integral, so A in this example is an array whereas table vL1 in the last
chapter is not.

To determine a table value, enter the name of the table followed by the respective
index in square brackets:

fablenamelkey]

> A[1]:
4

Instead of using constants to index a table, you may also compute an index both in
table assignments or queries. The following selects the middle element of A:

>\, r:=1, size A:
1 3

> A[(I+)\2]:
5

If a table contains other tables, you may get their values by passing the respective
keys in consecutive order. The two forms are equivalent:

fablenamelkey]lkey:][---]
fablenamelkeys, keyz,--]

>A =3, 4]
[[3. 4]

The following call refers o the complete inner table which is af index 1 of the outer
table:

> A1]:
(3, 4]

The next call returns the second element of the inner table.

> AlL][2], AlL, 2]:
4 4

Tables may be nested:

>A:=[4, [5, [6]]]:
[4, [5, [6]1]

agena >> 83

To get the number 6, enter the position of the inner table [5, [6]] as the first index,
the position of the inner table [6] as the second index, and the position of the
desired entry as the third index:

> A2, 2, 1]
6

With tables that contain other tables, you might get an error if you use an index that
does not refer to one of these tables:

> A[1][0]:
Error in stdin, at line 1:
attempt to index field *?" (a number value)

Here A[1] returns the number 4, so the subsequent indexing attempt with 4[0] is an
invalid expression. You may use the getentry function to avoid error messages:

> getentry(A, 1, 0):
null

Similarly, the .. operator allows 1o index tables even if its left-hand side operand
evaluates to null. In this case, null is returned, as well, and no error is issued. It is
three times faster than getentry.

> create table A;

> A.b:
null

>Ab.c:
Error in stdin, at line 1;
attempt to index field “b™ (a null value)

> A..b..c:
null

> create table A;

> A1]:
null

> A[1][2]:
Error in stdin, at line 1:
attempt to index field *?" (a null value)

> AL[1]..[2]:
null

Sublists of table arrays can be determined with the following syntax:

tablename[m to n]

Agena retumns all values from and including index position m to n, with m and n
negative or positive integers or 0. If there are no values between m and n, an
empty list is retfurned. Table values with non-integer keys are ignored.

84 4 Data

> A =10, 20, 30, 40]
> A2 to 3]
[2 ~ 20, 3 ~30]

Tables can contain no values at all. In this case they are called empty fables with
values to be inserted later in a session. There are two forms to create empty tables.

create table name; [, table name,,--- |

name; =[]

> create table B;

creates the empty table B,

does exactly the same.

You may add a value to a table by assigning the value to an indexed table name:

> B[1] :='a’;

> B:
[a]

Alternatively, the insert statement always appends values to the end of a table'':

insert value, [, value,, -+] infto name

> insert 'b' into B;

> B:
[a, b]

To delete a specific key~value pair, assign null o the indexed table name:

> B[1] := null;

> B:
[2 ~b]

" The insert statement cannot be applied on weak tables. See Chapter 6 for further information on
this variant,

agena >> 85

The delete '“statement works a little bit differently and removes all occurrences of a
value from a table.

delete value, |, value,, ---] fromn name

> insert 'b' into B;
> delete 'b' from B;

> B:
1

In both cases, deletion of values leaves "holes” in a table, which are null values
between other non-null values:

>B:=[1, 2, 2, 3]
> delete 2 from B

> B:
[1~1,4~3]

There exists a special sizing option with the create table statement which besides
creating an empty table also sets the default numiber of entries. Thus you may gain
some speed if you perform a large number of subsequent table insertions, since
with each insertion, Agena checks whether the maximum numlber of entries has
been reached. If so, each time it automatically enlarges the table which creates
some overhead. The sizing option reserves memory for the given number of
elements in advance, so there is no need for Agena to subsequently enlarge the
table until the given default size will be exceeded.

Arrays with a predefined number of entries are created according to the following
syntax:

create table name(size,) [, table name(size,), - |

When assigning entries to the table, you will save af least 1/3 of computation time if
you know the size of the table in advance and inifialise the table accordingly. If you
want to insert more values later, then this will be no problem. Agena automatically
enlarges the table beyond its initial size if needed.

> create table a(5);

> create table a, table b(5);

12 dito.

86 4 Data

4.9.2 Dictionaries
Another form of a table is the dictfionary with any kind of data - not only positive
infegers - as indices:

Dictionaries are created by explicitly passing key-value pairs with the respective keys
and values separated by tildes, which is the difference to arrays:

[[key: ~ value, [, key, ~ value,,- 1]

>A=[1~4,2~5,3~6]
[L~4,2~5,3~6]

> B :=[abs('p") ~ 'th]:
[231 ~ th]

Here is another example with strings as keys:
> dic ;= ['donald’ ~ 'duck’, 'mickey' ~ 'mouse';

> dic:
[mickey ~ mouse, donald ~ duck]

As you see in this example, Agena internally stores the key-value pairs of a
dictionary in an arbitrary order.

As with arrays, indexed names are used to access the corresponding values stored
fo dictionaries.

> dic['donald:
duck

If you use strings as keys, a short form is:

> dic.donald:
duck

Further entries can bbe added with assignments such as:
> dic['minney'] := 'mouse’;

which is the equivalent 1o

> dic.minney :='mouse’;

Dictionaries with an initial number of entries are declared like this:

create dict name;(size4) [, dict names(sizey),--- |

agena >> 87

You may mix declarations for arrays and dictionaries, so the general syntax is:

create {table | dict} name;[(size1)] [, {table | dict} name,|(sizes)].---]

4.9.3 Table, Set and Sequence Operators

Agena features some built-in table, set and sequence operators which are
described below. A “structure” in this context is a table, set, or sequence.

Name Return Function
. Checks whether the structure A contfains the given
cinA Boolean
value c.
. Determines whether a structure contains at least one
filled A Boolean .
value. If so, it returns true, else false.
Checks whether two tables A, B, or two sets A, B, or two
_ sequences A, B contain the same values regardless of
A=B Boolean) . .
the number of their occurrence; if B is a reference 1o
A, then the result is also true.
Checks whether two sets/tables/sequences A, B do not
contain the same values regardless of the number of
A<>B Boolean

their occurrence; if B is a reference to A, then the result
is false.

Checks whether two tables A, B, or two sets A, B, or two
sequences A, B contain the same number of elements
A== Boolean | and whether all key~value pairs in the tables or entries
in the sets or sequences are the same; if B is a
reference 1o A, then the result is also frue.

not(A == B) Boolean | The negation of A == B.
Like ==, but checks the respective elements for
A~=B Boolean | approximate equality. Use environ.kemnel/eps 1o

change the setting for the accurarcy threshold.

not(A ~= B) Boolean | The negation of A ~=B.

Checks whether the values in structure A are also
A subset B Boolean |values in B regardless of the number of their
occurrence. The operator also returns true if A = B.
Checks whether the values in structure A are also
A xsubset B Boolean | values in B. Contrary to subset, the operator returns
false if A = B.

Concatenates two ftables, or two sets, or two
seguences A, B simply by copying all its elements -

. table, . , .
A union B set, seq even if they occur multiple fimes - 1o a new structure.
' With sets, all items in the resulting set will be unique, i.e.
they will not appear multiple times.
table Retuns all values in two tables, two sets, or two
A intersect B set, s’eq sequences A, B that are included both in A and in B as

a new sfructure.

88 4 Data
Name Return Function
. table, Returns all the values in A that are not in B as a new
A minus B

set, seq | structure.
Creates a deep copy of the structure A, ie. if A

table, . . ,

copy A includes other tables, sets, pairs, or sequences, copies

set, seq)

of these structures are built, 100.
join A string Concatenates all strings in the table or sequence A.
Returns the size of a table A, i.e. the actual number of
size A number | key~value pairs in A. With sets and sequences, the

numiber of items is returned.
This function sorfs fable or sequence A in ascending
order. It directly operates on A, so it is destructive. With

table tables, the function has no effect on values that have

SOrt(A) ' non-integer keys. Note that sort is not an operator, so

seq .
you must put the argument in brackets. Please also
see Chaopter 7 for its derivatives: sorted,
skycrane.sorted, stats.issorted, and stats.sorted .
Removes multiple occurrences of the same value and
retfurns the result in a new structure. With tables, also

. table, < . : :
unique A removes all holes (missing keys) by reshuffling ifs

seq .) . .
elements. This operator is not applicable to sets, since
they are already unique.
Sums up all numeric table or sequence values. If the

sadd A number | table or sequence is empty or contains no numeric
values, null is returned. Setfs are not supported.
Raises each value in a table or sequence to the
power of 2 and sums up these powers. If the table or
gsadd A number : . .
sequence is empty or contains Nno numeric values, null
is returned. Sets are not supported.
f@A fable, Maps a function f on all elements of a structure A.
seq, set
table, Selects all elements of a sftructure A that satisfy a
fSA I :
set, seq | condition evaluated by function f.

Table 12; Table, set, and sequence operators

Here are some examples - fry them with sets and sequences as well:

The union operator concatenates two fables simply by copying all its elements -
even if they occur multiple fimes.

[a, b, c, a,d]

intersect returns all values that are part of both tables as a new table.

[a]

agena >> 89

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times to the resulting table.

minus returns all the elements that appear in the table on the left hand side of this
operator that are not members of the right side table.

[b, c]

If a value appears multiple times in the set at the left hand side of the operator, it is
writffen the same number of times to the resulting table.
The unique operator

« removes all holes (" missing keys ') in a table,
e removes multiple occurrences of the same value.

and returns the result in a new table. The original table is not overwritten. In the
following example, there is a hole at index 2 and the value 'a' appears twice.

>unique[l~'a,3~'a,4~"'b]:
[b, a]

You can search a table for a specific value with the in operator. It retuns true if the
value has been found, or false, if the element is not part of the table. Examples:

>'a'in[a,'b,'c:

retuns true.

>1in[a,'b,'c:

retumns false. Rememlber that in only checks the values of a table, not its keys.

4.9.4 Table Functions

Agena has a number of functions that work on tables (and sequences), e.g.:

Function Description Further detail
Maps a function f onto all ' mgy e an ononymOLIJs
map(f, 0) function, as well. See also zip
elements of structure o. .
in Chapter 7.1.
Removes index kev and its All elements fo the right are
purge(o, key) 4 shiffed down, so that no holes

corresponding value from o.

are created.

put(o, key, value)

Inserts a key ~ value pair into
structure o.

The original element at
position key and all other
elements are shifted up one
place.

Q0 4 Data

Function Description Further detail

f may be also an anonymous
function. The remove
function conducts the
opposite operation.

Returns all the elements that
select(f, o) satisfy the Boolean condition
given by function f.

Substitutes all occurrences of

0, XV - -
subs) value x in o with value v.

Table 13: Basic table procedures

The map function is quite handy to apply a function with one, or more arguments
to all elements of a table by one stroke:

> map(<< x -> x"2 >>,[1, 2, 3)):
[1, 4, 9]

The @ operator also maps a function on all elements of a table, sequence, set, or
pair. Contrary to map, it accepts univariate functions only, but is faster:

><<x->x"2>> @1, 2,3
[1, 4, 9]

Likewise, the faster § operator selects those elements of a table, set, or sequence
that satisfy a condition determined by a univariate function.

><<x->x>1>>9%]1, 2, 3]
(2, 3]

Suppose we want to add a new entry 10 at position 3 of table C';

>C:=11, 2, 3,4]
> put(C, 3, 10)

> C:
[1, 2,10, 3, 4]

Now we remove this new entry 10 at position 3 again:

> purge(C, 3)

> C:
[1, 2,3, 4]

Determine all elements in ¢ that are even:

> select(<< x -> even(x) >>, C):
[2~2,4~4]

Or return all elements not even:

13 put and purge have to shift elements up or down, drawing performance. You may use the llist
package to conduct these kinds of operations much faster in case of a large numiber of insertions
or deletions.

agena >> 91

> remove(<< x -> even(x) >>, C):
[1~1,3~3]

Note that remove and select do not alter the original structure passed as the
second argument.

Zip zips together two tables by applying a function to each of its respective
elements.

> C:
[1, 2,3, 4]

> zip(<< (x, y) -> x +y >>, C, [10, 20, 30, 40]):
[11, 22, 33, 44]

For other functions, have a look at Chapter 7 of this manual and the Agena Quick
Reference Excel sheet.

4.9.5 Table References

If you assign a table to a variable, only a reference to the table is stored in the
variable. This means that if we have a table

>A=1[1,2];
assigning
>B = A;

does not copy the contents of A to B, but only the address of the same memory
area which holds table [1,2] , hence:

> insert 3 into A;
> A

[1, 2, 3]

also yields:

> B:

[1, 2, 3]

Use copy to create a tfrue copy of the contents of a table. If the table contains
other tables, sets, sequences, or pairs, copies of these structures are also made
(so-called "deep copies’). Thus copy retumns a new table without any reference to
the original one.

> B := copy(A);
> insert 4 into A;

> B:
[1, 2, 3]

Q2 4 Data

With structures such as tables, sets, pairs, or sequences, all names to the left of an
-> token will point to the very same structure to its right. This bbehaviour may be
changed in a future version of Agena.

>A B-> [|
>A1]:=1
> B:

[1]

Tables can also directly or indirectly contain themselves, in which case they are also
called “cycles’ . Just some few examples:

>A =]
>A=[AA]
> A:

(0. 0
>AA=A
> A:

[1~12~1[] A~ circum_table(0236A460)]

4,10 Sets

Sets are collections of unique items: numbers, strings, and any other data except
null. Their syntax is:

{[itemy [, itemy,-- 1]}

Thus, they are equivalent to Cantor sets: An item is stored only once.

>A:={1,1, 2,2k
{1, 2}

Besides being commonly used in mathematical applications, they are also useful
to hold word lists where it only matters to see whether an element is part of a list or
noft:

> colours := {'red’, 'green’, 'blue'};

If you want 1o check whether the colour red is part of the set colours, just index it as
follows:

setnamelitem]

agena >> 93

If an element is stored o a set, Agena returns true:

> colours['redT:
true

If an item is not in the given set, the retum is false. Nofe that we can use the same
short form for indexing values (without quotes) as can be done with tables.

> colours.yellow:
false

If you want to add or delete items to or from a set, use the insert and delete
statements. The standard assignment statement setnamelkey] := value is not
supported with sets.

insert item, [, iftemy, ---] into name

delete item, [, item,, ---] from name

> insert 'yellow' into colours;

The in operator checks whether an item is part of a set - it is an alternative to the
indexing method explained above, and returns true or false, too.

> 'yellow' in colours:
true

The data type of a set is set.

> type(colours):
set

You may predefine sets with a given number of entries according fo the following
syntax:

create set name; [(sizes) 1 [, set name, [(sizes)],]

When assigning items later, you will save at least 90 % of computation time if you
know the size of the set in advance and initialise it with the maximum number of
future entries as explained above. More items than stated at initialisation can be
entered anytime, since Agena automatically enlarges the respective set
accordingly and will also reserves space for further entries.

Sets are useful in situations where the number of occurrences of a specific item or
its position do not concermn. Compared 1o tables, sets consume around 40 % less
memory, and operations with them are 10 % to 33 % faster than the corresponding
table operations.

Q4 4 Data

Specifically, the more items you want to store, the faster operations wil be
compared to tables.

Nofte that if you assign a set to a variable, only a reference to the set is stored in the
variable. Thus in a statement like A :={}; B := A , A and B point to the same set.
Use the copy operator if you want to create "independent” sets.

Sets can also include themselves, just an example:

>A={)

>A:={A AL
{t

If you want to know the number of occurrences of a unique element in a
distribution, the bags package might be of interest, see Chapter 7.8.

The following operators work on sets:

Name Retun Function

cinA Boolean | Checks whether the set A contains the given value c.
Determines whether a set contains at least one value.
If s, it returns true, else false.

Checks whether two sets A, B contain the same values
A=B Boolean | regardless of the number of their occurrence; if B is a
reference 1o A, then the result is also frue.

Checks whether two sets A, B do not contain the same

filled A Boolean

A<>B Boolean | values regardless of the numiber of their occurrence; if
B is a reference to A, then the result is false.
A== Boolean | Same as =.

Checks whether the values in set A are also values in B.
The operator also returns true if A = B.

Checks whether the values in set A are also values in B.
Contrary to subset, the operator returns false if A = B.
Concatenates two sets A, B simply by copying all its
A union B set elements to a new set. All items in the resulting set will
e unique, i.e. they will not appear multiple times.
Returns all values in two sets A, B that are included
both in A and in B as a new set.

Returns all the values in A that are notf in B as a new

A subset B Boolean

A xsubset B Boolean

Aintersect B | set

A minus B set set
Creates a deep copy of the set A, i.e. if A includes
copy A set other tables, sets, pairs, or sequences, copies of these
structures are built, t00.
. Retuns the size of a set A, i.e. the actual number of
size A numiber

elements in A.

agena >> 95

Name Return Function
f@A set Maps a function f on all elements of a set A.

Selects all elements of A that safisfy a given condition
fSA set .

checked by function f.

Table 14 Set operators

4.11 Sequences

Besides storing values in fables or sets, Agena also features the sequence, an
object which can hold any numiber of items except null. You may sequentially add
items and delete items from it. Compared 1o tables, inserion and deletion are
twice as fast with sequences.

Sequences store items in sequential order. Like in tables, an item may be included
multiple times. Sequences are usually indexed with positive integers in the same
fashion as table arrays are, starfing at index 1. If you pass a negative index n, then
the |n|-th value from the right end, i.e. the top of the sequence is determined.
Other types of indexes are not allowed. As with tables, you can compute the index
in assignments or queries.

Suppose we want to define a sequence of two values. You may create it using the
seq operator.

seq([tem [, itemy,-- 11)

>a:=seq(0, 1, 2, 3);

>a:
seq(0, 1, 2, 3)

You can access the items the usual way:

seqgnamelindex]

> a[1]:
0
> a[2]:
1

If the index is larger than the current size of the sequence, an error is returned',

> a[5]:
Error, line 1: index out of range

' The error message can be avoided by defining an appropriate metamethod.

96 4 Data

Sublists of sequences can be determined with the following syntax:

seqgname[m to n)

Agena returns all values from and including index position m to n, with m and n
positive or negative integers. In case of a non-existing key, an error is issued.

> a[2 to 3]:
seq(l, 2)

The way Agena oufputs sequences can be changed by using the seftype function.

In general, the settype function allows you to set a user-defined subtype for a
seguence, set, table, or pair.

> a =seq(0, 1);
> settype(a, 'duo’);

>a:
duo(0, 1)

The gettype function returns the new type you defined above as a string:

> gettype(a):
duo

If no user-defined type has been set, gettype returns null.

Once the type of a sequence has been set, the typeof operator also returns this
user-defined sequence type and will not return 'sequence’

> typeof(a), gettype(a):
duo duo

This allows you to programme special operations only applicable to certain types of
seguences.

The :: and :- operators can check user-defined types. Just pass the name of your
type as a string:

> a::'duo”:
true
> a - 'duo”
false

Note that if a user defined-type has been given, the check for a basic type with the
i and :- operators will return false or true, respectively.

agena >> 97

> a i sequence:
false

> a .- sequence:
true

A user-defined type can be deleted by passing null as a second argument to

seftype.

> settype(a, null);

> typeof(a):
sequence

The create sequence statement creates an empty sequence and optionally allows
to allocate enough memory in advance to hold a given number of elements
(which can be inserted later). Agena automatically will extend the sequence, if the
predetermined number of items is exceeded.

create sequence name, [, seq namey,--- |
create sequence name;(size,) [, seq hames(sizey), - |

ltems can be added only sequentially. You may use the insert statement for this or
the conventional indexing method.

> create sequence a(4);
> insert 1 into a;

> al2] ;= 2;

>a

seq(l, 2)

Note that if the index is larger than the number of items stored to it plus 1, Agena
returns an error in assignment statements, since "holes’ in a sequence are not
allowed. The next free position in a is at index 3, however a larger index is chosen in
the next example.

>a[4] =4
Error, line 1: index out of range

>al3]:=3

lterns can be deleted by setting their index position to null, or by applying delete,
i.e. stating which items - not index positions - shall be removed. Note that all items
to the right of the value deleted are shifted to the left, thus their indices will change.

> a[1] := null

>a:
seq(2, 3)

98 4 Data

> delete 2, 3 from a

> a
seq()

Thus concerning the insert and delete statements, we have the following familiar
syntax:

insert item, [, itemy, ---] into name

delete item, [, item,, ---] from name

If you assign a sequence to a variable, only a reference to the sequence is stored
in the variable. Thus sequences behave the same way as tables and sets do, i.e. in
a statement like A = seq(); B := A , A and B point to the same seqguence in
memory. Use the copy operator if you want to create “independent” sequences.

> A :=seq()
>B:=A
> A[1] =10

> B:
seq(10)

As with tables and sets, sequences can also reference to themselves:

> A :=seq()
>A[l] =A
>A[2] =A

> A
seq(circum_sequence(01E647D8), circum_sequence(01E6 47D8))

The following operators, functions, and statements work on sequences:

Name Description Example

= Equality check the Cantor way a=b

== Strict equality check a==

~= approximate equality check a~=b

<> Inequality check the Cantor way a<>b

a .. sequence

Type check operator a ' 'usertype’

- Negation of type check operation A userype”

@ Maps a function on all elements of a @ a
sequence.

S Selects all elements of A that satisfy a given f$a
condition.

agena >> 99
Name Description Example
insert Inserts one or more elements. insert 1 into a
delete Deletes one or more elements. delete 0, 1
bottom Returns the item with key 1. bottom a
top Returns the item with the largest key. top a

as an operator works like top but also removes
pPop - pop a
the item from the sequence
Creates an exact copy of a sequence; deep
copy copying is supported so that structures inside | copy a
sequences are properly treated.
filed Qhecks whether a sequence has at least one filled a
item.
Returns entries without issuing an error if @
tentry(a, 1, 3
getentry given index does not exist. getentry(@, 1. 3)
in Checks whether an element is stored in the 0in seq(L, 0)
sequence, retumns frue or false.
join Conco’rgnotes all strings in a sequence in join(a)
sequential order.
Pops the first or the last element fromm a | pop bottom from a
POop
seguence, pop top from a
size Returns the current number of items. size a
Sorts a segquence in place. Please also see
sort Chopter 7 for its dgrivo’rives: sorted, sort(a)
skycrane.sorted, stats.issorted, and
stats.sorted .
fype Returns the general type of a sequence, i.e. type a
sequence.
Returns the user-defined type of a sequence,
typeof or the basic type if no special type has been | typeof a
defined.
unique Reduces muITlpIe occurrences of an item in a unique a
seqguence to just one.
unpack l7Jn]pocks a seguence. See unpack in Chapter unpack(a)
Maps a function on dadll elements of a | map(<<x->x"2
map seguence. >>, seq(1, 2, 3))
zip(<< X, y->
Zio Zips together two sequences by applying a | x+y>>,
function to each of its respective elements. seq(l, 2),
seq(3, 4))
Searches all values in one sequence that are | seq(1, 2)
intersect also values in another sequence and returns | intersect
them in a new sequence. seq(2, 3)
Searches all values in one sequence that are 15
minus not values in another sequence and returns fne}ﬂﬁs’ qu(z, 3)
them as a new segquence.
Checks whether all values in a sequence are | seq(1)
subset

included in another sequence.

subset seq(1, 2)

100 4 Data

Name Description Example
union Concatenates two sequences simply by | seq(l, 2)
copying all its elements. union seq(2, 3)
settype Sets a user-defined type for a sequence. settype(a, ‘duo’)
gettype Returns a user-defined type for a sequence. gettype(a)
setmeta- , setmetatable
table Assigns a metatable to a sequence. (a, mtbl)
%eglr;\efo- Returns the metatable stored to a sequence. | getmetatable(a)

Table 15 Basic sequence operators and functions

For more functions, consult the Agena Quick reference Excel sheet. Also, you may
have a look at the llist linked list package presented in Chapter 6.25, if you have to
conduct a lot of insertions and/or deletions in a data structure.

4.12 Stack Programming

Sequences and sometimes table arrays can e used to implement stacks, and
besides the insert/into statement to put an element to the top, an efficient
statement is available to remove an item from the bottom of the stack or from the
top of the stack:

pop bottom from name

pop top from name

Both variants work on tfables even if their integer keys are not distributed
consecutively.

The bottom and top operators return the element at the bottom of the stack and
the top of the stack, respectively. They both do not change the stack, i.e. the
seguence or table, as they do not delete the element returned.

> stack = seq();
> insert 10, 11, 12 into stack;

> bottom(stack):
> top(stack):
12

> pop bottom from stack;
> pop top from stack;

> stack:
seq(11)

agena >> 101

The rotate statement moves each element in a sequence or the array part of a
table one position to the bottom (downwards) or to the top (upwards):

rotate bottom name

rotate top name

The element at the boftom or the top is moved to the top or the bottom,
respectively.

>s:=seq(l, 2, 3);
> rotate bottom s;

>s:
seq(2, 3,1)

>s:=seq(l, 2, 3):
seq(l, 2, 3)

> rotate top s;
> s:

seq(3, 1, 2)

The pop operator both returns the top element of a sequence and then removes it
from this sequence. With tables, it returns the value indexed by the largest infeger
key and then also removes it from the table.

> pop(s):
2

>s:
seq(3, 1)

There are two other statements that work on sequences only: The exchange
statement swaps the two topmost elements, and the duplicate statement inserts a
copy of the topmost element at the end of this sequence.

> exchange s

>s:
seq(l, 3)

> duplicate s

>s:
seq(l, 3, 3)

4.13 More on the create Statement

You cannot only initialise any table arrays with the create statement, but also
dictionaries, sets, and sequences with only one call and in random order, so the
following statement is valid:

102 4 Data

> create table a, dict b(10), set ¢, sequence d(100), table e(10);

>a,b,c,d,e:

0 0 { seal [

4.14 Pairs

The structure which holds exactly two values of any type (including null and other
pairs) is the pair. A pair cannot hold less or more values, but its values can be
changed. Conceived originally to allow passing options in a more flexible way to
functions, it is defined with the colon operator:

itemy : item,

The left and right operators provide read access 1o its left and right operands; the
standard indexing method using indexed names is supported, as well:

left [(] pair [)]
right [(] pair)]

> left(p), p[1]:
1 1

> right p, p[2]:
2 2

An operand of an already existing pair can be changed by assigning a new value
to an indexed name, where the left operand is indexed with number 1, and the
right operand with number 2:

>p[1] :=2;

> p[2] :=3;

You can compute the index as long as the result evaluates to the integers 1 or 2, as
well.

As with sequences, you may define user-defined types for pairs with the settype
function which also changes the way pairs are output.

> typeof(p):
pair

> settype(p, 'duo’);

agena >> 103

> p:
duo(2, 3)

> typeof(p):
duo

> gettype(p):
duo

> p::pair:
false

> p ::'duo”
true

The only other operators besides left and right that work on pairs are equality (=, ==,
~=), inequality (<>), i1, :-, type, typeof, and in.

>p=32:
false

With pairs consisting of numbers, the in operator checks whether a left-hand
argument number is part of a closed numeric interval given by the given right-hand
argument pair.

>2in 0:10:
true

>'s"in 0:10:
fail

As with all other structures, if you assign a pair to a variable, only a reference to the
pair is stored in the variable. Thus in a statement like A := a:b; B := A ,Aand B
point o the same pair. Use the copy operator if you want to create "independent
pAirs.

Summary:

Name Description Example

=, ==, ~ Equality checks (mostly same functionality) | a=b

<> Inequality check a<> b_
Type check operator o %ﬂgftype-

- Negation of type check operation a - udeftype

@ Maps a function on each operand. f@a
Creates an exact copy of a pair, deep

copy copying is supported so that structures | copy a
inside pairs are properly freated.

104 4 Data

Name Description Example
If the left operand x is a number and if the
left and right hand side of the pair a:b are
numbers, then the operator checks
in whether x lies in the closed interval [a, b] | 1.5in1:2
and returns true or false. If at least one
value x, a, b is not a number, the operator
returns fail.
left Returns the left operand of a pair. left(a)
right Returns the right operand of a pair. right(a)
type With pairs, always returns 'pair’ . type(a)
Returns either the user-defined type of the
typeof pair, or the basic type (pair) if no | typeof(a)
special type was defined for the pair.
settype Sets a user-defined type for a pair. settype(a, ‘duo’)
gettype Returns the user-defined type of a pair. gettype(a)
sefmetatable | Sefs a metatable to a pair. S Lantel
getmetatable | Retumns the metatable stored to a pair. getmetatable(p)

Table 16: Operators and functions applicable to pairs

4.15 Registers

Registers are memory-efficient, fixed-size Agena "sequences’ that also store null's.
They are not automatically extended if more values have to be added, but can be
manually resized.

Registers allow to hide data: by changing the pointer to the top of a register using
registers.seftop, any values stored above (the position of) this pointer can neither be
read nor changed by any of Agend's functions and operators. Registers are
supported by most of the existing statements, operators and functions. Please also
refer to Chapter 6.15 “Sandoboxes .

The concept of the fixed size and the top pointer is key to understanding and
working with registers.

By default, the top pointer always refers 1o the very last element in a register - it is
automatically changed only if an element is removed with the pop top or pop
bottom statements, the pop operator, or the purge function.

In general, registers can save memory if you know the precise number of values to
be stored, or to be added or removed later, in advance. As such, they behave like
C arrays storing any value without provoking faults. With respect to sequences, there
usually are no performance gains with most operations - but since registers do not
automatically shift elements, they are eight times faster with the respective deletion
operations.

agena >> 105

Let us first create a register with eight items:

>a:=reg(1,2,3,4,5,6,7,8):
reg(l, 2,3,4,5,6,7,8)

Read the first element:

> a[1]:
1

Set the first entry fo null - contrary to other data structures, the size of register is not
reduced, and no values are shifted.

> a[1] := null;

> a:
reg(null, 2, 3, 4,5, 6,7, 8)

Now reset the pointer to the top of the reqister to the fourth element:

> registers.settop(a, 4);

> registers.gettop(a):
4

The total size of the reqgister, however, is sfill eight,

> size(a):
8

but we cannot access all values beyond the pointer:

> a:
reg(null, 2, 3, 4)

> a[5]:
In stdin at line 1:
Error: register index 5 out of current range.

Stack traceback:
stdin, at line 1 in main chunk

By changing the position of the top pointer beyond 4, we can read and change
the values again:

> registers.settop(a, 8);

reg(null, 2, 3, 4,5, 6,7, 8)

When passing no elements fo the reg operator, by default a register with sixteen
slofs is created.

> reg():
reg(null, null, null, null, null, null, null, null, null, null, null, null,
null, null, null, null)

106

4 Data

But you can change this default to another value:

> environ.kernel(regsize = 8);

> reg():
reg(null, null, null, null, null, null, null, null)

Registers containing null's may issue errors with some functions or operators.

Changing the size of a reqister at runtime is easy:

>b:=reg(a, b, 'c):
reg(a, b, ¢)

register.extend enlarges a register to the given number of elements.

> registers.extend(b, 8);

> b:
reg(a, b, ¢, null, null, null, null, null)

register.reduce shrinks a register to the given number of elements.

> registers.reduce(b, 4);

> b:
reg(a, b, ¢, null)

Registers support metamethods, but not user-defined types. To hide the actual size

of the register as defined above, we could assign:

> size a:

8

>mt:=]

> ' size'~ proc(x) is

> return registers.gettop(x)
> end

>]

> setmetatable(a, mt);

> size a:

4
Name Description Example
= Equality check the Cantor way a=b
== Strict equality check a==
~= approximate equality check a~=b
<> Inequality check the Cantor way a<>b
. Type check operator a :: register
; Negation of type check operation a :- register
@ Maps a function on all elements of areqister. | f@ a
S Selects all elements of a that satisfy a given f$a

condition.

agena >> 107
Name Description Example
insert Inserts an element at the first position that | insert 0, 1
holds a null value. Into a
delete Deletes one or more elements and replaces | delete 0, 1
them with null. froma
bottom Returns the item with key 1. bottom a
top Returns the item with the largest key. top a
as an operator works like top but also removes
pop . pop a
the item from the sequence
Creates an exact copy of a register; deep
copy copying is supported so that structures inside | copy a
register are properly freated.
filed Qhecks whether a register has at least one filled a
item.
Returns enfries without issuing an error if @
getentry given index does not exist. getentry(@, 1. 3)
in Checks whether an element is stored in the 0in reg(L, 0)
sequence, retumns frue or false.
pOp Pops the first or the last element from a
bottomn/ register, shifting other elements to close the | pop bottom from a
top space, if necessary. Reduces the size of the | Pop top from a
register by one.
Refuns the curent number of items,
size regardless of whether the top pointer has | size a
been reset.
sort Sorts a regqister in place. Please also see sort(a)
sorted.
fype Re’rgrns the general type of a register, i.e. type a
register.
unique Reqluces mul’nple occurrences of an item in a unique a
register to just one.
unpack l7Jn]pocks a register. See unpack in Chapter unpack(a)
duplicates | Finds duplicate elements. duplicates(a)
map Maps a function on all elements of a register. Tf pr(;gil)f 2> ;;)2
Removes the value at the given position and
purge shifts all elements to close the space. Also
reduces the size of the register by one.
zip(<< X,y ->
i Zips together two register by applying a| x+y>>,
P function to each of its respective elements. reg(1, 2),
reg(3, 4))
Searches all values in one register that are | req(1, 2)
intersect also values in another register and returns | intersect
them in a new register. reg(2, 3)
Searches all values in one register that are not
minus values in another register and returns them as reg(d, 2)

a new reqister.

minus reg(2, 3)

108 4 Data
Name Description Example
subset Checks whether all values in a register are | reg(1)

included in another register. subset reg(1, 2)
wsubset Checks whether all values in a register are | reg(1)
included in another register. xsubset reg(1, 2)
union Concatenates two registers simply by copying | reg(1, 2)
all its elements. union reg(2, 3)
:g:‘)rlr;e’ro- Assigns a metatable to a register. ngf‘ﬁft%t,?ble
%eglr;\efo- Retumns the metatable stored to a register. getmetatable(a)
registers. Returns the current fop pointer, an integer.
gettop
registers. Resefts the top pointer 1o the given position, an
settop infeger.
1OGISIONS. | sprinks the size of a register o the given value.
reduce
reqisters. Enlarges the size of a register to the given
extend value.
Eg:::g?. Sets the default size of newly created registers
) the given value, a non-posint.
regsize

Table 17: Some operators and functions applicable to registers

agena >> 109

4.16 Exploring the Interals of Structures

If you would like to know how a table, set, sequence, or pair is represented
internally, please have a look at the environ.aftrib function explained in Chapter
7.21. It might help when debugging code.

The function returns the estimated number of bytes used by a structure, how many
slots have been pre-allocated and how many are actually occupied, whether a
user-defined type has been set, how many elements have been allocated to the
array and hash parts of a table, etc.

4,17 Other types
For threads, userdata, and lightuserdata please refer to the Lua 5.1 documentation.
Agena supports the following metamethods with userdata: =, ==, ~=, size, in,

union, intersect, minus, sadd, and gsadd. ' _index' , '_ writeindex' ,'_gc ,and
'__tostring' are supported, as well.

110

4 Data

agena >>

111

Chapter Five

Control

112

5 Control

agena >>

113

5 Control

5.1 Conditions

Depending on a given condition, Agena can alternatively execute certain
statements with either the if or case statement.

5.1.1 if Statement

The if statement checks a condition and selects one statement fromn many listed. Its

syntax is as follows:

if conditfion, then
statements;,

[elif condition, then
statements;]

[onsuccess
statements;]

[else
statements,]

fi

The condition may always evaluate to one of the Boolean values true, false, or fail,

then
if @ tue—> Blockl
fdse
then
olif @ tue—>| Block2
fdse
\ 4
else Block3
i ONSUCCES S
fi < Block4

or to any other value .

The elif, else, and onsuccess
clauses are optional. While
more than one elif clause
can be given, only one else
and one onsuccess clause is
accepted. An if statement
may include one or more elif
clauses, and opftionally an
onsuccess clause, and no
else clause.

If an if or elif condition results
to true or any other value
except false, fail, or null, its
corresponding then clause is
executed. If all conditions
result to false, fail, or null, the
else clause is executed if

present - otherwise Agena proceeds with the next statement following the fi

keyword.

114 5 Control

If an onsuccess clause is given, and in case one if or elif condition results to true,
the statements in this onsuccess branch are executed. This allows 10 move code
common fo all then clauses info one single branch, reducing the code size.

Examples:

The condition true is always true, so the string 'yes' is printed.

> if true then
> print('yes")
> fi;

yes

The next example demonstrates the bbehaviour if the condition is neither a Boolean
nor null:

> if 1 then

> print('One")
> fi;

One

In the following statement, the condition evaluates to false, so nothing is prinfed:

> if 1 <> 1 then
> print('this will never be printed")
> fi;

An if statement with an else clause:

> if false then

> print(‘this will never be printed")
> else

> print('this will always be printed')
> fi;

this will always be printed

An if statement with an elif clause:

> if 1 = 2 then

> print(‘this will never be printed")
> elif 1 < 2 then

> print('this will always be printed')
> fi;

this will always be printed

An if sfatement with elif and else clauses:

> if 1 =2 then

> print(‘this will never be printed")
> elif 1 < 2 then

> print('this will always be printed')
> else

> print('neither will this be printed")
> fi;

this will always be printed

agena >> 115

One last example, this time demonstrating the optional onsuccess clause. As
shown, both then statements include the same flag := true statement.

> if 1 =2 then

> print('this will never be printed";
> flag :=true

> elif 1 = 1 then

> print('this will always be printed");
> flag :=true

> else

> flag :=false

> fi;

this will always be printed

> flag:
true

So the two assignment statements may be moved into one onsuccess clause.

> if 1 =2 then

> print('this will never be printed";
> elif 1 = 1 then

> print('this will always be printed");
> onsuccess

> flag :=true

> else

> flag :=false

> fi;

this will always be printed

> flag:
true

5.1.2 if Operator

The if operator checks a condition and returns the respective expression.

if condifion then expression; else expression, fi

This means that the result is expression, it condition is frue or any other value except
false, fail, or null; and expression., otherwise.

Example:

> x := if 1 = 1 then true else false fi:
true

which is the same as:

>if 1 =1 then
> X :=true
> else

> x:=false
> fi;

116 5 Control

The if operator only evaluates the expression that it will return. Thus the other
expression which will not be retuned will never be checked for semantic
correctness, e.g. out-of-range string indices, etc. You may nest is operators.

The if operator cannot return multiple values, only one.

5.1.3 case Statement

The case statement facilitates comparing values and executing corresponding
statements.

case name
of value, [, values,, --- | then statements,
[of valuey, [, valuey,, ---] then statements;]
[Of -+]
[onsuccess - |
[else statementsy]
esac
>a: ="k}
> case a
> of'a','e','l",'0, 'u, 'y then result := ‘vowel'
> else result := 'consonant’
> esac;
> result:
consonant

You can add as many of/then statements as you like. Fall through is not supported.
This means that if one then clause is executed, Agena will not evaluate the
following of clauses and will proceed with the statement right after the closing esac
keyword.

As with the if statement, if an onsuccess clause is given, and in case one of the
conditions results to true, the statements in the onsuccess branch are executed.
This allows to move code common fo all then clauses into one single branch,
reducing the code size.

If none of the of conditions is satisfied, and if an else clause is given, then the
respective else statements are processed, otherwise Agena executes the code
following the esac token.

agena >> 117

ccse Check Vdue
then
of @ yes—>»1 Block]1

then
of @ yes—>{ Block2

no

v
else Block3

i ONSUCCeS S
esac < Block4 [«

5.2 Loops

Agena has three basic forms of control-flow statements that perform looping: while
and for, each with different variations.

5.2.1 while Loops

A while loop first checks a condition and if this condition is frue or any other value
except false, fail, or null, it iterates the loop body again and again as long as the
condition remains true.

If the condition is false, fail or null, no further iteration is done and control returns to
the statement following right after the loop body.

If the condition is false, fail, or null from the start, the loop is not executed at all.

while condition do
statements
od

Thus the programme flow is as shown in the diagram.

The following statements calculate the largest Filbonacci number less than 1000.

118

5 Control

Loop Header

<G>

frue

next *
fferation Block

Y

Loop End

fal

se

I

least once.

In the do/as variant, as long as the condition

while

od

quit
loop
iterafion

evaluates to true, the 1oop is not left.

do
statements
as condition

>c:=0;

> do
> incc
>asc<10;

>c:
10

The following loop will never be
executed since the condition is false:

> while false do
> print('never printed')
> od;

Variations of while are the do/as and
do/until loops which check a
condition at the end of the iteration,
and thus will always be executed at

}

L oop Header do

next (
iferation

’—) B lock

as: frue
as
until

until: fdse

. Quit loop
os: e jterqtion
until: tfrue

Loop End

do/until loops are iterated until the given

condition is met.

>c:=0;
> do
> incc

> until ¢ > 10;

do

statements
until condition

agena >> 119

>c:
11

Another flavour of the while loop is the infinite do/od loop which executes
statements infinitely and can be interrupted with the break or return statements. See
Chapter 5.2.10 for further information on the break statement. It is syntactic sugar
for the while frue do/od construct.

do
statements
od

>i:=0;

>do

> inci;

> if i > 3 then break fi;
> print(i)

> od;

1

2

3

for loops are used if the numiber of iterations is known in advance. There are for/to
loops for numeric progressions, and for/in loops for table and string iterations.

5.2.2 for/to Loops
/_¢ﬁ Let us first consider numeric for/to

Loop Header numeric for - |50ps which use numeric values for
v control:

name : = start

for name [from sfarf] [to sfop]

[by step] do
] statements
o od

loop
iteration
fdse
\ 4
ot name, start, stop, and step are all
ieration Block numeric values or must evaluate to
v e numeric values.
name .=
name + step The statement at first sets the
¢ variable name to the numeric
Loop End od value of sfarf. name is called Thg
control or loop variable. If starf is

<« not given, the start value is +1.

120 5 Control

When leaving out the to clause, the loop iterates until the largest number
representable on your platform has been reached.

It then checks whether sfart < sfop. If sO, it executes statfements and returns to the
top of the loop, increments name by sfep and then checks whether the new value
is less or equal stop. If so, statfements are executed again. If sfep is not given, the
control variable is always incremented by +1.

> forifrom1to3by1do
> print(i, i*2, i"3)

> od;

1 1 1
2 4 8
3 9 27

> forito 3 do
> print(i, i*2, i"3)

> od;

1 1 1
2 4 8
3 9 27

The control variable of a loop is always accessible 1o its surrounding block, so you
may use its value in subsequent statements. This rule qpplies only 1o
for/from/to-loops with or without a while, as, or until extension. Note that within
procedures, the loop control variable is automatically declared local, while on the
interactive level, it is global.

> for i while fact(i) < 1k do od

>
7

The following rules apply to the value of the control variable after leaving the loop:

1. If the loop terminates normally, i.e. if it iterates until its stop value, then the value
of the control variable is its stop value plus the step size.

2. If the loop is left prematurely by executing a break statement' within the loop,
or if a for/while loop is terminated because the while condition evaluated to
false (see Chapter 5.2.8), then the control variable is set to the loop's last
iteration value before quitting the loop. There will be no increment with the loop's
step size. The same applies to for/as and for/until loops (see Chapter 5.2.9).

Loops can also count backwards if the step size is negative (see also the next
chapter):

> forifrom2to1by-1do
> print(i)

> od

2

1

1% See Chapter 5.2.8 for more information in the break statement,

agena >> 121

A special form is the to/do loop which does not feature a control variable and
iterates exactly n times.

>to 2 do

> print(iterating')
> od

iterating

iterating

Agena automatically uses an advanced precision algorithm based on Kahan
summation if the step size is non-integral, e.g. 0.1, -0.01. This mostly prevents
round-off errors and thus avoids that the loop stops before the last iteration value
(the limit) has been reached and that iteration values with round-off errors are
returned.

If the step size is an integer, e.g. 1000, -1., then Agena does not use advanced
precision to ensure maximum speed.

5.2.3 for/downto Loops

count from a start value down to a stop value, with a default countdown step size
of (implicit minus) one. To count down, the optional step size should be positive.

for name from start downto stop [by sfep] do
statements
od

5.2.4 for/in Loops over Tables

are used to traverse tables, strings, sets, and sequences, and also iterate functions.

If null is passed after the in keyword, or if the value evaluates to null, then Agena
does not execute the loop and continues with the statement following it.

Let us first concentrate on table iteration.

for key, value in tbl do
statrements
od

The loop iterates over all key~value pairs in table bl and with each iteration assigns
the respective key to key, and its value to value.

>a:=[4,5, 6]

>fori,jinado
> print(i,)
> od

122 5 Control

1 4
2 5
3 6

There are two variations: When putting the keyword keys in front of the control
variable, the loop iterates only on the keys of a table:

for keys key in tbl do
statements
od

Example:

> for keysiin ado
> print(i)

> od

1

2

3

The other variation iterates on the values of a table only:

for value in tbl do
statements
od

> foriin ado
> print(i)

> od

4

5

6

The control variables in for/in loops are always local to the body of the loop (as
opposed to numeric for loops). You may assign their values to other variables if you
need them later.

You should never change the value of the control variables in the body of a loop -
the result would be undefined. Use the copy operator to safely traverse any
structure if you want to change, add, or delete its entries.

Because of the implementation of tables, please note that the keys in a table are
not necessarily fraversed in ascending order. You may want fo iterate sequences or
implement and linked list (see Chapter 6.25).

5.2.5 for/in Loops over Sequences

All of the features explained in the last subchapter are applicable to sequences, as
well.

agena >> 123

5.2.6 for/in Loops over Strings

If you want to iterate over a string character by character from its left to its right, you
may use a for/in loop as well. All of the variations are supported.

for key, value in string do sfatements od
for value in sfring do sfatements od

for keys value in sfring do sfatements od

The following code converts a word 1o a sequence of abstract vowel, ligafure, and
consonant place holders and also counts their respective occurrence:

> str ;= 'sefter’;
>result :=";
>c,v,|->0;

> foriin str do

> casei

> of 'a', 'e', 'i', '0', 'u' then

> result := result & 'V*;

> inc v

> of '&', ‘&', 'g', '0' then

> result ;= result & 'L";

> inc |

> else

> result := result & 'C'

> inc c

> esac

> od;

> print(result, v & ' vowels', | & ' ligatures', ¢ &' consonants’);
LCCVvC 1 vowels 1 ligatures 3 consonan ts

5.2.7 for/in Loops over Sets

All for loop variations are supported with sets, as well. The only useful one, however,
is the following:

> sister ;= {'swistar', 'sweastor’, 'svasar’, 'sist er'}

> for i in sister do print(i) od;
svasar

swistar

sweastor

sister

You may try the other loop alternatives to see what happens.

124

5 Control

5.2.8 for/in Loops over Procedures

The following procedure, called an iterator, returns a sequence of values multiplied
by two. If state = n, then the procedure retuns null which quits the for/in iteration.
See Chapter 6 which describes procedures in detail.

> double := proc(state, n) is

>
>
>
> else
>
>
>

if n < state then

inc n;
return n, 2*n

return null

end;

> fori, j in double, 5, 0 do

>

GORrWNE

print(i, j)
> od

2
4
6
8
10

5.2.9 for/while Loops

iteration

]

numeric
Loop Header for/while
name : = start
fdse oyt
loop
teration
Condition
tue
Y
tue
next Block
¢ fdse
name : =
name + step
od
Loop End
<

All flavours of for loops can be
combined with a while condition. As
long as the while condition is
satisfied, the for loop iterates. To be
more precise, before Agena starts
the first iteration of a loop or
continues with the next iteration, it
checks the while condition to be
frue or any other value except false,
fail, or nuill.

An example:

> for x to 10

> while In(x) <=1 do

> print(x, In(x))

> od

1 0

2 0.69314718055995

Regardless of the value of the while
condition, the loop control variables
are always initiated with the start
values: with for/to loops, a is
assigned to / (or 1 if the from clause
is not given); key and/or value are
assigned with the first item in the
table, set, or sequence sfruct or the

agena >>

125

first character in string sfring.

for i [from Q] to b [by step] while condition do statements od

for [key,] value in sfruct while condifion do statements od
for keys key in sfruct while condition do statements od

for [key,] value in sfring while condition do statements od
for keys key in sfring while condition do statements od

5.2.10 for/as & for/until Loop s

As with the optional while
clause, all flavours of for loops
can be combined with an as or
an until condition.

In these cases, a loop is always
iterated at least once, and after
the first iteration is completed,
Agena checks the given
condition and decides whether
fo start the next iteration or 1o
leave the loop.

In the following example, the
for/as loop starts with /=0 and
since the first check to the as
condition results to true, the next
iteration with i=1 is conducted.
The next check to the as
condition results to false, thus
the loop quits.

> for x from 0 do
> print(x, 10"x)
>as 10 <10

0 1
1 10
The next loop iterates three

next
iterction

—

numeric
Loop Header for/as funtil
name ;. =start
fdse
Block
A
name ;.=
name +step true
Condition quit
loop
iteration
cs: fdse
until: frue
Loop End I od

fimes, until i=2, since only then the until condition becomes true.

> for x from 0 do
> print(x, 10"X)
> until 10"x > 10
0 1

1 10

2 100

126 5 Control

5.2.11 Loop Jump Control

Agena features statements to manipulate loop execution. skip and break are
applicable to all loop types, whereas redo and relaunch work in for loops only.

The skip statement causes another iteration of the loop to begin at once, thus
skipping all of the loop statements following it.

The break statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop.

> forito5 do

> if i = 3 then skip fi;
> print(i)
> if i = 4 then break fi;

> Loop Header [« > od:
inttiate 1
next 2
iteration 4
skip
ot This is equivalent to the following
iteration statement:
break
> forito 5 whilei<5do
> if i = 3 then skip fi;
it > print(i)
loop > od;
Loop End immediately 1
2
4
(—

>a:=0;

> while true do

> inca;

> if a>5 then break fi;
> if a < 3 then skip fi;
> print(a)

> od;

3

4

5

There exists syntactical sugar for both the skip and the break statements: instead of
pufting these statements into if clauses, just add the when token along with a
condition to the respective keyword.

>a:=0;

> while true do

> inca;

> break when a > 5;
> skipwhena<3;
> print(a)

> od;

agena >>

127

3
4
5

In for/to and for/in loops, the
redo statement is similar to
skip: it jumps back to the
beginning of the loop but does
not change the loop control
variable in for/fo loops or the
index/value control variables in
for/in loops. Thus, it restarts the
current iteration from the
beginning, Af restart, it does,
however, check an opfional
while condition, if present.

> flag := true;

> forjin[10, 11, 12] do
print(j, flag);
if flag and j = 11 then
clear flag;
print(j, flag,
'jump back")
> redo
> Ai;
> until j > 12;

\Y

V V V

10 true

11 true

11 false jump back
11 false

12 false

next
iteration

for Header
< restart
current
redo iteration
initiate
next
iteration
Skip
restart loop
relaunch
break
Quit
loop
for End irmediately
<«

The relaunch statement completely restarts a for/to and for/in loop from its very
beginning, i.e. resets the current control variable to its start value (from clause or first

element, respectively).

> flag := true;

> forjin[10, 11, 12] do
> print(j, flag);

> ifflag andj= 11 then
> clear flag;
>
>
>

print(j, flag,
'restart’)

relaunch

> fi;

> until j > 12;

10 true

11 true

11 null restart

10 null

11 null

12 null

128 5 Control

agena >> 129

Chapter Six

Programming

130 6 Programming

agena >> 131

6 Programming

Writing effective code in a minimum amount of time is one of the key features of
Agena. Programmes are usually represented by procedures. The words
‘procedure” and “function® are used synonymously in this text.

6.1 Procedures

In general, procedures cluster a sequence of statements into abstract units which
then can be repeatedly invoked.

Writing procedures in Agena is quite simple:

procname = proc([par, [::fypeq] [, par: [::itype,], - 1]) [i: returntype] is
[local name; [, namey,--- i
statements

end

All the values that a procedure shall process are given as parameters par,, etc. A
function may have no, one, or more parameters. A parameter may be succeeded
by the name of a type (see Chapter 6.8.2), or a set of up to four types, that an
argument must satisfy when the procedure is called.

If a type is given right after the parameter list, Agena checks whether the retumn of
the procedure is of the given return type, which may also be a user-defined type.
The is keyword is obligatory.

A procedure usually uses local variables which are private to the procedure and
cannot be used by other procedures or on the Agena interactive level.

Global variables are supported in Agena, as well. All values assigned on the
inferactive level are global, and you can also creafe global variables within @
procedure. The values of global variables can be accessed on the interactive level
and within any procedure.

A procedure may call other functions or itself. A procedure may even include
definitions of further local or global procedures.

The result of a procedure is retfumned using the return keyword which may be put
anywhere in the procedure body, and which also immediately terminates further
execution of the procedure.

retun [value [, values, - 1]

As you can see, you may not only return a single result, but also multiple ones, or
none at all.

132 6 Programming

Furthermore, a procedure does noft return anything - not even the null value -

* if no return statement is given at all,
* if nO values are passed to the return statement.

The following procedure computes the factorial of an integer':

> restart;

> fact := proc(n) is
computes the factorial of an integer n
if n < 0 then return fail
elif n = 0 then return 1
else return fact(n-1)*n
fi
end;

VVVYVYVYV

It is called using the synfax:

funcname(largs [, argz,--- 1))

> fact(4):
24

where the first parameter is replaced by the first argument arg,, the second
parameter is substituted with arg,, etc.

A when clause can be added to a return statement that does not pass any values
including null. In this case, the execution of a function is being finished if the
Boolean when condition has been satisfied, e.9. return when x <> 0

6.2 Local Variables

The function above does not need local variables as it calls itself recursively.
However, with large values for n, the large number of unevaluated recursive
function calls will ultimately cause stack overflows. SO we should use an iterative
algorithm to compute the factorial and store infermediate results in a local variable.

A local variable is known only to the respective procedure and the block where it
has been declared. It cannot be used in other procedures, the interactive Agena
level, or outside the block where it has been declared.

A local variable can be declared explicitly anywhere in the procedure body, but at
least before its first usage. If you do not declare a variable as local and assign
values later to this variable, then it is global. Note that control variables in for loops
are always implicitly declared local to either their surrounding (for/to loops) or inner
block (for/in loops), so we do not need to explicitly declare them.

*The library function fact is much faster,

agena >> 133

Local declarations come in different flavours:

local name; [, name,, ---]

local name; [, name,, - | := value, [, value,, ---]
local name, [, name,, ---] -> value
local enum name; [, name,, --- | [from value]

In the first form, name,, etc. are declared local.

In the second and third form, name,, etc. are declared local and, as opposed 1o
the first form, followed by initial assignments of values to these names.

In the last form, name,, etc. are declared local with a sulbbsequent enumeration of
those names, i.e. assignment of ascending positive integers to these names.

Let us write a procedure to compute the factorial using a for loop. To avoid
unnecessary loop iterations when the intermediate result has become so large that
it cannot be represented as a finite numiber, we also add a clause to quit loop
iteration in such cases.

> fact := proc(n) is
if n < 0 then return fail fi;
local result := 1;
for i from 1 to n do
result ;= result * i
if not finite(result) then break fi
od;
return result
end;

VVVVVYVVYV

> fact(10):
3628800

Since result has been declared local so it has no value at the interactive level.

> result:
null

There is a shortcut to create local structures - tables, sets, and sequences:

create local <sfructure> name;, [, <structure> name,, --- |

where <sfructure> might be the keyword table, set, or sequence. You can declare
different local structures with one create local statement.

A useful function is environ.globals which determines global variable assignments
inside procedures and helps to find those positions where a local declaration has
been forgotten.

134 6 Programming

6.3 Global Variables

Global variables are visible to all procedures and the interactive level, such that
their values can be queried and altered everywhere in your code.

Using global variables is not recommended. However, they are quite useful in order
to have more control on the behaviour of procedures. For example, you may want
fo define a global variable _EnvMoreinfo that is checked in your procedures in
order to print or not to print information to the user.

Global variables can be indicated with the global keyword. This is optional,
however, and only serves documentary purposes.

> fact := proc(n) is

> global _EnvMorelnfo;

> if n <0 then return fail fi;
> local result ;.= 1;

> forifrom1tondo

> result ;= result * i

> if result = infinity then
> if _EnvMorelnfo then print('Overflow !') fi;
> break

> fi
> od;
> return result
> end;

We must assign _EnvMoreinfo any value different from null, fail, or false in order to
get a warning message at runtime.

> EnvMorelnfo ;= true;

> fact(10000):

Overflow !

infinity

6.4 Changing Parameter Values

You can assign new values to procedure parameters within a procedure. Thus, an
alfernative to the abs operator might be:

> myAbs := proc(x) is
> ifx<0then

> X 1= -X
> fi;
> return X
> end;

> myAbs(-1):
1

6.5 Optional Arguments

A function does not have 1o be called with exactly the number of parameters given
at procedure definition. You may also pass less or more values. If no value is
passed for a parameter, then it is automatically set 1o null at function invocation. If

agena >> 135

you pass more arguments than there are actual parameters, excess arguments are
ignored.

For example, we can avoid using a global variable to get a warmning message by
pAssing an optional argument instead.

> fact := proc(n, warning) is
if n < 0 then return fail fi;
local result := 1;
for i from 1 to n do
result ;= result * i
if result = infinity then
if warning then print(‘Overflow !) fi;
break
fi
od;
return result
end;

VVVVVVVVVVYV

> fact(10000):
infinity

The option should be any value other than null, false, or fail to get the effect.

> fact(10000, true):
Overflow !
infinity

A variable number of arguments can be passed by indicating them with a question
mark in the parameter list and then querying them with the varargs system table in
the procedure body.

> varadd := proc(?) is

> local result := 0;

> forito size varargs do
> inc result, varargsi]
> od;

> return result

> end;

> varadd(l, 2, 3, 4, 5):
15

You may determine the numiber of arguments actfually passed in a procedure call
by querying the system variable nargs inside the respective procedure. A variant of
the above procedure might thus be:

> varadd := proc(?) is
local result := 0;
for i to nargs do
inc result, varargsi]
od;
return result
end;

VVVYVYVYV

> varadd(l, 2, 3, 4, 5):
15

136 6 Programming

Let us build an extended square root function that either computes in the real or
complex domain. By default, i.e. if only one argument is given, the real domain is
taken, otherwise you may explicitly set the domain using a pair as a second
argument.

> xsqrt := proc(x, mode) is
> if nargs = 1 or mode ='domain":"real’ then
> return sqrt(x)

> elif mode = 'domain":'complex’ then
> return sqrt(x + 0*l)
> else
> return fail
>

>

> xsqrt(-2):
undefined

> xsqrt(-2, 'domain’:'real’):
undefined

If the left-hand value of the pair in a function call shall denote a string, you can
spare the single quotes around the string by using the = token which converts the
left-hand name to a string'’

> xsqrt(-2, domain = 'complex’):
1.4142135623731*

6.6 Passing Options in any Order

We can combine the varargs facility with the usage of pairs in order to pass one or
more optional arguments in any order.

> f:=proc(?) is
local bailout, iterations := 2, 128; # default values
for i to nargs do
case left(varargsli])
of 'bailout' then
bailout := right(varargsli]);
of 'iterations' then
iterations := right(varargsli]);
else
print ‘'unknown option’
esac
od;
print(‘bailout = ' & bailout, 'iterations =" & iterations)
end;

> f();

bailout=2 iterations = 128

VVVVVVVVVYVYVYVYV

> f('bailout:10);
bailout =10 iterations = 128

> f('iterations":32, 'bailout';10);
bailout =10 iterations = 32

171 you need o conduct a Boolean equality operation in a function call, such like fa=b) , use the
isequal function, like f(isequal(a, b))

agena >> 137

Again, the single quotes around the name of the option (left-hand side of the pair)
can be spared by using the = token which converts the given name to a string.

> f(bailout = 10, iterations = 32);
bailout =10 iterations = 32

Sometimes, implementing checks on options may take a substantial amount of
programming fime, so please have a look at the checkoptions function which may
save up to 20 % of code. You might see Chapter 7.1 for further details.

6.7 Type Checking

Although Agena is untyped, in many situations you may want to check the type of a
certain value passed to a function. Agena has four facilities for this:

the type operator determines the basic type of its argument;

the typeof operator checks for a basic or user-defined type;

the :: operator evaluates a value for a given type or user-defined type;

the :- operator checks whether a value is not of a given type or user-defined

type;

5. basic or user-defined types can be optionally specified in the parameter list of a
procedure by means of the preceding :: token so that they will be checked af
procedure invocation, see Chapter 6.8.2;

6. the type of return of a procedure may be given right after the parameter list, see

Chapter 6.8.3.

o~

The following standard types are available in Agena:

boolean, complex, lightuserdata, null, number, p air, procedure,
sequence, set, string, table, thread, userdata.

These names are reserved keywords, but with the exception of the null constant
evaluate fo strings so that they can be compared with the result of the type
operator that returns the type of a value as a string:

type(value)

> type(1):
number

> type(1) = number:
true

The only exception to the above is when checking for the type of anything
evaluating to null. In this case, put the null constant into quotes:

> a :=null;

138 6 Programming

> type(a) = 'null’;
true

The :: and :- operators check whether their arguments are or are not of a specific
type - or user-defined type - and return true or false. They are speed-optimised and
around 20 % faster than comparing the return of the type operator with a type
name, as shown in the example above.

value :: fypename
value :- fypename

Examples:

> 1 :: number:
true

>'1":- number:
true

In case of user-defined types, the type name must always be a string put into
quotes. See Chapter 6.12 for more information.

6.8 Error Handling

6.8.1 The error Function

The error function immediately terminates execution of the procedure, and prints
an error message if given.

error(‘error string')

> fact := proc(n) is
> if n :- number then

> error('number expected’)
> fi;

> if n <0 then return null

> elifn=0thenreturn 1

> else return fact(n-1)*n

> fi

> end;

> fact('10"):

Error: number expected

Stack traceback:
stdin, at line 3, at line 1

agena >> 139

6.8.2 Type Checks in Procedure Parameter Lists

You may optionally specify permitted types in the parameter list of a procedure by
using double colons:

> fact := proc(n :: number) is
> if n <0 then return null
> elifn=0thenreturn 1

> else return fact(n-1)*n

> fi

> end;

> fact('10":
Error in stdin:
invalid type for argument #1: expected number, g ot string.

This form of type checking is more than twice as fast as the ifftype/eror
combination. If the argument is of the corect type, Agena executes the
procedure, otherwise it issues an error. Agena will also return an error if the argument
is not given:

> fact()
Error in stdin:
missing argument #1 (type number expected).

Finally, argerror is a little bit smarter than error for it automatically indicates the type
of an argument actually passed to a procedure in its error message.

>a.=1,;

> if a ;- string then

> argerror(a, 'myproc', 'expected a string')

> fi

Error in “'myproc’: expected a string, got number.

Furthermore, you may specify a set of one to four allowed basic types for any
parameter with the set notation:

sec ;= proc(x :: {number, complex}) is
return 1/cos(x)
end;

6.8.3 Checking the Type of Return of Procedures

Agena can check whether all returns of a procedure are of a given single type by
specifying this return type right after its parameter list.

> fact := proc(n::number) :: number is
> if n <0 then return undefined

> elif n=0thenreturn 1

> else return fact(n-1)*n

> i

> end;

> fact(10):
3628800

140 6 Programming

If one of the returns is not of the return type, the procedure issues an error.

> fact := proc(n::number) :: number is
> if n <0 then return undefined

> elifn=0thenreturn1

> else return 'don\'t know'

> A

> end;

> fact(10):
Error in stdin, at line 5:
“return” value must be of type number, got strin g.

Stack traceback:
stdin, at line 5, at line 1

There are other functions for error handling:

6.8.4 The assume Function

assume checks a Boolean relation. In case the relation is valid, it returns frue and all
other arguments given. In case of an invalid relafion, it ferminates execution of the
procedure and prints an eror message. The second argument to assume is
optional; if not given, the text “assumption failed" is returned with invalid relations.

assume(relation [, ‘error string'])

>assume(l=1,'lis not1):
true lisnotl

>assume(l <>1,'lis1"):
Error in "assume™ 1 is 1.

Stack traceback: in “assume”
stdin, at line 1 in main chunk

6.8.5 Trapping Errors with protect/lasterror

protect traps any error, but does not terminate a function call. In case of no errors, it
returns all results of the call. In case of an eror, it returns the error message as a
string and also sets the global variable lasterror to this error message. In case of a
successful call, lasterror is always nuill.

protect accepts the name of the function f o be executed as its first argument,
and all arguments a, b, .- of f as optional arguments:

protect(f[, a [, b, 1))

Thus, if a function has no arguments, simply pass the expression protect(f)

agena >> 141

> iszero := proc(x) is
if X <> 0 then
error(‘'argument must be zero')
else
return true
fi
end;

VVVYVYVYV

To call iszero in protected mode, enter:

> protect(iszero, 0):
true

> |asterror:
null

> protect(iszero, 1):
argument must be zero

> |asterror:
argument must be zero

To conveniently check whether an error occurred, you might enter:

> protect(iszero, 0) = lasterror:
false

> protect(iszero, 1) = lasterror:
true

Note that protect does not directly work with operators, instead you may include a
call to an operator in a new function:

> mycopy = proc(x) is
> return copy(X)
> end;

> protect(mycopy, 1:1) = lasterror:
true

6.8.6 Trapping Errors with the fry/catch Statement

Instead of intercepting errors with protect and lasterror, you may use the try/catch
statement:

fry
statements,
[catch [errvar then]
statements]

yrt

Any statements statements; may e put right after the try keyword. If an error occurs
in one of these statements, Agena immediately jumps to the catch clause if
present, ignoring any subsequent statements in stafements,. If there is no catch

142 6 Programming

clause, execution immediately continues with the statement after the yrt keyword,
regardless of whether an error occurred or not, also ignoring all subsequent
commands in statements,.

If a catch clause is given, then in case of an error the error message is stored to the
local variable errvar, and after that the statements statements, after the then
keyword are processed. errvar does not need to be declared, it is implicitly local to
the catch clause only. You may also leave out specification of an error variable - in
this case the error message is automatically stored to the local lasterror variable,
and the then keyword must be left out.

Examples:

> try

> error('Oops !);

> print(Invalid index ")
> yrt;

As shown above, due to the immediate jump out of the try body, the print function
is not called. In the next example, the eror message is stored to the variable
message, and in the catch clause it is then printed at the console.

> try
> error('Oops !);

> print(Invalid index ")

> catch message then

> print('The error was: ' & message);
> yrt;

The error was: Oops !

> message:
null

Now we do not specify an error variable in the catch clause:

> try

> error('Oops !);

> print(Invalid index ")

> catch

> print('The error was: ' & lasterror);
> yrt;

The error was: Oops !

6.9 Multiple Returns

As stated before, a procedure can return no, one, or more values. Just specify the
values to be returned:

> f:=proc() is
> a:=2;

> returnl, a
> end;

> £():
1 2

agena >> 143

There are two ways to refer to these multiple returns in sulbsequent statements. If you
assign the return to only one variable, e.Q.

>m :=f():
1

the second return is lost, so enter:

>m, n :=f();

A function may return a variable number of values, so it might be useful to put them
in a sequence or table:

> seq(f()):
seq(l, 2)

Sometimes a procedure shall only return the first result of a computation only. In this
case, put the call that results into multiple returns into brackets. math.fraction returns
three values: the numerator, the denominator, and the accuracy, in this order. Let
us write a numerator function that only returns the first result of math.fraction.

> numerator := proc(x::number) is
> return (math.fraction(x))
> end;

> numerator(0.1):
1

The ops function refums all its arguments after argument number index, an integer.

ops(index, arg; [, argz,)

The following statement determines the denominator and the accuracy.

> ops(2, math.fraction(0.1)):
10 O

To return only the first result, the denominator, put the call to ops in brackets.

> denominator := proc(x::number) is
> return (ops(2, math.fraction(x)))
> end;

> denominator(0.1):
10

unpack returns all elements in a table or sequence:

144 6 Programming

> squared := proc(t::table) is

> local result ;= << x ->x"2 >> @ t;
> return unpack(result)

> end;

> squared([1, 2, 3, 4]):
1 4 9 16

Optionally, unpack accepts the positions of the first to the last element to be
returned as its second and third argument. If only the second argument is given, all
elements in a structure from the given position are determined.

unpack(structure [, beginning [, end]])

> squared := proc(t::table, ?) is

> |ocal result :=<<x->x"2>> @ t;

> return unpack(result, unpack(varargs))
> end;

> squared([1, 2, 3, 4], 2):
9 16

> squared([1, 2, 3, 4], 2, 3):
4 9

6.10 Procedures that Return Procedures

Besides returning numloers, strings, tables, etc., procedures can also refurn new
procedures. As an example, the function polygen

> polygen := proc(?) is
local s := seq(unpack(varargs));
return proc(x) is
local r := bottom(s);
for i from 2 to size s do
r:=r*x + gi]
od;
return r
end
end;

VVVVVYVYVVYV

returns a procedure to evaluate a polynomial of degree n from the given
coefficients ¢, cp1, ==+ . Ca Cy!

<<(x)->c x4 e XM+ s X +e >
In the following example, polygen creates the polynomial 3x? — 4x+1as a procedure.

> f := polygen(3, -4, 1)
> (2):
5

agena >> 145

6.11 Shortcut Procedure Definition

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as if/then, for, insert, etc.

<< [([[par [:: typei] [, par: [typez], -+ 1] [)] -> expr >>

As you see, optional basic and user-defined types can be specified in the
parameter section.

Let us define a simple factorial function.

> fact := << (x::number) -> exp(Ingamma(x+1)) >>;
> fact(4):
24

Brackets around parameters are optional, even if you specify types.

> isInteger := << x -> int(x) = x >>;

> isinteger(1):
true

> isinteger(1.5):
false

Passing optional arguments using the ? notation is supported. In this case, use the
varargs table as described above.

6.12 User-Defined Procedure Types

The seftype function allows to group procedures proc,, proc,, --- , by giving them a
specific type (passed as a string) just as it does with sequences, tables, sets, and
pairs.

settype(proc, [, proc,, --- |, 'your_proctype')

User-defined procedures can be queried with the typeof operator which returns a
string.

>fi=<<x->1>>;
> settype(f, '‘constant’);

> typeof(f):
constant

> type(f): # only returns the basic type
procedure

146 6 Programming

The :: and :- operators can also validate a user-defined procedure type. Pass the
name of the user- defined type as a string:

proc, :: 'your_proctype'
proc, :- 'your_proctype'

> f i 'constant':
true

> f ;- 'constant':
false

Note that the type operator only checks for basic types.

An alternative to typeof is the gettype function. If a user-defined has been seft, then
it returns its name as a string, otherwise, it returns null.

If you want to check whether user-defined types have been passed to a
procedure, you may use the double colon notation in its parameter list.

Suppose you have defined a type called triple

>t:=]1, 2, 3]
> settype(t, 'triple’)

> sum := proc(x::triple) is
> return sadd(x)
>end

> sum(t):

6.13 Scoping Rules

In Agena, variables live in blocks or “scopes’. A block may contain one or more
other blocks. A local variable is visible only to the block in which it has been
declared and to all blocks that are part of this block. Thus, variables declared local
in inner blocks are not accessible to the outer blocks.

Procedures, if- and case-statements, while-, do- and for-loops create blocks, or
more precisely, a block resides between:

then and elif, else, or fi keywords - in if statements;

then and of, else, or esac keywords - in case statements;
do and as - in do/as loops;

do and od - in for and while 1oops;

is and end - in procedures;

scope and epocs - in scope blocks (see below).

SCohrhwdd~

agena >> 147

As an example, variables declared as local within procedures are only visible to the
block in which they have been defined. Especially, they cannot be accessed from
outside the procedure in which they are hosted.

Variables declared as local in the then clauses of an if-statement live only in the
respective then part. The same applies to variables declared locally in else clauses.

> f .= proc(x) is

> ifx>0then

> local i := 1; print('inner, i)
> else

> local i := 0; print('inner', i)
> Ai;

> print(outer’, i) #iis not visible
> end;

> f(1);

inner 1

outer null

Variables declared as local in for- or while-loops are only accessible in the bodies
of these loops. The loop control variables of for/to-loops are automatically declared
local to their surrounding block, while control variables of for/in-loops are implicitly
declared local to the respective loop bodies.

f:=proc(x) is
while x <2 do
local i :=x
inc x
print(inner’, i)
od;
print('outer’, i) #iis not visible
end;

VVVVVYVVYV

> f(1);
inner 1
outer null

A special scope can e declared with the scope and epocs statements:

scope
declarations & statements
epocs

The next example demonstrates how it works:

> f:=proc() is

> locala:=1;

> scope

> local a := 2;

> writeline('inner a: ', a);
> epocs;

> writeline('outer a: ', a);
> end;

148 6 Programming

> f()
inner a: 2
outera: 1

The scope statement can also be used on the interactive level to execute a
sequence of statements as one unit. Compare

> print(1);
1
> print(2);
2

> print(3);
3

with

> scope
> print(2);
> print(2);
> print(3)
> epocs;
1

2

3

6.14 Access to Loop Control Variables within Procedures

As dlready mentioned, the control variable of a for/to loop is always local to the
body surrounding the loop.

> mandelbrot := proc(x, v, iter, radius) is

> locali, ¢, z;

> z:=xly;

> c:=z

> forifrom O to iter while abs(z) < radius do
> z:=2"2+¢c

> od;

> returni # return the last iteration value

> end;

The procedure counts and returns the number of iterations a complex value z takes
fo escape a given radius by applying it to the formula z = z™ 2+c.

> mandelbrot(0, 0, 128, 2):
129

The following example demonstrates that local variables are bound to the block in
which they have been declared.

f:=proc() is
local i;
forito 3do
local j;
for j to 3 do od;
print(i, j)
od;

VVVYVYVYVYV

agena >> 149

> print(i, j)
> end;

> f()

(=Y

4
2 4
3 4
4 null

6.15 Sandboxes

By default, every procedure has access to the full Agena environment, i.e. to all of
Agena's functions, packages, and all other values. You might want to limit this
access, for example if one of your procedures offers services on the Internet, or
want a procedure maintain its own environment,

Here, the environ.seffenv function comes into play. It initialises the environment a
function can use.

Example 1: Give access to all functions except the os package

First copy Agena's environment represented by the system table G to a new table
so that altering this new table will not effect Agena's normal environment:

> newG = copy(_G); # copy can also duplicate cyc les like G

Delete the 0s package from this new environment:

> delete os from _newG;

Define a function that tries to determine the current working directory:

> curdir ;= proc() is
> return os.chdir()
> end;

Set the environment not featfuring the os package:

> environ.setfenv(curdir, _newG);

> curdir():
Error in stdin, at line 2:
attempt to index global “os’ (a null value)

Stack traceback:
stdin, at line 2, at line 1

Example 2: Give access only the specific functions

> curdir := proc() is
> print(os.chdir())
> end;

150 6 Programming

> environ.setfenv(curdir,
> ['print' ~ << x -> print('cwd is ' & X) >>,'0 s' ~ 0s])

> curdir():
cwd is C:/agenal/src

To determine the current environment used by a function, use environ.getfenv:

> environ.getfenv(curdir):
[os~(.-+), print ~ procedure(01D4BA18)]

Please see Chapter 7.21 (environ.getfenv, environ.setfenv, environ.isselfref) for
further features.

To hide data in a sandbox, please have a look at registers - explained in Chapter
415,

6.16 Altering the Environment at Run-Time

Besides using a special environment (see the subchapter above), a procedure can
also create new variables and put them into Agena's standard environment.

Why should one do so ? Consider the utils.decodexml function. It converts an XML
string into a table consisting of key-value pairs, the keys being the XML tags, and the
values the corresponding dafa. XML allows to use name spaces, so that tags might
look like <soap:body> , etc.

So, XML data like

> str := '<soap:body>
> <orderid>123</orderid>
> </soap:body>'

is converted to

> order := utils.decodexml(str):
[soap_body ~ [orderid ~ 123]]

To read the order number, one might just enter:

> order.soap_body.orderid:
123

Unfortunately, especially the SOAP standard allows one to define her/his own name
space, so that the following is also equivalent and valid XML data:

> str := '<s:body>
> <orderid>123</orderid>
> </s:body>'

> order := utils.decodexml(str):
[s_body ~ [orderid ~ 123]]

agena >> 151

In this case you would have to write a new statement to get the order ID since
fetching it with

> order.soap_body.orderid:
Error in stdin, at line 1:
attempt to index field “soap_body" (a null value)

will not work. Fortunately, Agena stores all values in the _G system table, with its keys
being strings representing the variable names, and the entries the values of the
these variables. So flexible code to read data from XML code featuring different
name spaces might ook like this:

> str := '<s:body>
> <orderid>123</orderid>
> </s:body>'

> order := utils.decodexml(str):
[s_body ~ [orderid ~ 123]]

> tag := tables.indices(order)[1]:
s_body

> prefix ;= tag[1 to (_"in tag) - 1]:
s

> G['order][prefix & '_body'].orderid:
123

Likewise, defining new variables within code can be done like this:

> _G[jpl] := ['Jet Propulsion Laboratory']

> jpl:
[Jet Propulsion Laboratory]

6.17 Packages

6.17.1 Wiiting a New Package

Let us write a small utilities package called helpers including only one main and
one auxiliary function. The main function shall return the number of digits of an
infeger.

Package procedures are usuadlly stored to a table, so we first create a table called
helpers . Affer that, we assign the procedure ndigits and the auxiliary
aux.islnteger function to this table.

> create table helpers, helpers.aux;
> helpers.aux.isinteger := << x -> int(x) = x >>; # aux function

> helpers.ndigits := proc(n::number) is

> if not helpers.aux.isinteger(n) then

> error('Error, argument is not an integer")
> i

152 6 Programming

if n =0 then
return 1
else
return entier(In(abs(n))/In(10) + 1);
fi;
end;

VVVVYVYV

Now we can use our new package.

> helpers.ndigits(0):

1

> helpers.ndigits(-10):
2

> helpers.ndigits(.1):
Error, argument is not an integer

Stack traceback: in “error’
stdin, at line 3, at line 1

To save us a lot of fyping, we can assign a short name tfo this table procedure.

> ndigits := helpers.ndigits;

> ndigits(999):
3

Save the code listed above to a file called helpers.agn in a subfolder called
helpers in the Agena main directory. In order fo use the package again after you
have restarted Agena, use the run function and specify the full path.

> restart;
> run 'd:/agena/helpers/helpers.agn'’

> helpers.ndigits(10):
2

You may print the contents of the package table at any fime:

> helpers:
[aux ~ [isInteger ~ procedure(0044A6EO0)], ndigits ~ procedure(0044A850)]

6.17.2 The with Function

The with function, besides loading the package in a convenient way, automatically
assigns short names to all package procedures so that you may use the shortcuts
instead of the fully written function names.

In order to do this, you must first prepend or append the location of the directory
containing your new package to libname, or execute Agena in the directory
contfaining your package. You may do this by adding the following line to your
personal Agena initialisation file (see Chapter Ab), assuming that the helpers.agn
file has been stored to the folder d:/agena/helpers

agena >> 153

libname := libname & ';d:/agena/helpers’;

Alternatively, you may save the helpers.agn file into the lib folder of your Agena
distrioution if you do not want to modify libname.

Now in the interactive level, type:
> restart;

liboname and some few other system variables are not reset by the restart statement
because restart deliberately does not touch the contents of these specific system
variables.

> with 'helpers'
ndigits

> ndigits(1); # same as helpers.ndigits(1)

You may also want with to print a start-up notice at every package invocation by
assigning a string to the table field " packagename.initstring . Put the following line
into the helpers.agn file after the create table statement, save the file and restart
Agena:

> helpers.initstring := 'helpers v1.0 as of June 11 , 2013\n\n’;

> restart;

> with 'helpers’
helpers v1.0 as of June 11, 2013

ndigits

Since you may not want that short names are set for certain, especially auxiliary
functions, their procedure names should be defined as follows:
‘pockogenome.oux.procedurenome‘, €.9. helpers.aux.isinteger

The contents of the helpers.agn file should finally look like this:

create table helpers, table helpers.aux;
helpers.initstring := 'helpers v1.0 as of June 11, 2013\n\n’;
helpers.aux.isinteger := << x -> int(x) = x >>; # aux function

helpers.ndigits := proc(n::number) is
if not helpers.aux.isinteger(n) then
error(‘argument is not an integer')
fi;
if n =0 then
return 1
else
return entier(In(abs(n))/In(10) + 1);
fi;
end;

154 6 Programming

Save the file again and restart Agena.

> restart;

> with 'helpers'
helpers v1.0 as of June 11, 2013

ndigits

You can also define a package initialisation routine. It will automatically be run by
the with statement after the package has been found and initialised successfully.
The name of the initialisation routine must be of the form " packagename.aux.init”,

e.g.
> helpers.aux.init := proc() is

> writeline('l am run’)
> end;

Of course, you must create a "packagename.aux table before defining the
initialisation function.

Instead of using with to initialise a package, you may use the import/alias
statement - see Chapter 3.18 - sO

> with 'helpers';
is equivalent to

> import helpers alias;

6.18 Remember Tables

Agena features remember tables which if present hold the results of previous calls
to Agena or APl C procedures or contain a list of predefined results, or both. If a
function is called again with the same argument or the same arguments, then the
corresponding result is returned from the table, and the procedure body is not
executed. Remember tables are called rfables or rofables for short.

All functions to create, modify, query, and delete remmember tables are available in
the rfable package.

There are two types of remember tables:

e Standard Remember Tables, called "rables’, that can be automatically
updated by a call to the respective function; they may e initialised with a list of
precomputed results (but do not need 10).

* Read-only Remember Tables, called "rotables’, that cannot be updated by a
call to the respective function. Rotables should e inifialised with a list of
precomputed results.

agena >> 155

6.18.1 Standard Remember Tables

A standard rememlber table is suited especially for recursively defined functions. It
may slow down functions, however, if they have rememlber tables but do not rely
much on previously computed results.

By default, no procedure contains a remember table, they must explicitly be
created with the rtable.rinit function and optionally filled with default values with the
rfable.rset function. Since those functions are very basic, a more convenient facility
is the rfable.remember function which will exclusively be used in this chapter.

In order for an rtable to be automatically updated, the respective function must
retun its result with the return statement (which may sound profane). If a function is
called with arguments that are not already known to the remember table, then the
return stafement adds these arguments and the corresponding result or results fo
the rfable.

Two examples: We want to define a function f(x) = x with f(0) = undefined.

First the function is defined:

>fi=<<x->x>>;

Only after the function has been created, the rable (short for remnemlber table) can
be set up. The rtable.remember function can be used to initialise rtables, explicitly
set predefined values 1o them, and add further values later in a session.

> with('rtable");
defaults, rdelete, remember, rget, rinit, rmode, ro init, rset

> remember(f, [0 ~ undefined]);

The rtable has now been created and a default entry included in it so that calling f
with argument O returns undefined and not O.

> f(1):
1

> f(0):
undefined

If the function is redefineq, its rtable is destroyed, so you may have to initialise it
again.

Fibonacci numbers can be implemented recursively and run with astonishing
speed using rtables.

> fib := proc(n) is

> assume(n >= 0);

> return fib(n-2) + fib(n-1)
> end;

156 6 Programming

The call to assume assures that n is always non-negatfive and serves as an
“emergency brake’ in case the remember table has not been set up properly.

The rtable is being created with two default values:
> remember(fib, [0~1, 1~1]);
If we now call the function,

> fib(50):
20365011074

the contents of the rtable will be:

> remember(fib):

[[22] ~ [28657], [39] ~ [102334155], [17] ~ [2584], 5] ~ [8], [27] ~
[317811], [50] ~ [20365011074], [3] ~ [3], [0] ~ [1], [46] ~ [2971215073],
[41] ~ [267914296], [1] ~ [1], etc.]

If a function has more than one parameter or has more than one return, remember
requires a different syntax: The arguments and the returns are still passed as
key~value pairs. However, the arguments are passed in one table, and the returns
are passed in another table.

> f:=proc(x, y) is
> returnx,y
> end;

> remember(f, [[1, 2] ~ [0, 0]));
>a, b:=1(1, 2);

Please check Chapter 7.23 for more details on their use.

6.18.2 Read-Only Remember Tables

If you do not want that a function updates its remember table each time it is called
with new arguments and results, you may use a read-only remember table, called
‘rotable” for short. Rotables are initialised with a list of precomputed results.

The function itself cannot implicitly enter new entries 1o its rememier table via the
return statement; it can only do so via a call to the rtable.rset function or a utility
that is based on rtable.rset, called rtable.defaults. This gives you full control on the
contents and the amount of data stored in a rememiber table - and thus on the
speed of your procedure.

agena >> 157

Assume you want to define a procedure that computes factorials n!, and that does
not compute the results forn < 11, but retrieves the results from an rotable instead.

A function might look like this:

> fact := proc(x::number) is

> ifint(x) = x then # is x an integer (and non -negative) ?
> return exp(lngamma(x+1))

> else

> return undefined

> fi

> end;

The defaults function can set up the rotable and enter precomputed values into it.
> # set precompiled results for 0! to 10! to fact
> defaults(fact, [

> 0-~1,1,2,6, 24,120, 720, 5040, 40320, 36288 0, 3628800
>)

The factorial function is significantly faster when called with arguments that are in
the rotable than if there would be no such value cache, because it would have to
re-compute the results instead of just reading them.

Let us look into the remember table:

> defaults(fact):
[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880], [10] ~ [3628800],
[0] ~ [1], [4] ~ [24], [5] ~ [120], [6] ~ [720], [3 1~1[6], [7] ~ [5040]]

You can also easily add further argument ~ result pairs with the rtable.defaults
function:

> defaults(fact, [11 ~ 39916800]);

> defaults(fact):

[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880], [10] ~ [3628800], [0]
~ [1], [11] ~ [39916800], [4] ~ [24], [7] ~ [5040], [6] ~ [720], [3] ~ [6],
[5]1 ~ [120]]

A read-only remember table can be deleted by passing null as a second
argument to defaults.

158 6 Programming

6.18.3 Functions for Administering Remember Tables

For completeness, all basic functions that work on remember tables are the
following:

Procedure Details

rfable.rget(f) Returns the remember table of function f .

rtable.rinit(f) Initialises a standard rememlber table for the function
f

rtable.roinit(f) Initialises a read-only remember table for the function
f

rable.rset(Adds function argumeni(s) and the corresponding

f, [arguments], [returns]) | return(s) to the remember table of procedure f .
rable.rdelete(f) Deletes the remember table of function f entirely. If

you want to use a new remember table with the
function, you have to initidlise it with rtable.rinit or
rfable.roint again.

rfable.rmode(f) Returns the string 'Mable' if a function f has a standard
remember table, 'rotable' if it has a read-only
remember table, and 'none' if it has no rememiber
table at all.

Table 18: Functions for administering rernemlboer tables

6.19 Overloading Operators with Metamethods

One of the many useful functions inherited from Lua 5.1 are metamethods which
provide a means 1o use existing operators to tables, sets, sequences, and pairs.

For example, complex arithmetic could be entirely implemented with
metamethods so that you can use already existing symbols and keywords such as
+ or abs with complex values and do not have to learn names of new functions'®.

This method of defining additional functionality to existing operators is also known as
“overloading .

Adding such functionality to existing operators is very easy. As an example, we will
define a constructor to produce complex values and three metamethods for
adding complex values with the + foken, determining their absolute value with the
standard abs operator, and pretty printing them at the console.

At first, lets store a complex value z = x + yi to a sequence of size 2. The real part is
saved as the first value, the imaginary part af the second.

> cmplx := proc(a::number, b::number) is
> create local sequence r(2);

> inserta, bintor;

> returnr

> end;

'® For performance reasons, complex arithmetic has been built directly info the Agena kemel.,

agena >> 159

To define a complex value, say z = 0 + J, just call the constructor:

> cmplx(0, 1):
seq(0, 1)

The output is not that nice, so we would like Agena to print cmplx(0, 1) instead of
seq(0,1) . This can be easily done with the settype function:

> cmplx := proc(a::number, b::number) is
> create local sequence r(2);

> inserta, bintor;

> settype(r, 'cmplx’);

> returnr

> end;

> cmplx(0, 1):
cmplx(0, 1)

Adding two complex values does not work yet, for we have not yet defined a
proper metamethod.

> cmplx(0, 1) + cmplx(1, 0):
Error in stdin, at line 1:
attempt to perform arithmetic on a sequence valu e

Metamethods are defined using dictionaries, called “metatables” . Their keys, which
are always strings, denote the operators to be overloaded, the corresponding
values are the procedures to be called when the operators are applied to tables,
sets, sequences (which are used in this example), or pairs. See Appendix A2 for a list
of all available method names. To overload the plus operator use the ' add'
string.

Assign this metamethod to any name, cmplx_mt in this example.

>cmplx_mt =
> ' add' ~ proc(a, b) is

> return cmplx(a[1]+b[1], a[2]+b[2])
> end
>]

Next, we must attach this metatable cmpix_mt to the sequence storing the real and
imaginary parts with the setmetatable function. We have to extend the constructor
by one line, the call to setmetatable :

> cmplx := proc(a::number, b::number) is
create local sequence r(2);
inserta, bintor;
settype(r, '‘cmplx’);
setmetatable(r, cmplx_mt);
return r
end;

VVVYVYVYV

Try it:

160 6 Programming

> cmplx(0, 1) + cmplx(0, 1):
cmplx(0, 2)

Add a new method to calculate the absolute value of complex numbers by
overloading the abs operator.

> cmplx_mt.__abs := << (a) -> hypot(a[1], a[2]) >>;

The metatable now contains two methods.

> cmplx_mt:
[__add ~ procedure(004A64D0), abs ~ procedure(004 D2D30)]

>z ;= cmplx(1, 1);

> abs(z):
1.4142135623731

It would be quite fine if complex values would be output the usual way using the
standard x + yi notation. This can be done with the ' tostring' method which
must return a string.

> cmplx_mt.__tostring := proc(z) is

> return if z[2]<0 then z[1]&z[2]&'I' else z[1]& '+'&z[2]&'T' fi
> end;

>z

1+1i

To avoid using the cmplx constructor in calculations, we want to define the
imaginary unit | = 0+i and use it in subsequent operations. Before assigning the
imaginary unit, we have to add a metamethod for multiplying a number by a
complex number.

> cmplx_mt.__mul := proc(a, b) is

> if typeof(a) = 'cmplx' and typeof(b) = 'cmplx’ then

> return cmplx(a[1]*b[1]-a[2]*b[2], a[1]*b[2] +a[2]*b[1])
> elif type(a) = number and typeof(b) = 'cmplx’ then

> return cmplx(a*b[1], a*b[2])

> fi

> end;

and also extend the metamethod for complex addition.

>cmplx_mt.__add := proc(a, b) is

> if typeof(a) = 'cmplx' and typeof(b) = ‘cmplx’ then
> return cmplx(a[1]+b[1], a[2]+b[2])

> elif type(a) = number and typeof(b) = 'cmplx’ then
> return cmplx(a+b[1], b[2])

> Ai;

> end;

> i:= cmplx(0, 1);

> a = 1+2*:
1+2i

agena >> 161

Until now, the real and imaginary pars can only be accessed using indexed
names, say z[1] for the real part and z[2] for the imaginary part. A more
convenient - albeit not that performant - way to use a notation like zre and z.im in
both read and write operations is provided by the ' _index and ' writeindex'
metamethods, respectively.

The index metamethod for reading values from a structure works as follows:

e |f the structure is a table, then the metamethod is called if the call to an indexed
name results to null.

e |f the structure is a set, then the metamethod is called if the call to an indexed
name results to false.

* If the structure is a sequence, then the metamethod is called if the call to an
indexed name would result to an index-out-of-range error.

The wiiteindex metamethod for writing values to a structure works as follows:

e |f the structure is a table, sequence or pair, then the metamethod is always
called.
* The metamethod is also supported by the insert statement.

The respective procedures assigned to the index and _ writeindex keys of a
metatable should not include calls to indexed names, for in some cases this would
lead to stack overflows due to recursion (the respective metamethod is called
again and again). Instead, use the rawget function to directly read values from a
structure, and the rawset function to enter values into a structure.

Let us first define a global mapping table for symbolic names to infeger keys:
> cmplx_indexing := [re'~1, 'im'~2];

Now let us define the two new metamethods. Both will be capable to accept
expressions like are and a[1] . In the following read procedure the argument x
represents the complex value, and the argument y is assigned either the string 're’

or 'im . Thus, cmplx_indexing[re] will evaluate to the index 1, and
cmplx_indexing['im’] to index 2.

> cmplx_mt.__index := proc(x, y) is # read operati on

> if type(y) = string then # for calls like "a. re’ or "a.im’

> return rawget(x, cmplx_indexing[y])

> else

> return rawget(x, y) # for calls like "a[1] or "a[2]

> fi

> end;

In the write procedure, argument x will hold the complex value, y will be either 're'
or'im , and z is assigned the component - a rational number -, i.e. x.re := z or
X.im:=z

162 6 Programming

> cmplx_mt.__ writeindex := proc(X, Y, z) is # writ e operation
> if type(y) = string then

> rawset(x, cmplx_indexing[y], z)

> else

> rawset(x, y, z) # for assignments like “a[1] := value®
>

> end;

You can now use the new methods.

>a
1+2i

> a.re:
1

> a.im = 3;

> a:
1+3i

Please note that while arithmetic metamethods can e applied on mixed types, for
example the above defined complex number and a simple Agena number,
relational operators cannot compare values of different types. Instead, Agena in
this case just returns false with the equality operators =, ==, and ~=; and issues an
error with relational operators that compare for order.

Using the _ writeindex metamethod, it is quite easy to write-protect structures.

>readonly_mt =

> ' writeindex' ~
> proc(t, k, v) is error('Error, structure is read-only.") end
>]

A constructor simplifies creating read-only structures:

> readonly := proc(t::;table) is

> setmetatable(t, readonly_mt);
> returnt

> end;

> moons := readonly(['Phobos’, 'Deimos");

Adding further values to the table, or changing an existing one, now will not work.

> insert 'Mars' into moons;
Error, structure is read-only.

Stack traceback: in “error’

> moons:
[Phobos, Deimos]

Using one and the same global table 1o define metamethods for various variables
may be appropriate to save memory, but modification of the metatable may have
unwanted effects.

agena >> 163

> readonly_mt._ writeindex := proc(t, k, v) is raws et(t, k, v) end;
> insert 'Mars' into moons;

> moons:
[1 ~ Phobos, 2 ~ Deimos, Mars ~ Mars]

To profect metatables from tampering, use the —_metatable method and set it to
any value except null.

>readonly_mt =

> ' writeindex' ~

> proc(t, k, v) is error('Error, table is rea d-only") end,
> ' metatable' ~ false

>

> readonly := proc(t::;table) is

> setmetatable(t, readonly_mt);
> returnt

> end;

> moons := readonly(['Phobos’, 'Deimos');

> setmetatable(moons, [

> ' writeindex' ~

> proc(t, k, v) is error('Error, table is read-only") end
>]

>);

Error in “setmetatable’: cannot change a protected metatable.

Stack traceback: in “setmetatable’
stdin, at line 1 in main chunk

A structure with a __call key in its metatable can also be called like a function.

> readonly := proc(t::table) is

> setmetatable(t, [

> ' _call' ~ proc(t) is

> for i, jin t do print(i, j) od
> end]);

> returnt

> end,;

> moons := readonly(['Phobos’, 'Deimos');

> moons();
1 Phobos
2 Deimos

6.20 Memory Management, Garbage Collection, and Weak Structures

Agena includes a garbage collector that sweeps all structures, procedures,
userdata, and threads (called "objects in this subchapter) that no longer have
valid references in your programme - i.e. are inaccessible. Agena can then use the
space for new objects. Numbers, complex numbers, strings, and Booleans, are
never collected.

Consider the following code: Let us assign a table to a name.

164 6 Programming

>s:=]
Now s refers 1o a memory address so that Agena can access the table.

> environ.pointer(s):
008FOF38

If we reassign s, a different empty table is assigned to it.
>s:=]
This newly created table is situated at another part of the memory.

> environ.pointer(s):
008A4188

Since the first table at memory position 008FOF38 can no longer be accessed, it
unnecessarily occupies space. The garbage collector regularly looks for
unreferenced objects and removes them.

Besides automatic garbage collection, the user can also invoke it manually, if
deemed necessary, or even stop and restart it by calling environ.gc .

Sometimes it may be necessary to immediately clear values occupying a large
amount of space. In this case assign null fo it, so that the next automatic collection
cycle can free it. If necessary call environ.gc for immediate collection. As a
shorfcut, you could also use the clear stafement which conducts both nulling a
value and collecting if.

If a table, set, sequence, or procedure, userdata, or thread is included in another
table or sequence, the garbage collector does not collect it if its reference should
have become invalid.

> restart

>t:=]
>v:=[1];insertvintot
>v:=[2];insertvintot

> environ.gc()

[1] is still part of the table.

>t
(1], [21]

If you do not want this fo happen, declare the table or sequence "weak™ by using
the weak metamethod. With tables, you can either declare ifs keys weak by
passing the string 'k' , or its values weak with the string v, or both with 'kv' . With
sequences, simply use use the string 'v' .

agena >> 165

If the collector meets a weak key that has become inaccessible, it removes the
key-value pair. If the collector meets a weak value that has become inaccessible, it
removes the key-value pair.

>t:=]
> setmetatable(t, [__weak' ~ 'v')
>v:=[1];insertvintot
>v:=[2];insertvintot

> environ.gc()

>t

[2~[2]]

Do not change the _ wedak field after it has been assigned fo an object, as the
behaviour would be undefined. The insert and delete statements will reject
manipulation of weak tables and sequences.

6.21 Extending Built-in Functions

You may redefine existing built-in functions if you want to change their behaviour or
extend its features. You can either write a completely new replacement from
scratch or use the original function in your modified version. Your new procedure
can then be called with the same name as the original one.

Note that only Agena functions written in C or in the language itself can be
redefined, and that operators cannot,

In Agena, each mathematical function f works as follows: if a number x, which by
definition represents a value in the real domain, is passed to them, then the result
f(x) will also be in the real domain. If x is a complex value, then the result will be in
the complex domain.

Suppose that you want to automatically switch 1o the complex domain if a function
value in the real domain could not be determined, i.e. if f(x) = undefined. An
example is:

> root(-2, 2):
undefined

On the interactive level enclose the new procedure definition with the scope and
epocs keywords. This is necessary because on the interactive level, each statement
entered at the prompt has its own scope and thus local variables cannot be
accessed in the statements thereafter.

The new function definition might be:

166 6 Programming

> scope

save the original function in a “hidden’ var iable
local oldroot := root;

define the substitute
root := proc(x, n) is # new definition
local result := oldroot(x, n);
if result = undefined then # switch to com plex domain
result := oldroot(x+0*1, n)
fi;
return result
end;

VVVVVVVVVVYVYVYVYV

epocs;

The original function root is stored fo the local oldroot variable so that the user can
no longer directly access it.

> root(-2, 2):
8.6592745707194e-017+1.4142135623731%I

If you wish to permanently use your redefined functions, just put them into the
initialisation file, located either in the lib folder of your Agena installation, or your
home directory. See Appendix 6 for further information.

Since files have their own "scope’, the scope and epocs keywords are no longer
needed (but can be left in the file).

6.22 Closures: Procedures that Remember their State

A procedure can remember its state. This state is represented by the function's
internal variables which can survive and keep their values even after the call to the
procedure completed.

SO with a successive call to the same procedure, it can access these values and
use them in the current call again.

Let us define an iterator function that successively returns an element of a table:

> traverse := proc(o::table) is
> local count :=0;

> return proc() is

> inc count;

> return o[count]

> end

> end;

The traverse procedure is called a factory for it returns the closure as a function
which we assign to the name iterator . The iterator ~ function remembers its state
and can be called like "normal’ functions:

> iterator := traverse(['a’, 'b', 'c'));

agena >> 167

> iterator():
a

What happened ? The call to traverse with the table [a', b, 'c] as its only
argument initialised the variable count and assigned it to 0. The table you passed is
also stored to the closure's intfernal state. With the first call 1o iterate , count was
incremented from 0 to 1, followed by the return of the first element in the table.

> iterator():
b

> iterator():
c

Since the table has no more elements left (count = 4), it now returns null.

> iterator():
null

You can define more than one closure with a factory at the same time, each being
completely independent from the others:

> iterator2 := traverse(['a’, 'b’, 'c']);

> iterator2():
a
> iterator2():
b

> iterator3 := traverse(['a’, 'b’, 'c']);

> iterator3():
a

168 6 Programming

6.23 Summary on Procedures

The following diagram tries to summarise all features of a procedure.

Input Type Checks 1
Procedure
No Parameters Arguments
Paraometers Retum
proc(v:type, ?) : typeis — | Variable Parameters >
ocal r;
global _Eps; b
ri=v,
foriinvarargs do (
incr,i+_Eps Output -
:’:t?um) Remember Table 1
end No Retum
One Retum Read/Wite Table
Multiole Retums Read-Only Table
State (Closue) Standard Agena Type Multi-Line Procedures
Scope User-Defined Type One-Line Functions
Envionment

6.24 1/O

Agena features various functions 1o deal with files, to read lines and write values to
them. Keyboard interaction is supported, too, as is interaction with other
applications. Most of the functions have been taken from Lua. All the functions for
input/output are included in the io (and the binio) packages.

Read and write access 1o files usually is conducted through file handles. At first,
file is opened for read or write operations with the io.open function. Then you apply
the respective read or write functions and finally close the file again using io.close.

6.24.1 Reading Text Files
Open a file and store the file handle to the name fh .

> fh := i0.open('d:/agena/src/change.log’):
file(7803A6F0)

Read the first ten characters:

> io.read(fh, 10):
Change Log

Read the next 10 characters:

> io.read(fh, 10):
for Agena

agena >> 169

Close the file:

> io.close(fh):
true

Besides file handles, many IO functions also accept file names. For example, the
io.lines procedure reads in a text file line by line. It is usually used in for loops. The
respective line read is stored to the loop key, the loop value is always null. The
function opens and closes the file automatically.

> for i, j inio.lines('d:/agena/lib/agena.ini') do

> print(, j)

> od

execute := os.execute; null
getmeta ;= getmetatable; null
setmeta := setmetatable; null

6.24.2 Writing Text Files

To write numlboers or strings into a file, we must first create the file with the io.open
function. The second argument 'w' fells Agena to open it in “write” mode.

> fth := io.open(‘d:/file.txt', 'w");

As mentioned above, io.open returns a file handle 1o be used in subsequent io
operations.

> jo.write(fh, 'l am a text.");
If you would like to include a newline, pass the \n' string,
> jo.write(fh, 'Me ', 'too.", \n");

or use the io.writeline function which automatically adds a newline to the end of the
input. The next statement writes the number z to the file.

> jo.writeline(fh, Pi);
After all values have been written, the file must be closed with io.close.
> jo.close(fh);

The above statements produce the file contents:

| am a text.Me too.
3.1415926535898

In the next example we append text to the file we have already created. In order to
append - and not to overwrite existing - text, use the 'a* switch in the call to

170 6 Programming

io.open’. Using the w switch would replace the text already existing with the new
one. See Chapter 7.14 for further options accepted by io.open.

The file looks like this:

| am a text.Me too.
3.1415926535898
20

Tables, sets, or sequences cannot be written directly to files, they must be iterated
using loops so that their keys and values - which must be numibers or strings - can
be stored separately to the file thereafter. The same qpplies to pairs: use the left
and right operators to write their components.

The following statements write all keys and values of a table to a file. The keys and
values are separated by a pipe | , and a newline is inserted right after each
key~value pair. Note that you can mix numbers and strings.

>a :=[10, 20, 30];

> file ;= io.open('d:/table.text’, 'w");

>fori,jinado

> io.write(file, i, [, j, '\n")

> od;

> io.close(file);

Hint: To create UNIX text files on DOS-like systems, such as DOS, Windows, or

eComdstation - O§/2, just open the text file in binary mode. This avoids carriage
return control codes 10 be added 1o the file with each line break.

See Chapter 7.14 for a description of all io package functions.

6.24.3 Keyboard Interaction

The io.read function allows to enter values interactively via the keyboard when
called with no arguments. Use the RETURN key to complete the input. The value
returned by io.read is a string. If you would like to enter and process numbers
thereafter, use the tonumber function to transform the string into a number.

> a:=io.read();
10

> a:
10

> type(a):
string

> tonumber(a)"2:
100

19 See Chapter 7.14 for further options accepted by io.open.

agena >> 171

All available keyboard functions are:

Procedure | Details

i0.anykey Checks whether a key has been pressed and returns true or false.
io.getkey Waits until a key is pressed and returns its ASCIl number. This function
is not available on all platforms.

io.read If called with no arguments, reads one or more characters from the
keyboard until the RETURN key is being pressed. The refurn is a string.

Table 19: Functions to read the keyboard

6.24.4 Default Input, Output, and Error Streams

Agena, enherited from Lua, provides aliases to the standard input, output, and error
channels known from C.:

* jo.stdin, the standard input stream, used to input data, usually the keyboard,

* jo.stdout, the standard output stream, used to output data, usually the console,

* jo.stderr, the standard error stream, used for error messages and diagnostics,
usually the console.

Examples:

> jo.writeline(io.stdout, 'Okay");
Okay

> jo.writeline(io.stderr, 'Not okay");
not okay

6.24.5 Locking Files

Agena allows files to be locked so that only the current process can read or write
data to them. This feature prevents corruption to files during write operations or
reading invalid data when other programmes also try to access them. See io.lock
and io.unlock in Chapter 7.14 for further information.

6.24.6 Interaction with Applications

You can call another application, pass data to it and receive data from the
application with the io.popen function. The function retumns a file handle, so that
you can receive the information returned (from the stdout channel of the called
programme) for further processing.

To get a listing of all files in the current directory, enter:

> p :=io.popen(ls"):
file(77602960)

> io.readlines(p):
[ads.c, agena.c, etc.]

172 6 Programming

Finally, close the connection.

> io.close(p)

If you pass the 'w' option fo i0.popen as a second argument, you can send further
data to the external programme:

> p :=io.popen(‘cat’, 'w'")
> jo.write(p, 'Hello)
> io.write(p, "World\n')

> io.close(p)
Hello World

If you want to receive data from the stderr channel, or suppress output at the
Agena console, include the respective redirection instruction, which may vary
among operating systems, in the first argument to io.popen.

6.24,7 CSV Files

Comma-separated value files can be read conveniently by utils.readcsv. This
function provides various options to further process the data being read. See
Chapter 7.26 for further details.

6.24.8 XML Files

XML files are imported and converted 1o Agena data structures with utils.readxml or
xml.readxml. XML files can be created with utils.encodexml and io.write. Chapter
7.17 and 7.26 offers further information on how to do this.

6.24,9 dBASE Il Files

The xbase package can read and write dBASE lll-compatible files. See Chapter
7.16 for details.

6.24.10 INI Files
The utils.readini and utils.writeini functions deal with traditional INI initialisation files.

agena >> 173

6.25 Linked Lists

With large tables, sometimes it may be very costly to insert or delete an element
with the put and purge functions because all elements after the insert or deletion
position must either be shifted up- or downwards. This is also frue with sequences.

Also iterating a table with the for/in statement does not ensure that the keys are
traversed in ascending order®,

In these cases you may use the llist package implementing linked lists which store
elements in a sequential order and where each value also links fo its successor. Just
take a look at the examples at the end of this subchapter.

The benefit of using linked list in these situations is at least 600 %, but may be very
much larger.

To see how a linked list works, let us create one manually. First, establish a root
which indicates the end of the list.

> list := null;

Now we insert the numbers -2, -1 and 0 into this list, so that the list contains the
elements O, -1, -2, in this order.

> list ;= ['data’ ~ -2, 'next' ~ list];
> list ;= ['data’ ~ -1, 'next' ~ list];

> list ;= ['data’ ~ 0, 'next' ~ list];

To fraverse the list, we use a new reference so that the original list is not changed:
> | :=list;

> while | do

> print(l.data)
> |:=lnext
> od;

0

-1

-2

To insert an element somewhere in the list, we use:
> | = list;

> while | do
> if l.data = -1 then
> l.next ;= ['data’ ~ -1.5, 'next’' ~ l.next];
> break
> fi;

> |:=lnext
> od;

20 See skycrane.iterate .

174 6 Programming

> | = list;

> while | do

> print(l.data)
> |:=lnext

> od;

0

-1

-15

-2

It may often be useful to add further information to a linked list to save unnecessary
fraversal, e.g. the position of the element or the predecessor.

Using the llist package is easy. First initialise it,
> import llist
and create an empty list.

> L := llist.list():
llist()

Now add O to it

> llist.append(L, 0);

and also put -2 to ifs beginning.

> llist.prepend(L, -2);
> L:
llist(-2, 0)

Insert -1 at position 2. As you see, the original element at this position is not deleted
but “shifted” to open space.

> llist.put(L, 2, -1):

> L
llist(-2, -1, 0)

To delete an element at a position, enter:

> llist.purge(L, 2):

> L
llist(-2, 0)

The size operator determines the numiber of all elements in a linked list.

> size L:
2

agena >> 175

To determine a specific element, index it as usual:

> L[1]

Passing an index that does not exist, simply results o null.

Finally, to replace an element, use a usual assignment statement.

>L[2]:=-1

> L
llist(-2, -1)

176 6 Programming

agena >> 177

Chapter Seven

Standard Libraries

178 7 Standard Libraries

agena >> 179

7 Standard Libraries

The standard libraries taken from the Lua 5. 1distribution provide useful functions that
are implemented directly through the C APl. Some of these functions provide
essential services fo the language (e.g., next and getmetatable; others provide
access fo “outside” sewvices (e.g.. 1/O); and others could be implemented in
Agena itself, but are quite useful or have critical performance requirements that
deserve an implementation in C (e.g., sort) .

The following text is based on Chapter 5 of the Lua 5.1 manual and includes all the
new operators, functions, and packages provided by Agena.

Lua functions which were deleted from the code are not described. References to
Lua were not deleted from the original text. If an explanation mentions Lua, then the
description also applies to Agena.

All libraries are implemented through the official C APl and are provided as
separate C modules. Currently, Agena has the following standard libraries:

* the basic library,

* package library,

o string library,

« table library,

« mathematical library,

» two input and output libraries,
» operating system library,

* debug facilities.

Except for the basic and the package libraries, each library provides all its functions

as fields of a global table or as methods of its objects. Agena operators have been
built into the kernel (the Virtual Machine), so they are not part of any library.

7.1 Basic Functions

The basic library provides some core functions to Agena. If you do not include this
library in your application, you should check carefully whether you need to provide
implementations for some of its facilities.

Summary of functions:

Checks

abs, assigned, assume, filled, has, isequal, rawequal, whereis.

180 7 Standard Libraries

Extraction

bottom, columns, duplicates, getentry, left, max, min, next, ops. rawget,
right, top, unique, unpack, values.

Types
checkoptions, checktype, float, gettype, isboolean, iscomplex, isint,
isnegative, isnegint, isnonnegint, isnonposint, isnumber, isnumeric, ispair,

isposint, ispositive, isseq, isstring, isstructure, istable, nan, nonneg, settype,
type. typeof.

Counting
countitems, size.
Data Manipulation

alternate, augment, getbit, map, purge, put, rawset, remove, select,
selectremove, setbit, sort, sorted, subs, toseq, toset, totable, zip.

Data Generation

dimension, nseq.
Error Handling

argerror, error, protect, xpcaill.
Libraries

readlib, with.
Files

read, save.
Output

print, printf, write, writeline.
Parsing

load., loadfile, loadstring.
Cantor Operations

bintersect, bisequal, bminus.

agena >> 181

Metatables
getmetatable, setmetatable.
Miscellaneous

bye, clear, restart, time.

abs (x)

If x is a number, the abs operator will return the absolute value of x. Complex
numbers are supported.

If x is a Boolean, it will return 1 for frue, O for false, and -1 for fail.
If x is null, abs will return -2.

If x is a string of only one character, abs will return the ASCII value of the character
as a number. If x is the empty string or longer than length 1, the function retumns fail.

alternate (x, y)

Returns x if y evaluates to null, else returns y.

argerror (x, prochame, message)

Receives any value x, the name of procedure procname (A string) where x did not
satisfy anything, the error message text message, and appends the user-defined
type or if not defined the basic type of x. Thus it returns the error message: 'Error in
procname : message, Qof <type of x>.".

The function is written in the Agena language and included in the library.agn file.

See also: error.

assigned (obj)

This Boolean operator checks whether any value different from null is assigned to
the expression obj . If obj is dlready a constant, i.e. a number, boolean including
fail, or a string, the operator always returns true. If obj evaluates 10 a constant, the
operator also returns true.

See also: unassigned.

assume (obj [, message])

Issues an error when the value of its argument obj is false (i.e., null or false);
oftherwise, returns all its arguments. message is an error message; when absent, it
defaults to 'assumption failed'.

182 7 Standard Libraries

augment (obj1, obj2 [, ---])

Joins two or more tables or sequences objl , obj2 together horizontally. The
arguments must either be tables or sequences only. The tables or sequences all
must have the same size. The type of return is determined my the type of the
arguments.

The function is written in the Agena language and included in the library.agn file.

See also: columns, linalg.augment .

beta (x, y)

Computes the Beta function. x and y are numbers or complex values. The return
may be a number or complex value, even if x and y are numibers. The Beta

Ixxl
function is defined as: Betq(x, y) =1—(++Q;, with special treatment if x and y are
integers.

bintersect (obj1, obj2 [, option])

Returns all values of table or sequence objl1 that are also values in table or
sequence obj2 . objl and obj2 must be of the same type. The function performs a
binary search in obj2 for each value in objl . If NO opfion is given, obj2 is sorted
before starting the search. If you pass an option of any value then obj2 should
dlready have been sorted, for no correct results would be returned otherwise.

With larger tables or sequences, this function is much faster than the intersect
operator.

The function is writfen in the Agena language and included in the library.agn file.

See also: bisequal, bminus.

bisequal (obj1, obj2 [, option])

Determines whether the tables objl and obj2 oOr sequences objl and obj2 contain
the same values. The function performs a binary search in obj2 for each value in
objl . If N0 option is given (any value), obj2 is sorted before starting the search. If
you pass an option of any type then obj2 should already have been sorted, for no
correct results would be returned otherwise.

With larger tables or sequences, this function is much faster than the = operator.
The function is written in the Agena language and included in the library.agn file.

See also: bintersect, bminus.

agena >> 183

bminus (obj1, obj2 [, option])

Returns all values of table or sequence objl that are not values in table or
sequence obj2 . objl and obj2 must be of the same type. The function performs a
binary search in obj2 for each value in objl . If NO option is given, obj2 is sorted
before staring the search. If you pass the option then obj2 should already have
been sorted, for no correct results would be returned otherwise.

With larger tables or seqguences, this function is much faster than the minus
operator.

The function is writfen in the Agena language and included in the library.agn file.

See also: bintersect, bisequal.

bottom (obj)

With the table array, register, or sequence obj , the operator returns the element af
index 1. If obj is empty, it returns null.

See also: top.

bye
Quits the Agena session. No arguments or brackets are needed.

checkoptions (procname, obj, option [, ---] [, true)

Checks options passed to a given procedure, saving many lines of code in
procedures.

Since an option such like delimiter="; is actually passed as the pair
'delimiter":";’ you have to make sure that “real” pairs containing data (out not
options) are not included in the call to checkoptions. See Chapter 6.6.

Its first argument procname - @ string, not the function reference - is the name of the
procedure which will have to check its arguments obj .

Its second argument obj - a fable - represents the arguments to be checked
passed to procname .

The third to last arguments are pairs. The respective left operand (a string) will be
checked whether one of the right operands of the pairs in obj is of the type passed
as the right operand (a string or a basic type). See examples below.

The evaluation of obj works as follows: If an entry in obj is not a pair, it is not
evaluated, ignored and not returmned in the resulting table. But if the entry is a pair, it
checks whether the left-hand side is a string, i.e. an option name. It then checks
whether its right hand side is of the given type in anything passed to option or

184 7 Standard Libraries

further options of type pair. By default, If an option in obj cannot be found in option
or further options of type pair, an error is issued. But if the very last argument is the
Boolean value frue, no error is issued and the “unknown' opfion is part of the
resulting table.

If successful, the return is a table where the respective left-hand side in obj is the
key and the respective right-hand side in obj is the respective entry. Please play
around with this new function, or have a look at the lib/skycrane.agn file in your
local Agena installation, function skycrane.scribe. User-defined types are properly
handled.

Thus:

> checkoptions('myproc’, [1, 'neil:'armstrong’], n eil=string):

> # 'neil' must be a string, number 1 will be skipp ed not being a pair
[neil ~ armstrong]

> checkoptions('myproc’, ['neil":'armstrong'], neil =boolean):

Error in ‘myproc’: boolean expected for neil option , got string.

> checkoptions('myproc’, ['neil":'armstrong’, ‘jame s"'lovell,

> neil=string, true):
[[ames ~ lovell, neil ~ armstrong]

checktype (obj, main, sub)

Checks whether the structure obj is a table, set, pair, or sequence, and whether it is
of the type given by main (a string), and whether all its elements are of type sub (a
string). It returns true or false. User-defined types are supported.

The function is written in the Agena language and included in the library.agn file.

See also: type.

clear vl [, v2, -]

Deletes the values in variables vi, v2, --- , and performs a garbage collection
thereafter in order to clear the memory occupied by these values.

columns (obj, p [, ---] [, 'structure’)

Extracts the given columns p (etc.) from the two-dimensional table or sequence
obj . The type of retun is determined by the type of obj and is either a
table/sequence of tables/sequences if the opfion ‘structure’ is given, or a
multiple return of tables or sequences.

The function is written in the Agena language and included in the library.agn file.

See also: linalg.column, utils.readscv .

agena >> 185

copy (obj)

The operator copies the entire contents of a table, set, pair, or sequence obj iNtfo a
new structure. If obj contains structures itself, those structures are also copied (by a
"deep copying' method). Structures included more than once are properly
aggregated to one single reference to save memory space. Metatables and
user-defined types are copied, 100.

The type of return is determined by the type of obj .

The operator also treats cycles (structures that directly or indirectly reference to
themselves), correctly.

countitems (item, obj)
countitems (f, obj [, ---])

In the first form, counts the number of occurrences of an item in the structure (tfable,
set, register, or sequence) obj .

In the second form, by passing a function f with a Boolean relation as the first
argument, all elements in the structure obj that satisfy the given relafion are
counted. If the function has more than one argument, then all arguments except
the first are passed right after the name of the object obj .

The return is a number. The function may invoke metamethods.

See also: select, bags package.

dimension (a:b [, c:d] [, init])

Creates a 1-dimensional sparse table or a 2-dimensional sparse table with arbitrary
index ranges (of type pair) a:b and c:d. If the last argument is not a pair, it is used as
an initialiser for all elements, otherwise all elements default to null.

If the initialiser is a structure, i.e. table, set, sequence or pair, then individual copies
of the initialiser are created to avoid referencing fo the same structure.

duplicates (obj [, option])

Returns all the values that are stored more than once 1o the given table, register, or
seguence obj , and retuns them in a new table, reqgister, or sequence. Each
duplicate is returned only once. If option is not given, the structure is sorted before
evaluation since this is needed to determine all duplicates. The original structure is
left untfouched, however. If a value of any type is given for option , the function
assumes that the structure has been already sorted. The values in obj should either
e strings or numbers if No option is given, otherwise the function will fail.

The function is writfen in the Agena language and included in the library.agn file.

186 7 Standard Libraries

error (message [, level])

Terminates the last protected function called and retuns message as the error
message. error never returms.

Usually, error adds some information about the error position af the beginning of the
message. The level argument specifies how to get the eror position. With level 1
(the default), the error position is where the error function was called. Level 2 points
the error to where the function that called error was called; and so on. Passing a
level O avoids the addition of error position information to the message.

See also: argerror.

G

A global variable (not a function) that holds the glolbbal environment (that is, _G._G =
_G) . Agena itself does not use this variable; changing ifs value does not affect any
environment, nor vice-versa. (Use setfenv to change environments.)

filled (obj)

This Boolean operator checks whether a table, set, register, or sequence obj
contains at least one item and returns true if so; otherwise it returns false.

getbit (X, pos)

Checks for the bit af position pos € [1, 31] in the integer x, and either returns true or
false.

See also: setbit.

getentry (obj [, k Lok)

Retumns the entry objlk ,, --- ,k ,] from the table, register, or sequence obj without
issuing an error if one of the given indices k; (second to last argument) does not
exist. It conducts a raw access and thus does not invoke any metamethods.

If objlk ., - , k ,] does not exist, null is returned. If only obj is given, it is simply
returned.

getmetatable (obj)

If obj does not have a metatable, returns null. Otherwise, if the obj 's metatable has
A ' metatable' field, returns the associated value. Otherwise, returns the
metatable of the given obj .

See also: setmetatable .

agena >> 187

gettype (obj)

Returns the type - set with seftype - of a function, sequence, set, pair, or userdata
obj as a string. If no user-defined type has been set, or any other data type has
been passed, null is returned.

See also: seftype, typeof.

has (obj, x)

Checks whether the structure obj (a table, set, sequence, register, or pair) contains
element x.

With tables, all the entries are scanned. If x is not a number then the indices of the
fable are searched, too.

With sequences and registers, only the entries (not the keys) are scanned. With pairs,
both the left and the right item is scanned. The function performs a deep scan so
that it can find elements in deeply nested structures.

The function return true if x could be found in obj , and false otherwise. If obj <> x
and if obj is @ number, boolean, complex number, string, procedure, thread,
userdata, or lightuserdata, has returns fail.

See also: in, recurse.

isboolean (---)

Checks whether the given arguments are all of type boolean and retums true or
false.

iscomplex (---)

Checks whether the given arguments are all of type complex and returns true or
false.

isequal (obj1, obj2)
Equivalent to obj1 = obj2 and returns true or false.

The function is writfen in the Agena language and included in the library.agn file.

isint (---)

Checks whether all of the given arguments are infegers and returns true or false. If
at least one of its arguments is not a number, the function retumns fail.

188 7 Standard Libraries

isnegative (---)

Checks whether all of its arguments are negative numbers and retumns true or false.
If at least one of its arguments is Nnot a number, the function returns fail.

See also: isnegint, isposint, innonneg, ispositive .

isnegint (--)

Checks whether all of the given arguments are negative infegers and returns true or
false. If at least one of its arguments is Nnot a number, the function returns fail.

isnonneg (---)

Checks whether all of its arguments are zero or positive numbers and returns true or
false. If at least one of its arguments is not a number, the function returns fail.

See also: isnegint, isposint, isnegative, ispositive .

isnonnegint (---)

Checks whether all of the given arguments are zeros or positive integers and returns
true or false. If at least one of its arguments is not a number, the function retumns fail.

isnonposint (---)

Checks whether all of the given arguments are zeros or negatfive infegers and
returns true or false. If at least one of its arguments is not a number, the function
returns fail.

isnumber (---)

Checks whether the given arguments are all of type number and returns true or
false.

isnumeric (---)

Checks whether the given arguments are all of type number or of type complex
and returns true or false.

ispair (--+)
Checks whether the given arguments are all type pair and returns true or false.

isposint (---)

Checks whether all of its arguments are positive integers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

agena >> 189

See also: isnonposint.

ispositive (--)

Checks whether all of its arguments are positive numbers and retums true or false. If
at least one of its arguments is not a number, the function retumns fail.

See also: isnonposint, isposint, isnegative, isnonneg.

isreg (--+)
Checks whether all of its arguments are of type register and returns true or false.

isseq (---)
Checks whether all of its arguments are of type sequence and retumns true or false.

isstring (---)
Checks whether all of its arguments are of type string and returns true or false.

isstructure (---)

Checks whether all of its arguments are of type table, set, sequence, or pair and
returns true or false.

istable (--)
Checks whether all of its arguments are of type table and returns true or false.

left (obj)
With the pair obj , the operator returns its left operand. This is equals 1O obj[1]

See also: right.

load (f [, chunkname])

Loads a chunk using function f to get ifs pieces. Each call to f must return a string
that concatenates with previous results. A return of null (or no value) signals the end
of the chunk.

If there are no errors, retumns the compiled chunk as a function; otherwise, returns
null plus the error message. The environment of the returned function is the global
environment,

chunkname is used as the chunk name for error messages and debug information.

190 7 Standard Libraries

loadfile ([filename])

Similar to load, but gets the chunk from file filename or from standard input, if no file
name is given.

loadstring (s [, chunkname])
Similar to load, but gets the chunk from the given string s. To load and run a given
string, use the idiom

assume(loadstring(s))()

See also: strings.dump.

map (f, obj [, ---])

This operator maps a function f to all the values in table, set, sequence, register,
string, or pair obj . f Must return only one value. The type of return is the same as of
obj . If obj has metamethods or user-defined types, the return will also have them.

If obj is a string, f is applied on all of its characters from the left to right. The retumn is
a sequence of function values.

If function f has only one argument, then only the function and the structure obj
must be passed to map. If the function has more than one argument, then all
arguments except the first are passed right after the name of the table or set.

Examples:

>map(<< x->x"2>>[1, 2, 3]):
[1, 4, 9]

>map(<<(X,y)->x>y>>[-1,0,1],0): #0 fory
[false, false, true]

See also: @ operator, nreg, nseq, remove, select, subs, zip.

max (obj [, 'sorted?)

Returns the maximum of all numeric values in table or sequence obj . If the option
'sorted' is passed than the function assumes that all values in obj are sorted in
ascending order and retumns the last entry. The function in general returns null if it
receives an empty table or sequence.

See also: min, math.max, stats.minmax.

min (obj [, 'sorted])

Returns the minimum of all numeric values in table or sequence obj . If the option
'sorted’ is passed than the function assumes that all values in obj are sorted in

agena >> 191

ascending order and returns the first entfry. The function in general returns null if it
receives an empty table or sequence.

See also: max, math.min, stats.minmax.

next (obj [, index])

Allows a programme to traverse all fields of a table or all items of a set, register, or
seqguence obj . With strings, it iterates all its characters. Its first argument is a table,
set, string, or sequence and its second argument is an index in the structure.

With tables, registers, or sequences, next returns the next index of the structure and
its associated value. When called with null as its second argument, next returns an
initial index and its associated value. When called with the last index, or with null in
an empty structure, next returns null.

With sets, next returns the next item of the set twice. When called with null as its
second argument, next retuns the initial item twice. When called with the last index,
or with null in an empty set, next returns null.

With strings, next returns the position of the respective character (a positive integer)
and the character. When called with null as its second argument, next returns the
first character. When called with the last index, next returns null.

If the second argument is absent, then it is interpreted as null. In particular, you can
use next(t) to check whether a table or set is empty. However, it is recommended
to use the filled operator for this purpose.

With tables, the order in which the indices are enumerated is not specified, even for
numeric indices. The same applies to set items.

The behaviour of next is undefined if, during the tfraversal, you assign any value to a
non-existent field in the structure. With tables, you may however modify existing
fields. In particular, you may clear existing table fields.

See also: skycrane.iterate .

nreg (a, b [, step])
nreg (f,a, b [, step [, ---]])

In the first form, creates a register reg(a, a+step , -+ , b-step , D), with a, b, and step
eing numbers. The step size is 1 if step - @ number - is not given.

In the second form, the function retumns a reqister seq(1~f (a), 2~f (a+step), - ,
((b -a)* 1/step +1)~f (b)), with f a function, a and b numbers. Thus, the function f is
applied to all numbers between and including a and b. If f requires two or more
arguments, the second, third, etc. argument must be passed after step .

192 7 Standard Libraries

The function uses the Kahan summation algorithm to prevent round-off errors in
case the step size is non-infegral.

Examples:

>nreg(<< x,y ->x:x"2+y>> 1,5, 1, 10):
reg(1:11, 2:14, 3:19, 4:26, 5:35)

>p:=reg(0.1,0.2,0.1,0.3, 1)

> nreg(<< x -> x:p[x] >>, 1, size p):
reg(1:0.1, 2:0.2, 3:0.1, 4:0.3, 5:1)

See also: map, nseq.

nseq (a, b [, step])
nseq (f,a, b [, step [, ---1])

In the first form, creates a sequence seq(a, a+step , - , b-step , b), with a, b, and
step being numbers. The step size is 1 if step - @ number - is not given.

In the second form, the function returns a sequence seq(1~f (a), 2~f (a+step), - .
((b-a)* 1/step +1)~f (b)), with f a function, a and b numbers. Thus, the function f is
applied to all numbers between and including a and b. If f requires two or more
arguments, the second, third, etc. argument must be passed after step .

The function uses the Kahan summation algorithm to prevent round-off errors in
case the step size is non-infegral.

Examples:

>nseq(<< X, y->xxx"2+y>>1,51,10):
seq(1:11, 2:14, 3:19, 4:26, 5:35)

>p:=seq(0.1,0.2,0.1,0.3,1)

> nseq(<< x -> x:p[x] >>, 1, size p):
seq(1:0.1, 2:0.2, 3:0.1, 4:0.3, 5:1)

See also: map, nreg.

ops (index, ---)

ops (S,)

In the first form, if index is a numiber, retumns all arguments after argument number
index . Oftherwise, index must be the string '# , and ops returns the total number of
extra arguments it received. The function is useful for accessing multiple returns (e.g.
ops(n,?)).

agena >> 193

In the second form, the index positions (infegers) in sequence s specify the values
to be returned after the first argument fo ops.

Example:

> f:=<< () -> 10, 20, 30, 40 >>

> ops(2, f():
20 30 40

If you want to obtain only the element atf index , put the call to ops in brackets.

> (ops(2, f0)):
20

> ops(seq(2, 4), f()):
20 40

See also: values.

print (--- [, option])

Receives any number of arguments, and prints their values to the console, using
the tostring function to convert them to strings. print is not intended for formatted
output, but only as a quick way to show a value, typically for debugging. For
formatted output, use strings.format.

In Agena, print also prints the confents of tables and nested tables to stdout if No
__tostring metamethods are assigned to them. The same applies to sets and
sequences.

If the option 'delim: <any sting> is given as the last argument, then print
separates multiple values with the given <string>, otherwise \t is used. If the
opftion 'nonewline":true is passed, then Agena does not print a final newline when
finishing output. Note that these two options cannot be used together.

If the kernel setting environ.kernel(longtable’) is set to true, then each
key~value pair is prinfed on a separate line, and Agena halfs after environ.more
numiber of lines for the user to press any key for further output. Press 'q’, 'Q', or the
Escape key to quit. The default for environ.more is 40 lines, but you may change
this value in the Agena session or in the Agena initialisation file.

You may change the way print formats objects by changing the respective
environ. print* functions in the library.agn file. See Appendix A5 for further details.

See also: printf, io.write, io.writeline, skycrane.scribe, skycrane.tee.

printf ([fh,] template, --)

If the first argument th is not given, prints the optional arguments under the control
of the template string template tO stdout, else it writes to the open file denoted by ifs

194 7 Standard Libraries

fle handle th . See strings.format for information on how to create the template
string.

Example:

> printf('%-10s %3d %210.2f\n', '‘Carbon’, 6, 12.0107);
Carbon 6 12.01

> fth := io.open(file.txt', 'w");
> printf(fh, '%-10s %3d %210.2f\n’, ‘Carbon’, 6, 12. 0107);

> close(fh);

See also: print, i0.write, i0.writeline, skycrane.scribe , skycrane.tee.

protect (f, argl, --)

Calls function f with the given arguments in profected mode. This means that any
error inside f is not propagated; instead, protect simply catches the error. Note that
protect does not work with operators.

The function either returns all results from the call in case there have been no errors,
or retuns the error message as a string as the only retun. In case of an error, the
error message is set to the globbal variable lasterror, otherwise lasterror is set to null.

lasterror is useful for checking the results of a call to protect as in the following:
if protect(.-+) = lasterror then e i
See also: xpcall, try/catch statement.

purge (obj [, pos])

Removes from table, register, or sequence obj the element at position pos, shifting
down other elements to close the space, if necessary. Retuns the value of the
removed element. The default value for pos is N, where n is the length of the table
or sequence, so that a call purge(obj) removes the last element of obj .

Use the delete element from tfable statement if you want to remove any
occurrence of the table value element from a table or sequence.

Note that with tables, the function only works if the table is an array, i.e. if it has
positive infegral and consecutive keys only. With registers, the top pointer is reduced
by one.

See also: put.

agena >> 195

put (obj, [pos,] value)

Inserts element value at position pos N table or sequence obj , shifting up other
elements to open space, if necessary. The default value for pos is N+1, where n is
the current length of the table or sequence, so that a call put(obj, value) inserts
value atthe end of obj .

Use the insert element into table statement if you want to add an element at the
current end of a table, for it is much faster.

The function returns nothing.

See also: purge.

gsadd (obj)

Raises all numeric values in table or sequence obj o the power of 2 and sums up
these powers. The retun is a numiber. If obj is empty or consists entirely of
non-numbers, null is returned. If the table or sequence contains numbers and other
objects, only the powers of the numbers are added. Entries with non-numeric keys
are processes, as well,

See also: sadd.

rawequal (obj1, obj2)

Checks whether obj1 is equal to obj2 , without invoking any metamethod. Returns a
Boolean.

rawget (obj, index)

Gefts the real value of objlindex] , without invoking any metamethod. obj must be
a table, set, sequence, or pair; index May e any value.

See also: getentry, rawset.

rawset (obj, index, value)
rawset (obj, value)
In the first form, sets the real value of objfindex] fo value , without invoking any

metamethod. obj must be a table, sequence, or pair, index any value different
from null, and value any value.

In the second form, the function inserts value into the next free position in the given
structure obj . obj can be a table, set, or sequence.

This function returns obj .

196 7 Standard Libraries

See also: rawget.

read (filename)

Reads an object stored in the binary file denoted by file name filename and returns
it

The function is written in the Agena language and included in the library.agn file.

See also: save.

readlib (packagename [, packagename2, ---] [, true])

Loads and runs packages stored to agn text files (with flename packagename .agn) or
binary C libraries (packagename .SO in UNIX, packagename .dll in Windows), or to both.

If frue is given as the last argument, the function prints the search path(s), and also
quits and prints some diagnostics if a corrupt C library has been found.

The function first fries to find the libraries in the current working directory, and
thereafter in the path in mainlioname. If it fails, it fraverses all paths in lioname until it
finds them. If it finds a library and the current user has at least read permissions for it,
it is initialised. On successful initialisation, the name of the package is entered into
the package.readlibbed set.

Nofte that if a package consists both of a C DLL and an Agena text file, they should
both be located in the very same folder as readlib does not search for them across
multiple paths and may thus initialise a package only partially.

Make sure that on the operating system level the environment variable AGENAPATH
has been set, that the individual paths are separated by semicolons and that they
do not end with slashes. In UNIX, if AGENAPATH has not been set, readlib by default
searches in /usr/agenallib

In eComStation - OS2 and Windows, the Agena installation programme
automatically sets AGENAPATH. If it failed, or you want to modify its contents, you
may manually set the variable like in the following examples, assuming that the
Agena libraries are located in the d:\agenallib folder and optionally in the
d:\agena\mypackage folder.

SET AGENAPATH=d:/agena/lib or
SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

In UNIX, you may execute one of the following statements in your shell, assuming
that the Agena libraries are located in the /homelusr/agenallib folder and
opftionally in the /home/usr/agena/mypackage folder.

SET AGENAPATH=/home/usr/agena/lib or
SET AGENAPATH=/home/usr/agenal/lib;/home/usr/agen a/mypackage

agena >> 197

In DOS, you have to set AGENAPATH in the autoexec.bat file:

SET AGENAPATH=d:/agena/lib or
SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

Of course, packages may reside in other directories as well. Just enter further paths
fo libname as you need them.

The function returns true if all the packages have been successfully loaded and
executed, or fail if an error occurred.

Hint: the import stafement is an inferface to readlib (and with), but does not require
to put the package names intfo quotes. For example,

> readlib('stats");

is equivalent to

> import stats;

See also: run, with, import statement.

recurse (obj, f)

Checks each element of the structure obj (a table, set, pair, register, or sequence)
by applying a function f on each of its elements. f must be a function of one
argument and return either true or false.

With tables, all the entries and keys are scanned.
With sequences and registers, only the entries (not the keys) are scanned.

The function performs a recursive descent if it detects tables, sets, pairs, registers, or
seqguences in obj so that it can find elements in deeply nested structures.

The function immediately returns true if the function call to any element in obj
evaluates to true, and false otherwise. If obj is a number, boolean, complex
number, string, null, procedure, thread, userdata, or lightuserdata, recurse returns
fail. It issues an error if obj is unassigned.

See also: has.

_RELEASE

A global variable that holds a string containing the language name, the current
interpreter main version, the subversion, and the patch level. The format of this
variable is: 'AGENA >> <version>.<subversion>.<patchlevel>'

198 7 Standard Libraries

See also: global environment variable environ.release.

remove (f, obj [, --- [, newarray=true]])

Returns all values in table, set, register, or sequence obj that do not satisfy a
condition determined by function f, as a new table, set, register, or sequence. The
type of retun is determined by the type of second argument, depending on the
type of obj .

If the funcfion has only one argument, then only the function and the
table/set/reqister/sequence are passed to remove.

>remove(<< x ->x>1>>[1, 2, 3]):

[1]

If the function has more than one argument, then all arguments except the first are
passed right after the name of the table or set.

>remove(<< X,y ->x>y>>1[1,2,3],1): #1 fory

[1]

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

Please note that if obj is a table, the return might include holes. If you pass the
newarray=true option as the last argument, however, the result is returned in a table
array with consecutive positive integral keys, not preserving the original keys of the
respective values determined, and not having holes; for example:

>remove(<< X ->x < 2>>[1, 2, 3]):
[2~2,3~73]

> remove(<< X -> x < 2 >>,[1, 2, 3], newarray=true):
[2, 3]

With a register, all values up to the current top pointer are evaluated, and the size of
the retumned register is equal to the number of the elements in the retumn.

See also: countitems, map, select, selectremove, subs, unique, zip.

restart

Restarts an Agena session. No argument is needed.

During start-up, Agena stores all initial values, e.q. package tables assigned, in a
global variable called _origG. Tables are copied, too, so their contents cannot be
altered in a session.

If the Agena session is restarted with restart, all values in the Agena environment are
unassigned including the environment varioble G, but except of _orgG,

agena >> 199

mainlioname, and libname (mainliibname and libname are reset to their original
values if the kernel sefting environ.kernel(libnamereset') results to true,
however.) Then all entries in _origG are read and assigned fo the new environment.

After this, the library base file agena.lib and thereafter the initialisation file agena.ini
- if present - are read and executed. Finally, restart runs a garbage collection.

The retumn of the function is false if evaluation of _orgG failed because it is no
longer a table (which should never happen). Otherwise, the return is true.

right (obj)
With the pair obj , the operator returns its right operand. This is equals 10 obj[2]

See also: left.

run (filename)

Opens the named file and executes its contents as a chunk. When called without
arguments, run executes the contents of the standard input (stdin). Returns all
values returned by the chunk. In case of errors, run propagates the error to its caller
(that is, run does not run in protected mode).

See also: readlib, with.

sadd (obj)

Sums up all numeric values in table or sequence obj . The return is a number. If obj

is empty or consists entirely of non-numbers, null is returned. If the object contains
numbers and other objects, only the numbers are added. Entries with non-numeric
keys are processed, as well.

See also: gsadd, smul, calc.fsum, stats.sum.

200 7 Standard Libraries

save (obj, filename)

Saves an object obj of any type into a binary file denoted by file name filename

save returns an error if an object that cannot be stored to a file has been passed:
threads, userdata, for example. It also returns an error if the object to be written is
self-referencing (e.g. _G). If obj contfains one and the same structure multiple times,
e.g. n fimes, then save stores it n times.

The function locks the file when writing, avoiding file corruption if another application
fries to gain access 1o it.

Note that save overwrites existing files without warning. Whereas numbers, strings,
and Booleans are stored in a portable fashion so that the data can e read both
on Big Endian (e.g SPARCs, PPCs) and Little Endian systems, procedures cannof.

The function is writfen in the Agena language and included in the library.agn file.

See also: read, io.writefile .

select (f, obj [, --- [, newarray=true]])

Returns all values in table, seft, register, or sequence obj that satisfy a condition
determined by function f. The type of retun is determined by the type of the
second argument.

If f has only one argument, then only the function and the object are passed to
select.

> select(<< x->x>1>>[1, 2, 3)):
[2, 3]

If the function has more than one argument, then all arguments except the first are
passed right after the name of the object.

>select(<< x,y->x>y>>{1,2,3} 1) #1 fory
{3, 2}

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

Please note that if obj is a table, the return might include holes. If you pass the
newarray=true option as the last argument, however, the result is returned in a table
array with consecutive positive integral keys, not preserving the original keys of the
respective values determined, and not having holes. Thus,

> select(<< x -> x :: number >>, ['a’, 10, 20, 30, 'z'], newarray=true);

returns

agena >> 201

[10, 20, 30]
instead of
[2~10,3~ 20, 4~ 30]

With a register, all values up to the current top pointer are evaluated, and the size of
the retumed register is equal to the number of the elements in the retumn.

See also: countitems, map, remove, selectremove, subs, unique, values, zip.

selectremove (f, obj [, --- [, newarray=true]])

Combines the functionality of select with the one of remove: The first result contains
all the elements of a structure obj (a table, set, register, or sequence) that satisfy a
given condition, the second result contains the elements of a structure not saftisfying
the condition. This may speed up computations where you need both results,
maybe for post-processing, by around 33 %.

If obj is a table, the return might include holes. If you pass the newarray=true option
as the last argument, however, the result is returned in table arrays with consecutive
positive infegral keys, not preserving the original keys of the respective values
determined, and not having holes. Examples,

>a:=[4a/, 10, 20, 30, 'z7;

> selectremove(<< x -> x :: number >>, a):
[2 ~10,3~20, 4~ 30] [L~a,5~2Z;

> selectremove(<< x -> x :: number >>, a, newarray= true):
[10, 20, 30] [a, Z]

See also: remove, select.

setbit (x, pos, bit)

Sefs or unsets a bit in an infeger x at the given bit position pos .

Internally, x is first converted into its binary representation. Then bit is set to the
pos -th position from the right of this binary representation of x. bit may be either

true or false, or the numbers O or 1. E.g. if x is 2 = 00010, pos is 1, and bit is true,
then the result is 3 = 0b001T.

pos should be an integer in the range |pos | €[1 .. 31].

Please note that if x is negative, then the result is sign(x) * setbit(abs(x), pos, bit),
thus abstracting from the internal hardware representation of x.

The function is writfen in the Agena language and included in the library.agn file.

202 7 Standard Libraries

See also getbit.

setmetatable (obj, metatable)

Sets the metatable for the given table, set, sequence, or pair obj . (You cannot
change the metatable of other types from Agena, only from C.) If metatable is null,
removes the metatable of the given table. If the original metatable has a
' _metatable' field, raises an error.

This function returns obj .

See also: getmetatable.

settype (obj [, -], str)
settype (obj [, ---], null)

In the first form the function sets the type of one or more procedures, sequences,
tables, sefs, pairs, or userdata obj to the name denoted by string str . gettype and
typeof will then return this string when called with obj .

In the second form, by passing the null constant, the user-defined type is deleted,
and gettype thus will return null whereas typeof will return the basic type of obj .

If obj has NO _tostring metamethod, then Agenad's pretty printer outputs the
object in the form str & '(' & <elements> &)’ instead of the standard 'seq(' &
<elements> & ')’ Or '<element>:<element>' string.

See also: gettype.

size (obj)

With tables, the operator returns the number of key~value pairs in table obj .

With sefts, pairs, and sequences, the operator returns the number of items in obj .

With strings, the operator returns the numlber of characters in string obj , i.e. the
length of obj .

See also: environ.attrib, strings.utf8size, tables.getsize .

smul (obj)

Multiplies all numeric values in table or sequence obj . The return is a number. If obj
is empty or consists entirely of non-numbers, null is returned. If the object contains
numbers and other objects, only the numbers are multiplied. Enfries with
non-numeric keys are ignored.

See also: sadd, cale.fprod.

agena >> 203

sort (obj [, f])

Sorts table, register, or sequence elements in a given order, in-place, from obj[1]
fo objin] , where n is the length of the structure. If f is given, then it must be a
function that receives two structure elements, and returns true when the first is less
than the second (so that not f(obj[i+1], obj[i]) will be true after the sor). If £ is
not given, then the standard operator < (less than) is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given
order may have their relative positions changed by the sort. Also, the function
cannot sort structures featuring values of different types (see skycrane.sorted for an
alternative).

See also: sorted, stats.issorted, skycrane.sorted, stats.sorfed.

Example:

>s:=11, 2, 3]
> s0rt(s, << X, y -> X >y >>)

>s:
[3. 2, 1]

>s:=seq(l:'a, 1.1:'b', 1.2:'c);
> sort(s, << X, y -> left(x) > left(y) >>)

>s:
seq(l.2:c, 1.1:b, 1:a)

sorted (obj [, f])

Sorts table, register, or sequence elements in obj iN A given order, but - unlike sort -
not in-place, and non-destructively. Depending on the type of obj , the retun is a
new table or sequence.

If £ is given, then it must be a function that receives two structure elements to
determine the sorfing order. See sort for further information.

The function cannot sort structures featuring values of different types (see
skycrane.sorted for an alternative).

See also: sort, skycrane.sorted, stats.issorted, stats.sorfed.

subs (x:v [, -], obj)

Substitutes all occurrences of the value x in the table, set, register, or sequence obj
with the value v. More than one substitution pair can be given. The substitutions are
performed sequentially and simultaneously starting with the first pair. The type of
return is determined by the type of obj .

204 7 Standard Libraries

> subs(1:3, 2:4, [1, 2, -1]):
[3, 4, -1]

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

See also: countitems, map, remove, select, zip.

time ()

Returns the fime fill start-up in seconds as a number.

Calling time only once does not necessarily return a real amount of fime; instead
conduct a subtraction by calling time again fo get correct results.

See also: os.difffime, os.time.

top (obj)

With the table array, reqister, or sequence obj , the operator refurns the element with
the largest index. If obj is empty, it returns null.

See also: bottom.

toreg (obj)

If obj is a string, the function will split it into its characters and return them in a
register with each character in obj as a register value, and in the same order as the
characters in obj .

If obj is a table, the function puts all its values - but not its keys - into a register.

If obj is a set, the function puts all its items into a register. The same applies to
seguences.

If obj contains structures, then only their references are copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.
See also: toseq, toset, totable.

toseq (obj)

If obj is a string, the function will split it into its characters and return them in a
sequence with each character in obj as a sequence value, and in the same order
as the characters in obj .

agena >> 205

If obj is a table, the function puts all its values - but not its keys - iNnfo a sequence.

If obj is a set, the function puts all its items info a sequence. The same applies 1o
reqisters.

If obj contains structures, then only their references are copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toreg, toset, fotable.

toset (obj)

If obj is a string, the function will split it info its characters and returns them in a set.
Note that there is no order in the resulting set.

If obj is a table, register, or sequence, the function puts all its values - but not its keys
- into a new set.

If obj contains structures, then only their references are copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toreg, toseq, totable.

totable (obj)

If obj is a string, the function splits it into its characters, and returns them in a table
with each character in obj as a table value in the same order as the characters in
obj .

If obj is @ sequence, reqister, or seft, the function converts it into a table.

If obj contains structures, then only their references are copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toreg, toseq, toset.

206 7 Standard Libraries

type (obj)

This operator returns the basic type of its only argument obj , coded as a string. The
possible results of this function are 'null’ (the string, not the value null), 'number'
'string’ , 'boolean' , ‘'table’ , ‘'set' , ‘'sequence' , ‘'register', ‘pair' ,
‘complex' , 'procedure’ , 'thread' , 'lightuserdata’ , and 'userdata’

If obj is a table, set, sequence, pair, or procedure with a user-defined type, then
type always returns the basic type, e.g. 'sequence’ Of 'procedure'

See also: checkiype, gettype, typeof.

typeof (obj)

This operator returns the user-defined type - if it exists - of its only argument obj ,
coded as a string.

A self-declared type can be defined for procedures, tables, pairs, sets, and
sequences with the setftype function. If there is no user-defined type for obj , then

the basic type is returned, i.e. 'null (the string, not the value null), 'number'
'string’ , 'boolean’ , ‘'table’ , ‘'set’ , ‘'register , 'sequence' , 'pair' ,
‘complex’ , 'procedure’ , 'thread' , and 'userdata’

See also: type, gettype.

unassigned (obj)

This Boolean operator checks whether an expression obj evaluates to null. If obj is a
constant, i.e. a number, boolean including fail, or a string, the operator always
returns false.

See also: assigned.

unique (obj)

With a table obj , the unique operafor removes all holes (missing keys') and
removes multiple occurrences of the same value, if present. The return is a new
table with the original table unchanged.

With a reqister or sequence obj , the unique operator removes mulfiple occurrences
of the same value, if present. The return is a new sequence with the original
seguence unchanged.

See also: tables.entries .

agena >> 207

unpack (obj, [, i [, jll)
Returns the elements from the given table, register, or sequence obj . This function is
equivalent 1o

return obij[i], obj[i+1], ---, obj[j]

except that the above code can be written only for a fixed number of elements. By
default, i is 1 andj is the length of the object, as defined by the size operator.

Please note that if you put a call to unpack intfo the argument list of a call to a
function or operator, in most cases only the first retfurn of unpack is propagated to
the function or operator. However, the behaviour is not arbitrary.

See also: ops, values.

values (obj, i L 2D

Retuns the elements i, from the given table, reqister, or sequence obj . This
operator is equivalent to

return [i 1~objli 4, i a~obji],] or
return seq(obj[i 1], obyj[i o)

The type of return is determined by the first argument obj .

See also: ops, select, unpack.

whereis (obj, x)

Returns the indices for a given value x in table, register, or sequence obj as a new
table, register, or sequence, respectively.

See also: tables.indices.

with (packagename [, false])
with (packagename , key1, key?2, --- [, false])

Assigns short names to package procedures such that:

name = packagename.name
The function works as follows:

* In both forms, with first fries to load and run the respective Agena package.
The package may reside in a text file with file suffix .agn , or in a C dynamic
link library with file suffix .so in UNIX and .dil in Windows, or both in a text file
and in a dynamic link library. The function first tries to find the package in the
current working directory and if it failed, in the path pointed to by

208

7 Standard Libraries

mainlioname; if this fails, too, it traverses all paths in libname from left fo right
until it finds at least the C DLL or the Agena text file, or both. If a package
consists of both the C DLL and an Agena text file, then they both must reside
in the same folder.

If the function does not find the package, an error is returned.

Next, with fries to find a package initialisation procedure. If a procedure
named " packagename .init" is present in your package then it is executed if the
package has been found successfully.

In the first form, if only the string packagename is Qiven, short names to all
functions residing in the global table packagename are created.

If you do not want with to assign short names for certain functions, their
names should be in the format packagename .QuUX.procedurename , €.Q.
mMath.aux.errormessage.

Note that if packagename.name is Not of type procedure, a short name is not
created for this object.

If you would like to display a welcome message, put it info the string
packagename .initstring. It is displayed with an empty line before and after the
text. An example:

agenapackage.initstring := 'agenapackage v0.1 for A gena as of \
May 23, 1949\n’;

In the second form, you may specify which short names are to be assigned
by passing them as further arguments in the form of strings. Contrary o the
first form, short names are also created for tables stored to table
packagename .

As opposed to the first version, with does not print any short names or
welcome messages on screen.

Further information regarding lboth forms:
The function returns a table of all short names assigned.

If the global environment variable environ.withverbose is set to false, no
messages are displayed on screen except in case of errors. If it is set to any
other value or null, a list of all the short names loaded and a welcome
message is printed.

If a short name has already been assigned, a waming message is printed. If
a short name is protected (see table environ.withprotected), it cannot be
overwriften by with and a proper message is displayed on screen. You can

agena >> 209

confrol which names are protected by modifying the contents of
environ. withprotected.

For information on which folders are checked and how to add new
directories to be searched by with, see readlib.

Note that with executes any statements (and thus also any assignment)
included in the file packagename .Qgn.

The function is writfen in the Agena language and included in the library.agn file.

If the last argument is the Boolean false, with does not print the assigned shortcuts
at the console.

Note: the import/alias statement is an interface to the with function but does not
require package names 1o e put into quotes. For example,

> with 'stats’;

is equivalent to

> import stats alias;

See also: readlib, run, register, and import/alias statement.

write ([fh,] v 1LV g][, delim = <str>])

This function prints one or more numbers or strings v, to the file denoted by the
handle th , or to stdout (i.e. the console) if th is not given.

By default, no character is inserted between neighbouring values. This may be

changed by passing the option 'delim":<str> (e.g. 'delim'| or delim="[") as
the last argument to the function with <str> being a string of any length.
Remember that in the function call, a shortcut to 'delim":<str> iS delim = <str>

The function is an interface to io.write.

See also: printf, skycrane.scribe, skycrane.tee.

writeline ([fh,] v 1LV g][, delim = <str>])

This function prinfs one or more numibers or strings v followed by a newline fo the
file denoted by the handle th , or to stdout (i.e. the console) if fh is not given.

By default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':<str> (i.e. a pair, e.q. 'delim"'|') as the
last argument to the function with <str> being a string of any length. Remember
that in the function call, a shortcut 1o 'delim':<str> is delim = <str>

210 7 Standard Libraries

The function is an interface to io.writeline.

See also: printf, skycrane.scribe, skycrane.tee.

xpcall (f, err)

This function is similar to protect, except that you can set a new error handler.

xpcall calls function f in protected mode, using err as the error handler. Any error
inside f is not propagated; instead, xpcall catches the error, calls the err function
with the original error object, and returns a status code. Its first result is the stafus
code (a Boolean), which is true if the call succeeds without errors. In this case,
xpcall also returns all results from the call, after this first result. In case of any error,
xpcall returns false plus the result from err .

See also: protect.

zip (f, obj1, obj2 [, ---])

This function zips together either two sequences, two registers, or two tables obj1 ,
obj2 by applying the function f 10 each of its respective elements. Depending on
the type of obj1 , obj2 , the result is a new sequence, register, or table s where each
element s[k] is determined by s[k] := f(obj1 [K], obj2 [K]).

objl and obj2 must have the same number of elements. If you pass tables, they
must have the same keys.

If f has more than two arguments, then its third to last argument must be given right
after B.

If objl oOr obj2 have user-defined types or metatables, they are copied to the
resulting structure, as well. If objl has a metatable, then this metatable is copied,
else the metatable of obj2 is used if the latter exists. The same applies to
user-defined types.

See also: map, remove, select, subs.

agena >> 211

7.2 Strings

Summary of Functions:

Search
atendof, in, instr, strings.find, strings.glob, strings.match, strings.mfind.
Insertion, Substitution, and Deletion
replace, strings.gsub, strings.include, strings.remove.
Extraction
split, strings.fields, strings.gmatch, strings.gmatches, strings.separate .
Queries
abs, strings.dleven, strings.isabbrev, strings.isalpha, strings.isalphanumeric ,
string.isalphaspace , string.isalphasp ec, strings.isblank, strings.iscenumeric,
strings.isending , strings.isfloat, strings.islatin, strings.isisoalpha,
strings.isiso lower, strings.isisoprint, strings.isisospace , strings.isisoupper,
strings.islatinnumeric , strings.isloweralpha , strings.islowerlatin, strings.issnagic ,
strings.isnumber, strings.isnumeric , strings.isnumberspace , strings.isspace,
strings.isspec, strings.isupperalpha, strings.isupperiating, strings.isutfs .
Counting
size, strings.hits, strings.utf8size , strings.words .
Formatting
lower, tim, upper, strings.align, strings.capitalise , strings.format,
strings.isolower, strings.isoupper, strings.ljustify, strings.lrim, strings.Irrim,
strings.rjustify , strings.rtrim .

Conversion

&, join, tonumber, tostring, strings.diamap, strings.reverse, strings.tolatin,
strings.toutf8, strings.transform .

Manipulation

map, strings.repeat, strings.tobytes, strings.tochars .

212 7 Standard Libraries

A note in advance: All operatfors and strings package functions know how fo handle
many diacritics properly. Thus, the lower and upper operators know how to convert
these diacritics, and various is* functions recognise diacritics as alphabetic
characters.

Diacritics in this context are the letters:

aAaAaAaAdalhae EEaA
EEEEeEEEE
PiTiTililyvyy)
000600080 6006O0
a0ovUuUaU
cCANODpPPR

7.2.1 Kermnel Operators and B asic Library Functions

sl& s2

This binary operator concatenates two strings s1, s2 and refurns a new string. s1 or
s2 may also be a number. In this case the number is converted to a string and then
concatenated with the other operand.

See also: join.

sl atendof s2

This binary operator checks whether a string s2 ends in a substring s1. If true, the
position of the position of s1 in s2 is returned; otherwise null is returned. The operator
also returns null if the strings have the same length or af least one of them is the
empty string.

See also: in, instr, strings.isablrev, strings.isending .

slin__s2

This binary operator checks whether the string s2 includes s1 and retfurns its position
as a number, or null if s1 cannot be found. The operator also returns null if at least
one of the strings is the empty string.

See also: atendof, instr, strings.isabbrev, strings.isending .

s1 split s2

Splits the string s1 info words. The delimiter is given by string s2, which may consist of
one or more characters. The return of the operator is a sequence. If s1 = s2, or if s2
is the empty string, then an empty sequence is returned.

See also: strings.fields, strings.separate .

agena >> 213

abs (s)

With strings, the operator returns the numeric ASCII value of the given character s (a
string of length 1).

instr (s, pattern [, init] [, plain] [, 'reverse’] [, 'borders")

Looks for the first match of pattern in the string s. If it finds a match, then instr returns
the index of s where this occurrence starts; otherwise, it returns null.

If the opfion 'reverse’ is given, then the search starts from the right end and always
runs fo its left beginning and the first occurrence of pattern with respect to the
beginning of s is returned. In the reverse search, pattern matching is not supported.

An optional numerical argument init passed anywhere after the second argument
specifies where to start the search; its default value is 1 and may be negative. In
the latter case, the search is started from the [init| 's position from the right end of
S.

The function by default supports pattern matching, almost similar to regular
expressions, see Chapter 7.2.3. instr is 45 % faster than strings.find. If the optional
Boolean argument plain is set to the Boolean true, paftern matching is switched off
and a much faster plain search is conducted instead (speed bonus around 40 %).

The optional argument 'borders' refurns the start and the end position of a match
in a pair. However, this mode is slow, use string.find instead which is twice as fast.

See also: atendof, in, strings.isabbrev, strings.isending , strings find.

join (obj [, sep [, i [, jlll)

Concatenates all string values in the table or sequence obj in sequential order and
returns a string: objli] & sep & objfi+1] - & sep & obj[jj . The default value for sep
is the empty string, the default for i is 1, and the default for j is the length of the
seguence. The function issues an error if obj contains non-strings.

See also: & operator.

lower (s)

Receives a string and returns a copy of this string with all uppercase letters (‘A' to 'Z'
plus the above mentioned diacritics) changed fo lowercase ('a' o 'Z' and the above
mentioned diacritics). The operator leaves all other characters unchanged.

See also: strings.isolower, upper.

214 7 Standard Libraries

map (f, s [, ---])

This operator maps a function f 1o all characters of string s from the left to right. The
retumn is a sequence of function values.

If function f has only one argument, then only the function and the string s must be
passed to map. If the function has more than one argument, then all arguments
except the first are passed right after argument s.

replace (s1, s2, s3)
replace (s1, obj)
replace (s1, pos, s2)

In the first form, the operator replaces all occurrences of string s2 in string s1 by
string s3.

In the second form, the operator receives a string s1 and a table or sequence obj
of one or more string pairs of the form s2:s3 and replaces all occurrences of s2 in
string s1 with the corresponding string s3. Thus you can replace multiple patterns
simultaneously with only one call to replace.

In the third form, the operator inserts a new string s2 info the string s1 at the given
position pos, substituting the respective character in s1 with the new string s2 which
may consist of zero, one or more characters. The return is a new string. If s2 is the
empty string, the character in s1 is deleted.

The return is always a new string.

The operator does not support paftern matching, use strings.gsub instead.

size (s)

With a string s, the operator returns ifs length, i.e. the number of characters in s.

tonumber (e [, base])

Tries to convert its argument to a number or complex value. If the argument is
already a number, complex value, or a string convertible to a number or complex
value, then tonumber returns this value; otherwise, it returns e if e is a string, and fail
otherwise. The function recognises the strings 'undefined' and ‘infinity’ properly,
i.e. it converts them to the corresponding numeric values undefined and infinity,
respectively.

An optional argument specifies the base to interpret the numeral. The base may be
any integer between 2 and 36, inclusive. In bases above 10, the letter 'A' (in either
upper or lower case) represents 10, 'B' represents 11, and so forth, with 7'
representing 35. In base 10 (the default), the number may have a decimal part, as
well as an optional exponent part. In other bases, only unsigned infegers are

agena >> 215

accepted. If an option is passed, 'undefined' and 'infinity’ are not converted
fo numbers; and if e could not be converted, fail is returned.

tostring (e)

Receives an argument e of any type and converts it to a sting in a reasonable
format. For complete control of how numbers are converted, use strings.format.

If the metatable of e has a ' fostring' field, then the tfostring function calls the
corresponding value with e as argument, and uses the result of the call as ifs result.

With numbers, the number of digits in the resulting string is dependent on the
kemel/digits setting. See environ.kemel for further information.

trim (s)

Returns a new string with all leading, frailing and excess embedded white spaces
removed. trim is an operator. See also: strings.ltrim, strings.rrim .

upper (s)

Receives a string and returns a copy of this string with all lowercase letters (‘' to ‘2
plus the above mentioned diacritics) changed to uppercase (A' to 'Z' and the
above mentioned diacritics). The operator leaves all other characters unchanged.

See also: lower, strings.capitalise , strings.isoupper .

7.2.2 The strings Library

The strings liorary provides generic functions for string manipulation, such as finding
and extracting substrings, and pattern matching. When indexing a string in Agena,
the first character is at position 1 (not af 0, as in C). Indices are allowed to be
negative and are interpreted as indexing backwards, from the end of the string.
Thus, the last character is at position -1, and so on.

The strings library provides all its functions inside the table strings

strings.align (s [, n])

Inserts newlines into a string s after each n character. By default n is 79, so a newline
is inserted at position 80, 160, and so forth. The retumn is a string. The function helps
with correctly outputting formatted text at the console.

strings.capitalise (s)

Converts the first character in string s to upper case - if possible - and retumns the
capitalised string. If s is the empty string, it is simply refumned. It also converts
ligatures if the Western European character set is being used.

216 7 Standard Libraries

See also: upper.

strings.dleven (s, t)

Returns the Damerau-Levenshtein distance between two strings s and t . It is a count
of the minimum number of insertions, deletions, substitutions of a single character,
or tfranspositions of two neighbouring characters to convert s into t. The retumn is a
number.

strings.diamap (s [, option])

The function corrects problems in the Solaris, Linux, eComStation - OS/2, Windows,
and DOS consoles running codepage 850 with diacritics and ligatures read in from
the keyboard or a text file by mapping them to codepage 1252. It takes a strings s,
applies the mapping, and returns a new string. All other characters are returned
unchanged.

If any option is given, the function transforms a string from codepage 1252 to 850.

Example:

> strings.diamap('AEIOU-I_&+1"):
AEIOUAOUEAD

Note that the function does not convert all existing special fokens.

Agena is shipped with substitution tables for codepage 1252. If you want fo use
another codepage, edit the _c2f and _f2c tables in the library.agn file
accordingly.

strings.dump (f)

Returns a string containing a binary representation of the given function f, so that a
later loadstring on this string returns a copy of the function. f must be an Agena
function without upvalues.

strings.fields (s, i 11 2][delim])

strings.fields (s, o [, delim])

Extracts the given fields (columns) in string s. In the first form, the field positions i 1, i
efc. are non-zero integers. The field positions may be negative, denoting fields
counted from the right end of s. In the second form, the field positions are given in
the sequence o.

An optional string delim may be passed as the last argument to denote the
character or character sequence that separates the individual fields. The default for
delim is the white space.

agena >> 217

The retumn is a sequence of the fields (strings).

See also: split, especially if you want to retrieve all fields in a string.

strings.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds a match, then find returns
the indices of s where this occurrence starts and ends; otherwise, it returns null. The
function does support pattern matching facilities (which you can fumn off, see
below).

A third, optional numerical argument init specifies where fo start the search; ifs
default value is 1 and may be negative. A value of frue as a fourth, optional
argument plain tumns off the pattern matching facilities (see Chapter 7.2.3), so the
function does a plain “find substring™ operation, with no characters in pattem being
considered "magic . Note that if plain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also
returned, after the two indices.

See also: in, atendof, and instr operator, strings. mfind.

strings.format (formatstring, ---)

Returns a formatted version of its variable number of arguments following the
descriptfion given in its first argument (which must be a string). The format string
follows the same rules as the printf family of standard C functions. The only
differences are that the options/modifiers *, I, L, n, p, and h are not supported and
that there is an extra option, . The g option formats a string in a form suitable to be
safely read back by the Agena interpreter. the string is written between double
quotes, and all double quotes, newlines, embedded zeros, and backslashes in the
string are correctly escaped when written. For instance, the call

strings.format('%q', ‘a string with "quotes" and \ n new line")

will produce the string:

‘a string with \"quotes\" and \
new line'

The options ¢, d, E, e, f, g, G, i, 0, u, X, and x all expect a number as argument,
whereas g and s expect a string.

This function does not accepf string values containing emibedded zeros.

strings.glob (s, pattern)

Compares a sting s with a string pattern , the latter optionally including the
wildcards ? and *, where 2 represents exactly one unknown character, and *

218 7 Standard Libraries

represents zero or more unknown characters. Other pattern matching facilities are
not supported.

The return is true if the pattern could be found, and false otherwise.

See also: strings.find.

strings.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures
from pattern over sting s. The function supports pattern matching facilities
described in Chapter 7.2.3.

If pattern specifies no captures, then the whole match is produced in each call.

As an example, the following loop

s :='hello world from Lua'
for w in strings.gmatch(s, '%a+") do

print(w)
od

will iterate over all the words from string s, printing one per line. The next example
collects all pairs key~value from the given string into a table:

create table t;
s := 'from=world, to=Lua'
for k, v in strings.gmatch(s, '(%w+)=(%w+)") do

tk] :=v
od

See also: strings.match, strings.gmatches .

strings.gmatches (s, pattern)

Wrapper around strings.gmatch which returns all occurrences of a substring pattern
in string s @ in a new sequence.

The function is written in the Agena language and included in the library.agn file.

strings.gsub (s, pattern, repl [, n])

Returns a copy of s in which all occurrences of the pattern have been replaced
by a replacement string specified by repl , which may be a string, a table, or a
function. gsub also returns, as its second value, the total number of sulbstitutions
made.

If repl is a string, then its value is used for replacement. The character % works as
an escape character: any sequence in repl of the form %n, with n between 1 and

agena >> 219

9, stands for the value of the n-th captured substring (see below). The sequence %0
stands for the whole match. The sequence %% stands for a single %.

If repl is @ table, then the table is queried for every match, using the first capture as
the key; if the pattern specifies no captures, then the whole match is used as the
key.

If repl is a function, then this function is called every time a match occurs, with all
captured substrings passed as arguments, in order; if the patftern specifies no
captures, then the whole match is passed as a sole argument.

If the value retuned by the table query or by the function call is a sting or a
number, then it is used as the replacement string; otherwise, if it is false or null, then
there is no replacement (that is, the original match is kept in the string).

The optional last parameter n limits the maximum numlber of substitutions to occur.
For instance, when n is 1 only the first occurrence of pattern is replaced.

Here are some examples:

X := strings.gsub(‘hello world', '(%w+)', '%1 %1")
--> x = 'hello hello world world'

X := strings.gsub(‘hello world', "%w+'", '%0 %0', 1)

-->x = 'hello hello world'

X := strings.gsub(‘hello world from Lua’, '(%w+)%s *(%w+)', '%2 %1")
--> x = 'world hello Lua from'

X := strings.gsub(‘home = $HOME, user = $USER’, ‘% $(%w+)', os.getenv)
--> x = 'home = /home/roberto, user = roberto’

X := strings.gsub('4+5 = $return 4+5$', '%$(.-)%$' , proc (s)

return loadstring(s)()

end)

->Xx='445=9

local t := [name~'lua’, version~'5.1"]
X = strings.gsub(‘$name%-$version.tar.gz', '%$(Yow+), t)
-->x = 'lua-5.1.tar.gz'

See also: replace.

strings.hits (s, pattern [, true])

Returns the number of occurrences of substring pattern in string s.

If only two arguments are passed, pattern matching facilities (see Chapter 7.2.3)
are supported. If the Boolean constant true is passed as a third argument, pattern
matching is switched off for faster execution.

See also: strings.words.

220 7 Standard Libraries

strings.include (s, pos, p)

Inserts the string p into the string s at position pos .
If pos < size s, the character atf position pos is moved size p places to the right.
If pos = size s + 1, p is just appended to s, equal to the Agena expression s & p.

The function returns the new string and issues an error, if the index pos is invalid. p
may be the empty string, in this case, p is returned.

See also: strings.remove.

strings.isabbrev (s, pattern [, true])

Detfermines whether a string s is beginning with the substring pattern , i.e. whether
pattern fits entirely to the beginning of the string s in case the length of pattern s
less than that of s. The function returns true or false.

If only two arguments are passed, pattern matching facilities (see Chapter 7.2.3)
are supported. If the Boolean constant true is passed as a third argument, pattern
matching is switched off for faster execution.

If s or pattern are empty strings, the function returns false.

The function can be useful in linguistics if you want to check whether a word has a
given prefix.

See also: strings.isending, atendof.

strings.isalpha (s)

Checks whether the string s consists enfirely of alphabetic lefters (including
diacritics) and returns frue or false.

See also: strings.isisoalpha, strings.islatin.

strings.isalphanumeric (s)

Checks whether the string s consists entirely of numbers or alphabetic letters
(including diacritics) and returns true or false.

See also: strings.islatinnumeric.

strings.isalphaspace (s)

Checks whether the string s consists enfirely of alphabetic lefters (including
diacritics) and/or a white space and returns true or false.

agena >> 221

strings.isalphaspec (s)

Checks whether the string s consists entirely of the Latin lefters a to z, A to Z, or the
following special characters:

white space ¢ ?2i!"#$@8% &' " */+-., ;()[I{ FIONA
~=<>

and returns true or false.

See also: strings.isspec, strings.isalphaspace .

strings.isblank (s)

Checks whether the string s consists entirely white spaces or tabulators (\t) and
returns true or false.

See also: strings.isisospace , strings.isspace .

strings.iscenumeric (S)

Checks whether the string s consists entirely of the digits 0 fo 9 or digits and
optionally exactly one decimal comma at any position, and returns true or false.

See also: strings.isfloat, strings.isnumber, strings.isnumeric, os.setlocale.

strings.isending (s, pattern [, true])

Defermines whether a string s is ending in the substing pattern , i.e. whether
pattern fits enfirely to the end of the string s in case the length oOf pattern is less
than that of s. The function returns true or false.

If only two arguments are passed, pattern matching facilities (see Chapter 7.2.3)
are supported. If the Boolean constant true is passed as a third argument, pattern
matching is switched off for faster execution.

If s or pattern are empty strings, the function returns false.

The function can be useful in linguistics if you want to check whether a word has a
given inflectional ending.

See also: strings.isabbrev, atendof.

strings.isfloat (s)

Checks whether the string s consists entirely of the digits O to 9 and exactly one
decimal point (or the decimal-point separator at your locale) at any position, and
returns true or false.

222 7 Standard Libraries

See also: strings.isnumber, strings.isnumeric , os.setlocale .

strings.isisoalpha (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic lower
and upper-case characters (including diacritics) and returns frue or false. The
function only correctly recognises strings read from a file. Mostly, it cannot process
ligatures input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isalpha.

strings.isisolower (s)

Checks whether the string s consists entirely of ISO 8859/1 Lafin-1 alphabetic
lower-case characters (including diacritics) and returns true or false. The function
only correctly recognises strings read from a file. Mostly, it cannot process ligatures
input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isalpha, strings.isloweralpha .

strings.isisoprint (s)

Checks whether the string s consists entirely of printable ISO 8859/1 Latin-1 letters
and returns true or false.

strings.isisospace (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 white spaces and
retuns true or false.

See also: strings.isspace.

strings.isisoupper (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic
upper-case characters (including diacritics) and returns true or false. The function
only correctly recognises strings read from a file. Mostly, it cannot process ligatures
input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isalpha, strings.isupperalpha.

strings.islatin (s)

Checks whether the string s entirely consists of the characters 'a' to 'z, and A'to 'Z'. It
returns true or false. If s is the empty string, the result is always false.

See also: strings.isalpha.

agena >> 223

strings.islatinnumeric (s)

Checks whether the string s consists entirely of numibers or Latin letters 'a' to 'z' and ‘A’
to 'Z', and returns true or false.

See also: strings.isalphanumeric.

strings.isloweralpha (s)

Checks whether the string s consists entirely of the characters a to z and lower-case
diacritics, and retumns true or false. If s is the empty string, the result is always false.

See also: strings.isisolower , strings.isupperalpha.

strings.islowerlatin (s)

Checks whether the string s consists entirely of the characters 'a' to 'z, and returns
true or false. If s is the empty string, the result is always false.

See also: strings.isupperlatin.

strings.ismagic (s)

Checks whether the string s contains one or more magic characters and returns
true or false. In this function, magic characters are anything unlike the letters 'A' to
'Z','d' to 'Z', and the diacritics listed at the top of this chapter.

strings.isnumber (s)

Checks whether the string s consists entirely of the digits O to 9 and returns true or
false.

See also: strings.isfloat, strings.isnumeric .

strings.isnumberspace (s)

Checks whether the string s consists entirely of the digits O to 9 or white spaces and
returns true or false.

strings.isnumeric (s)

Checks whether the string s consists entirely of the digits O to 9 or digits and
optionally exactly one decimal point (or the decimal-point separator at your locale)
at any position, and returns true or false.

See also: strings.iscenumeric, strings.isfloat, strings.isnumber, os.setiocale.

224 7 Standard Libraries

strings.isolower (s)

Receives an ISO 8859/1 Latin-1 string and returns a copy of this string with all
upper-case letters changed to lower-case. The operator leaves all other characters
unchanged.

See also: lower, strings.isoupper .

strings.isoupper (s)

Receives an ISO 8859/1 Latin-1 string and returns a copy of this string with all
lower-case letters changed o upper-case. The operator leaves all other characters
unchanged.

See also: lower, strings.isoupper .

strings.isspace (s)

Checks whether the string s consists entirely white spaces and retumns true or false.
See also: strings.isblank, strings.isisospace .

strings.isspec (s)

Checks whether the string s consists entirely of the following special characters:

white space ¢?i!"#$@8% &' */+-., ;()[1{ POV
~=<>

and returns frue or false.
See also: strings.isalphaspec , strings.isspace, strings.ismagic.

strings.isupperalpha (s)

Checks whether the string s consists entirely of the capital letters 'A' to 'Z' and
upper-case diacritics, and returns true or false. If s is the empty string, the result is
always false.

See also: strings.isisoupper , strings.isloweralpha.

strings.isupperlatin (s)

Checks whether the string s consists entirely of the capital letters 'A' to 'Z', and returns
frue or false. If s is the empty string, the result is always false.

See also: strings.islowerlatin.

agena >> 225

strings.isutf8 (s)

Detects that the given string s is in UTF-8 encoding and returns two Booleans (frue or
false): The first Boolean indicates that s is compliant to the UTF-8 standard.
Remember that a string in ASCII or ISO 8859 encoding is also a valid UTF-8 string.
The second Boolean indicates that s contains at least one mulli-byte UTF-8
character, i.e. that at least one character is part of the UTF-8 but not of the ASCII or
ISO 8859 standard.

Please note that the function may not produce correct results with text input in a
console. The function can only retun correct results if the string to be checked has
been read from a file.

See also: strings.isisoalpha .

strings.ljustify (s, width [, filler])

Adds filling characters to the right end of string s, as necessary fo return a new string
of the given width . If s is @ number, it is automatically converted to a string before
padding starts. The filling characters may be denoted by the third optional
argument filler , otherwise filler is a white space by default. If the resulting string
is longer than the given width , it is fruncated fo the first width characters.

See also: strings.rjustify .

strings.Irtrim (s [, c])

Retuns a new string with all leading and trailing white spaces removed from s. If a
single character is passed for ¢ as an optional second argument, then all leading
and frailing characters given by ¢ are removed.

It does not remove spaces or the given character within the “actual’ part of the
string.

See also: tim operator, strings.ttrim, strings. frim.

strings.ltrim (s [, c])

Retuns a new string with all leading white spaces removed from s. If a single
character is passed for ¢ as an optional second argument, then all leading
characters given by ¢ are removed.

See also: tim operator, strings.Itrim, strings. frim.

strings.match (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds one, then match returns
the captures from the pattemn; otherwise it returns null. If pattern specifies no

226 7 Standard Libraries

captures, then the whole match is returned. A third, optional numerical argument
init specifies where fo start the search; its default value is T and may be negative.
The function supports pattern matching facilities. For examples, see Chapter 4.7.8.

See also: strings.gmatch.

strings.mfind (s, pattern [, init [, plain]])

Like strings.find, but looks for all the matches of pattern in the string s. If it finds af
least one match, it returns a sequence with atf least one pair indicating where the
respective match starts and ends, otherwise, it returns null.

A third, optional numerical argument init specifies where fo start the search; ifs
default value is 1 and may be negative. A value of frue as a fourth, optional
argument plain tumns off the pattern matching facilities (see Chapter 7.2.3), so the
function does a plain "find substring”™ operation, with no characters in pattern
being considered "magic . Note that if plain is given, then init must be given as
well.

Conftrary fo strings.find, if the pattern has captures, then in a successful match the
captured values are not returned.

See also: in, atendof, and instr operator, strings.find, strings. mfind.

strings.remove (s, pos [, len])

Starting from string position pos, the function removes len characters from string s.
The return is a new string. If len is not given, it defaults fo one character to be
deleted.

It is not an eror if len is greater than the actual length of s. In this case all
characters starting at position pos are deleted.

See also: replace, strings.include .

strings.repeat (s, n)

Returns a string that is the concatenation of n copies of the string s.

strings.reverse (s)

Returns a string that is the string s reversed.

strings.rjustify (s, width [, filler])

Adds filing characters to the beginning of string s, as necessary fo return a new
string of the given width . If s is a number, it is automatically converted to a string
before padding begins. The filing characters may be denoted by the third optional

agena >> 227

argument filler , otherwise filler is a white space by default. If the resulting string
is longer than the given width , it is fruncated fo the last width characters.

See also: strings. ljustify.

strings.rtrim (s [, c])

Retuns a new string with all trailing white spaces removed from s. If a single
character is passed for ¢ as an optional second argument, then all trailing
characters given by ¢ are removed.

See also: tim operator, strings.Irtrim, strings.rim .

strings.separate (s, d)

Splits a string s into its fokens. d is a string that specifies a set of delimiters that may
surround the token to e extracted. Thus, the delimiter in front of a token may be
different from the delimiter at its end. All the tokens or retumned in a sequence in
sequential order. If s only includes one or more characters given in d, orif s or d are
empty strings, the function retumns fail.

> a ;= strings.separate(‘a word, another word.", ' oY)
seq(a, word, another, word)

See also: split operator.

strings.tobytes (s)

Converts a string s into a sequence of its numeric ASCII codes. If the string is empty,
an empty sequence is returned.

Note that numerical codes are not necessarily portable across platforms.

strings.tochars (---)

Receives zero or more integers and returns a string with length equal to the number
of arguments, in which each character has the internal numerical code equal to its
corresponding argument.

Note that numerical codes are not necessarily portable across platforms.

strings.tolatin (s)

Creates a dynamically allocated copy of string s, changing the encoding from
UTF-8 to 1ISO-8859-15. Unsupported code points are ignored. The return is a string.
ISO-8859-15 is ISO-8859-1 plus the Euro symbol.

See also: strings.toutf8.

228 7 Standard Libraries

strings.toutf8 (s)

Creates a dynamically allocated copy of string s, changing the encoding from
ISO-8859-15 to UTF-8. The retumn is a string. ISO-8859-15 is ISO-8859-1 plus the Euro
symbol.

See also: strings.isutf8, strings.tolatin, strings.utf8size .

strings.transform (f, s)

Applies a function f to the ASCIl value of each character in string s and returns a
new string. f must refurn an integer in the range [0, 255], otherwise an error is issued.

Note that numerical codes are not necessarily portable across platforms.

strings.utf8size (s)

Determines the size of the string s in UTF-8 encoding and returns a non-negative
infeger. The return is not the number of bytes used to represent a UTF-8 string, but
the number of single- and multi-byte "UTF-8 characters™. Thus, for example, while
size strings.toutf8('a") refurns 2, strings.utf8size(strings.toutf8('a’))

retuns 1.

Please note that the function may not produce correct results with text input in a
console. The function can only retumn correct results if the string to be checked has
been read from a file.

See also: size, strings.isutf8 .

strings.words (s [, delim [, true]])

Counts the number of words in a string s. A word is any sequence of characters
surrounded by white spaces or its left and/or right borders. The user can define any
other delimiter by passing an optional character delim (of type string) as a second
argument. If the third argument is true, then succeeding delimiters are ignored. The
return is a number.

See also: strings. hits.

agena >> 229

7.2.3 Patterns

Character Class:

A character class is used to represent a set of characters. The following
combinations are allowed in describing a character class:

X: (Where x is not one of the magic characters 2$()%.[1*+-?) represents the
character x itself.

.. (0 dot) represents all characters.

%d represents all letters.

%c represents all control characters.

%a represents all digifs.

%l; represents all lowercase letters.

%k represents all upper and lower-case consonants, y and Y are not
considered consonants.

%p represents all punctuation characters.

%s represents all space characters, e.g. white spaces, newlines, tabulators,
and carriage retums,

%U represents all uppercase letters.

%v. represents all upper and lower-case vowels including the letters y and Y.
%w represents all alphanumeric characters.

%x represents all hexadecimal digits.

%z represents the character with representation O.

%<y>: (Where <y> is any non-alphanumeric character) represents the
character y. This is the standard way to escape the magic characters. Any
punctuation character (even the non magic) can be preceded by a '%
when used to represent itself in a pattern.

[set]: represents the class which is the union of all characters in setf. A range
of characters may be specified by separating the end characters of the
range with a . All classes % described above may also be used as
components in set. All other characters in set represent themselves. For
example, [%w] (or [_%wW) represents all alphanumeric characters plus the
underscore, [0-7] represents the octal digits, and [0-7%lI%- | represents the
ocftal digits plus the lowercase lefters plus the '-' character.

The interaction between ranges and classes is not defined. Therefore,
pattermns like [%a-z] or [a-%% have no meaning.

[* set] : represents the complement of set, where set is interpreted as above.

For all classes represented by single lefters (%a %c %v etc.), the corresponding
uppercase letter represents the complement of the class. For instance, %S
represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current
locale. In particular, the class [a-z | may not be equivalent to %l.

230 7 Standard Libraries

Pattern ltem:
A pattern item may be

* asingle character class, which matches any single character in the class;

* asingle character class followed by *', which matches O or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

* asingle character class followed by '+, which matches 1 or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

* a single character class followed by '-', which also matches O or more
repetitions of characters in the class. Unlike *', these repetition items will
always match the shortest possible sequence;

* asingle character class followed by 2!, which matches O or 1 occurrence of
a character in the class;

* o, for n between 1 and 9; such item matches a substring equal to the n-th
captured string (see below);

* %Xy, where x and y are two distinct characters; such itemn matches strings
that start with x, end with y, and where the x and y are balanced. This means
that, if one reads the string from left to right, counting +1 for an x and -1 for a
y. the ending vy is the first y where the count reaches 0. For instance, the item
%b() matches expressions with balanced parentheses.

Pattern:

A pattern is a sequence of pattern items. A '»' at the beginning of a pattern anchors
the match at the beginning of the subject string. A '$' at the end of a pattemn
anchors the match at the end of the subject string. At other positions, ' and '$'
have no special meaning and represent themselves.

Captures:

A patftern may contain sub-patterns enclosed in parentheses; they describe
captures. When a match succeeds, the substrings of the subject string that match
captures are stored (captured) for future use. Captures are numbered according to
their left parentheses. For instance, in the patftern '(a*(.)%w(%s*) ', the part of the
sting matching 'a*(.)%w(%s*) ' is stored as the first capture (and therefore has
number 1); the character matching ' is captured with number 2, and the part
matching '%s* has number 3.

As a special case, the empty capture () captures the current string position (a
numiber). For instance, if we apply the pattern '(Jaa()' on the string 'flaaap', there will
be two captures: 3 and 5.

A pattern cannot contain embedded zeros. Use %zinstead.

agena >> 231

7.3 Tables

Summary of Functions:
Queries

countitems, filled, in, size, tables.getsize, tables.maxn, type, typeof.
Retrieving Values

getentry, unique, unpack, values, tables.entries, tables.indices .
Operations

copy, map, gsadd, sadd, remove, select, selectremove, sort, sorted, subs,
Zip.

Relational Operators

=, ==, ~=, <>,
Cantor Operations

intersect, minus, subset, union, xsubset.
Assignment

dimension, tables.allocate .

7.3.1 Kemel O perators

Most of the following functions have been built info the kernel as unary operators,
with the exception of map and zip.

copy (1)

The operator copies the entire contents of a table t into a new table. See Chapter
7.1 for more information.

countitems (item, t)
countitems (f, t [, --])

In the first form, counts the number of occurrences of an item in the table t.

In the second form, by passing a function f with a Boolean relation as the first
argument, all elements in the structure t that safisfy the given relatfion are counted.

232 7 Standard Libraries

If the function has more than one argument, then all arguments except the first are
passed right after the name of tfable t .

The return is a number. The function may invoke metamethods.

See also: select.

dimension (a:b [, c:d] [, init])

Creates a table of dimension 1 or 2 with arbitrary index ranges and an optional
default for all its elements. See Chapter 7.1 for more information.

filled (t)

Checks whether table t contains atf least one element. The return is frue or false.
The operator works with dictionaries, as well.

getentry (t [, k 5o K al)

Retuns the entry tkk ,, --- , k o] from the table t without issuing an error if one of
the given indices k; (second to last argument) does not exist. See also rawget.

join (t[,sep [, i[)

Concatenates all string values in the table t in sequential order and returns a string:
ti] & sep &tli+1] - & sep &[] . The default value for sep is the empty string,
the default for i is 1, and the default for j is the length of the table. The function
issues an error if t contains non-strings.

Use the tostring function if you want to concatenate other values than strings, e.Q.:

> join(map(tostring, [1, 2, 3])):
123

map (f! t [!])

Maps the function f on all elements of a table t. See map in Chapter 7.1 for more
information. See also: countitems, remove, select, selectremove, subs, and zip.

gsadd (t)

Raises all numeric values in table t to the power of 2 and sums up these powers.
See gsadd in Chapter 7.1 for more information. See also: sadd.

remove (f, t[, --- [, newarray=true]])

Returns all values in table t that do not satisfy a condition determined by function
f. See remove in Chapter 7.1 for more information. See also: map, select,
selectremove, subs, zip.

agena >> 233

sadd (1)

Sums up all numeric values in table t. See sadd in Chapter 7.1 for more
information. See also: gsadd.

select (f, t [, --- [, newarray=true]])

Returns all values in table t that safisfy a condition determined by function . See
select in Chapter 7.1 for more information. See also: map, remove, selectremove,
subs, zip.

selectremove (f, t [, --- [, newarray=true]])

Returns all values in table t that satisfy and do not satisfy a condition determined
by function f, in two tables. See selectremove in Chapter 7.1 for more information.

See also: map, remove, select, subs, zip.

size (1)

Returns the number of actual entries in the array and hash parts of table t. The
operator returns a number and conducts a linear fraversal.

See also: environ.attrib, tables.getsize .

sort (t [, comp])

Sorts table t in a given order, and in-place. See sort in Chapter 7.1 for more
information.

See also: sorted, skycrane.sorted, stats.issorted, stats.sorted.

sorted (t [, comp])

Sorts table elements in t in a given order, but - unlike sort - not in-place, and
non-destructively. See sorted in Chapter 7.1 for more information.

See also: sort, skycrane.sorted, stats.issorted, stats.sorfed.

subs (x:v [, --:], 1)

Substitutes all occurrences of value x in table t with value v. See subs in Chapter
7.1 for more information.

See also: map, remove, select, zip.

234 7 Standard Libraries

unique (t)

The unique operator removes all holes (" missing keys) in a fable t and removes
multiple occurrences of the same value, if present. See unique in Chapter 7.1 for
more information.

values (t, i L 2D
Returns the elements from the given table t in a new table. This operator is
equivalent 1o

return [i ok | Y A P 1 [P AREE

See also: ops, select, unpack.

zip (f, t1, t2)

This function zips together two tables t1 , t2 by applying the function f to each of its
respective elements. See Chapter 7.1 for more information. See also. map,
remove, select, subs, zip.

The following functions have been built info the kernel as binary operators.

Please note that the operators retuning a Boolean work in the Cantor way, i.e. {1,
1}={1} - tfrue, {1, 2} xsubset {1, 1, 2,2, 3, 3 } - true.

tl=_t2

This equality check of two tables t1, t2 first tests whether t1 and t2 point to the
same table reference in memory. If so, it returns true and quits.

If not, the operator then checks whether t1 and t2 contain the same values without
regard to their keys, and returns tfrue or false. In this case, the search is quadratic.

tl==_1t2

This strict equality check of two tables t1 , t2 first tests whether t1 and t2 point to the
same table reference in memory. If so, it returns true and quits.

If not, the operator then checks whether t1 and t2 contain the same number of
elements and whether all key~value pairs in the tables are the same. In this case,
the search is linear.

tl~=_ t2

This approximate equality check of two tables t1, t2 first tests whether t1 and t2
point 10 the same table reference in memory. If so, it returns frue and quits.

agena >> 235

If not, the operator then checks whether t1 and t2 contain the same number of
elements and whether all key~value pairs in the tables are approximately equal
(please see approx for further details). In this case, the search is linear.

tl<> t2

This inequality check of two tables t1 , t2 first fests whether t1 and t2 do not point to
the same table reference in memory. If so, it returns frue and quits.

If not, the operator then checks whether t1 and t2 do not contain the same values,
and returns true or false. In this case, the search is quadratic.

cin__t

Checks whether the table t contains the value ¢ and returns true or false. The
search is linear.

tl intersect 2

Searches all values in t1 that are also values in t2 and returns them in a new table.
The search is quadratic, so you may use bintersect instead if you want to compare
large tables since bintersect performs a binary search.

tl minus _ t2

Searches all values in table t1 that are not values in table t2 and returns them as a
new table. The search is quadratic, so you may use bminus instead if you want to
compare large tables since bminus performs a binary search.,

tl subset t2

Checks whether all values in table t1 are included in table t2 and returns true or
false. The operator also returns true if t1 = t2 . The search is quadratic.

tl union _ t2

Concatenates two tables t1 and t2 simply by copying all its elements - even if they
occur multiple times - 10 a new table.

tl X _subset t2

Checks whether all values in table t1 are included in table t2 and whether t2
contains at least one further element, so that the result is always false if t1 = t2 . The
search is quadratic.

See also: bintersect, bisequal, bminus, purge, put in Chapter 7.1 Basic Functions.

236 7 Standard Libraries

7.3.2 tables Library

This library provides generic functions for table manipulation. It provides all its
functions inside the table tables .

Most functions in the table library assume that the table represents an array or a list.
For these functions, when we talk about the length’ of a table we mean the result of
the length operator.

tables.allocate (t, key 1, value [, key , value ,, -, key . value 1))

Sets the specified keys and values to table t, i.e. tkey (] := value . Note that if a
key is given multiple times, then only the first occurrence of the key in the argument
sequence is processed. The function returns nothing.

tables.entries (t)

Returns all entries of table t (not its keys) in a new table array.

See also: tables.indices, unique, whereis.

tables.getsize (t [, option])

Returns a guess on the number of elements in a fable t . If any option is given, the
function additionally returns a Boolean indicator on whether a table contains an
allocated hash part, and a Boolean indicator on whether null has been assigned to
a table. The lafter return is not foolproof, especially if a table value has been
deleted with a raw assignment, e.g. 1[2] := null;

The function is useful to determine the size of a table much more quickly than the
size operator does, using a logarithmic instead of linear method, but may refun
incorrect results if the array part of a table has holes. It also does not count the
numiber of elements in the hash part of a table.

See also: size.

tables.indices (t)

Returns all keys of table t in an unsorted new table.

See also: tables.entries, whereis.

tables.maxn (t)

Returns the largest positive numerical index of the given table t, or zero if the table
has no positive numerical indices. (To do its job this function does a linear traversal
of the whole table.)

agena >> 237

7.4 Sets

Summary of Functions:
Queries
filled, in, size, type, typeof.
Retrieving Values
unpack.
Operations
copy, map, remove, select, selectremove.
Relational Operators
=, ==, ~=, <>,
Cantor Operations

infersect, minus, subset, union, xsubset.

The following functions have been built into the kernel as unary operators.

copy (s)

The operator copies the entire contents of a set s into a new set. See Chapter 7.1
for more information.

filled (s)

The operator checks whether a set s contains at least one element. The return is
frue or false.

map (f! S [1])

Maps the function f on all elements of a set s. See map in Chapter 7.1 for more
information. See also: countitems, remove, select, selectremove, subs, and zip.

remove (f,s [, ---])

Returns all values in set s that do not satisfy a condition determined by function f .
See remove in Chapter 7.1 for more information. See also: map, select,
selectremove, subs, zip.

238 7 Standard Libraries

select (f, s [, ---])

Returns all values in set s that satisfy a condition determined by function . See
select in Chapter 7.1 for more information. See also: map, remove, selectremove,
subs, zip.

selectremove (f, s [, -+-])

Returns all values in set s that satisfy and do not satisfy a condition determined by
function f, in two sefts. See selectremove in Chapter 7.1 for more information. See
also: map, remove, select, subs, zip.

size (s)

Returns the number of items in a set s.

typeof (s)
Returns the user-defined type assigned to seft s.

The following functions have been built intfo the kernel as binary operators.

The following functions have been built info the kernel as binary operators.

Please note that the operators retumning a Boolean work in a Cantor way, i.e. {1, 1}
={1} - frue, {1, 2} xsubset {1, 1, 2,2, 3,3 } - true.

sl=_s2

This equality check of two sets s1, s2 first tests whether s1 and s2 point o the same
set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same items, and
retuns true or false. In this case, the search is linear.

sl==_s2

With sefts, the == operator acts exactly as the = operator.

sl~= s2

With sets, the ~= operator compares each element in s1 and s2 for approximate
equality. See approx for further details. The return is either true or false.

agena >> 239

sl<> s2

This inequality check of two sets s1, s2 first tests whether s1 and s2 do not point to
the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same items,
and returns true or false. In this case, the search is linear.

cin_s

Checks whether the set s contains the item ¢ and returns true or false. The search is
constant.

sl intersect s2

Searches all items in set s1 that are also items in set s2 and returns them in a set.
The search is linear.

sl minus s2

Searches all items in set s1 that are not items in set s2 and refurns them as a set.
The search is linear.

sl subset s2

Checks whether all items in set s1 are included in set s2 and returns true or false.
The operator also returns frue if s1 = s2. The search is linear.

sl union s2

Concatenates two sets s1 and s2 simply by copying all its items to a new set.

sl x_subset s2

Checks whether all items in set s1 are included in set s2 and whether s2 contains at
least one further item, so that the result is always false if s1 = s2. The search is linear.

240 7 Standard Libraries

7.5 Sequences

Summary of Functions:
Queries

countitems, filled, in, size, typeof.
Retrieving Values

getentry, unique, unpack, values.
Operations

copy, map, gsadd, remove, select, selectremove, sadd, sort, sorted, subs,
Zip.

Relational Operators
=, ==, ~=, <>,
Cantor Operations

infersect, minus, subset, union, xsubset.

With the excepftion of getentry, map and zip, the following functions have been
built into the kernel as unary operators.

copy (s)

The operator copies the entire contents of a sequence s into a new sequence. See
Chapter 7.1 for more information.

countitems (item, s)
countitems (f, s [, ---])

Counts the number of occurrences of an item in the sequence s. For further
information, see Chapter 7.1.

filled (s)

The operator checks whether the sequence s contains at least one element. The
return is true or false.

agena >> 241

getentry (s [, k Lok)

Returns the entry sik ., -+ , k 4] from the sequence s without issuing an error if one
of the given indices k; (second to last argument) does not exist.

join(s[, sep[,i[, il

Concatenates all string values in sequence s in sequential order and returns a
string: sli] & sep & s[i+1] - & sep & s[jj . The default value for sep is the empty
string, the default fori is 1, and the default for j is the length of the sequence. The
function issues an error if s contains non-strings.

Use the tostring function if you want to concatenate other values than strings, e.Q.:

> join(map(tostring, seq(1, 2, 3))):
123

map (f, s [, ---])

Maps the function f on all elements of a sequence s. See map in Chapter 7.1 for
more information. See also: remove, select, subs, zip.

gsadd (s)

Raises all numeric values in sequence s to the power of 2 and sums up these
powers. See gsadd in Chapter 7.1 for more information. See also: sadd.

remove (f,s [, ---])

Retuns all values in sequence s that do not satisfy a condition determined by
function f . See remove in Chapter 7.1 for more information. See also: map, select,
subs, zip.

sadd (s)

Sums up all numeric values in sequence s. See sadd in Chapter 7.1 for more
information. See also: gsadd.

select (f,s [, ---])

Returns all values in sequence s that satisfy a condition determined by function f .
See select in Chapter 7.1 for more information. See also: map, remove, subs, zip.

selectremove (f, s [, -+-])

Retuns all values in sequence s that safisfy and do not safisfy a condition
determined by function f, in two resquences. See selectremove in Chapter 7.1 for
more information. See also: map, remove, select, subs, zip.

242 7 Standard Libraries

size (s)

Returns the number of items in a sequence s.

sort (s [, comp])

Sorfs sequence s in a given order, and in-place. See sort in Chapter 7.1 for more
information. See also: sorted, skycrane.sorted, stats.issorted, stats.sorted.

sorted (s [, comp])

Sorts sequence elements in s in a given order, but - unlike sort - not in-place, and
non-destructively. See sorted in Chapter 7.1 for more information. See also: sort,
skycrane.sorted, stats.issorted, stats.sorted.

subs (x:v [, --:], S)

Substitutes all occurrences of the value x in sequence s with the value v. See subs
in Chapter 7.1 for more information. See also: map, remove, select, zip.

typeof (s)
Returns the user-defined type assigned to sequence s.

unique (s)

With a sequence s, the unigue operator removes multiple occurrences of the same
item, if present in s. See unique in Chapter 7.1 for more information.

values (s, i L 2D

Retumns the elements from the given sequence s in a new sequence. This operator
is equivalent to

return seq(s[i sl 2],)

See also: ops, select, unpack.
zip (f, s1, s2)
This function zips together two sequences s1, s2 by applying the function f to each

of its respective elements. See Chapter 7.1 for more information. See also: map,
remove, select, subs.

See also: bintersect, bisequal, bminus, purge, put in Chapter 7.1 Basic Functions.

The following functions have been built info the kernel as binary operators.

agena >> 243

Please note that the operators returning a Boolean work in a Cantor way, i.e. seq(l,
1) = seq(1) — true, seq(l, 2) xsubset seq(1, 1, 2, 2, 3, 3) - true.

sl=_s2

This equality check of two sequences s1, s2 first tests whether s1 and s2 point to the
same sequence reference in memory. If so, it retuns true and quits.

If not, the operator then checks whether s1 and s2 contain the same values without
regard to their keys, and returns true or false. In this case, the search is quadratic.

sl== s2

This strict equality check of two sequences s1, s2 first tests whether s1 and s2 point
to the same sequence reference in memory. If so, it returns frue and quits.

If not, the operator then checks whether s1 and s2 contain the same number of
elements and whether all entries in the sequences are the same and are in the
same order, and returns true or false. In this case, the search is linear.

sl~= s2

This approximate equality check of two sequences s1, s2 first tests whether s1 and
s2 point o the same sequence reference in memory. If so, it returns frue and quits.

If not, the operator then checks whether s1 and s2 contain the same number of
elements and whether all entries in the sequences are approximately equal and
are in the same order, and returns frue or false. In this case, the search is linear. See
approx for further information on the approximation check.

sl<> s2

This inequality check of two sequences s1, s2 first tests whether s1 and s2 do not
point to the same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same values,
and returns true or false. In this case, the search is quadratic.

cin_s

Checks whether the sequence s contains the value ¢ and returns true or false. The
search is linear.

sl intersect s2

Searches all values in sequence s1 that are also values in sequence s2 and returns
them in a sequence. The search is quadratic.

244 7 Standard Libraries

sl minus _s2

Searches all values in sequence s1 that are not values in sequence s2 and returns
them as a sequence. The search is quadratic.

sl subset s2

Checks whether all values in sequence s1 are included in sequence s2 and returns
true or false. The operator also returns true if s1 = s2. The search is quadratic.

sl union _ s2

Concatenates two sequences s1 and s2 simply by copying all its elements - even if
they occur multiple times - 10 a new sequence.

sl x_subset s2

Checks whether all values in sequence s1 are included in sequence s2 and
whether s2 contains at least one further element, so that the result is always false if
sl = s2. The search is quadratic.

The following functions in the base library also support sequences:

Function Meaning
: Same as the intersect operator but much faster with very
bintersect
large sequences.
: Same as the = operator but much faster with very large
bisequal
segquences.
brMINUS Same as the minus operator but much faster with very large
sequences.
. Returns all the values that are stored more than once in the
duplicates)
given sequence.

agena >> 245

7.6 Pairs

Summary of Functions:
Queries
in, left, right, size, type, typeof.
Operations
copy, map.
Relational Operators

=, ==, ~=, <>,

The following functionalities have been built into the kernel as unary operators.

copy (p)
The operator deep-copies the entire contents of a pair p into a nerw pair.

map (f! p [1])

Maps the function f on both elements of a pair p and returns a new pair. See Map
in Chapter 7.1 for more information.

size (p)
Returns the numiber of items in a pair p, i.e. always returns 2.

type (p)
Returns the type of a pair p, i.e. the string 'pair'.

typeof (p)
Returns either the user-defined type of the pair p, or the basic type 'pair'.

The following functionalities have been built into the kernel as binary operators.

pl=_p2

This equality check of two pairs p1, p2 first tests whether p1 and p2 point to the same
pair reference in memory. If so, it returns true and quits.

246 7 Standard Libraries

If not, the operator then checks whether the left-hnand side of p1 and the left-hand
side of p2 are equal, and the same with both right-hand sides, and returns true or
false.

pl== p2
With pairs, the == operator acts exactly as the = operator.

pl~= p2

With pairs, the ~= operator compares the left-hand side of p1 and the left-hand
side of p2 for approximate equality, and the same with both right-hand sides. The
return is either frue or false. See approx for further details.

pL <> p2

This inequality check of two pairs p1, p2 first tests whether p1 and p2 do not point to
the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether p1 and p2 do not contain the same items,
and returns true or false.

cin_p

Checks whether the number ¢ fits into the closed interval with borders denoted by
the numeric elements of pair p.

agena >> 247

7.7 llist - Linked Lists

As a plus package, the llist package is not part of the standard distrioution and
must be activated with the import statement, e.g. import llist

7.7.1 Introduction and an Example

Tables and sequences are quite slow if you have to insert or delete a lot of
elements during an operation, for with each insertion or deletion, objects have fo
be shifted upward or downward physically.

To avoid these costly operations, data can also be represented in containers, or
‘nodes’, where "[eJach node contains two fields: a "data" field to store whatever
element [...], and a "next" field which is a pointer used to link one node to the next
node.?" For example, if you would like to insert a new element at position n, the
address of the "next entry” of node n - 1 is changed to the address of the new
node confaining the element to be inserted, and the "next entry” in the new node
is assigned the address of the node containing the original value at position n.

This speeds up write operations by dimensions; read operations, however, are
slower, for the linked list has to be fraversed linearly. However, linked lists Qs
implemented in this package are around fiffeen times faster even when
conducting a read operation with each write operation.

Metamethods exist to support printing, indexing, and indexed assignments; the size,
in, =, and ~= operators are also supported.

Linked lists can contain nulls, i.e. putting null info the data field of a node does not
delete this node from the chain.

For an example of how to use linked lists, see Chapter 6.25.

7.7.2 Functions

llist.append (I, obj [, ---])

Appends one or more elements obj which may be of any type, to the linked list 1, in
sequential order. There is no return.,

See also: llist.prepend., llist.put.

21 For an excellent infroduction on implementing linked lists, see "Linked List Basics', Copyright ©
1998-2001, Nick Parlante. This quote has been taken from his manual, page 4.

248 7 Standard Libraries

llist.iterate (I [, n])

Returns an iterator function that when called returns the next value in the linked list I,
which might also be null if one or more nulls are included in the linked list, or null if
there are no more entries in the list. Also returns null if the linked list is empty.

If an index n is passed, the first call to the iterator function returns the n-th element in
the list and with subsequent calls, the respective elements after index n.

You may also pass a non-negative integer p to the iterator function: In this case,
the next p elements in the list are skipped before determining and returning a
value.

Example: Since the iterator can return null even if the end of the list has not yet
been reached, we use a counter:

> L := llist.list(1); llist.append(L, null); llist. append(L, 2);

> f .= llist.iterate(L);

>c:=0;

> while ¢c < size L do
> incc;

> print(f()

> od;

1

null

2

llist.list ([-+])

The function creates a new linked list and optionally stores all of the given elements
in it. The return is a userdata of user-type 'llist'

llist.listtotable (1)

The function creates a new table and copies all elements in the linked list | into it, in
sequential order. The retumn is the table. If there are no elements in I, an empty
table is returned. If the list includes nulls, the resulting table will contain holes.

The function is written in the Agena language and included in the llist.agn file.

llist.prepend (I, obj [, ---])

Prepends an element obj , and optionally further elements, which may be of any
type, 1o the linked list | . There is no return.,

See also: llist.append, llist.put.

agena >> 249

llist.purge (1, n)

The function removes the element at position n from the linked list 1. All the
successors of the element to be deleted are “shifted’ downwards. The function
returns nothing, but issues an error if there is no element (i.e. node) at index n.

llist.put (I, n, obj)

The function insers the given element obj at position n into linked list | . The original
element at position n is not deleted - it and all of its successors are “shifted” to
open space. The function returns nothing, or issues an error if the index is
out-of-range.

See also: llist.append, llist.prepend.

llist.replicate (1)

The function creates a copy of the linked list I and returns a new linked list. If an
elementin | is a sfructure, however, it is not deep-copied.

250 7 Standard Libraries

7.8 bags - Mulitsets

As a plus package, the bags package is not part of the standard distribution and
must be activated with the import statement, e.qQ. import bags

7.8.1 Introduction and Examples

A bag, also called a multiset, is a kind of Cantor set that also stores the number of
occurrence of each unigue element.

Consider a bulk of orders of books where each order is reported individually. You
may only want to know how many times a book has been sold, instead of storing
each individual order (and maybe all its data) to finally count them. You may want
to save space and perform the count immediately as soon as the order has been
committed.

The package uses tables of the user-defined type 'oag' to implement multisets.

A sequence of orders might look like this:

> import bags;

> orders := seq(

> 'Programming in Lua', 'Moon Lander’, 'Lost Moon !
> 'Programming in Lua', 'Moon Lander’, 'Lost Moon !
> 'Cvon A his ZY;

> books := bags.bag(unpack(orders));

> books['Lost Moon']:
2

For a further order, just enter

> bags.include(books, 'Agena’);
> books:

bag(Agena ~ 1, C von A bis Z ~ 1, Lost Moon ~ 2, Mo on Lander ~ 2,
Programming in Lua ~ 2)

A customer has cancelled his previous orders:

> bags.remove(books, '‘Agena’):

> books:
bag(C von A bis Z ~ 1, Lost Moon ~ 2, Moon Lander ~ 2, Programming in Lua ~
2

)

agena >> 251

7.8.2 Functions

bags.attrib (b)

Returns the number of occurrence of all unique elements in the bag b and also the
accumulated numiber of all occurrences of these elements in it. For example, the
multiset bag('Curiosity' ~ 2, 'Skycrane' ~ 1) results to 2, 3.

bags.bag ([--])
The function creates a new bag and opftionally stores all of the given elements in it.

See also: sykcrane.bagtable .

bags.bagtoset (b)
The function returns all of the unigue elements in b as a set.

bags.include (b, obj [, ---])
The function inserts all of the given elements obj , efc. into bag b.

The function returns nothing.

See also: bags.minclude.

bags.minclude (b, obj)

The function inserts all of the given elements in the sequence obj info bag b. The
function should be used instead of bags.include if the number of elements fo be
inserfed exceeds Agend's argument stack.

The function returns nothing.

See also: bags.include .

bags.remove (b, obj [, ---])

The function removes all of the given elements obj , etc. from bag b. If the number
of counts of the removed element reaches O, the element will be deleted from the
bag.

The function returns nothing.

252 7 Standard Libraries

There are metamethods for conducting some sort of arbitrary Cantor set operations
on bags. Try out the binary operators union (for union), minus for difference sef,
intersect for intersection, and in for searching an object.

If you would like to iterate a bag, you can use conventional for/in loops, for
example, using the bag in the previous chapter:

> for i, j in books do print(i, j) od
Programming in Lua 2
CvonAbiszZz 1

Lost Moon 2

Moon Lander 2

agena >> 253

7.9 Mathematical Functions

The mathematical operators and functions explained in this chapter work on both
real numbers as well as complex numbers, except if indicated otherwise.

For the sake of speed, basic arithmetic functions have been implemented as
operators, whereas all other mathematical functions are implemented as Agena
library functions (implemented either in C or in the Agena language). While
functions can be overwritten with self-defined versions, operators cannot be
overwritten.
Summary of Operators and Functions:
Basic Arithmetic Operators

+, - * /. /*, fma.
Integer Division

\, %, drem, irem, igr, modf.
Exponentiation

7~ ** exp, expx2, frexp, Idexp, math.expminusone , math.tworqised.
RoOOfs

cbrt, hypot, proot, root, sart.
Logarithms

llog2, In, log, log2, log10, math.ceillog2, math.Inplusone, math.log2exp .
Trigonometric Functions

cos, cof, csc, sec, sin, tan.
Inverse Trigonometric Functions

arccos, arccsc, arccot, arcsec, arcsin, arctan, arctan2, math.arccosh.

Hyperbolic Functions

cosh, coth, csch, sech, sinh, tanh.

254 7 Standard Libraries

Inverse Hyperbolic Functions
arccosh, arccsch, arccoth, arcsech, arcsinh, arctanh.
Miscellaneous

abs, erf, erfc, even, heaviside, sign, math.copysign, math.fpbtoint,
math.gcd, math.inttofpb, math.lcm, math.max, math.min.

Miscellaneous Complex Functions
argument, beaq, conjugate, cosxx, flip, polar.
Gamma, efc.
beta, binomial, fact, gamma, Ingamma.
Bessel Functions
besselj, bessely.
Rounding Functions
ceil, entier, int, mdf, roundf, xdf.
Relational Operators
=, ==, <, >, <=, >=, <>, approx, math.isordered .
Numbers
finite, float, frac, gethigh, getlow, isint, isnegative, isnegint, isnonneg.
isnonnegint, isnonposint, isnumber, isnumeric, isposint, ispositive, sethigh,
setlow, math.fraction, math.ndigits, math.nthdigit, math.nextafter, nan.
Random Numbers
math.random, math.randomseed.

Bases and Conversion

math.convertbase , math.norm, math.todecimal, math.toradians,
math.tosgesim.

Primes

math.isprime, math.nextprime , math.prevprime .

agena >> 255

Bitwise Operators

&&, ~~, ||. . <<<, >>>, getbit, setbit, shift.

7.9.1 Operators and Basic Functions

X+_y

The operator adds two numbers; returns a number. Complex numbers are
supported.

X-_Yy
The operator subtracts two numbers; returns a number. Complex numbers are
supported.

X*_y
The operator multiplies two numbers; returns a number. Complex numbers are
supported.

x/_y

The operator divides two numbers; returns a number. Complex numbers are
supported.

See also: recip.

X*%_ y

The operator multiplies two numibbers and divides the result by 100; retuns a
number, the percentage.

x/%_y

The operator divides two numbers and multiplies the result by 100; returns a
number, the ratio.

X +% y

The operator adds the given percentage y 1o x.

x-% vy
The operator subtracts the given percentage y from x.

X_y
The operator performs an integer division of two numibers, and returns a number.
The integer division is defined as: x \ y = sign(x) * sign(y) * entier(| %).

256 7 Standard Libraries

X% y

The modulus operator conducts the operation x %y = X - em‘ier(%)*y.

X/\

The operator performs an exponentiation of real or complex x with a rational power
y. With numbers, if x is negative and y non-integral, it returns undefined.

See also proot, root.

X**

The operator exponentiates the real or complex number x with the integer power y.
This operator is at least 50 % faster than the © operator.

X &&. Y

Bitwise "and’ operation on two numbers x and y. By default, the operator internally
calculates with signed integers. You can change this o unsigned integers by using
the kernel function with the signedbits option. See also: environ.kermnel in Chapter
7.21.

~~ X

Bitwise complementary operation on the numiber x. By default, the operator
internally calculates with signed integers. You can change this to unsigned integers
by using the environ.kernel function with the signedbits option. See also:
environ.kernel in Chapter 7.21.

X|L_y

Bitwise "or operation on two numbers x and y. By default, the operator intemally
calculates with signed integers. You can change this to unsigned infegers by using
the environ.kernel function with the signedbits option. See also: environ.kermel in
Chapter 7.21.

X/\/\

Bitwise "exclusive-or’ operation on two numbers x and y. By default, the operator
internally calculates with signed integers. You can change this to unsigned integers
by using the environ.kernel function with the signedbits option. See also:
environ.kernel in Chapter 7.21.

agena >> 257

X<<< Yy

Bitwise left-shift operation (multiplication with 2). By default, the operator internally
calculates with signed integers. You can change this to unsigned infegers by using
the environ.kernel function with the signedbits opfion. See also: environ.kernel, shift.

X>>> y

Bitwise right-shift operatfion (division by 2). By default, the operator internally
calculates with signed integers. You can change this o unsigned integers by using
the environ.kemel function with the signedbits option. See also: environ.kemel, shift.

xshift vy

Bitwise shift operation. If the right-hand side y is a positive integer, the bits in x are
shiffed to the left (multiplication with 2), else they are shiffed to the right (division by
2). By default, the operator intemnally calculates with signed integers. You can
change this to unsigned integers by using the environ.kernel function with the
signedbits option. See also: environ.kemel, <<<, >>>.

abs (2)

If z is a number, the abs operator returns the absolute value of z. With a complex
number z = x + I*y, it retuns the distance between it and the origin as a number,

e [x2+y?.
See also: argument, cabs, polar.

approx (x, y [, eps])

Compares the two numbers or complex values x and y and checks whether they
are approximately equal. If eps is omitted, Eps is used.

The algorithm uses a combination of simple distance measurement (x-y| eps)
suited for values ‘near’ 0 and a simplified relative approximation algorithm
developed by Donald H. Knuth suited for larger values (x-y| eps * max(|x|,

l'y])). that checks whether the relative error is bound to a given tolerance eps.

The function returns true if x and y are considered equal or false otherwise.

arccos (X)

Retuns the inverse cosine operator (x in radians). Complex numibers are supported.

arccosh (x)

Retumns the inverse hyperbolic cosine of x (in radians). The function is implemented
in the Agena language and included in the library.agn file. The function works on
both numbers and complex values.

258 7 Standard Libraries

arccsc (x)

Returns the inverse cosecant of x (in radians). The function works on both numbers
and complex values. The function is implemented in the Agena language and
included in the library.agn file.

arccsch (x)

Retuns the inverse hyperbolic cosecant of x (in radians). The function works on
both numbers and complex values. The function is implemented in the Agena
language and included in the library.agn file.

arccot (X)

Returns the inverse cotangent of x (in radians). The function works on both numbers
and complex values. The function is implemented in the Agena language and
included in the library.agn file.

arccoth (x)

Returns the inverse hyperbolic cotangent of x (in radians). The function works on
both numbers and complex values.

arcsec (X)

Returns the inverse secant of x (in radians). The operator works on both numbers
and complex values.

arcsech (x)

Returns the inverse hyperbolic secant of x (in radians). The function works on both
numibers and complex values. The function is implemented in the Agena language
and included in the library.agn file.

arcsin (x)

Computes the inverse sine operator (in radians). Complex numbers are supported.

arcsinh (x)

Returns the inverse hyperbolic sine of x (in radians). The function is implemented in
the Agena language and included in the library.agn fle. The function works on
both numbers and complex values.

arctan (x)

Computes the inverse tangent operator (in radians). Complex numbers are
supported.

See also: arctan2.

agena >> 259

arctan2 (y, x)

Returns the arc tangent of yix (in radians), but uses the signs of both parameters to
find the quadrant of the result. (It also handles correctly the case of y being zero.) x
and y must be numbers or complex numbers.

See also: arctan.

arctanh (x)

Returns the inverse hyperbolic tangent of x (in radians). The function works on both
numbers and complex values. The function is implemented in the Agena
language and included in the library.agn file.

argument (z)

Returns the argument (the phase angle) of the complex value z in radians as a
number. If z is a number, the function returns O if z > O, and z otherwise.

See also: abs, cabs, polar.

bea (z)

The operator takes the complex number z = xly and returns the complex number
sin(x)*sinh(y) + I*cos(x)*cosh(y). This function may bbe mathematically meaningless,
but it creates beautiful fractals. With numbers, it returns undefined.

See also: cosxx, flip.

beta (x, y)

Computes the Beta function. x and y are numbers or complex values. The return

may be a number or complex value. The Beta function is defined as: Betq(x, y) =
Ixxly
ﬁ, with special treatment if x and y are integers.

binomial (n, k)

Retumns the binomial coefficient GD as a number. The function returns undefined, if
n Or k are negative, or if at least one of its arguments is not an integer.

besselj (n, x)

Returns the Bessel function of the first kind. The order is n given as the first argument,
the argument x as the second argument. The return is a number. The function works
on both numbers and complex values.

bessely (n, x)

Returns the Bessel function of the second kind. The order n is given as the first
argument, the argument x as the second argument. The return is a number. The

260 7 Standard Libraries

function works on both numbers and complex values.

cabs (2)

If z is a number, the cabs function retumns the absolute value of z. If z is a complex
number z = X + I*y, confrary fo the abs operator, it returns the real and imaginary
absolute value, i.e. x| + | % |yl.

See also: abs, argument, polar.

cbrt (x)

Returns the cubic root of the numiber or complex number x. With complex x, it is
equal to x 7~ (1/3), but not to root(x, 3).

See also: ™ operator, roof.

ceil (x)

Rounds upwards fo the nearest infeger larger than or equal to the number or
complex number x. See the entier operator for a function that rounds downwards to
the nearest integer. The function is implemented in the Agena language and
included in the library.agn file.

See also: entier, int, roundf.

conjugate (2)

The operator returns the conjugate x-I*y of the complex value z=x+I*y. If z is of
type number, it is simply returned.

See also: flip.

cos (x)

The operator returns the cosine of x (in radians). Complex numibers are supported.

cosh (x)

The operator retumns the hyperbolic cosine of x (in radians). Complex numbers are
supported.

COSXX (2)

The operator takes the complex number z = xly and returns the complex number
cos(x)*cosh(y)+I1*sin(x)*sinh(y), i.e. the imaginary part of the result had the wrong
sign. It represents FRACTINT's buggy cos function fill v16. This function may be
mathematically meaningless, but it creates beautiful fractals. With the number z, it
returns cos(z).

See also: cos, beq, flip.

agena >> 261

cot (X)

Retumns the cotangent -tan(4+x) as a number (in radians). The function is
implemented in the Agena language and included in the library.agn file. The
function works on both numbers and complex values.

coth (x)

Returns the hyperbolic cotangent ’ronlw as a number (in radians). The function is

implemented in the Agena language and included in the library.agn file. The
function works on both numbers and complex values.

csc (X)

Returns the cosecant sin(x) 9 d number (in radians). The function is implemented in

the Agena language and included in the library.agn fle. The function works on
both numbers and complex values.

csch (x)

Returns the hyperbolic cosecant as a number (in radians). The function is
implemented in the Agena language and included in the library.agn file. The
function works on both numbers and complex values.

drem (X, y)

Evaluates the remainder of an integer division x/y (with x, y two Agena numlbers),
but confrary fo irem, rounds the internal quotient x/y to the nearest integer instead
of towards zero.

See also: \, %, irem.

entier (x)

The operator rounds x downwards to the nearest integer. Complex numbers are
supported.

See also: cell, int, mdf, roundf.

erf (x)

X
Returns the error function of x. It is defined by erf(x) = % fe‘TAQ. The function
t=0

works on both numbers and complex values.

See also: erfc.

262 7 Standard Libraries

erfc (x)

Returns the complementary error function of x, a number or complex value. It is
defined by erfc(x) = 1 - erf(x). The retumn is a number or complex value.

See also: eff.

even (X)

Checks whether x is even. The operator retumns true if x is even, and false otherwise.
With the complex value x, the operator returns fail.

exp (X)

Exponential function; the operator returns the value € Complex numbers are
supported.

expx2 (x, sign)

Computes either e*"2 if sign > 0, or e*"2 if sign < 0 while suppressing error
amplification that would occur from the in-exactness of the exponential argument
X2, x May be a number or complex number, while sign must be a number.

fact (n)

Returns the factorial of n, i.e. the product of the values from 1 to n. If n is Nnot an
infeger or if n is negative, the function returns undefined. The function is
implemented in the Agena language and included in the library.agn file. It
features a defaults remember table (rotable) which you may extend by adding new
defaults to your agena.ini file (see rtable.defaults and Appendix Ab).

finite (x)

Checks whether the numiber or complex number x is neither tinfinity nor undefined
(NaN). The operator returns true or false.

See also: float, nan.

flip ()
The operator takes the complex number z and retumns the new complex number

imag(z)!real(z), i.e. the real and imaginary parts are swapped. With numbers, it
always returns 0.

See also: beaq, conjugate, cosxx.

agena >> 263

float (x)

Checks whether the number x is a float, i.e. not an integer, and returns true or false.
If x is not a number, the operator returns fail.

See also: finite, isint.

fma (%, y, 2)

Performs the fused multiply-add operation (x *y) + z , With the intermediate result
not rounded to the destination type, to improve the precision of a calculation. x, vy,
and z must be numbers.

frac (X)

Returns the fractional part of the number x, i.e. x - int(x) . The function is
implemented in the Agena language and included in the library.agn file.

See also: modf.

frexp (x)

Refurns m and e such that x = m2°, e is an infeger and the absolute value of mis in
the range [0.5, 1) (or zero when x is zero).

See also: Idexp.

gamma (X)

The gamma function I'" x. x may be a number or complex value.

See also: Ingamma.

gethigh (x)

Retumns the higher bytes of a number x as an integer. This operator does not support
complex numbers. See also: getlow, sethigh.

getlow (x)

Returns the lower bytes of a numiber x as an integer. This operator does not support
complex numbers. See also: gethigh, setlow.

heaviside (x)

The Heaviside function. Retuns O if x < O, undefined if x = 0, and 1 if x > 0. The
function is implemented in the Agena language and included in the library.agn
file.

264 7 Standard Libraries

hypot (x, y)
Retuns /x2+y? with x, y numbers. This is the length of the hypotenuse of a right
friangle with sides of length x and y, or the distance of the point (x, y) from the

origin. The function is slower but more precise than using sqrt. The refun is a
number.

See also: root, sart.

ilog2 (x)
Retumns the integer part of the base-2 logarithm of the positive numiber x.

See also: In, log, 1og2, log10, math.ceillog2.

int (x)

Rounds x to the nearest integer towards zero. The operator also supports complex
numibers.

See also: ceil, entier, float, mdf, roundf.

iqr (x, y)
Computes both the integer quotient and the integer remainder of the number x

divided by the number y and returns them. If x or y are not infegers, the function
retuns undefined twice.

The function is equivalent o the Agena representation:

igr := proc(x::number, y::number) is
if float(x) or float(y) then
return undefined, undefined
else
return x \'y, irem(x, y)
fi
end;

See also: modf.

irem (X, y)

Evaluates the remainder of an infeger division x/y (with x, y two Agena numbers).
The return is a number. The remainder r has the same sign as the numerator. If x
and y are integers and g the infeger quotient of x and y, then the function returns
the remainder such that x = y*q + 1, |r| < |y| and x*r > 0.

See also: \,%, drem.

agena >> 265

iscomplex (--)

Checks whether the given arguments are all of type complex and returns true or
false.

isint (---)

Checks whether all of the given arguments are integers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

See also: float.

isnegative (---)

Checks whether all of its arguments are negative numbers and retums true or false.
If af least one of its arguments is not a number, the function returns fail.

See also: isnegint, isnegative, innonneg, ispositive .

isnegint (--)

Checks whether all of the given arguments are negative intfegers and returns true or
false. If at least one of its arguments is not a number, the function returns fail.

See also: isnonnegint, isposint, isnegative, ispositive .

isnonneg (---)

Checks whether all of its arguments are zero or positive numbers and returns true or
false. If at least one of its arguments is not a number, the function returns fail.

See also: isnegint, isposint, isnegative, ispositive .

isnonnegint (---)

Checks whether all of the given arguments are zeros or positive integers and returns
true or false. If at least one of its arguments is not a number, the function returns fail.

isnonposint (---)

Checks whether all of the given arguments are zeros or negatfive intfegers and
returns true or false. If at least one of its arguments is not a number, the function
returns fail.

isnumber (---)

Checks whether the given arguments are all of type number and returns true or
false.

266 7 Standard Libraries

isnumeric (---)

Checks whether the given arguments are all of type number or of type complex
and returns true or false.

See also: numeric.

isposint (---)

Checks whether all of its arguments are positive integers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

See also: isnonposint.

ispositive (--)

Checks whether all of its arguments are positive numibers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

See also: isposint, isnegative, isnonneg.
Idexp (m, e)
Returns m2° (e should be an infeger, and mmust be number).

See also: frexp.

In (X)

Natural logarithm of x with the base e'. If x is non-positive, the operator retums
undefined. Complex numbers are supported.

See also: log, log2, log10.

Ingamma (x)

Computes In IT" x. If x is a non-positive number, the operator returns undefined.
Complex numbers are supported.

See also: gamma.

log (%, b)

The operator returns the logarithm of the numiber or complex number x o the base
b, with b @ numiber or a complex number.

See also: In, log2, 1og10.

agena >> 267

log2 (x)
Returns the base-2 logarithm of the number or complex number x.

See also: llog2, In, log, log10, math.ceillog?2.

log10 (x)

Returns the base-10 logarithm of the numiber or complex number x.

See also: In, log, log2.

mdf (x, n)

Rounds up the number x at its n-th decimal place and returns a number.
See also: entier, int, roundf, xdf.

modf (x)

Returns two numbers, the integral part of the number x and its fractional part. The
infegral part is rounded towards zero. Both the infegral and fractional part of the
return have the same sign as x. The sum of the two values returned equals x.

See also: \, %, frac, int.

nan (x)

Checks whether the number or complex number x evaluates to undefined (NaN).
The operator returns true or false.

See also: finite, float.

polar (z)

Transforms the complex number z in Caresian notation or the number z to polar
form. If z is a number and is zero, or if z is complex and its real and imaginary parts
equal zero, the function returns zero twice.

See also: abs, argument, cabs.

proot (x, n)

Returns the principal n-th root of the number or complex value x. n must be a
positive integer. The principal n-th root in the complex domain is the first root found
staring from the positive real axis going counter-clockwise.

See also: cbrt, hypot, root, sqrt.

268 7 Standard Libraries

recip (x)

Returns the inverse 1/x of a number or complex numiber x.

See also: /.

root (X, n)

Returns the non-principal n-th root of the numibber or complex value x. n must be an
intfeger. Note, that since the function computes the non-principal root, with
complex x, root(x, n) # x” (1/n). In the complex domain, the function returns the
n-th root of x whose argument is nearest fo the argument of x.

See also: argument, cbrt, hypot, proot, sart.

roundf (x [, d])

Rounds the numiber x to its d-th digit. Return is a number. If d is omitted, the number
is rounded to the nearest integer. The following Agena code explains the algorithm
used:

roundf := proc(x, digs) is
local d;
if digs = null then d := 0 else d := digs fi;
return int((10~d)*x + sign(x)*0.5) * (10/(-d))
end;

See also: cell, entier, int, mdf, xdf.

sec(x)

Returns the secant #S(X) as a number (in radians). The function is implemented in

the Agena language and included in the library.agn fle. The function works on
both numbers and complex values.

sech(x)

Retuns the hyperbolic secant as a number (in radians). The function s
implemented in the Agena language and included in the library.agn file. The
function works on both numbers and complex values.

sethigh (x, i)

The operator sets the higher bytes of the number x to the integer i , and returns the
new number. This operator does not support complex numbers. See also: setlow,
gethigh.

agena >> 269

setlow (x, i)

The operator sets the lower bytes of the number x o the infeger i, and returns the
new number. This operator does not support complex numbers. See also: sethigh,
getlow.

sign (x)
Determines the sign of the number or complex value x. If x is a complex value, the
result of the operator is determined as follows:

e 1,ifredl(x) > 0 orredl(x) = 0 and imag(x) > O
e -1, ifredl(x) < 0 orreal(x) = 0 and imag(x) < 0
* 0 otherwise.

If x is undefined, sign returns undefined.

See also: math.copysign.

sin (x)

The operator returns the sine of x (in radians). Complex numibers are supported.

sinh (x)

The operator returns the hyperbolic sine of x (in radians). Complex numbers are
supported.

sqrt (X)
Returns the square root of x.

If x is @ number and negative, the operator returns undefined.

With complex numbers, the operator returns the complex square roof, in the range
of the right halfplane including the imaginary axis.

See also: hypot, proot, root.

tan (x)

The operator returns the tangent of x (in radians). Complex numbers are supported.

tanh (x)

The operator returns the hyperbolic tangent of x (in radians). Complex numbers are
supported.

270 7 Standard Libraries

xdf (x, n)
Rounds down the numiber x at its n-th decimal place and returns a number.

See also: entier, int, roundf, mdf.

7.9.2 math Library

This library is an interface to the standard C math library. It provides all
miscellaneous functions inside the table math .

math.arccosh (x)

Retuns the inverse hyperbolic cosine of the number x and returns a number. It
works in the real domain only.

See also: arccosh.

math.ceillog2 (x)

Returns the smallest exponent to 2 equals or greater than x, i.e. ilog2(x - 1) + 1,
where x is a positive infeger. If x= 1, the result is O; if x < 1, undefined is returned.

See also: math.ceilpower2.

math.ceilpow2 (x)

Rounds x up to the next highest power of 2, where x is a non-negative integer. If x=
0, the result is 1; if x < 0, undefined is returned. Examples: math.ceilpow2(3) = 4,
and math.ceilpow2(8) = 8.

See also: math.ceillog2.

math.convertbase (s, a, b)

Converts a number s or a number represented as a string s from base a to base b.
a and b must be integers in the range 1 to 36. The number in s must be an integer
of any sign. Floats are not allowed. The retun is a string. The function is
implemented in the Agena language and included in the library.agn file.

math.copysign (a, b)

Returns a number with the magnitude of a and the sign of b. It is a plain binding to
C's copysign function and does not post-process its result. Especially, contrary to the
sign operator, math.copysign(x, 0) = abs(X).

agena >> 271

math.dd (x)

Converts a number x representing a sexagesimal number in TI-30 DMS format info
its decimal representation, and retuns a number. For example: 10.3045
representing 10°30'45" returns 10.5125.

The function is implemented in the Agena language and included in the
library.agn file.

See also: math.dms, math.splitdms.

math.dms (x)

Converts a number representing a decimal number x info its TI-30 sexagesimal DMS
representation and returns a number. For example: 10.5125 retuns 10.3045,
representing 10°30'45".

The function is implemented in the Agena language and included in the
library.agn file.

See also: math.dd, math.splitdms.

math.expminusone (x)

Returns a value equivalent to exp(x) - 1, with x a numiber. It is computed in a way
that is accurate even if x is near O, since exp(~0) and 1 are nearly equal.

The function can be used, for example, in financial mathematics, to calculate
small daily inferest rates, among other things.

See also: math.Inplusone.

math.fraction (x [, err])

Given a number x, this function outputs two integers, the numerator n and the
denominator d, such that x := n/ dto an accuracy epsilon := | (x - n/d)/ x | <err .
The eror err should be a non-negative number, and by default is 0.

The returns are three numbers in the following order. the numerator n, the
denominator d, and the accuracy epsilon.

The function is implemented in the Agena language and included in the
library.agn file.

See also: div package.

272 7 Standard Libraries

math.gcd (x, y)

Returns the greatest common divisor of the numbers x andy as a number. If x ory
is not an integral, 1 is returned. The function is implemented in the Agena language
and included in the library.agn file.

See also: math.lcm.

math.fpbtoint (x)

Converts a floafing point byte™ generated by math.inttofpl back. This function is
used to evaluate numbers fransported to the Lua/Agena virtual machine. Please
note that math.inttofpb(math.fpbtoint(x)) does not return x.

math.inttofpb (x)

Converts the integer x to a floating point byte ", represented as (eeeeexxx), where
the real value is (Txxx) * 27 (eeeee - 1) if eeeee <> 0 and (xxx) otherwise. This
function is used to fransport numbers to the Lua/Agena virtual machine.

See also: math.fpbtoint.

math.isordered (X, y)

Returns false if at least one of its arguments x and y - two numbers - is undefined,
and true ofherwise.

math.isprime (x)

Returns true, if the integral number x is a prime number, and false otherwise. Note
that you have to take care yourself that x is an integer and is less than the largest
integer representable on your system.

See also: math.nextprime, math.prevprime.

math.lcm (x, y)

Returns the least common multiple of to numbers x and y as a number. The
function is implemented in the Agena language and included in the library.agn
file.

See also: math.gcd.

math.Ilnplusone (x)

Returns a value equivalent to In(1 + x), with x a number. It is computed in a way
that is accurate even if x is near zero.

agena >> 273

It can be used for example in financial calculations, when computing small daily
interest rates.

Example: In(1.0000000000000001) =0, math.Inplus1(0.0000000000000001) =
1e-016.

See also: math.expminusone .

math.log2exp (x)

Extracts the exponent of the number or complex number x and returns it as the
numiber entier(log2(x)).

math.max (x [, ---])

Returns the maximum value among its arguments of tfype number.

math.min (x [, ---])

Returns the minimum value among its arguments of type number.

math.morton (X, y)

Interleaves the bits of integers x and y, so that all of the bits of x are in the even
positions and y in the odd; the function can be used fo linearising 2D integer
co-ordinates, combining x and y into a single integer that can be compared easily
has the property that a numibber is usually close 1o another if their x and y values are
close.

math.ndigits (x)
Returns the numiber of digifs in the integral part of the number x.
The function is written in the Agena language and included in the library.agn file.

math.nthdigit (x, n)

Returns the n-th digit of the numlber x, with n an infeger. To evaluate an integer digit,
n should be positive; for a decimal place, n should be negative.

The function is writfen in the Agena language and included in the library.agn file.

math.nextafter (x, y)

Returns the next machine floating-point number of x in the direction toward y.

274 7 Standard Libraries

math.nextprime (X)

Returns the smallest prime greater than the given number x.

See also: math.prevprime, math.isprime.

math.norm (x, al:a2 [, b1:b2])

Converts the number x in the scale [a1, a2] to one in the scale [bl, b2]. The second
and third arguments must be pairs of numbers. If the third argument is missing, then
x is converted to a number in [0, 1]. The return is a number.

See also: linalg.scale, stafs.scale.
math.prevprime (x)
Returns the largest prime less than the given number x.

See also: math.nextprime, math.isprime.

math.Phi

o 1+/5
The golden number, Phi:= —5—.

math.random ([m [, n]])

This function creates random numbers.

When called without arguments, retuns a pseudo-random real number in the
range [0,1). It can generate up to 2 * environ.maxlong unique random numlbers in
this interval.

When called with a number m math.random returns a pseudo-random infeger in
the range [1, m.

When called with two numibers m and n, math.random returns a pseudo-random
infeger in the range [m n].

See also: math.randomseed, skycrane.dice.

math.randomseed (X, y)

Sets x and y as the “seeds’ for the pseudo-random generator: equal seeds
produce equal sequences of numbers. x and y must both be positive integers. It
retuns two new settings.

See also: math.random.

agena >> 275

math.splitdms (x)

Splits the numiber x representing a sexagesimal number in TI-30 DMS format info its
parts and returns three numbers: the degrees, minutes, and seconds. For example:
-10.3045 represents -10°30'45".

The function is implemented in the Agena language and included in the
library.agn file.

See also: math.dd, math.dmes.

math.todecimal (h [, m [, s]])

Converts a sexagesimal time value given in hours h, minutes mand seconds s info
its decimal representation. The opftional arguments m and s default to 0. If a
sexagesimal value is negative, then h should be negative, while mand s should be
non-negative.

See also: clock.todec, math.tosgesim.

math.toradians (d [, m [, s]])

Returns the angle given in degrees d, minutes m and seconds s, in radians. The
optional arguments mand s default to O.

math.tosgesim (d)

Converts a decimal time value given by the number d into its sexagesimal
representation and returns three numbers: the hours, minutes, and seconds.

The function is writfen in the Agena language and included in the library.agn file.

See also: math.todecimal.

math.tworaised (x)

returns 2%, with x of type number or complex.

276 7 Standard Libraries

7.10 mapm - Arbitrary Precision Library

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distrioution and must be activated with the import statement, e.Q.
import mapm .

In eComStation - OS/2, Haiku, and DOS, the package is built into the binary
executable and does not need to be activated with import.

The package provides functions to conduct arbitrary precision mathematics with
real numibers. It uses Mike's Arbitrary Precision Math Library, written by Michael C.
RiNQ.

Standard operators like +, -, *, /. %, <, =, >, and unary minus are supported.

All function names in this library begin with the lefter x.

By default, the precision is set to 17 digits, but you can change this any fime with
the mapm.xdigits function, e.g.:

> mapm.xdigits(100);

The mathematical functions are:

Function Meaning Function Meaning
mapm.xabs absolute value mapm.xfactorial | factorial
MAapM.XArccos | arc cosine mapm.xidiv integer division
mapm. inverse hyperoolic mapm.xin natural logarithm
xarccosh cosine '

mapm.xadd addition mapm.xiog10 common logarithm
mapm.xarcsin | inverse sine mapm.xmul multiplication
mapm.xarcsinh Lriw%/grse hyperbolic MAapM.XpPow power
mapm.xarctan | inverse tangent mapm.xsign sign

mapm. 4 quadrant inverse mapm.xsin sine

xarctan2(x, y) tangent '

mapm. hyperbolic —inverse mMapm.xsincos sine and cosine
xarctanh tangent ‘

mapm.xcbrt cubic root mapm.xsinh hyperbolic sine
MAPM.XCOSs cosine mapm.xsqrt square roof
MAapmM.xcosh hyperbolic cosine mapm.xsub subtraction
mapm.xdiv division mapm.xtan fangent
mapm.xexp exponential function | mapm.xtanh hyperbolic tangent

Most of the mapm functions accept a second argument - a non-negative integer -
giving the individual precision.

agena >>

277

The package provides the following metamethods:

Operator | Name Description

+ '__add' addition

- __sub’ subtraction

* '__mul multiplication

/ __div’ division

% '__mod' modulus

~ __pow' power

- __unm’ unary minus

< I less-than

= __eq equals

n/a __gc garbage collection
n/a '__tostring’ conversion to a string, e.g. for the pretty printer

Ofther functions are:

Function Meaning Function Meaning
. . . mapm.
mapm.xceil ceil function exponent
xexponent
mapm.xfloor floor function mapm.xinv reciprocal
mapm.xiseven | test for even number | mapm.xisint check for an integral
mapm.xisodd | test for odd number | mapm.xmod modulus
rounds downwards o
mapm.xround mapm.xneg negatfes a number

the nearest infeger

mapm.
xcompare(x, y)

comparison, returns
-Tifx<y, Oifx =y,
and 1 ifx >y

mapm.xnumber

converts an Agena
number or a string
representing a
number to an
arbitrary precision
number

mapm.xdigits

sets the number of
digits used in all sub-
seqguent calcula-
fions. With no argu-
ment, returns the
current setting

mapm.
xtonumber

converts an arbitrary
precision number to
an Agena number

mapm.xdigitsin

significant digits

mapm.xtostring

converts an arbitrary
precision number to
a sfring

278 7 Standard Libraries

7.11 calc - Calculus Package

This package contains mathematical routines to perform basic calculus
numerically. Since the functions do not work symbolically, please beware of
round-off errors. As a plus package, it is not part of the standard distribution and
must be activated with the import statement, e.g. import calc

A typical example might look like this:

> import calc;

Define a function f :=x - sin(x):

> f = << x ->sin(x) >>

Determine all its zeros over [-5, 5]

> calc.zero(f, -5, 5):
seq(-3.1415926535898, 0, 3.1415926535898)

Differentiate it at point O and also return an error estimate:

> calc.diff(f, 0):
0.99999999999963 1.8503717573394e-010

Compare it

> cos(0):
1

Integrate it over [O, x]:

> calc.gtrap(f, 0, Pi):
1.9999999938721
Summary of functions:
General Calculus:
calc.sections, calc.zero.
Differentiation:
cale.diff, calc.maximum, calc.minimum, calc.xpdiff.
Integration:

calc.gtrap., calc.intde, calc.intdei, calc.intdeo, calc.integral,
calc.simaptive .

agena >> 279

Integrals:

calc.Ci, cale.Chi, calc.dawson, calc.Ei, calc.fresnelc, calc.fresnels,
calc.Shi, cale.Si, cale.Ssi.

Sums & Products:
calc.prod, calc.fsum.

Interpolation:
calc.clampedspline , calc.clampedsplinecoeffs , calc.interp, calc.linterp,
calc.nakspline, calc.naksplinecoeffs , calc.neville, calc.newtoncoeffs ,
calc.polyfit, calc.polygen.

Miscellaneous:

cadlc.dilog, calc.Psi.

The functions:

calc.Ci (x)

Computes the cosine integral and returns it as a number. x must be a number.

See also: cale.Si, cale.Chi, calec.Shi, calc.Ssi.

calc.Chi (x)

Computes the hyperbolic cosine integral and retums it as a number. x must be a
number.

See also: cale.Si, cale.Ci, calc.Shi, calc.Ssi.

calc.clampedspline (obj, da:db)

calc.clampedspline (obj, da:db, a)

calc.clampedspline (obj, da:db, a, coeffs)

Evaluates the clamped cubic spline for a given table or sequence obj of pairs

representing the points x.y «, af a single value a (@ number) of the independent
variable x.

The boundary conditions are passed as a pair of numbers da:db, where da is the
derivative of the function at the left border, and db is the derivative of the function
at the right border.

280 7 Standard Libraries

In the first form, returns a univariate function which can be called with a number 1o
obtain the value of the interpolating polynomial. For best performance, use this first
form.

In the second form, the function computes the coefficients of the linear, quadratic,
and cubic terms itself in each call.

In the third form, the function expects the coefficients coeffs of the linear,
quadratic, and cubic terms as a sequence of three sequences, in this order, and
each containing numbers. The fourth argument may be obtained by calling
calc.clampedsplinecoeffs.

In the second and third form, the function returns the value of the interpolating
polynomial, a number, at the specified value a of the independent variable x.

In general, the function returns fail if the structure contains less than two pairs.

See also: calc.interp, calc.clampedsplinecoeffs, calc.nakspline, calc.neville.

calc.clampedsplinecoeffs (obj, da:db)

Determines the coefficients for the clamped cubic spline for a given table or
sequence obj oOf pairs representing the points x.y «. The return can be used to
speed up execution of calc.clampedspline.

The boundary conditions are passed as a pair of numiboers da:db, where da is the
derivative of the function atf the left border, and db is the derivative of the function
at the right border.

The function returns fail if the structure less than two pairs.

See also: calc.clampedspline.

calc.dawson (x)

Computes Dawson's infegral for a number x. The return is a number.

See also: expx2.

calc.dilog (x)

Computes the dilogarithm function for a numiber x. The return is a number.

calc.diff (f, x [, eps])

Computes the value of the first differentiation of a function f at a point x. If eps is
not passed, the function uses an accuracy of the value stored to Eps. You may
pass another numeric value for eps if necessary.

agena >> 281

The algorithm is based on Conte and de Boor's “Coefficients of Newton form of
polynomial of degree 3.

See also: calc.xpdiff.

calc.Ei (x)

Computes the exponential integral
o0

-t
Ei(x) = - jer’r
—X

for a number x. The return is a number??, and undefined if x = 0.

calc.fprod (f, a, b)

Computes the product of f (a), --- , f (b), with f a function, a and b numbers. If a > b,
then the result is 1.

See also: calc.fsum.

calc.fresnelc (x)

X
Computes the Fresnel integral C(x) :j cos(5 t2) dt and retums it as a number.
0

calc.fresnels (x)

X
Computes the Fresnel infegral S(x) zf sin(3 12) dt and returns it as a number.
0]

calc.fsum (f,a, b [, ---])

Computes the sum of f (a), --- , f(b), with f a function, a and b numbers. If f requires
two or more arguments, the second, third, etc. argument must be passed after b. If
a > b, then the result is 0. The function uses Kahan-Ozawa round-off error
prevention.

See also: calc.fprod.

calc.gtrap (f, a, b [, eps])

Integrates the function f on the interval [a, b] using a bisection method based on
the frapezoid rule and returns a number. By default the function quits after an
accuracy of eps = Eps has been reached. You may pass another numeric value
for eps if necessary.

22 plegse note that for -5 < x < 0, the result is an approximation.

282 7 Standard Libraries

See also: cdalc.intde, calc.intdei, calc.intdeo, calc.integral, calc.simaptive .

calc.intde (f, a, b [, eps])

Integrates the function f on the interval [a, b], with a and b numbers, using Double
Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

f needs to be analytic over [a, b]. eps is the relative error requested excluding
cancellation of significant digits, and by default is equal o 1e-15. Specifically, eps
b

means: (absolute error) / (ff[x)|dx).

The retumn is 1) the approximation to the integral, or fail if evaluation failed, and 2)
an estimate err of the absolute error, where

* e >0: normal termination,

* err < 0: donormal termination, i.e. an convergent eror has been detfected: 1)
f(x) or %” f(x) has discontinuous points or sharp peaks over [a, b] (you must divide
the interval [a, b] at these points). 2) The relative error of f(x) is greater than eps. 3)
f(x) has an oscillatory factor and the frequency of the oscillation is very high.

This function is four times faster than calc.gtrap and also much more accurate. It
can be applied on any polynomial, exponential or tfrigonometric function,
logarithm, power function, and most special functions.

See also: calc.gtrap, calc.intdei, calc.intdeo, calc.integral, calc.simaptive .

calc.intdei (f, a, [, eps])

Integrates the non-oscillatory function f on the interval [a, «], with a a number, using
Double Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

f needs fo be analytic over [a, «]. eps is the relafive error requested excluding
cancellation of significant digits, and by default is equal to 1e-15. Specifically, eps
b

means: (absolute error) / (ff(x)|dx).

The return is either the approximation to the integral, or fail if evaluation failed, and
an estimate err of the absolute error. For further information see calc.intde.

See also: calc.gtrap, calc.intde, calc.integral, calc.simaptive .

calc.intdeo (f, a, [, omega [, eps])

Integrates the oscillatory function f on the interval [a, o], with a a number, using
Double Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

agena >> 283

f needs to be analytic over [a, «]. omega is the oscillatory factor of f and by default
is 1. eps is the relative error requested excluding cancellation of significant digits,
b

and by default is equal to 1e-15. Specifically, eps means: (absolute error)/(jf[x)|dx).
a

The return is either the approximation to the integral, or fail if evaluation failed, and
an estimate err of the absolute error. For further information see calc.intde.

See also: calc.gtrap, calc.intfde, calc.intdei, calc.integral, calc.simaptive .

calc.integral (f, a, b [, omega [, eps])

This function is a wrapper around calc.intde, calc.intdei, and calc.intdeo. If eps is
not given, it is 1e-15 by default. If omega is not given, it is 1. The return is the integral
value and the error margin, both are numbers.

If b is not infinity, the function calls calc.intde and returns its results.

If b is infinity, the function first calls calc.intdei and returns its results, if intdei does not
evaluate to fail. Otherwise, calc.intdeo is called.

See also: calc.gtrap, calc.intde, calc.intdei, calc.intdeo, calc.simaptive .

calc.interp (obj)
calc.interp (obj, a)

calc.interp (obj, a, coeffs)

In the first form, computes a Newton interpolating polynomial and returns it as a
univariate function. The interpolation points are passed in a table obj , with each
point being represented by the pair x,:y «.

Example:
> f .= calc.interp([0:0, 1:3, 2:1, 3:3]);
Call f at point 10:

> f(10):
885

In the second and third form, evaluates the Newton form of the polynomial which
interpolates a given table or sequence obj of pairs representing the points x,:y «, at
a single value a (@ number) of the independent variable.

In the second form, the function computes the coefficients itself in each call.

284 7 Standard Libraries

In the third form, by passing a sequence coeffs Of coefficients (numbers), the
function uses the coefficients passed, avoiding their (re-Jcomputation. The third
argument may be obtained by calling calc.newtoncoeffs.

Both in second and third form, the function returns the value of the interpolating
polynomial, a numiber, at the specified value a of the independent variable. It is
advised to use the first form to benefit fromn maximum speed.

Example:

> calc.interp([0:0, 1:3, 2:1, 3:3], 10):
885

See dalso: calc.clampedspline, calc.nakspline, calc.neville, calc.newtoncoeffs,
calc.polyfit, calc.linterp.

calc.linterp (obj)

Returns a function that conducts a Lagrange interpolation for a given sequence or
table obj of numeric pairs Xy where x and y denote a point in the plane. It is often
said that Lagrange interpolation is suited for theoretical purposes only, since it is also
very slow.

See also: calc.interp, calc.polyfit.

calc.maximum (f, a, b, [step [, eps]])

Returns all possible maximum locations of the univariate function f on the interval
[a, b]. The function divides the interval [a, b] into smaller intervals [a, a+step],
[a+step , a+2*step |, --- , [b-step , b], with step =0.1 if step is not given. It then looks
for possible maximum locations x in these smaller intervals and checks whether the
first derivative of f at x is 0.

f must be differentiable on [a, b]. The procedure retumns two sequences.

The accuracy of the procedure is determined by eps, with eps = Eps as a default. If
a possible extreme location x matches the condition f(x) = 0 with this accuracy,
it is included in the first sequence that the procedure returns. If the test fails and eps
< Eps, then an accuracy of 1e-5 is used for a second test. If it succeeds, x is
included info both the first and the second sequence, indicating to the user that
the first test failed.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.minimum.

agena >> 285

calc.minimum (f, a, b, [step [, eps]])

Returns all possible minimum locations of the univariate function f on the interval [a,
b]. The function divides the interval [a, b] into smaller intervals [a, a+step], [a+step |,
a+2*step |, -+ , [b-step , b], with step =0.1 if step is not given. It then looks for
possible minimum locations x in these smaller intervals and checks whether the first
derivative of f at x is O.

f must be differentiable on [a, b]. The procedure retumns two sequences.

The accuracy of the procedure is determined by eps, with eps = Eps as a default. If
a possible extreme location x matches the condition f(x) = 0 with this accuracy,
it is included in the first sequence that the procedure returns. If the test fails and eps
< Eps, then an accuracy of 1e-5 is used for a second test. If it succeeds, x is
included info both the first and the second sequence, indicating to the user that
the first test failed.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.maximum.

calc.nakspline (obj)

calc.nakspline (obj, a)

calc.nakspline (obj, a, coeffs)

Evaluates the "not-a-knot™ cubic spline for a given table or sequence obj of pairs

representing the points x.y «, af a single value a (@ number) of the independent
variable.

In the first form, returns a univariate function which can be called with a number to
obtain the value of the inferpolating polynomial. This is the recommended usage
due to ifs run-time behaviour.

In the second form, the function computes the coefficients of the linear, quadratic,
and cubic terms itself in each call.

In the third form, the function expects the coefficients coeffs of the linear,
quadratic, and cubic terms as a sequence of three sequences, in this order, and
each containing numbers. The third argument may be obtained by calling
calc.naksplinecoeffs .

In the second and third form, the function retumns the value of the interpolating
polynomial, a number, at the specified value a of the independent variable.

In general, the function returns fail if the structure contains less than four pairs.

See also: calc.clampedspline, calc.interp, calc.naksplinecoeffs , calc.neville.

286 7 Standard Libraries

calc.naksplinecoeffs (obj)

Determines the coefficients for the "not-a-knot™ cubic spline for a given table or
sequence obj oOf pairs representing the points x.y «. The return can be used to
speed up execution of calc.nakspline.

The function returns fail if the structure contains less than four pairs.

See also: calc.nakspline .

calc.neville (obj)
calc.neville (obj, a)
In the first form, returns a function that conducts an Aitken-Neville interpolation for a

given seguence or table obj of numeric pairs x.:y « where x, and y, denote a point
in the plane.

In the second form, evaluates the polynomial which interpolates a given sequence
or table obj of points represented by pairs of the form x,:y « at a single value a (a
number) of the independent variable, using Aitken-Neville interpolatfion, and returns
a number.

Example:

> calc.neville([1:1, 2:2, 3:3], 2):
2

See also: calc.clampedspline, calc.interp, calc.nakspline .

calc.newtoncoeffs (obj)

Returns a sequence of the coefficients of type numibber of the Newton form of the
polynomial which interpolates a given table or sequence obj of pairs representing
the points x.:y «. The return can be used 1o speed up execution of calc.interp.

See also: calc.interp.

calc.polyfit (obj, n)

Returns a sequence of coefficients of an n-th-degree polynomial of a sample, in
order of descending degree fitting the input sequence or sequence obj of pairs
XY, With X and yi being numbers, and using polynomial regression. The degree n
must be a positive infeger.

The retfurn may be passed to calc.polygen to generate a polynomial function (use
unpack when passing the coefficient vector), e.g. calc.polygen(unpack(
calc.polyfit(seq(1:0, 2:3, 3:1), 2)))

agena >> 287

There is no limit on the degree, but a degree of 7 or more is not regarded
appropriate.

The function tries to reproduce polynomial frend lines known from spreadsheet
applications.

See also: cdalc.interp, calc.linterp, calc.polygen.

calc.polygen (c mC i,y C 2, C 1)
Creates a polynomial p(x) = c,*X™" + ¢ *X™ + ...+ ¢,*X + ¢, from the
coefficients ¢, ca1. - , ¢, c;ANd returns it as a new function p i= << x-> p(x) >>,

where x and the retumn p(x) represent numbpers.

See also: calc.polyfit.

calc.Psi (x)

Computes the Psi (digamma) function, the logarithmic derivative of the gamma
function, for a numiber x. The return is a number.

calc.sections (f, a, b, step)

Returns all intervals where a function has a change in sign. f must be a function, a
the left border of the main interval, b its right border, and step the step size. The
return is a sequence of pairs denoting the found subintervals.

See also: calc.zero.

calc.Shi (x)

Computes the hyperbolic sine infegral and returns it as a number. x must be a
number.

See also: cale.Ci, cale.Chi, calc.Si, calc.Ssi.

calc.Si (x)

Computes the sine integral and returns it as a number. x must be a number.

See also: cale.Ci, cale.Chi, calc.Shi, calc.Ssi.

calc.simaptive (f, a, b [, h_min [, eps]])

Integrates the function f on the interval [a, b] using Simpson-Simpson Adaptive
Quadrature and returns a numibber. The function returns fail, if no suitable subinterval
of length greater than min_h could be found for which the estimated error falls
below eps.

288 7 Standard Libraries

The function is thrice as fast as calc.integral, but is not suited with singularities atf or
within the borders.

By default, h_min is 1e-7, and eps is Eps/2, where Eps is the global system variable
Eps.

See also: calc.gtrap, calc.intde, calc.intdei, calc.infdeo, calc.integral.

calc.Ssi (x)

Computes the shifted sine integral and returns it as a number. x must be a number.

See also: cale.Ci, cale.Chi, calc.Shi, calc.Si.

calc.xpdiff (f, x, [, eps [, delta]])

Like calc.diff, but uses Richardson's extrapolation method. f is the function to be
iterated at point x (Q number). eps and delta Are accuracy values (numbers, as
well). The return of the procedure are the derivative of f at x - a number - and the
eror.

xpdiff produces better results with powers and trigonometric functions than calc.diff.

calc.zero (f, a, b, [step [, eps]])

Returns all roofs of a function f in one variable on the interval [a, b].

The function divides the interval [a, b] info smaller intervals [a, a+step |, [a+step ,
a+2*step], -+ , [b-step , b], with step =0.1 if step is not given. It then looks for
changes in sign in these smaller intervals and if it finds them, determines the roots
using a modified regula falsi method.

The accuracy of the regula falsi method is determined by eps, with eps = Eps as a
default. f must be differentiable on [a, b].

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.sections.

agena >> 289

7.12 linalg - Linear Algebra Package

This package provides basic functions for Linear Algebra. As a plus package, it is
not part of the standard distribution and must be activated with the import
statement, e.qg. import linalg

There are two constructors available to define vectors and matrices, linalg.vector
and linalg.matrix. Except of these two procedures, the package functions assume
that the geometric objects passed have been created with the above mentioned
constructors.

The package includes a metatable linalg.vmt defined in the lib/linalg.agn file with
metamethods for vector addition, vector subtraction, and scalar vector
multiplication. Further functions are provided to compute the length of a vector with
the abs operator and to apply unary minus 1o a vector.

The table linalg.mmt defines metamethods for matrix addition, subtraction and
mulfiplication with a scalar. It is assigned via the lib/linalg.agn file, as well.

The vector function allows to define sparse vectors, i.e. if the component n of a
vector v has not been physically set, and if v[n] is called, the return is 0 and not null.

The dimension of the vector and the dimensions of the matrix are indexed with the
'dim' key of the respective object. You should not change this setting to avoid
errors. Existing vector and matrix values can be overwritten but you should take care
to save the correct new values.

Equality checks of vectors or matrices should always be conducted with the
strict equality operator == or the ~= qpproximate equality operator
instead of the Cantor-like = equality operator?. For inequality use the

not operator combined with == or ~=.

A sample session:

> import linalg alias

Define two vectors in two fashions: In the simple form, just pass all components
explicitly:

2B The = operator just checks whether an element in one structure is residing at any position in the
other structure, whereas the == and ~= operators check elements place-by-place. Developers
who would like to extend the linalg package may also have a look at the eeqg and _ aeq
metamethod. to influence the behaviour of the == and ~= operators, respectively.

290

7 Standard Libraries

> a :=vector(l, 2, 3):
[1,2,3]

In a more elaborate form, indicate the dimension of the vector to be created and
only pass the vector components that are not zero in a table:

> b := vector(3, [1~2]):
[2,0,0]

Check whether a and b are parallel and have the same direction:

> abs(a+b) = abs(a) + abs(b):
false

Addition:

>a+b:
[3,2,3]

Subtraction:

>a-b:
[-1,2,3]

Scalar multiplication:

>2*a:
[2,4,6]

> crossprod(a, b):
[0,6,-4]

Find the vector x which satisfies the matrix equation A x = b. In this example, we will

1 2 -4
solve the equation 21 3 |*x=
-3 1 6

row vectors.

= matrix([1, 2, -4], [2, 1, 3], [-3, 1, 6]):

>A:
[1,2, -
[2,
[-3,

:= vector(-6, 5, -2):
-6, 5, -2]

> backsubs(A, b):
[2,-2,1]

The linalg operators and functions are:

sl+ s2

-6

-2

. The linalg.matrix constructor expects

Adds two vectors or matrices s1, s2. The return is a new vector or matrix. This
operation is done by applying the __add metamethod.

agena >> 291

sl-_s2

Subtracts two vectors or matrices s1, s2. The refurn is a new vector or matrix. This
operation is done by applying the __sub metamethod.

k*_s
s* k
ml* m2

Multiplies a number k with each element in vector or matrix s, or multiplies the
matrix m1 with matrix m2 The return is a new vector or matrix. This operation is done
by applying the __mul metamethod.

abs (v)

Determines the length of vector v. This operation is done by applying the _ abs
metamethod o v.

gsadd (v)

Raises all elements in vector v 1o the power of 2. The return is the sum of these
powers, i.e. a number. This operation is done by applying the _ gsadd metamethod
o v.

linalg.add (v, w)
Determines the vector sum of vector v and vector w. The return is a vector.

See also: linalg.sub.

linalg.augment (---)

Joins two or more matrices or vectors together horizontally. Vectors are supposed to
e column vectors. The matrices and vectors must have the same number of rows.

The return is a new matrix.

See also: linalg.stack.

linalg.backsub (A)
linalg.backsub (A, v)

Performs bbackward substitution on a system of linear equations.

In the first form, A must be an augmented m x n lower triangular matrix with m+1 =
n. In the second form, A is an lower triangular square matrix and v a right-nand side
vector.

The return is the solution vector.

292 7 Standard Libraries

The function issues an eror if A is not upper tfriangular. You may change the
tolerance o detect "zeros' by setting the global system variable Eps o another
value.

See also: linalg.backsub, linalg.mef.

linalg.backsubs (A, b)
The function has been deprectated. Please use linalg.gsolve instead.

linalg.checkmatrix (A [, B, ---] [, true])

Issues an error if at least one of its arguments is not a matrix. If the last argument is
frue, then the matrix dimensions are returned as a pair, else the function returns
nothing.

Contrary fo linalg.checkvector, the dimensions will not be checked if you pass
more than one maitrix.

linalg.checksquare (A)

Issues an error if A is not a square matrix. It refurns nothing. See linalg.issquare for
information on how this check is being done.

linalg.checkvector (v [, w, --:])

Issues an error if at least one of its arguments is not a vector. In case of two or more
vectors it also checks their dimensions and returns an error if they are different.

If everything goes fine, the function will return the dimensions of all vectors passed.

See linalg.isvector for information on how the check is being done.

linalg.coldim (A [, ---])
Determines the column dimension of the matrix A. The return is a number.

If you pass more than one argument, then a fime-consuming check whether A is a
maitrix, is skipped.

A more direct way of determining the column dimension is right(A.dim)

See also: linalg.rowdim.

linalg.column (A, n)

Returns the n-th column of the matrix or row vector A as a new vector.

See also: linalg.submatrix .

agena >> 293

linalg.c rossprod (v,w)

Computes the cross-product of two vectors v, w of dimension 3. The return is a
vector,

linalg.det (A)

Computes the determinant of the square matrix A. The return is a number. With
singular matrices, it retfurns O.

linalg.diagonal (v)

Creates a square matrix A with all vector components in v put on the main
diagonal. The first element in v is assigned A[1][1] . the second element in v is
assigned A[2][2] , etc. Thus the result is a dim(v) x dim(v)-matrix.

See also: linalg.getdiagonal .

linalg.dim (A)

Determines the dimension of a matrix or a vector A. If A is a matrix, the result is a pair
with the left-hand side representing the number of rows and the right-hand side
representing the numiber of columns. If A is a vector, the size of the vector is
determined.

linalg.dotprod (v, w)

Computes the vector dot product of two vectors v, w of same dimension. The
vectors must consist of Agena numbers. The return is a number.

linalg.forsub (A)
linalg.forsub (A, v)

Performs forward substitution on a system of linear equations.

In the first form, A must be an augmented m x n upper triangular matrix with m+1 =
n. In the second form, A is an upper triangular square matrix and v a right-hand side
vector.

The return is the solution vector.

The function issues an eror if A is not upper friangular. You may change the
tolerance to detect "zeros™ by sefting the global system variable Eps to another

value.

See also: linalg.backsub, linalg.rref.

294 7 Standard Libraries

linalg.getdiagonal (A)
Returns the diagonal of the square matrix A as a vector.

See also: linalg.diagonal .

linalg.gsolve (A [, true])
linalg.gsolve (A, v [, true])

Performs Gaussian elimination on a system of linear equations.

In the first form, A must be an augmented m x n matrix with m+1 = n. In the second
form, Ais a square matrix and v a right-hand side vector.

The return is the solution vector. It returns infinity if an infinite numiber of solutions has
been found, and undefined if no solutions exists. It returns fail if it could not
determine whether no or an infinite number of solutions exist.

If the Boolean value true is given as the last argument, the reduced linear system is
also returned as an (augmented) upper triangular matrix.

See also: linalg.backsub, linalg.forsub, linalg.rmef.

linalg.hilbert (n [, X])

Creates a generalised n x n Hilbert matrix H, with H[i, j] := 1/(i+j-x). If x is not
specified, then x is 1. (n and x must be numbers.)

linalg.identity (n)

Creates an identity matrix of dimension n with all components on the main
diagonal set to 1T and all other components set to 0.

linalg.inverse (A)

Returns the inverse of the square matrix A.

linalg.isantisymmetric (A)

Checks whether the matrix A is an antisysnmetric matrix. If so, it returns frue and false
otherwise.

linalg.isdiagonal (A)

Checks whether the matrix A is a diagonal matrix. If so, it returns true and false
otherwise.

agena >> 295

linalg.isidentity (A)

Checks whether the matrix A is an identity matrix. If so, it returns true and false
otherwise.

linalg.ismatrix (A)

Returns true if A is a matrix, and false otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘matrix’.

linalg.issquare (A)

Retuns true if A is a square matrix, i.e. a matrix with equal column and row
dimensions, and false otherwise.

linalg.issymmetric (A)

Checks whether the matrix A is a symmetric matrix. If so, it returns true and false
otherwise.

linalg.isvector (A)

Returns true if A is a vector, and false otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘vector’,

linalg.ludecomp (A [, n])

Computes the LU decomposition of the square, non-singular matrix A of order n. If n
is missing, it is determined automatically, i.e. n := left(A.dim)

The return is the resulting matrix, the permutation vector as a vector, and a number
where this number is either 1 for an even number of row interchanges done during
the computation, or -1 if the number of row interchanges was odd. If the matrix is
singular, an error is issued.

linalg.matrix (obj 1, 0bj 5, -+, Obj n)
linalg.matrix (m, n [, Iv])

In the first form, creates a matrix from the given structures obj . The structures are
considered 1o be row vectors. Valid structures are vectors created with linalg.vector,
tables or sequences.

In the second form, with m and n integers, creates a mx n matrix and optionally fills
it row by row with the elements in the table or sequence v . v must not include
structures. If Iv is not given, the matrix is filed with zeros.

The return is a table of the user-defined type 'matrix’ and a metatable linalg.mmt
assigned to the matrix. The table key 'dim' contains a pair with the dimensions of

296 7 Standard Libraries

the matrix: the left-hand side specifies the number of rows, the right-nand side the
numiber of columns.

See also: linalg.vector, utils.readcsv.

linalg.maeq (A, B)

This function checks matrix A and matrix B for approximate equality. The return is
either true or false. The function uses Donald Knuth's approximation method to
compare matrix elements (see the approx function for information on how this
Wworks).

You can change the accuracy threshold epsilon with the environ.kernel/eps
function.

See also: ~= metamethod, approx, linalg.meeq, linalg.vaeq.

linalg.meeq (A, B)

This function checks matrix A and matrix B for strict equality. The return is either frue or
false.

See also: == metamethod, linalg.maeq, linalg.veeq.

linalg.mmap (f, A[, ---])

This function mayps a function f to all the components in the matrix A and returns a
new matrix. The function must return only one value. See linalg.vmap for further
information.

linalg.mmul (A, B)

This function multiplies an m x n matrix A with an n x p matrix B. The returnisan m x p
matrix. See also: * metamethod.

linalg.mulrow (A, i, S)

Multiplies each element of row i in matrix A with the scalar s and returns a new
matrix.

See also: linalg.swapcoal, linalg.swaprow, linalg.mulrowadd .

linalg.mulrowadd (A, i, j, S)

Returns a copy of matrix A with each element in row j exchanged by the sum of this
element and the respective element in row i multiplied by the number s.

See also: linalg.swapcoal, linalg.swaprow, linalg.mulrowadd .

agena >> 297

linalg.mzip (f, A, B[, --*])

This function zips together two matrices A, B by applying the function f to each of its
respective components. The result is a new matrix m where each element m[i, j] is
determined by m[i, j] := f (A[i, j]. B[i, j]). If the f has more than two arguments, then its
third to last argument must be given right after B.

A and B must have the same dimension.

See also: linalg.vzip, linalg.mmap, linalg.mzip .

linalg.norm (A)

linalg.norm (v [, n])

The function returns the norm of a matrix or vector.

In the first form, the function returns the infinity norm of a matrix A. It is the maximum
row sum, where the row sum is the sum of the absolute values of the elements in a
given row.

In the second form, it returns the n-norm of a vector v, where n is a positive integer.
(The n-norm of a vector is the nth root of the sum of the magnitudes (absolute

values) of each element in v raised to the nth power.) If n is infinity, the return is the
infinity norm, i.e. the maximum magnitude of all elements v.

linalg.rowdim (A [, ---])
Determines the row dimension of the matrix A. The return is a number.

If you pass more than one argument, then a fime-consuming check whether Ais a
maitrix, is skipped.

A more direct way of determining the column dimension is left(A.dim)

See also: linalg.coldim.

linalg.rref (A [, v])
Returns the reduced row echelon form of any mx n matrix A.

If a vector v is given, the function computes the reduced row echelon form of the
augmented matrix A| v. In this case, A and v must have equal dimensions.

See also: linalg.gsolve.

298 7 Standard Libraries

linalg.scalarmul (v, n)
linalg.scalarmul (n, v)

Performs a scalar multiplication by multiplying each element in vector v by the
numiber n. The result is a new vector.

linalg.scale (A)

Normalises the (non-null) columns of a matrix A in such a way that, in each column,
an element of maximum absolute value equals 1. The return is a new matrix where
the normalised vectors are delivered in the corresponding columns.

See also: math.norm, stats.scale.

linalg.stack (--)

Joins two or more matrices or vectors together verically. Vectors are supposed to
e row vectors. The matrices and vectors must have the same number of columns.

The return is a new matrix.

See also: linalg.augment.

linalg.submatrix (A, p [, r])
linalg.submatrix (A, p:q [, r:s])

In the first form, returns column p from matrix A as a new row vector.
In the second form, returns columns p to g as a new matrix.

An optional third argument may be given to limit the extraction of the columns to
the specified row r orrowsr to s.

With the second and third arguments, you may mix numbers with pairs.

See also: linalg.column.

linalg.swapcol (A, p, q)

Swaps column p in matrix A with column q. p, ¢ must be positive integers. The result is
a new matrix.

See also: linalg.swaprow, linalg.mulrow, linalg.mulrowadd .

linalg.swaprow (A, p, Q)

Swaps row p in matrix A with row q. p, g must be positive integers. The result is a new
matrix.

agena >> 299

See also: linalg.swapcol, linalg.mulrow, linalg.mulrowadd .

linalg.sub (v, w)

Subtracts vector w from vector v. The result is a new vector.

See also: linalg.add.

linalg.trace (A)
Computes the frace of a square matrix A and returns a number.

linalg.transpose (A)

Computes the franspose of a m x n-matrix A and thus returns an n x m-matrix.

linalg.vector (al, a2, ---)
linalg.vector ([al, a2, ---])
linalg.vector (seq(al, a2, --+))
linalg.vector (n, [a1, a2, ---])
linalg.vector (n, [])

Creates a vector with numeric components a1, a2, etc. The function also accepts a
table or sequence of elements a1, a2, efc. (second and third form).

In the fourth form, n denotes the dimension of the vector, and ax might be single
values or key~value pairs. By a metamethod, vector components not explicitly set
automatically default to 0. This allows you to create memory-efficient sparse vectors
and thus matrices.

In the fifth form, a sparse zero vector of dimension n is returned.

The result is a table of the user-defined type ‘vector and the linalg.vmt metatable
assigned to allow basic vector operations with the operators +, -, *, unary minus
and abs. The table key 'dim' contains the dimension of the vector created.

See also: linalg.martrix.

linalg.vaeq (a, b)

This function checks vector a and vector b for approximate equality. The return is
either frue or false. The function uses Donald Knuth's approximation method to
compare vector elements (see the approx function for information on how this
works).

You can change the accuracy threshold epsilon with the environ.kernel/eps
function.

300 7 Standard Libraries

See also: ~= metamethod, approx, linalg.veeq, linalg.maeq.

linalg.veeq (a, b)

This function checks vector a and vector b. for strict equality. The return is either frue
or false.

See also: == metamethod, linalg.meeq, linalg.vaeq.

linalg.vmap (f, v [, ---])

This operator maps a function f to all the components in vector v .and returns a new
vector. The function f must return only one value.

If function f has only one argument, then only the functfion and the vector are
passed to linalg.vmap. If the function has more than one argument, then all
arguments except the first are passed right after the name of the vector.

Examples:

> vmap(<< x -> x"2 >>, vector(l, 2, 3)):
[1,4,9]

> vmap(<< (x, y) -> x >y >>, vector(1, 0, 1), 0): #0 fory
[true, false, true]

See also: linalg.vzip, linalg.mmap, linalg.mzip.

linalg.vzip (f, v1, v2 [, ---])

This function zips together two vectors by applying the function f to each of ifs
respective components. The result is a new vector v where each element VK] is
determined by VK] := f(vi[k], v2[K]).

vl and v2 must have the same dimension. The third to last argument to f must be
given right after v2.

See also: linalg.vmap, linalg.vzip, linalg.mmap.

linalg.zero (n)

Creates a zero vector of length n with all its components physically set to 0. If you
want to create a sparse zero vector of dimension n, use: linalg.vector(n, [])

agena >> 301

7.13 stats - Statistics

This package contains procedures for statistical calculations and operates
completely on tables. As a plus package, it is not part of the standard distribution
and must be activated with the import statement, e.g. import stats

You might want to use utils.readcsv to read distrioutions from a file.

Summary of functions:
Averages:
stats.amean, stats.ema, stats.gema, stats.gmean, stats.gsma, stats.gsmm,
stats.nmean, stats.median, stats.mean, stats.gmean, stats.sma, stats.smm,
stats.tfimmean.
Combinations:
stats.numbcomb, stats.numbperm.
Deviations:
stafs.ad, stats.chauvenet, stats.ios, stats.mad, stafs.sd, stats.ssd, stats.var.
Density:
stats.cdf, stats.nde, stats.ndf, stats.pdf.
Extrema:
stats.colnorm, stats.extrema, stats.minmax, stats.rownorm, stats.smallest.
Occurrences:
stats.countentries , stats.mode, stats.obcount, stats.obpart.
Ranges:
stats.igr, stats.percentile, stats.prange ., stats.quartiles .

Sums:

gsadd, sadd, stats.cumsum, stats.fsum, stats.kosumdata, stats.moment,
stats.sum, stats.sumdata, stats.var.

302 7 Standard Libraries

Miscellaneous:

stats.acf, stats.acv, stats.dbscan, stats.deltalist, stats.fprod, stats.herfindanl,
stats.issorted, stats.neighbours, stats.scale, stats.skewness, stats.sorted,
stats.tovals.

The functions:

stats.acf (obj, lag, [, option])

Returns the autocorrelation of a distriobution obj (a table or sequence) of numbers at
a given lag , a non-negative integer. If any third argument option is passed, then
the un-normalised autocorrelation is returned. The return is a number:

n-lag

Z% (0B}, - 4)(Oliio5)
i =

where n is the numlber of observations, and uis the arithmetic mean of the
distribution. If no option is passed, the sum is divided by the variance of obj
multiplied by n, yielding a normalised result. The function uses Kahan-Ozawa
round-off error prevention.

See also: stats.acyv.

stats.acv (obj, p, [, option])

Depending on the type of the olbservation obj , retuns a table or sequence of
autocorrelations starfing with lag = 0, through and including the given number p of
lags. If any third argument option is passed, then un-normalised autocorrelations
are returned. For the formula and numeric method used, see stats.acf.

stats.ad (obj [, option])

Computes the absolute (or mean) deviation of all the values in a table or sequence
obj , i.e. the mean of the equally likely albsolute deviations from the arithmetic
mean u:

n
1 .
ﬁ21|0bli 'ﬂ|
i =

The return is a number.

If any second non-null argument is given, then the variation coefficient is returned:

|obj, —u| / |]

1
n

n
i=1

agena >> 303

Absolute deviation is more robust than standard deviation since it is less sensitive to
outliers. The function uses Kahan-Ozawa round-off error prevention.

If obj is empty or entirely consists of undefineds, fail is returned. The function ignores
undefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

The function retumns fail if obj contains less than two elements.

See also: stats.ios, stats.mad, stats.sd.

stats.amean (obj)

Divides each element in a table or sequence obj by the size of obj and sums up
the quotients to finally return the arithmetic mean. It is equivalent to:

., obj,

By dividing each element before summation, the function avoids arithmetic
overflows and also uses a modified Kahan algorithm developed by Kazufumi
Ozawa published in his paper "Analysis and Improvement of Kahan's Summation
Algorithm™ to prevent round-off errors during summation. Thus the function is more
robust but also significantly slower than stats.mean.

If obj is table, it is assumed to be an array, non-positive integral keys (including
strings, etc.) are ignored.

The function retumns fail if obj contains less than two elements.

If obj is empty or entirely consists of undefineds, fail is returned. The function ignores
undefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

See also: stats.gmean, stats.hmean, stats.mean, stats.gmean, stats.smaq,
stats.trimmean.

304 7 Standard Libraries

stats.cdf (a, b[, [1) u o

Computes the cumulative density function between the lower bound a and the
upper bound b. If the mean u is not given, it defaults to O; if the standard deviation
g is not given, it defaults to 1.

The return is the number:

~(x)?
e 202

Q=0

ovJ2n

See also: stats.nde, stats.ndf, stats.pdf.

stats.chauvenet (obj [, x] [, option, ---])

Receives a table or sequence obj of normally distributed numbers and checks
them for outliers using the formula:

p:=n*erfc((| x-ul| /dev),

where n is the number of observations in a distrioution, x a sample of it, u the
n .
obj; n
arithmetic mean x4 = 2,1 dev the standard deviation sd = \/ 13 (obj) .
i =T =

If at least obj and x is given, the function checks whether the number x is an outlier
by conducting a 1-pass check and returns true or false.

If obj but not x is passed, however, the procedure iterates obj again and again as
long as it does not find an outlier, and returns the outliers in a structure, its type
defined by the type of obj .

By default, if p < 0.5, where 0.5 is the magical Chauvenet number, an outlier is
detected. If you pass the option bailout =c, then ¢, a non-negative number, will
be the threshold.

If you pass the option jump =true, as soon as an outlier is detected, it is removed
from the distribution and then the whole evaluation process is restarted immediately
with a reduced distribution along with a re-computed mean and deviation.

If you do not, all remaining items are also checked according to the current criteria
- after the last item has been checked, only then the outliers are removed from the
distrioution, the mean and deviation are re-computed and another iteration begins.

If you pass the option mean=f, where f is a procedure, then the mean u is
determined by f. The default is f = stats.amean, i.e. the arithmetic mean.

agena >> 305

If you pass the option dev =f, where f is a procedure, then the deviation dev is
determined by f. The default is f = statfs.sd, the standard deviation.

if you pass the option outlier="lower' Or outlier='upper' ., then the function only
checks for lower or upper outliers, respectively.

Further information: "Cleaning Data the Chauvenet Way', by Lily Lin and Paul D.
Sherman, published af the South East SAS Users Group's website
http://www.sesug.org.

The function is implemented in Agena and included in the lib/stats.agn file.

stats.colnorm (obj)

Returns the largest absolute value of the numbers in the table or sequence obj ,
and the original value with the largest absolute magnitude. If obj includes
undefineds, they are ignored. If the structure obj consists entirely of one or more
undefineds, then the function returns the value undefined twice. If the structure is
empty, fail is returned.

See also: stats.scale, stats.rownorm.

stats.countentries (obj [, f [, ---]])

Counts the number of occurrences of each entry in a table or sequence obj and
returns a dictionary with its respective key the entry and its value the numlber of
occurrences.

You might opftionally pass a procedure f to be mapped on the structure before
counting begins on the thus modified structure. If f has more than one argument,
then its second to last argument must be given right after f .

The function is implemented in Agena and included in the lib/stats.agn file.

See also: countitems, bags package.

stats.cumsum (obj)

Returns a structure of the cumulative sums of the numbers in the table or sequence
obj .

The type of return is determined by the type of obj .

The function returns fail if obj contains less than one element. It may also return a
structure containing undefined and/or infinity if obj iNCludes non-numbers.

See also: sadd, calc.fsum, stats.fsum, stats.sum.

306 7 Standard Libraries

stats.dbscan (obj, eps, minpts [, option])

The functions finds clusters in a sequence obj of n-dimensional points and returns a
table with the individual clusters along with their respective points.

It also returns a reqister of the size of the whole distribution listing the cluster number
associated with each point, where the point in this case is represented by its integral
position in the sequence obj .

The co-ordinates of points in obj mMay be represented by pairs (2-dimensional
space, only), sequences (any space), or vectors created by linalg.vector (any
space).

eps IS the maximum allowed distance between two points that shall belong to the
same neighbourhood. minpts is the minimum number of points that shall constitute
a neighbourhood.

By specifying the 'select’ option along with a function retfuning a Boolean, e.g.
'select':<< x -> right x < 1 >> ., only points satisfying the given criterion are
examined.

By specifying the 'method’ opftion, you can control how the function determines
clusters: 'method"'original’ uses the classic one, 'method':'modified' uses a
much faster and memory-saving implementation that contrary to the original
method immediately flags neighloours of neighbbours as being visited and thus does
not examine them again in further passes. The default is ‘original’

stats.deltalist (obj [, option])

Returns a structure of the deltas of neighbouring elements in the table or sequence
obj . If the value true is given as an option, then absolute differences are returned.

The type of return is determined by the type of obj .

Please note that the difference between undefined and a number is undefined,
and that the difference between infinity and a number is tinfinity.

The function retumns fail if obj contains less than two elements.

See also: stats.ios.

stats.ema (obj, k, alpha [, mode [, yOstar]])

Computes the exponential moving average of a table or sequence obj up to and
including its k-th element.

The smoothing factor alpha is a rational numiber in the range [0, 1].

agena >> 307

The function supports two algorithms: If mode is 1 (the default), then the algorithm

r ;= alpha * obj[K];

s:=1 - alpha;

forifromk-1to1by-1do
r:=r+alpha*s”i*obji

od;

r:=r+s”k*y0Ostar;

is used to compute the result r. In mode 1, you can pass an explicit first estimate
yostar , otherwise the first value yostar is equal o the sample moving average of
obj . If mode is 2, then the formula

r:= obj[k];
forifromk-1to1by-1do

r:=r+ alpha * (obj[i] - r)
od;

is applied.
The result is a number.

See also: stats.gema.

stats.extrema (obj, delta)

Expects a sequence or table obj of points X:yx and the number delta and
determines the local minima and maxima.

A value vy is considered an extrema if the difference to its surounding is atf least
delta . The function returns two structures of pairs, i.e. points, the first one including
the local minima, the second one the local maxima.

The type of the structures is determined by the type of obj .

The function is implemented in Agena and included in the lib/stats.agn file.

stats.fprod (f, obj [a [, b [, ---]])

Applies the function f onto all elements in the table or sequence obj and then
multiplies the results. The return is the number:

b
T T iooi
I=a

If a is not given, a is set to 1. If b is not given, b is set to the number of elements in
obj . If f is a multivariate function, its second, third, etc. argument must be passed
after b.

See also: calc.fsum, stats.fsum, stats.sum.

308 7 Standard Libraries

stats.fsum (f, obj[a [, b [, ---]])

Applies the function f onto all elements in the table or sequence obj and then
sums up the results using Kahan-Ozawa round-off error prevention. The return is the
number:

b
2. f(obi)
I=d

If a is not given, a is set fo 1. If b is not given, b is setf to the number of elements in
obj . If f is a multivariate function, its second, third, etc. argument must be passed
after b.

See also: calc.fsum, stats.forod, stats.sum.

stats.gema (obj, k, alpha [, mode [, yOstar]])

Like stats.emaq, but returns a function that, each fime it is called, retuns the
exponential moving average, starting with sample obj [1], and progressing with
sample obj [2], obj [3], etc. with subsequent calls. It return null if there are no more
samples in obj . It is much faster than stats.ema with large distributions.

The smoothing factor alpha is a rational numiber in the range [0, 1].

The function supports two algorithms: If mode is 1 (the default), then the algorithm

r := alpha * obj[K];

s:=1 - alpha;

forifromk-1to1by-1do
r:=r+alpha*s”"i*obji

od;

r:=r+s”k*yOstar;

is used to compute the result. In mode 1, you can pass an explicit first estimate
yostar , otherwise the first value yostar is equal o the sample moving average of
obj .

If mode is 2, then the formula

r := obj[k];
forifromk-1to1by-1do
r:=r + alpha * (obj[i] - r)
od;

is applied to the period.

The result is a number.

agena >> 309

stats.gini (obj [, 'sorted)

Measures the inequality in a population given by the table or sequence obj by
applying Gini's formula

n n
2] Z] I - x|/ 2n%u,
| = =

J
where n is the number of occurrences and u the arithmetic mean.

All members of the population should be numbers. infinity's or undefined's are
ignored.

It returns a number r indicating the absolute mean of the difference between every
pair of observations, divided by the arithmetic mean of the population, with 0 <r< 1
. Where 0 indicates that all observations are equal, and (a theoretical value of) 1
indicates complete inequality. It is assumed that all observations are non-negative.

If the option 'sorted” is given then the function assumes that all elements in obj are
already sorted in ascending order - thus computing the result much faster.

See also: stats.herfindahl .

stats.gmean (obj [, true])

Returns the geometric mean of all numeric values in table or sequence obj . It is a
measure of central tendency. Its formula is:

(Ilf][Oij]/n

If the second argument, the Boolean true is not given, the return is a number if No
element in obj is negative, else the return is a complex number since in this case
Agena conducts complex multiplication.

If the value true is given as the second argument, the refumn will always be a
numiber as real multiplication is applied. The function is much faster when giving this
option,

The function retumns fail if obj contains less than two elements.

The geometric mean should be applied on positive values that are interpreted to
their products, e.g. rates of growth, instead of their sums.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.amean, stats.hmean, stats.mean, stats.gmean.

310 7 Standard Libraries

stats.gsma (obj, k, p)
stats.gsma (obj, k, p, b)

Like stats.sma, but retuns a function that, each fime it is called, returns the simple
moving mean, starting with sample k, and progressing with sample k+1, k+2, efc.
If k > size obj , then the function returns null. It is much faster than stats.sma with
large distributions.

stats.gsmm (obj, k, p)

stats.gsmm (obj, k, p, b)

Like stats.smm, but returns a function that, each time it is called, returns the simple
moving median, starting with sample k, and progressing with sample k+1, k+2,
efc. If k > size(obj), then the function returns null. It is much faster than stats.smm
with large distributions.

stats.herfindahl (obj)

Retuns the normalised Herfindahl-Hirschman index of a distrioution obj (of type
table or sequence), an indicator of the amount of competition in economy. A
value of 0 means that there is absolute competition, i.e. that all companies have
the same share, and 1 means that there is a monopoly.

The normalised index h is defined as:

H-1
H_Z() wheres—zoblujh—l 152

i=1 i=1

It is also a good measure to determine the stability of a distribution, with a value
tending fo zero indicating that the numlber of outliers is quite low, and a value
tending to 1 that there is af least an extreme outlier.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.gini.

stats.hmean (obj)

Returns the harmonic mean of all numeric values in table or sequence obj as A
number. It is useful with rates and ratios, as it provides the best average. It is defined
as follows:

The function retumns fail if obj contains less than two elements.

agena >> 311

The harmonic mean should be applied on observations containing relations to a
unit, e.g. speed.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.amean, stats.gmean, stats.mean, stats.gmean.

stats.ios (obj [, option])

Sums up absolute differences between neighbouring entries in a table or sequence
obj , divides by the number of its elements minus 1, and returns the number:

n
n]——1 ,22 |Obji_0bji—1|
i =

The function retumns fail if obj contains less than two elements.

If any second non-null argument is given, the function first normalises the distribution
fo the range (-», 1] (see stats.scale), determines the difference list, sums up ifs
absolute differences and divides the sum by the number of occurrences minus 1 to
make a distribution comparable to other ones.

This indicator is quite useful to find out how stable or volatile a preferably unsorted
distrioution is.

See also: stats.ad, stats.deltalist, stats,sd, stats.var.

stats.igr (obj [, a [, b]])
Without a and b given, the function determines the intferquartile range (IQR), i.e. the
difference of the third and first quartile. igr is useful for determining the variability in a
distrioution obj (a table or sequence).
You may optionally pass a lower and upper percentile a, b, both in the range [0,
100). If a'is missing, it is set to 25. If b is missing it is set to 100 -a .
It returns the number

stats.percentile (obj , b) - stats.percentile (obj , a)
The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.percentile, stats.quartiles.

312 7 Standard Libraries

stats.issorted (obj [, f])

Checks whether all values in a table or sequence obj of numbers are stored in
ascending order and refumns true or false. If a value in obj is Not a number, it is
ignored.

If obj is a table, you have to make sure that it does not contain holes. If it contains
holes, apply tables.entries on obj .

If £ is given, then it must be a function that receives two structure elements to
determine the sorting order. See sort for further information.

See also: sort, sorted, skycrane.sorted, stats.sorted.

stats.kosumdata (obj [, p [, X m])
Like stats.sumdata, but uses Kahan-Ozawa round-off error prevention.

stats.mad (obj [, option])
Returns the median of the absolute deviations of all numeric values in table or
sequence obj from obj 's median, and returns the number:
size obj
stafs.median(\/ |obji - stats.median(obj) |).
i=1
If any second non-null argument is given, then the variation coefficient is returned:

Size obj

stats.median(| obj, - stats.median(obj) |) / stats.median(obj).
i=1

Median absolute deviation is quite robust if a distrioution contains a small number of
outliers.

If obj is unsorted, it automatically sors it before determining the result.

If obj contains less than two elements or entirely consists of undefineds, fail is
returned. The function ignores undefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

See also: stats.ad, stats.median.

agena >> 313

stats.median (obj)

Returns the median of all numeric values in table or sequence obj as a number. If
obj is unsorted, it automatically sorts it before determining the median.

If obj contains less than two elements or entirely consists of undefineds, fail is
returned. The function ignores undefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

The median is the middle element of a distrioution if its size is odd, or the average
of its middle elements it is size is even.

See also: stats.mad, stats.meanmed.

stats.mean (obj)

Returns the arithmetic mean of all numeric values in table or sequence obj as a
number. It is equivalent fo:

n
1 :
ﬁZOin
i=1
If obj is table, it is assumed to be an array, non-positive integral keys (including
strings, etc.) are ignored.
The function retumns fail if obj contains less than two elements.
For a more robust but slower version, please have a look at stats.amean.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.amean, stats.gmean, stats.nmean, stats.meanmed, stats.gmean.

stats.meanmed (obj [, option])

Returns both the arithmetic mean and the median of all numeric values in table or
seqguence obj as numbers. If any option is given, the quotient of the mean and the
median is returned.

See also: stats.amean, stats.median.

stats.minmax (obj [, 'sorted])

Returns a table with the minimum of all numeric values in table or sequence obj as
the first value, and the maximum as the second value. If the option 'sorted' is

314 7 Standard Libraries

passed than the function assumes that all values in obj are sorted in ascending
order so that execution is much faster.

stats.minmax returns fail if a sequence or table of less than two elements has been
passed. If obj consists entirely of undefined entries, [—w,] Or seq(—w,) are
returned.

stats.mode (obj)

Retuns all values in the sequence or table obj with the largest number of
occurrence, i.e. highest frequency. If there is more than one value with the highest
frequency, they are all returned.

The type of return is determined by the type of its argument. If the given structure is
empty, it is simply returned.

The function is implemented in Agena and included in the lib/stats.agn file.

stats.moment (obj [, p [, x m])

Computes the moment p of the given table or sequence obj about any origin x., for
a full population and returns a number. It is equivalent to:

n
%Z:] (obj, —x

If only obj is given, the moment p defaults to 1, and the origin x,, defaults to 0. If
given, the moment p and the origin x, must be numbers. If obj is empty, fail is
returned.

See also: stats.kosumdata, stats.sumdata.

stats.nde (x[, [., [1) u g
~(x)?
Computese 202 ; 1 and ¢ default to 0 and 1, respectively.

See also: stats.ndf, stats.pdf.

stats.ndf ([]) o

| T , 1 . : :
Computes _\/ﬂ if o is not given, and o Iom otherwise, and issues an error if ¢ <0.

See also: stats.nde, stats.pdf.

agena >> 315

stats.neighbours (obj, idx, eps [, power [, indices m

Determines all neighbours of a given n-dimensional point in a distribution obj that lie
in a certain Euclidian distance eps. idx is the position of the point of interest in the
distribution - a positive integer -, and not the point itself. eps is any positive number,
power iS A positive integer with which the respective Euclidean distances and eps
shall be raised before a comparison is conducted, its default is 2.

The return is a sequence with the nearby points. If the fifth argument indices is true,
however, then not the points but their positions in the distrioution are returned.

The points may be represented either as pairs (2-dimensional space), sequences of
coordinates (n-dimensional space), or any n-dimensional vectors created by the
linalg.vector function.

See also: linalg.norm, stats.dbscan.

stats.numbcomb (n, r)
stats.numbcomb (s, r)

In the first form, counts the number of combinations of n things taken r at a time. In
the second form, the function counts the number of combinations all the elements
in the set s taken r at a time. The set may include data of any type.

If n or r are non-integral or negative, the function returns undefined.
The function is implemented in Agena and included in the lib/stats.agn file.

See also: binomial, fact, stats.numbperm.

stats.numbperm (n, r)
stats.numbperm (s, r)

In the first form, counts the number of permutations of n things taken r at a fime. In
the second form, the function counts the numiber of permutations all the elements
in the set s taken r at a time. The set may include data of any type.

If n or r are non-integral or negative, the function returns undefined.
The function is implemented in Agena and included in the lib/stats.agn file.

See also: binomial, fact, stats.numbcomb .

stats.obcount (s, p, n)

Divides a numeric range defined by the pair p and its step size n info its subintervals,
sorts all occurrences in the distribution s (@ sequence) into these subranges and
finally counts all elements in these subranges.

316 7 Standard Libraries

The function returns a table with the keys the respective left borders of the
subranges and the values the number of counts in the respective subranges. It
always also returns a second table which may include all those elements in s which
are not part of the overall range defined by p. If all numbers in s fit into p, an empty
table is returned.

If an element in s equals the right border of a subinterval, then it is considered to be
part of the next subinterval. But if an element in s equals the right border of the
overall interval p, it is considered part of the last subinterval,

The function issues an error if it encounters a non-number in s, or if the left border in
p is greater or equals to the right border in p.

The function is implemented in Agena and included in the lib/stats.agn file.

An example:

>s:=seq(0.1,0.2,0.3,0.4,1,1.1, 2, 2.1);

> stats.obcount(s, 0:2, 1):
[0~4,1~3] [2.1]

See also: stats.obpart.

stats.obpart (s, p, n [, f [, g])

The function sors occurrences into subintervals. It divides a numeric range defined
by the pair p and its step size n into its subintervals, and sorts all occurrences in the
distrioution s (a sequence) into these subranges.

If the fourth argument f, a function, is given, then an occurrence or a part of an
occurrence is first converted according to the function definition before the correct
subinterval is being determined.

If the fifth argument g, a function, is given, then it is applied on an occurrence or
part of it before it is inserted into the subinterval that already has been determined.

The function returns a table with the keys the respective left borders of the
subranges and the values sequences with the respective occurrences. It always
also returns a second table which may include all those elements in s which are not
part of the overall range defined by p.

If an element in s equals the right border of a subinterval, then it is considered to be
part of the next subinterval. But if an element in s equals the right border of the
overall interval p, it is considered part of the last subinterval,

The function issues an error if a distrioution or part of it is not or could not be
converted o a number, or if the left border in p is greater or equals to the right
border in p.

agena >> 317

The function is implemented in Agena and included in the lib/stats.agn file.
See also: statfs.obcount.

Examples:

>s:=seq(l.1, 1.2, 2.4, 2.5, 2.6, 3.1);

> stats.obpart(s, 1:4, 1):
[seq(1.1, 1.2), seq(2.4, 2.5, 2.6), seq(3.1)]]

Given are time stamps and running times in seconds:

> s :=se(('12:30:05.017"3, '12:31:57.235"4);

To convert a fime stamp into its decimal representation, so that stats.obpart can
sorf an occurrence into a subinterval, we define the following function:

> import clock

f:=proc(x) is
local hrs, min, sec;
hrs, min, sec :=
strings.match(left(x), '(%d%d):(%6d%d):(%d%d \.%d%d%d)");
return clock.todec(clock.tm(# returns a numb er
tonumber(hrs), tonumber(min), tonumber(sec))
end;

VVVYVYVYVYV

> stats.obpart(s, 12.4:12.6, 1/60, f):
[12.4 ~ seq(), ..., 12.5 ~ seq(12:30:05.017:3),
12.516667 ~ seq(12:31:57.235:4), ...] [

We only want to insert the running times in milliseconds, but not the fime stamps:
> g = << X -> right(x)*1k >>;

> stats.obpart(s, 12.4:12.6, 1/60, f, g):
[12.4 ~ seq(), ..., 12.5 ~ seq(3000), 12.516667 ~ s €q(4000), ...]]

See also: stats.obcount.

stats.pdf (x [, [, Mu o

Computes the probability density function for the normal distribution at the numeric
value x. The defaults are x4 = 0O, with standard deviatfion ¢ = 1, thus determining
the standard normal distribution.

The return is the number:

~(x)
e 202

021

See also: stats.cdf, stats.nde, stats.ndf.

318 7 Standard Libraries

stats.percentile (obj, p [, option])

Returns the value below which a certain percent p of the elements in obj fall.

obj must be a table or sequence, p an integer in the range 0 < p < 100. If no
option is given, then the percentile is determined by computing the nearest rank
(rank = p/100 * size obj + V2, Wikpedia method"). If option is the string 'nist
then the method proposed by NIST is used (rank = p/100 * (size obj + 1)); if the
string 'excel' is given for option , then the algorithm used by Excel is used (rank =
p/100*(size obj -1) + 1).

The function issues an error if obj is empty. It is implemented in Agena and included
in the lib/stats.agn file.

See also: whereis, stats.quartiles .

stats.prange (obj [, a [, b]])

Returns all elements in a table or sequence obj from the a-th percentile rank up but
not including the b-th percentile rank. a and b must be positive integers in the range
[0 .. 100). If a and b are not given, a is set to 25, and b to 75. If b is not given, it is set
to 100 - a. The type of return is determined by the type of obj . If the elements in obj
are not sorfed in ascending order, the function automatically sorts them
non-destructively, and any non-numeric values are converted to zeros.

stats.gmean (obj)

Returns the quadratic mean of all numeric values in table or sequence obj as a
number. If obj is table, it is assumed to be an array, non-positive infegral keys
(including strings, etc.) are ignored. It can be used to measure the magnitude of a
quantity which variates are positive and negative, e.g. sinusoids.

It is equivalent to:

n
obj?
=

1
n N

|
The function retumns fail if obj contains less than two elements.
The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.amean, stats.gmean, stats.nmean, stats.mean.

stats.quartiles (obj)
stats.quartiles (obj [, pos])
In the first form, it returns the first, second, and third quartile of a sorfed table or

sequence obj . The first and third quarties are computed according to the
"Wikipedia method ", see stats.percentile for further information.

agena >> 319

It also determines the lower outlier limit L, where L, = first quartile - 1.5 fimes the
interquartile range of obj , and the upper outlier limit U,, where U, = third quartile +
1.5 fimes the interquartile range of obj . If a value x in obj is equal fo L, or Uy, then x
is returned. If Ly is not included in obj , then the next largest value to L, is returned. If
U, is not included in obj , then the next smallest value to U, is computed. The order
is: first quartile, median, third quartile, "L; ", and "U; .

In the second form, if either the integer 1, 2, or 3 is passed for the optional second
argument pos, the first second, or third quartie is returned as a number,
respectively.

The number of values in obj should be at least 12, better are 20 or more values.
The function is implemented in Agena and included in the lib/stats.agn file.

See also: whereis, stats.percentile .

stats.rownorm (obj)

Returns the sum of the absolute values of the numibers in the table or sequence
obj . If obj includes undefineds, they are ignored. If the structure consists entirely of
one or more undefineds, then the function returns undefined. If the structure is
empty, fail is returned.

See also: stats.scale, stats.colnorm.

stats.scale (obj [, option])

The procedure normalises the numbers in the table or sequence obj in such a way
that an element of maximum absolute value equals 1, thus scaling a distrioution to
the range (i «o, 1] by dividing all observations by this maximum element.

When given a second opfion, the function normalises all ifs observations to the
range [0, 1]. See math.norm for further details.

The normalised numbers are returned in a new table or sequence, depending on
the type of obj .

If the maximum absolute value is O, the function refurns fail.
See also: math.norm, linalg.scale.

stats.sd (obj [, option])

Returns the standard deviation of all numeric values in table or sequence obj as A
number. If obj is a table, it is assumed to be an array, non-positive infegral keys
(including strings, etc.) are ignored. It is described by the formula:

320 7 Standard Libraries

n) 2
[2001~
where y is the arithmetic mean of a distribution.
If the return is a small number, it indicates that the points in a distribution are close
fo its mean m. A large value indicates that its points are rather spread out. Contrary
to variance, standard deviation is expressed in the same units as the data.
Standard deviation is less robust to outliers than absolute deviation.

The function retumns fail if obj contains less than two elements.

If any second non-null argument is given, then the variation coefficient is returned:

n , 2
[200" 1
The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.ad, stats.chauvenet, stats.ios, stats.mad, stats.ssd, stats.var.

stats.skewness (obj)

Returns the sample skewness, a measure of the asymmetry of the probability
distribution of the numeric values in the table or sequence obj ; returns O if A
distribution is symmetric; a negative value if the left tail is longer; and a positive
value if the right tail is longer.

It computes the third moment about the mean and divides it by the third power of
the standard deviation.

The function retumns fail if obj contains less than two elements.

The function is implemented in Agena and included in the lib/stats.agn file.

stats.sma (obj, k, p)
stats.sma (obj, k, p, b)

In the first form, computes the simple moving average of a table or sequence obj
by averaging the last p numbers from the structure (p is also known as the "period)
including sample k, i.e.:

K

1
I Z obji (financial form)
i = k—p+1

agena >> 321

In the second form, by passing the Boolean value frue for argument b, the mean is
taken from an equal number of values on either side of k, including k. Thus p must
e an odd number:

k+p\2

1
9 2 obji (scientific form)
| =k-p\2

It returns undefined, if either the left or right end of the sublist to be evaluated is not
part of obj . The function does not accept structures including the value undefined.

By dividing each element before summation, the function avoids arithmetic
overflows and also uses a modified Kahan algorithm developed by Kazufumi
Ozawa to prevent round-off errors during summation.

stats.gsma is the iterator version of this function which traverses large distributions
much faster.

See also: stats.amean, stats.gsma, stats.gsmm, stats.smm.

stats.smallest (obj [, k])

Returns the k-th smallest element in the numeric table or sequence obj . If k is not
given, itis setto 1.

stats.smm (obj, k, p)
stats.smm (obj, k, p, b)

In the first form, computes the simple moving median of a table or sequence obj
by sorting the last p numbers from the structure (p is also known as the "period)
including sample k, and then taking its median.

In the second form, by passing the Boolean value true for argument b, the simple
mMoving median is determined by sorting an equal number of values on either side
of k, including k, and then taking the median. Thus p must be an odd number.

The function is more robust than stats.sma 1o outliers in a period.

It returns undefined, if either the left or right end of the sublist to be evaluated is not
part of obj . The function does not accept structures including the value undefined.

stats.gsmm is the iterator version of this function which fraverses large distributions
much faster.

See also: stats.amean, stats.gsma, stats.gsmm, stafs.sma.

322 7 Standard Libraries

stats.sorted (obj [, true] [, options])

Sorts the table or sequence obj of numbers in ascending order and
non-destructively up to and around twice as fast as sort if the structure contains
(around) more than seven elements. It also ignores undefined's. The type of return is
defined by the type of the input.

If an element in obj is Not a number, it is replaced with the numiber O before sorting.

By default, the function internally uses a recursive implementation of the Quicksort
algorithm combined with a fallback to Heapsort in ill-conditioned situations, called
Introsort.

You may exclusively use an iterative variant of the Quicksort algorithm by passing
the second argument frue or the string 'pixelsort' . which may be faster on some
older systems, especially with elements in completely random or in (nearly)
ascending order. If the option 'nrquicksort' is given, an alternative non-recursive
algorithm described by Niklaus Wirth is being used. If the option 'heapsort' is
passed, the function uses the Heapsort algorithm.

See also: sort, sorted, skycrane.sorted, stats.issorted.

stats.ssd (obj)

Returns the sample standard deviation of all numeric values in table or sequence
obj as a number. If obj is a table, it is assumed to be an array, non-positive integral
keys (including strings, etc.) are ignored. It is described by the formula:

\/n]T gn]l(obii 1)

where u is the arithmetic mean of a distribution.

The function retumns fail if obj contains less than two elements.
The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.ad, stats.sd, stats.var.

agena >> 323

stats.sum (obj)

stats.sum (f, obj [, ---])

Sums up all the values of the given table or sequence obj and retumns the sum (a
number). Contfrary to the sadd operator, it prevents round-off errors during
summation. It is equivalent to:

n
Y. obj

i=1

In the second form, if a function f is given, it only sums up the values in obj
satisfying f, which should return a Boolean. If f has more than one argument, then
its second to last argument must be given right after obj .

Examples:

> import stats;

> stats.sum(<< x -> x > 2 >>, seq(1, 2, 3, 4)):
7

> stats.sum(<< x, y -> x+y > 2 >> se((1, 2, 3, 4), 1):
9

See also: sadd, calc.fsum, stats.cumsum, stats.fsum.

stats.sumdata (obj [, p [, x m])

Sums up all the powers p of the given table or sequence obj of n elements about
the origin x,and retumns a number. It is equivalent fo:

i§ (Obji - Xm>p

If only obj is given, the power p defaults to 1, and the origin x,, defaults to 0. If given,
p and x,, Must be numbers. If obj is empty, the function returns fail.

See also: stats.kosumdata, stats.moment.

324 7 Standard Libraries

stats.tovals (obj)

Converts all string values in the sfructure obj 10 Agena numbers and returns a new
structure. The type of return is determined by the type of obj .

If a string in obj cannot be converted to a number or if a value in obj is already a
number, it is included unchanged into the resulting structure. If an element in obj s
neither a string nor number, fail is inserted instead.

stats.trimmean (obj, f)

Returns the arithmetic mean of the interior of a distribution obj (of type table or
sequence), where the number f < [0, 1) determines the fraction of the data that is
to be excluded from the margins.

The number p of data to be excluded from obj is always rounded down to the
nearest even numiber. The function then does not take into account p/2 points from
the left margin and p/2 points from the right margin when calculating the average
using Kahan-Ozawa round-off error prevention. The function does not sort the
distribution.

The retun is a number. It retuns fail, if the distribution includes less than two
elements.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.amean.

stats.var (obj)

Returns the variance of all numeric values in table or sequence obj as a number. If
obj is a table, it is assumed to be an array, non-positive integral keys (including
strings, efc.) are ignored. The variance is defined as follows, u is the arithmetic
mean of a distribution:

n
1 _ 2
ﬁz]:(Oin - 11)
1=
The function retumns fail if obj contains less than two elements,

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.ad, stats.ios, stats.mad, stats.sd.

agena >> 325

stats.zscore (obj)

Returns a univariate function "z(x)* computing the z-score (standard score) of a
sample x in the table or sequence obj - the numiber of standard deviations x is
above or below the mean according to the formula: z(x) = (X - w)/d, where u
denotes the arithmetic mean of obj , and ¢ its standard deviation.

The resulting function refumns a positive number if x is above the mean and a
negative number if it is below. It does, however, not check whether x is part of obj .
The result is computed using Kahan-Ozawa round-off error prevention for pand 6.

The function is implemented in Agena and included in the lib/stats.agn file.

326

7 Standard Libraries

7.14 io - Input and Output Facilities

The I/O library provides two ways for file manipulation.

Summary of functions:
Opening and closing files:
io.open, io.close.
Reading data:
io.input, io.lines, io.read, io.readfile, io.readlines.
Wiriting data:
io.output, io.write, io.writefile, io.writelines .
File positions:
io.eof, io.filepos, io.move, io.seek, io.skiplines.
File locking:
jo.lock, io.unlock.
File buffering:
io.setvbuf, io.sync
Inferaction with applications:
io.pcall, io.popen, io.close.
Keyboard interaction:
io.anykey, io.getkey.
Windows cliplboard interaction
io.getclip, io.putclip.

Miscellaneous:

io.isfdesc, io.fileno, io.filesize, io.isopen, io.nlines, io.tmpfile, io.truncate.

agena >> 327

Usage:

1.

The first one uses file handles; that is, there are operations 1o set a default input
fle and a default output file, and all input/output operations are over these
default files. File handles are values of type userdata and are used as in the
following example:

Open a file and store the file handle to the name fh .

> fh := i0.open('d:/agena/src/change.log’):
file(7803A6F0)

Read 10 characters:

> io.read(fh, 10):
Change Log

Close the file:

> io.close(th):
true

In the following descriptions of the io functions, file handles are indicated with
the argument filehandle

The table io provides three predefined file handles with their usual meanings
from C: io.stdin , io.stdout , And io.stderr

The second style uses file names passed as stings like
'd:/agena/lib/library.agn’ . File names are always indicated with the
argument filename in this chapter.

Unless otherwise stated, all I/O functions return null on failure (plus an error message
as a second result) and some value different from null on success.

io.anykey ()

Checks whether a key is being pressed and returns either true or false. A common
usage is as follows:

> while io.anykey() = false do od; # wait until a k ey has been pressed

The function works in the Solaris, Linux, Lion, and Windows editions only. On Lion, the
function sometimes echoes the key being pressed. On other systems, it returns fail.

See also: io.getkey, io.read.

328 7 Standard Libraries

io.close ([filehandle, ---])

Closes one or more files. Note that files are automatically closed when their handles
are garbage collected, but that takes an unpredictable amount of time to
happen.

Without a filehandle , closes the default output file.

The function also deletes the file handles and the corresponding filenames from the
io.openfiles table if the files could e properly closed.

See also: i0.open, io.popen.

io.eof (filehandle)

Checks whether the end of the file denoted by filehandle has been reached and
returns true or false.

io.fileno (filehandle)

Retuns the file descriptor, an integer, associated with the stream referenced by
flehandle , which is of type userdata/file. It is useful for informative purposes, only.
The return cannot be used as a sulstitute 1o filehandle in calls to io functions, and
which require a handle of type userdataffile .

The function issues an error if filehandle is not of type userdata/file or if does not
reference an open file.

See also: io.isfdesc.

io.filepos (filehandle)

Returns the current position in the file denoted by its file handle filehandle , and
returns a non-negative number.

See also: io.seek.

io.filesize (filehandle)

Returns the size of an open file denoted by its file handle filehandle and returns the
numiber of bytes as a non-negative integer.

io.getclip ()

Returns the contents of the Windows clipboard as a string. If the clipbboard could not
e accessed, it retumns fail plus an error string. It also retumns fail and an error string, if
the clipbboard contains a binary object.

agena >> 329

The function is available in the Windows edition only.

See also: io.putclip.

io.getkey ()
Waits until a key is pressed and returns its ASCIl numiber.

The function is available in the Solaris, Linux, Mac OS X, and Windows editions only.

See also: io.anykey, io.read.

io.infile (filename, pattern)

io.infile (filehandle, pattern)

Checks whether the file given by the name filename or the file denoted by its
descriptor filehandle includes a pattern Of type string, and returns true or false.

See also: io.readfile.

io.input (filehandle)

io.input (filename)

io.input ()

When called with a file name, it opens the named file (in text mode), and sets its
handle as the default input file. When called with a file handle, it simply sets this file

handle as the default input file. When called without parameters, it retumns the
current default input file.

In case of errors this function raises the error, instead of retumning an error code.

io.isfdesc (filehandle)

Checks whether filehandle is a valid file handle. Returns true if filehandle is an
open file handle, or false if filehandle is Not a file handle.

See also: io.fileno, io.isopen.

io.isopen (filehandle)

Checks whether filehandle references an open file. Returns frue if filehandle is an
open file handle, or false if filehandle is not a file handle. Thus it also returns false if
filehandle is not of type userdata/file. Contrary to io.isfdesc, it also detects invalid
file positions caused by files too large or if the stream referenced by filehandle
does not support file positioning.

The function is five times slower than io.fdesc.

330 7 Standard Libraries

See also: io.fileno, io.isfdesc .

io.lines (filename)

io.lines (filehandle)

io.lines ()

In the first form, the function opens the given file denoted by filename in read

mode and returns an iterator function that, each time it is called, returns a new line
from the file.

In the second form, the function opens the given file in read mode and returns an
iterator function that, each time it is called, returns a new line from the file.

Therefore, the construction

for keys line in io.lines(f) do body od

will iterate over all lines of the file denoted by f, where f is either a file name or file
handle. When the iterator function detects the end of file, it retumns null (to finish the
loop) and automatically closes the file if a flename is given. In case of a file
handle, the file is not closed.

The call io.lines() (without a file name) iterates over the lines of the default input
file. In this case it does not close the file when the loop ends.

See also: io.readlines.

io.lock (filehandle)
io.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 243
bytes are locked, so you have 1o use the second form described below in Windows
after the file has become larger than 293 bytes (= 8,589,934,592 GBytes).

In the second form the function locks size bytes from the curent file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

The function retumns true on a successful lock, and false otherwise.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access 1o the file.

See also: io.unlock.

agena >> 331

io.move (filehandle, n)

Moves the current file position of the open file denoted by its filehandle either to
the left or the right.

If n is a positive integer, then the file position is moved n characters to the right, if it is
a negative integer, it is moved n characters to the left. If n is zero, the position is not
changed at all.

The function returns true on success and false otherwise.

See dlso: io.seek.

io.nlines (filename)

io.nlines (filehandle)

The function counts the numiber of lines in the (text) file denoted by filename oOr
flehandle and returns a non-negative integer.

See also: io.skiplines.

io.open (filename [, mode])

This function opens a file, given by the string filename , in the mode specified in the
string mode. It retfurns a new file handle of type userdata/file. The function does not
lock the file (see io.lock).

The function also enters the newly opened file into the io.openfiles table in the
following format: [flehandle ~ [flename, mode]].

In case of errors, the function quits with an error.
The mode string can be any of the following:

e ', 'read': read mode (the default);

o'W, 'write": write mode only; if the file already exists, it is fruncated to zero
length;

« 'd.'append': append mode;

* 'r+" update mode (both reading and writing), all previous data is preserved;
the inifial file position is at the beginning of the file;

* 'w+'": update mode (reading and writing), all previous data is erased;

* 'a+" append update mode (reading and appending), previous data is
preserved, writing is only allowed at the end of file.

The mode string may also have a 'b* af the end, which is needed in some systems
fo open the file in binary mode. This string is exactly what is used in the standard C
function fopen .

332 7 Standard Libraries

See also: io.close, io.lock.

io.output ([filehandle])
Similar to io.input but operates over the default output file.

io.pcall (prog [, mode])

Starts programme prog (passed as a string) in a separated process, sends and
receives dafa to this programme (if mode is ' , Or mode is NOt given) via stdout, or
writes data to this programme (if mode is 'w'). After communication finishes, the
connection is automatically closed.

The return is a sequence of strings containing the result sent back by the
application.

The function thus is a combination of io.popen, io.readlines, and io.pclose, has
been wrtten in the Agena language, and is included in the main Agena library
(lib/library.agn).

This function is system dependent and is not available on all platforms.

See also: os.execute.

io.popen ([prog [, mode]])

Starts programme prog in a separated process and returns a file handle that you
can use to read data that is sent from this programme (if modeis ', the default) via
stdout, or to write data to this programme (if mode is 'w').

Use io.close 1o close the connection.

The following example shows how to receive the output of the UNIX “Is° command:

> p :=io.popen(ls -I', 'r):
file(779509B8)

> for keys i in io.lines(p) do print(i) od;

total 1917

drwxrwxrwx 1 user group 00Oct 1217 :00 OS2
-rw-rw-rw- 1 user group 24481 Oct 13 18 :23 aauxlib.c
-rw-rw-rw- 1 user group 6205 Aug 10 02 :26 aauxlib.h
-rw-rw-rw- 1 user group 16067 Oct 12 23 :42 aauxlib.o
> io.close(p):

true

This function is system dependent and is not available on all platforms.

See also: os.execute, io.pcall.

agena >> 333

io.putclip (str)

Copies the string str 1o the Windows clipboard. If the clipboard could not be
accessed, if returns fail plus an error string. It only returns fail, if something else went
wrong, and true on success.

The function is available in the Windows edition only.

See also: io.geftclip.

io.read (filehandle [, format])
io.read ()

In the first form, reads the file with the given filehandle , according to the given
formats, which specify what to read. For each format, the function returns a string
(or a number) with the characters read, or null if it cannot read data with the
specified format. When called without formats, it uses a default format that reads
the entire next line (see below).

The available formats are

e "*n" reads a number; this is the only format that returns a number instead of a
string.

* *a" reads the whole file, staring at the current position. On end of file, it
returns the empty string®*,

* " reads the next line (skipping the end of line), returning null on end of file.
This is the default format.

* number: reads a string up to this number of characters, retumning null on end
of file. If number is zero, it reads nothing and returns an empty string, or null
on end of file.

In the second form, the function reads from the default input stream (usually the
keyboard) and refurns a string or number. This keyboard input functionality is not
available in AgenaEdit.

See dalso: io.lines, io.readfile, io.readlines, skycrane.readcsv, utils.readcsv,
utils.readxml.

io.readfile (filename [, true [, pattern [, flag]]])
io.readfile (filhandle [, true [, pattern [, flag]])
Reads the entire file with name filename or the file denoted by its handle

filehandle in binary mode and retumns it as a string. Note that contrary to
io.readlines, the function also returns carriage returns (ASCII code 13).

24 see also io.readfile to read a file entirely.

334 7 Standard Libraries

If a second argument, the Boolean value true, has been passed, then the function
removes all newlines and if existing all carriage retumns at the end of each line.

If the optional third argument pattern is given, the function only returns the whole
contents of a file if the string pattern has been found in the file. Pattern matching is
not supported.

If the opftional fourth argument flag is false, the function retuns the whole file
contents file if the string pattern has not been found in the file.

See also: io.read, io.readlines, io.writefile.

io.readlines (filename [, options])

io.readlines (filehandle [, options])

Reads the entire file with name filename or file handle filehandle and returns all
lines in a table. If a string consisting of one or more characters is given as a further
argument, then all lines beginning with this string are ignored. If the opfion true is
passed, then diacritics in the file are properly converted to the console character
set, provided you use code page 1252. The function automatically deletes
carriage returns (ASCII code 13) if included in the file.

An error is issued if the file could not be found.

If you use file handles, you must open the file with io.open before applying
io.readlines, and close it with io.close thereafter.

See also: io.lines, io.read, io.readfile, utils.readcsv, utils.readxml, skycrane.readcsv .

io.rewind (filehandle)

Sets the current file position of the open file denoted by its filehandle fo the
beginning of the file. It returns the current file position, the number O, af success,
and null plus an error string otherwise.

See also: io.move, io.seek, io.toend.

io.seek (filehandle [, whence [, offset]])

Sefs and gets the file position, measured from the beginning of the file, to the
position given by offset plus a base specified by the string whence, as follows:

* 'set :base is position O (beginning of the file);
e cur :base is current position;
e ‘end :baseisend of file.

In case of success, i0.seek returns the final file position, measured in bytes from the
beginning of the file. If this function fails, it returns null, plus a string describing the
error.

agena >> 335

The default value for whence is '‘cur , and for offset is 0. Therefore, the call

io.seek(file) returns the current file position, without changing it; the call
io.seek(file, 'set’) sets the position to the beginning of the file (and returns O);
and the call io.seek(file, 'end’) sets the position to the end of the file, and

returns its size.

See also: io.move, io.rewind, io.skiplines, io.toend.

io.setvbuf (filehandle, mode [, size])

Sets the buffering mode for an output file. There are three available modes:

* 'no" no buffering; the result of any output operation appears immediately.

o 'full' full buffering; output operation is performed only when the buffer is full
(or when you explicitly flush the file (see io.sync).

* line": line buffering; output is buffered until a newline is output or there is any
input from some special files (such as a terminal device).

For the last two cases, sizes specifies the size of the buffer, in bytes. The default is
an appropriate size.

io.skiplines (filehandle, n)
io.skiplines (filename, n)

The function skips the given number of lines and sets the file position to the
beginning of the line that follows the last line skipped.

If a file name is passed, then with each call to io.skiplines the search always starts at
the very first line in the file. The function automatically closes the file if a file name
has been passed and returns the result (see below).

If you use a file handle, then lines can be skipped multiple times, always relative 1o
the current file position. With a file handle, io.skiplines does not close the file.

The second argument n may be any non-negative number. If n is O, then the
function does nothing and does not change the file position.

The function returns two values: the non-negative number of lines actually skipped
and the non-negative numiber of characters skipped in this process, including
newlines and carriage returns.

See also: io.nlines, io.seek.

336 7 Standard Libraries

io.sync (filehandle)
io.sync ()

In the first form, saves any written data to filehandle . In the second form, the
function flushes the default output.

io.tmpfile ()

Returns a handle for a temporary file. This file is opened in update mode and it is
automatically removed when the programme ends.

io.toend (filehandle)

Sets the current file position of the open file denoted by its filehandle to the end of
the file. It returns the current file position, a number indicating the size of the file, af
success, and null plus an error string otherwise.

See also: io.move, io.rewind, io.seek.

io.unlock (filehandle [, size])

The function unlocks the file given by its handle filehandle so that it can be read or
overwritften by other applications again. If size is given, the function, only the given
numiber of bytes is unlocked, starting from the current file position.

The function returns true on a successful unlock, and false otherwise.

For more information, see io.lock.

io.write (---)

io.writeline (---)

Write the value of each of its arguments to standard output if the first argument is
not a file handle, or to the file denoted by the first argument, a file handle. Except
for the file handle and the 'delim' option described below, all arguments must be
strings, numbers, or Booleans. To write other values, use tostring or strings.format.
See skycrane.scribe, as well.

io.writeline adds a new line at the end of the data written, whereas io.write does
not.

By default, no character is inserted between neighbouring values. This may be

changed by passing the option 'delim':<str> (i.e. a pair, e.q. 'delim"'|') as the
last argument to the functions with <str> being a string of any length. Remember
that in the function call, a shortcut 1o 'delim':<str> i delim ~ <str>

The functions return true on success, and false otherwise.

agena >> 337

Hint: If you work in DOS-like systems, such like DOS, Windows, or eComStation - OS/2,
and if the text to be written includes line breaks, you may wonder why the resulting
file will be larger than the number of characters in the text. This is because the
operating system adds a further control code, i.e. carriage return, in front of each
line break. To avoid this, open the file in binary mode, e.qg. io.open(filename,
‘whb')

Examples:

Write a string to the console. Note that in the first statement, no newline is added to
the output, as opposed to the second and third statements.

> jo.write('Gauden Dach ")
Gauden Dach !

> io.write('Gauden Dach !', \n")
Gauden Dach !

> io.writeline('Gauden Dach !")
Gauden Dach !

Write strings to the console:

> jo.writeline('Bet’, 'to\'n’, '16.", 'Johrhunnert' , 'geef', 'dat’, 'hier’,
> 'baben’, 'anne’, 'Kist', 'nix’, 'anneres', 'as ', 'Platt.")
Betto'n16.JohrhunnertgeefdathierbabenanneKistnixann eresasPlatt.

Use a white space as a separator:

> jo.writeline('Bet’, 'to\'n’, '16.", 'Johrhunnert' , 'geef', 'dat’, 'hier’,

> ‘'baben’, ‘anne’, 'Kust', 'nix', 'anneres', ‘as ", 'Platt.’,

> delim~"")

Bet to'n 16. Johrhunnert geef dat hier baben anne K Ust nix anneres as

Platt.

Write a string to a new file called 'd:/newfile.txt' : First we have fo creatfe the new

file with i0.open and the 'w' (write) option.

> fth := io.open(‘d:/newfile.txt', 'w'):
file(7803A6F0)

Write some text 1o the file.

> io.write(fh, 'Gouden Dach !"):

true

> jo.writeline(fh, \nBet', 'to\'n’, '16.", 'Johrhu nnert', 'geef’, 'dat’,
> ‘hier’, 'baben’, 'anne’, 'Kist', 'nix’, '‘anner es', 'as', 'Platt.’,

> delim~""):

true

Finally, the file will be closed.

> io.close(fh):
true

338 7 Standard Libraries

See also: io.writefile, print, skycrane.scribe, skycrane.tee.

io.writefile (filename, ---)
io.writefile (filehandle, ---)

In the first form, creates a new file filename denoted by its first argument (a string)
and writes all of the given strings or numbers starting with the second argument in
binary mode to it. To write other values, use tostring or strings.format. After writing alll
data, the function automatically closes the new file.

In the second form, the function writes its arguments to the open file denoted by its
handle filehandle

By default, no character is inserted between neighbouring strings. This may be
changed by passing the option 'delim': <str> (i.e. a pair, e.g. 'delm"'|') as the last
argument o the function with <str> being a string of any length.

If the file fn already exists, it is overwritten without warning.

The function returns the total number of bytes written, and issues an error otherwise.
It is around twice as fast than using a combination of io.open, io.write, and
jo.close.

See also: save, io.readfile.

agena >> 339

/.15 binio - Binary File Package

This package contains functions to read data from and write data to binary files.

Summary of functions:
Opening and closing files:

binio.open, binio.close.
Reading data:

binio.readbytes, binio.readchar, binio.readlong, binio.readnumber,
binio.readshortstring , binio.readstring .

Writing data:

binio.writebytes , binio.writechar, binio.writelong , binio.writenumber,
binio.writeshortstring , binio.writestring .

File positions:
binio.eof, binio.filepos, binio.rewind, binio.seek, binio.toend.
File locking:
binio.lock, binio.unlock.
File buffering:
binio.sync.
Miscellaneous:
binio.length.
The binio package always uses file handles that are positive integers greater than 2.
(Note that the io package uses file handles of type userdata.) The positive integer is
returned by the binio.open function and must be used in all package functions that

require a file handle.

A typical example might look like this:

340 7 Standard Libraries

Open a file and return the file handle:

> fh := binio.open('c:/agena/lib/library.agn’):
3

Determine the size of the file in bytes:

> binio.length(fh):
46486

Close the file.

> binio.close(fh):
true

The binio functions are:

binio.close (filehandle [, filehandle2, ---])

Closes the files identified by the given file handle(s) and returns true if successful,
and issues an eror otherwise. The function also deletes the file handles and the
corresponding filenames from the binio.openfiles table if the file could be properly
closed.

See also: binio.open.

binio.eof (filehandle)

Checks whether the end of the file denoted by filehandle has been reached and
returns true or false.

binio.filepos (filehandle)

Returns the current file position relative to the beginning of the file as a number. In
case of an error, it quits with this error.

binio.length (filehandle)

The function returns the size of the file denoted by filehandle in bytes. In case of an
error, it quits with this error.

binio.lock (filehandle)

binio.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263
bytes are locked, so you have to use the second form in Windows after the file has
become larger than 2% bytes (= 8,589,934,592 GBytes).

agena >> 341

In the second form the function locks size bytes from the curent file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

The function returns frue on a successful lock, and false otherwise.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access 1o the file.

See also: binio.unlock .

binio.open (filename [, anything])

Opens the given file denoted by filename and returns a file handle (a number).

If it cannot find the file, it creates it and leaves it open for further binio operations.

If the file already exists, it leaves it open and sets the current file position to the
beginning of the file. (In subsequent write operations, the contents of the file will thus
be overwritten and the programmer has to ensure its integrity.) Use binio.toend to
append to the file.

The file is always opened in both read and write modes.

If an optional second argument is given (any valid Agena value), the file is opened
in read mode only. Thus, if the file does not yet exist, the function returns an error.

The function also enters the newly opened file into the binio.openfiles table.

See also: binio.close, binio.lock, binio.unlock .

binio.readbytes (filehandle [, bytes])

In the first form, the function reads environ.kernel['buffersize'] bytes from the file
denoted by filehandle and returns them as a sequence of integers. You may
change the buffersize value to any other values in order to read less or more bytes.

In the second form, the function reads bytes bytes from the file denoted by
flehandle ~ and returns them as a sequence of integers.

The function increments the file position thereafter so that the next bytes in the file
can be read with a new call to various binio.read* functions.

If the end of the file has been reached, null is returned. In case of an error, it quits
with the respective error.

The function is much faster when working on a larger numiber of bytes.

See also: binio.writebytes , strings.tobytes.

342 7 Standard Libraries

binio.readchar (filehandle)

binio.readchar (filehandle, position)

In the first form, the function reads a byte from the file denoted by filehandle from
the current file position and increments the file position thereafter so that the next
byte in the file can e read with a new call to binio.read* functions.

In the second form, at first the file position is changed by position bytes (a positive
or negative number or zero) relative to the current file position. After that, the byte af
the new file position is read. Next, the file position is being incremented thereafter so
that the next byte in the file can be read with a new function call.

If the byte is successfully read, it is returned as a number. If the end of the file has
been reached, null is returned. In case of an error, the function quits.

binio.readlong (filehandle)

The function reads a signed C value of type int32_t from the file denoted by
flehandle from the current file position and returns it. If there is an error or nothing
to read, the function quits with an error. Note that the numiber to be read should
have lbeen writfen fo the file using the binio.writelong function.

See also: binio.writelong.

binio.readnumber (filehandle)

The function reads an Agena number from the file denoted by filehandle from the
current file position and returns it. If there is an error or nothing to be read, the
function quits with an error. Note that the number to be read should have been
written to the file using the binio.write number function.

See also: binio.writenumber.

binio.readshortstring (filehandle)

The function reads a string of up to 255 characters from the file denoted by
flehandle from the current file position and returns it. If there is an error or nothing
to read, the function quits with an error.

Notfe that the string to be read should have been written to the file using the
binio.writeshortstring function, as binio.writeshortstring also stores the length of the
string to the file.

See also: binio.writeshortstring.

agena >> 343

binio.readstring (filehandle)

The function reads a string of any length from the file denoted by filehandle from
the current file position and returns it. If there is an eror or nothing to read, the
function quits with an error.

Nofe that the string to be read should have been written to the file using the
binio.writestring function, as binio.writestring also stores the length of the string fo the
file.

See also: binio.writestring.

binio.rewind (filehandle)

Sets the file position to the beginning of the file denoted by filenandle . The
function returns the new file position as a number in case of success, and quits with
an error otherwise.

See also: binio.toend, binio.seek .

binio.seek (filehandle, position)

The function changes the file position of the file denoted by filehandle position
bytes relafive to the current position. positon May e negative, zero, or positive.

The return is true if the file position could be changed successfully, or issues an error
otherwise.

See also: binio.rewind, binio.toend.

binio.sync (filehandle)

Flushes all unwritten content to the file denoted by the handle filehandle . The
function returns true if successful, false if stdin or stdout should be closed, and issues
an error otherwise (e.q. if the file was not opened before or an error during flushing
occurred).

binio.toend (filehandle)

Sets the file position to the end of the file denoted by filehandle so that data can
be appended fo the file without overwriting existing data. The function returns the
file position as a number in case of success, and issues an error otherwise.

See also: binio.rewind, binio.seek.

344 7 Standard Libraries

binio.unlock (filehandle)

binio.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again.

The function returns true on a successful unlock, and false otherwise.

For more information, see binio.lock.

binio.writebytes (filehandle, s)

The function writes all integers in the sequence s to the file denoted by filehandle
at its current position. The function retuns true in case of success and fail if the
seguence is empty.

The integers in s should be integers number with O < number < 256, otherwise number
% 256 will be stored to the file.

Internally, the bytes are stored as C unsigned char 's.

See also: binio.readbytes .

binio.writechar (filehandle, number [, --])

The function writes the given Agena number, and opfionally more numbers, to the
fle denoted by filehandle @t its current position. The function returns true in case of
success and quits with an error otherwise.

All number (s) should be integers with O < number < 256, otherwise number % 256 will
e stored to the file.

Internally, the bytes are stored as a C unsigned char

binio.writelong (filehandle, number [, ---])

The function writes the given Agena number, and opfionally more numbers, to the
fle denoted by filehandle at its current position. The number (s) should be integers
with environ.minlong < number < environ.maxlong, otherwise the result is not
defined.

The function returns true in case of success and quits with an error otherwise.
Internally, the numbers are stored as signed C int32_t in Big Endian notation. Use

binio.readlong to read values written by writelong back info Agena as readlong
fransforms the value back into the proper Endian format used by your machine.

agena >> 345

binio.writenumber (filehandle, number [, ---])

The function writes the given Agena number, and opfionally more numbers, to the
fle denoted by filehandle @t its current position. The function returns true in case of
success and issues an error otherwise. The numbers are always stored in Big Endian
notation. The binio.readnumber function conducts proper conversion to Little
Endian if Agena runs on a Little Endian machine.

binio.writeshortstring (filehandle, string [, ---])

The function writes the given string , and optionally more strings, to the file denoted
by filenandle at its current position. The strings can be of length 0 to 255.

The function returns true in case of success and issues an error otherwise. Internally,
writeshortstring at first writes the length of the respective string as a C unsigned char
and after this it stores the string without a trailing null character to the file. If you call
binio.readstring later, Agena very efficiently refurns the string.

See also: binio.readshortstring.

binio.writestring (filehandle, string [, ---])

The function writes the given string , and optionally more strings, to the file denoted
by filehandle at its current position.

The function returns frue in case of success and quits with an error otherwise.
Internally, writestring first writes the length of the respective string as a C long int and
then the string without a null character to the file. This information is then read by the
binio.readstring function to efficiently return the string.

See also: binio.readstring .

346 7 Standard Libraries

7.16 xbase - Library to Read and Write xBase Files

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the import statement, e.Q.
import xbase

This package provides basic functions to read and write dBASE llI+ compliant files.

A typical session may look like this:

> import xbase alias;

> new('test.dbf', data=Number);
> f := open(test.dbf’, ‘write');

> writenumber(f, 1, 1, Pi);

> readvalue(f, 1, 1):
3.1415926535898

> close(f):
true

Limitations:

1. The xBase data types currently supported are: Number, Float (dBASE IV 2.0),
Binary Double (dBASE 7), String, Date, and Logical.

2. Only files with extension .dbf are supported. Searching and sorfing functions are
not available, and any .ndx, or .idx index files or *.dbt files will be ignored.

3. Files with sizes greater than 2 GBytes are not supported.

xbase.attrib (filehandle)

retuns a table with various information on the xBase file pointed to by filehandle

Table key Meaning

‘codepage’ Code page used.

A table of tables that describe the respective fields in
consecutive order: title, xBase native type (see below), Agena
fieldinfo’ type, total number of bytes occupied by the field in the file.
With numbers, the number of decimals following the decimal
point (its scope) given.

‘fields' Number of fields in the file.

filename’ Name of the xBase file (relative).

‘headerlength’ Length of the header in the xBase file.

lastmodified’ UTC date of the last write access, coded as an integer.
'records' Number of records stored in the file.

‘recordlength’ Numiber of bytes occupied by each record.

agena >> 347

xBase native types recognised are: 'C' for String, 'N' for Number, 'F' for Float, 'L' for
Logical, 'D' for Date, and 'O' for binary Double.

See also: xbase.filepos.

xbase.close (filehandle)

Closes a connection to the xBase file pointed to by filehandle . NO more data can
e read or writfen to the xBase file until you open it again using xbase.open. The
function returns true if the file could be closed, and false otherwise.

xbase.field (filehandle, row [, 'set’])

The function has been deprecated. Please use xbase.readdbf instead.

See also: xbase.ismarked, xbase.readdbf, xbase.readvalue , xbase.record.

xbase.fields (filehandle)

Returns the number of fields per record contained in the xBase file denoted by
filehandle

See also: xbase.attrib, xbase.records.

xbase.filepos (filehandle)

Returns the current file position in the file denoted by filehandle and returns it as a
number.

See also: xbase.attrib .

xbase.header (filehandle)

Returns three sequences: the header field names of the file denoted by
flehandle , the comresponding Agena ftype names, and the respective
single-chararcter dBASE types.

See also: xbase.attrib .

xbase.ismarked (filehandle, record)

Checks whether a record in a file denoted by filehandle has been marked as to
be deleted and returns true or false.

Please make sure that the file has been opened in write, append, or read/write
mode before, otherwise the result may be undefined.
See also: xbase.mark.

348 7 Standard Libraries

xbase.isopen (filehandle)

Checks whether filehandle points to an open xBase file and retumns true or false.

xbase.isvoid (filehandle, record, field)

Checks whether the value at record number record and field number field from
the file pointed to by filehandle has been deleted.

The function returns either true or false.

See also: xbase.ismarked, xbase.mark, xbase.purge ., xbase.readvalue.

xbase.lock (filehandle)

xbase.lock (filehandle, size)

The function locks the file given by its handle filehandle ~ so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263
bytes are locked, so you have to use the second form in Windows after the file has
become larger than 29 bytes (= 8,589,934,592 GBytes).

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

The function returns frue on success and false otherwise.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access 1o the file.

See also: xbase.unlock.

xbase.mark (filehandle, row [, flag])

Marks the record number row, an integer, in the file denoted by its filehandle , Os
deleted.

Returns frue if a record has been marked successfully, and false otherwise.

The actual data is not physically deleted, however, xbase.readvalue, xbase.record,
xbase.field, and xbase.readdbf do not return it. Use xbase.purge to delete entries.

If flag is false, a formerly marked record is activated (" undeleted) again.

Please make sure that the file has been opened in write, append, or read/write
mode before, otherwise the result may be undefined.

agena >> 349

See also: xbase.ismarked.

xbase.new (filename, desc 1 [, codepage] [, desc 2, =+, desc «l)

creates a new xBase file with the file name filename

desc, are k fields (columns) the xBase file will contain. codepage indicates the
code page to be used (see below)®.

In its header, the function designates the resulting file as a dBASE I+ file without
memo .DBT file.

desc , must be a pair of the following form:
1. field name : data_type

where field_name is a sting and the name of the field to be added, and

data_type is one of the strings 'Logical' , 'Date’ , 'Float' , 'Number' , 'Double’
or 'Character , i.€. the xBase data type of the values to be stored Iater.
Examples:

new('dbase.dbf', 'logical':'Logical’) or

new('dbase.dbf', logical='Logical’) for short for a Boolean.

A Boolean (which in xBase is equal to a "Logical’) will always consist of one
character ', 'F for tfrue and false.

An xBase Number will have a standard length of 19 places with a default scale
of 15 digits, whereas an xBase Float consists of 20 places with a scale of 18
digits (scale: numbers following the decimal point). Numbers are stored in xBase
fles as strings with ANSI C double precision. The scale may be in [0, 15] with
xBase Numbers, and in [0, 18] with xBase Floats.

An xBase Double represents an Agena number (integer or float) that is stored in
Little Endian format of eight bytes to an xBase file.

An xBase Character (string) will have a default length of 64 characters. The
minimum length of a string is 1, the maximum length of a string may be 254
characters. Longer strings will be truncated.

A date will always consist of eight digits of the format YYYYMMDD.

2. field name : data_type : length

25 Note that code pages are a Foxpro extension.

350 7 Standard Libraries

where field_name and data_type are the same as mentioned above, and
length is the maximum length of the item fo be added. length must be a
positive integer. With numbers, length denotes the numiber of digits affer the
decimal point 1o be stored.

When passing a length value, you may leave out the quotes for data_type
values.

Examples:
new('dbase.dbf', 'value':'"Number".5) or
new('dbase.dbf', value=Number:5) for short for a float with five decimal places.

Supported data types are:

xBase data_type name | Agena write function dBASE
type type version
Logical 'Logical' oOr'L' boolean | xbase.writeboolean | I+
Number ‘Number' Or 'N' number | xbase.writenumber | Ill+
Float 'Float Or'F' number | xbase.writefloat V2.0
Double 'Double’ Or 'O’ number | xbase.writedouble 7
Character | ‘Character or'c' | string xbase.writestring I+
Date 'Date’ Or 'D' string xbase.writedate I+

codepage should be a pair of the form 'codepage’ :n, with n an infeger in [0, 259].

Valid codepages are:

n Meaning Code page
0x01 | DOS USA 437
0x02 | DOS Multilingual 850
0x03 | Windows ANSI 1.252
0x04 | Standard Macintosh 10.000
Ox64 | Eastern Europe DOS 852
0x65 | Nordic DOS 865
Ox66 | Russian DOS 866
Ox67 | Icelandic DOS 861
0x68 | Kamenicky (Czech) DOS 895
0x69 | Mazovia (Polish) DOS 620
Ox6a | Greek DOS 437G
Ox6b | Turkish DOS 857
Ox78 | Traditional Chinese (Taiwan, | 950
Hong Kong SAR)
Ox79 | Korean Windows 949
Ox7A | Chinese Simplified 936
(Singapore, PRC)
Ox7B | Japanese Windows 932

agena >> 351

n Meaning Code page
Ox7C | Thai Windows 874
Ox7D | Hebrew Windows 1.255
Ox7E | Arabic Windows 1.256
Ox26 | Russian Macintosh 10.007
Ox@7 | Eastern European Macintosh 10.029
0x28 | Greek Macintosh 10.006
Oxc8 | Eastern Europe Windows 1.250
Oxc? | Russian Windows 1.251
Oxca | Turkish Windows 1.254
Oxcb | Greek Windows 1.253

If no code page has been passed, it is set to 0x00.
Example for Eastern European Macintosh:
new('dbase.dbf', text=string:255, codepage=0x97);

See also: xbase.open.

xbase.open (filename [, mode])

Opens an xBase file of the name filename for reading or writing, or both.
In the first form, the file is opened for reading only.

In the second form, if mode is either 'write' , 'w' , 'append’ , or 'r+ , the file is
opened for reading while new data sets may be added to the end of the file.

If mode is read” or'r, the file is opened for reading only.
The return is a file handle to be used by all other xBase package functions.

See also: xbase.close, xbase.lock, xbase.new.

xbase.purge (filehandle, record, field)

Overwrites the specified field in the given record Of the file denoted by its handle
filehandle with asterisks, thus physically deleting the original content. The retumn is
frue if delefion succeeded, and false otherwise. After successful completion, a
subsequent call fo xbase.isvoid would return true.

See also: xbase.isvoid, xbase.mark, xbase.wipe.

352 7 Standard Libraries

xbase.readdbf (filename [, option])
xbase.readdbf (filehandle [, option])

In the first form, opens an xBase file denoted by its filename in read mode, returns
all its records and fields, and closes it. In the second form, it reads the contents of
the open file denoted by its handle filehandle

If the xBase file contains more than one field, the data is returned as a sequence of
sequences, whereas if the file contains only one field, all values are returned in one
seqguence only.

If the opftion fields=x with x a positive number is given, only the given column x is
extracted, and the return is a sequence of the column values. If the opfion
fields=obj with obj a table or sequence of positive numbers is given, only the given
fields in the records are returned, and the return is a sequence of sequences.

If a record has been marked as being deleted, the function ignores the record.

See also: xbase.field, xoase.ismarked, xbase.readvalue, xbase.record.

xbase.readvalue (filehandle, record, field)

Reads a value at record number record and field number field from the file
pointed 1o by filehandle

Supported values are of xBase type Logical, Number, Float, Date, and String. If a
numiber could not be read from the file, the function returns O.

If record has been marked as being deleted, the function returns null.

See also: xbase.field, xbase.istnarked, xbase.record, xtbbase.isvoid.

xbase.record (filehandle, line)

Retuns all values in the given record line (a0 number) of the file denoted by
flehandle and returns them in a sequence.

If record has been marked as being deleted, the function returns null.

See also: xbase.field, xbase.ismarked, xbase.readdbf, xbase.readvalue .

xbase.records (filehandle)

Returns the numiber of records contained in the xBase file denoted by filehandle
including the ones marked as 1o be deleted or being completely void.

See also: xbase.attrib, xbase.fields.

agena >> 353

xbase.sync (filehandle)

Writes any unwritten content to the xBase file pointed to by filehandle . The function
either returns true if flushing succeeded or nothing had be flushed, or fail otherwise.

Please make sure that the file has been opened in write, append, or read/write
mode before, otherwise the result may be undefined.

xbase.unlock (filehandle)
xbase.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle ~ so that it can be read or
overwritten by other applications again.

The function returns true on success and false otherwise.

For more information, see xbase.lock.

xbase.wipe (filehandle, record)

In an xBase file denoted by filehandle , deletes all fields of the given record , G
positive integer. It also marks the record as deleted (see xbbase.mark for further
information).

To ensure performance, the function does not lock the file before deleting data -
you may want to manually call xbase.lock before and xbase.unlock thereafter.
Also, it does not flush the file.

The function returns nothing.
The function has been written in the Agena language, see lib/xbase.agn

See also: xbase.mark, xbase.purge.

xbase.writeboolean (filehandle, record, field, valu e)

Wiites the Boolean value true or false (4th argument) to the file denoted by
filehandle to record number record and field number field . fail and null are not
supported.

The return is true if writing succeeded, and false otherwise.

xbase.writedate (filehandle, record, field, value)

Writes the number value (4th argument), an integer in the range
19000101 2 x 2 99991231and denoting a date, fo the file denoted by filehandle
to record number record and field number field

354 7 Standard Libraries

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

xbase.writedouble (filehandle, record, field, value)

Writes the number value (4th argument) to the file denoted by filehandle to record
number record and field number field

The numlber is stored in Little Endian binary format of eight bytes (C double). In Big
Endian versions of Agena, when reading the number from an xBase file, proper
conversion is done so that data can be exchanged between these different
architectures. A dBASE 7 extension, many applications that import dBASE files do not
support binary numibers.

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

See also: xbase.write float, xbase.writenumber .

xbase.writefloat (filehandle, record, field, value)

Writes the number value (4th argument) to the file denoted by filehandle to record
number record and field number field

The number is stored with a fotal of 20 digits, including a maximum of 18 digits
following the decimal point (scale).

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

See also: xbase.writedouble , xbase.writenumber .

xbase.writenumber (filehandle, record, field, value)

Writes the number value (4th argument) to the file denoted by filehandle to record
number record and field number field

The number is stored with a fotal of 19 digits, including a maximum of 15 digits
following the decimal point (scale).

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

See also: xbase.writedouble , xbase.write float.

agena >> 355

xbase.writestring (filehandle, record, field, value)

Writes the string value (4th argument) to the file denoted by filehandle o record
numiber record and field number field

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error might have occurred.

356 7 Standard Libraries

7.17 xml - XML Parser

As a plus package, the xml package is not part of the standard distribution and
must be activated with the import statement, e.g. import xml . It is available for
Solaris, eComStation - OS/2, Mac OS X, Linux, and Windows only.

Since the XML package actually is the LuaExpat binding with some few
Agena-specific modifications, large portions of this subchapter have been taken
from the LuaExpat documentation.

7.17.1 Introduction

XML/LuaExpat is a SAX XML parser based on the Expat library. SAX is the Simple API
for XML and allows programmes tfo:

* process a XML document incrementally, thus being able to handle huge
documents without memory penalties;

* register handler functions which are called by the parser during the processing
of the document, handling the document elements or text.

With an event-based API like SAX the XML document can be fed to the parser in
chunks, and the parsing begins as soon as the parser receives the first document
chunk. XML/LuaExpat reports parsing events (such as the start and end of elements)
directly to the application through callbacks. The parsing of huge documents can
benefit from this piecemeal operation.

XML/LuaExpat is distriouted as a library.

7.17.2 Parser objects

Usually SAX implementations base all operations on the concept of a parser that
allows the registration of calloack functions. XML/Luakxpat offers the same
functionality but uses a different registration method, based on a table of calloacks.

This table contains references to the callback functions which are responsible for
the handling of the document parts. The parser will assume no behaviour for any
undeclared callbacks.

7.17.3 Shortcuts

xml.decode (str)

Reads a string str containing an XML stream and converts it into a dictionary. Its
return is rather raw, but it can cope with situations where one and the same XML
object is present multiple times on the same hierarchy.

agena >> 357

xml.decodexml (str)

Reads a string str containing an XML stream and converts it intfo a dictionary.

The function provides some checking (basic syntax and balanced tags), and
supports namespaces, XML and DOCTYPE declarations, comments and processing
instructions. If a XML tag includes hyphens or colons, then they are converted to
underscores in the corresponding Agena dictionary key.

The data must be included in an envelope.
The function also returns processing instructions in the xattr tag.
The function is writfen in the Agena language and included in the xml.agn file.

The function does not cope well if one and the same XML object is present multiple
times on the same hierarchy. Use utils.decodexml or xml.decode instead.

xml.readxml (filename)
Reads an XML file and returns its data in an Agena dictionary. The data must be
included in an envelope.

See also: utils.readcsv, utils.readxml, xml.decode, xml.decodexml.

7.17.4 Constructor

xml.new (callbacks [, separator])

The parser is created by a call 1o the function xml.new, which returns the created
parser or raises a Lua eror. It receives the callbacks table and optionally the parser
separator character used in the namespace expanded element names.

7.17.5 Functions

xml.close (parser)

Closes the parser, freeing all memory used by it. A call to close(parser) without a
previous call to parse(parser) could result in an error.

xml.getbase (parser)

Returns the base for resolving relative URIs.

xml.getcallbacks (parser)

Returns the callbacks table.

358 7 Standard Libraries

xml.parse (parser, s)

Parse some more of the document. The string s contains part (or perhaps all) of the
document. When called without arguments the document is closed (but the parser
still has to be closeq).

The function returns a non null value when the parser has been successful, and
when the parser finds an error it returns five results: null, msg, line, col, and pos,
which are the eror message, the line number, column numiber and absolute
position of the error in the XML document,

xml.pos (parser)

Returns three results: the current parsing line, column, and absolute position.

xml.setbase (parser, base)

Sefts the base to be used for resolving relative URIs in system identfifiers.

xml.setencoding (parser, encoding)

Sets the encoding to be used by the parser. There are four built-in encodings,
passed as strings: 'US-ASCII', 'UTF-8', 'UTF-16', and 'ISO-8859-1".

7.17.6 Callbacks

The Agena callbacks define the handlers of the parser events. The use of a table in
the parser constructor has some advantages over the registration of callbacks,
since there is N0 need for for the API 1o provide a way to manipulate callbacks.

Another difference lies in the behaviour of the callbacks during the parsing itself. The
callback table contains references to the functions that can be redefined at will.
The only restriction is that only the callbacks present in the table at creation time will
e called.

The callbacks table indices are named after the equivalent Expat callbacks:

CharacterData, Comment, Default, DefaultExpand, EndCDataSection, EndElement,
EndNamespaceDec], ExternalEntityRef, NotStandalone, NotationDecl,
Processinglnstruction, StartCDataSection, StartElement, StarftNamespaceDecl, and
UnparsedEntityDecl.

These indices can be references to functions with specific signatures, as seen
below. The parser constructor also checks the presence of a field called nonstrict
in the callbacks table. If nonstrict is absent, only valid callback names are
accepted as indices in the table (Defaultexpanded would be considered an error
for example). If _nonstrict is defined, any other fieldnames can be used (even if not
called at all).

agena >> 359

The callbacks can optionally be defined as false, acting thus as placeholders for
future assignment of functions.

Every callback function receives as the first parameter the calling parser itself, thus
allowing the same functions o e used for more than one parser for example.

callbacks.CharacterData = proc(parser, string)

Called when the parser recognises an XML CDATA string.

callbacks.Comment = proc(parser, string)

Called when the parser recognises an XML comment string.

callbacks.Default = proc(parser, string)

Called when the parser has a string corresponding to any characters in the
document which wouldn't otherwise be handled. Using this handler has the side
effect of tuning off expansion of references fo infernally defined general entities.
Instead these references are passed to the default handler.

callbacks.DefaultExpand = proc(parser, string)

Called when the parser has a string corresponding to any characters in the
document which wouldn't otherwise be handled. Using this handler doesn't affect
expansion of internal entity references.

callbacks.EndCdataSection = proc(parser)

Called when the parser detects the end of a CDATA section.

callbacks.EndElement = proc(parser, elementName)

Called when the parser detects the ending of an XML element with elementName.

callbacks.EndNamespaceDecl = proc(parser, namespace Name)

Called when the parser detects the ending of an XML namespace with
namespaceName. The handling of the end namespace is done after the handling
of the end tag for the element the namespace is associated with.

callbacks.ExternalEntityRef = proc(parser, subparse r, base, systemid,
publicld)

Called when the parser detects an external entity reference.

The subparser is a XML/LuaExpat parser created with the same callbacks and Expat
context as the parser and should be used to parse the external entity.

360 7 Standard Libraries

The base parameter is the base to use for relative system identifiers. It is set by
setbase and may be null.

The systemld parameter is the system identifier specified in the entity declaration
and is never null.

The publicld parameter is the public id given in the entity declaration and may be
null.

callbacks.NotStandalone = proc(parser)

Called when the parser detects that the document is not “standalone’. This
happens when there is an external subbset or a reference to a parameter entity, but
the document does not have standalone set to "yes" in an XML declaration.

callbacks.NotationDecl =
proc(parser, notationName, base, systemld, publi cld)

Called when the parser detects XML notation declarations with notationName

The base parameter is the base to use for relative system identifiers. It is set by
setbase and may be null.

The systemld parameter is the system identifier specified in the entity declaration
and is never null.

The publicld parameter is the public id given in the entity declaration and may be
null.

callbacks.Processinglnstruction = proc(parser, targ et, data)

Called when the parser detects XML processing instructions. The tfarget is the first
word in the processing instruction. The data is the rest of the characters in it after
skipping all whitespace after the initial word.

callbacks.StartCdataSection = proc(parser)

Called when the parser detects the begining of an XML CDATA section.

callbacks.StartElement = proc(parser, elementName, attributes)

Called when the parser detects the begining of an XML element with
elementName.

The attributes parameter is a table with all the element attribute names and values.
The table contains an entry for every attribute in the element start tag and entries for
the default affributes for that element.

agena >> 361

The affributes are listed by name (including the inherited ones) and by position
(inherited afttributes are not considered in the position list).

As an example if the book element has attrioutes author, title and an opfional
format attribute (with “printed” as default value),

<book author=\"lerusalimschy, Roberto\" fitle=\"Programming in Lua\">

would be represented as

[1 ~'author’,

2 ~ 'itle',

author ~ 'lerusalimschy, Roberto’,

format ~ 'printed’,
title ~ 'Programming in Lua']

callbacks.StartNamespaceDecl = proc(parser, namespa ceName)

Called when the parser detects an XML namespace declaration with
namespaceName. Namespace declarations occur inside start tags, but the
StartNamespaceDecl handler is called before the StartElement handler for each
namespace declared in that start tag.

callbacks.UnparsedEntityDecl =
proc(parser, entityName, base, systemid, publicl d, notationName)

Called when the parser receives declarations of unparsed entities. These are entity
declarations that have a notatfion (NDATA) field.

As an example, in the chunk
<IENTITY logo SYSTEM "images/logo.gif" NDATA gif>

entityName would be '"logo", systemld would be "images/logo.gif' and
notationName would be "gif'. For this example the publicld parameter would be
null. The base parameter would be whatever has been set with setbase. If not set, it
would be null.

The separator character:

The optional separator character in the parser constructor defines the character
used in the namespace expanded element names. The separator character is
optional (if not defined the parser will not handle namespaces) but if defined it must
be different from the character \0'.

362 7 Standard Libraries

7.18 gzip - Library to Read and Write UNIX gzip Compressed Files

As a plus package, in Solaris, Linux, Mac OS X, eComStation - OS/2, DOS, and
Windows, this library is not part of the standard distribution and must e activated
with the import statement, e.Qg. import gzip

The package is not available in Haiku.

A typical session may look like this:

> import gzip;

> fd := gzip.open('primes.dat.gz', 'r"):
gzipfile(0096A9F8)

>for keys | in gzip.lines(fd) do print(i) od;

> gzip.close(f):
true

gzip.close (filehandle [, filehandle, ---])
Closes the files denoted by the given file handles.

gzip.flush (filehandle)
This function takes a file handle and flushes all output to the working file.

gzip.lines (filehandle)

gzip.lines (filename)

Returns an iterator function that, each fime it is called, returns a new line from the
file. Therefore, the construction

for keys line in gzip.lines(file) do ... od
will iterate over all lines of the file.

If a file name is given, the file is closed when the loop ends. If a file handle is given,
the file is not closed.

gzip.open (filename [, mode])

Opens a file name. If mode is not given, a default mode 'rb* will be used. mode
can include special modes such as characters '1' to'9' that will be freated as the
compression level when opening a file for writing.

It returns a new file handle, or, in case of errors, null plus an error message.

agena >> 363

gzip.read (filehandle, format 1)

Reads the file with the given file handle, according to the given formats, which
specify what to read. For each format, the function returns a string with the
characters read, or null if it cannot read data with the specified format. When
called without formats, it uses a default format that reads the entire next line (see
below).

The available formats are:

* *d' reads the whole file, starting af the current position. On end of file, it returns
the empty string.

* "*|' reads the next line (skipping the end of line), retfurning null on end of file. This
is the default format.

* number reads a string with up to that number of characters, returning null on
end of file. If number is zero, it reads nothing and returns an empty string, or null
on end of file.

Unlike io.read, the '*n' format is not available.

gzip.seek (filehandle [, whence] [, offset])

Sets and gets the file position, measured from the beginning of the file, o the
position given by offset plus a base specified by the string whence, as follows:

* ‘set' base is position O (beginning of the file),
e 'cur base is current position,
* 'end'is the end of the file.

In case of success, seek returns the final file position, measured in bytes from the
beginning of the file. If this function fails, it returns null, plus a string describing the
error.

The default value for whence is 'cur, and for offset is 0. Therefore, the call
gzip.seek(flehandle) returns the current file position, without changing it; the call
gzip.seek(flehandle, 'set') sets the position to the beginning of the file (and returns 0);
and the call gzip.seek(filehandle, 'end) sets the position to the end of the file, and
returns its size.

gzip.write (filehandle, value 1)

Writes the value of each of its arguments to the file specified by filehandle . The
arguments must be sfrings or numbers. To write other values, use tostring or
strings.format before write.

364 7 Standard Libraries

7.19 net - Network Library

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distrioution and must be activated with the import statement, e.Q.
import net

7.19.1 Introduction and Examples
This package provides basic functions to pass text from a client to a server using the

IPv4 protocol. Thus it is suited o exchange information over the Internet and Local
Area Networks.

Please remember that the package only supports unencrypted data
transfer which might be insecure ! There is no SSL support.

If you do not use this package, no network functionality will be activated.

Please also note that when using net.accept, nef.connect, net.receive,
net.send, and net.survey, you Will give access to your computer through LANs
or the Internet, so please programme handshaking and blacklist/whitelist
methods.

Limited white and blacklisting fo allow or prohibit connections is supported
through the net.whitelist and net.blacklist feature.

Communication is performed with “stream sockets™ that ensure that data is sent
and received in the original order and hopefully without errors. A socket is being
created by a call to the net.open function.

In the following example, we will set up a one-way communication with the " client”
sending and the “server’ receiving data.

A typical session might begin by setting up the server. This is because a client
cannot connect to a server until the |atter is ready for it.

> import net alias
net v0.2.1 as of January 13, 2013

accept, address, bind, block, close, connect, Iliste n, lookup, open,
opensockets, receive, remoteaddress, send, shutdown , survey

Create a socket: the net.open function retuns a new socket handle:

> s := open():
932

agena >> 365

Now associate this socket with a port on the server machine? by running net.bind.
In this example we expect data to be received on your own computer on port
1300.

> bind(s, '127.0.0.1', 1300):
127.0.0.1 1300

Now our socket must be converted to a server socket by calling

> listen(s):
true

and be fold to get a pending connection by running net.accept.

net.accept waits until a client asks the server for a connection (see client example
below). It retuns a new socket handle which later on manages this specific
connection, while the original socket is ready to wait for requests for other
connection.

net.accept also retuns the IP address of the client asking for a connection, and its
port,

> t, ip, port := accept(s):
924 127.0.0.1 3230

If you do not want net.accept to wait indefinitely until something happens, call
net.block with the original server socket and false as its second argument.

Please note that you should check the incoming connection against a white or
black list so that only frusted clients can send you any data. To decline and
terminate an incoming connection, either check the incoming caller and just call
net.close with the handle returned by net.access, or use the built-in basic black
and whitelist functionality described at the end of this sulbbchapfer.

It also a good idea fo validate the incoming connection with a handshaking
procedure which checks the incoming data for certain information and then
automatically decides whether to go on or shut down the connection.

Datfa received from the client is returned by calling net.receive with the new file
handle returned by net.accept.

> receive(t):
Kuckuck ! 9

Finally, close both sockets (or just the handle returned by net.accept):

> close(t, s):
true

2 You may use the operating systern commands ifconfig (UNIX, Mac) or ipconfig (Windows) to
determine your own IP address.

366 7 Standard Libraries

To open a client session, start Agena in another shell:

> import net alias

To connect to a server, first issue:

>d :=open()
932

Now connect to the server by passing the socket handle, the IP address and port
numiber of the server. 'localhost' means that the server runs on the same
machine as the client.

> connect(d, 'localhost’, 1300):
true

Send some text once or more.

> send(d, 'Kuckuck !):
9

The server immediately returns the text sent. To finish a client session, type:

> close(d):
true

Call net.opensockets to have a look at the state of all open sockets.

Following now is an extended but crude example for a one-way connection which
sends one thousand hashes from the client to the server on the local host on port
1300.

Since with one single call, net.receive by default processes "only” 512 bytes in
Windows and usually 8,192 bytes in UNIX, the server uses a while loop 1o receive all
the data until the client closes the connection.

Since net.receive returns two results - the string and the number of characters
received - its second return will be O if the client terminates a network session.

agena >> 367
Server Client
> import net alias > import net alias
>d := open(): >d := open():
132 352

> bind(d, 'localhost’, 1300):
127.0.0.1 1300

> listen(d):
true

> e, f, g := accept(d);

> print(e.f, g);
352 127.00.1 49178

> X, Y :=receive(e);

> print(X, y);
#Ht### (512 hashes) #####t 512

> while y <> 0 do

> X, Y:=receive(e);

> print(x, y);

> od;

#HH#H# (more hashes) #### 488
0

> close(e, d):
true

> connect(d, 'localhost’, 1300):
true

> send(d, strings.repeat(‘#', 1m)):
1000000

> close(d):
true

A simple bi-directional connection:

Server

Client

> import net alias

>d := open():
124

> bind(d, 'localhost’, 1300):
127.0.0.1 1300

> listen(d):
true

> e, f, g := accept(d);

> print(e.f, g);
344 127.001 49183

> X, Y :=receive(e);

> print(X, y);
#i# etc. 512

> send(e, 'Got ' & y & ' bytes');

> import net alias

>d := open():
124

> connect(d, 'localhost’, 1300):
true

> send(d, strings.repeat(#, 1k)):
1000

> receive(d):
Got 512 bytes 13

> receive(d):
Got 488 bytes 13

> close(d):
true

368 7 Standard Libraries

Server Client
> while y <> 0 do
> X, Y :=receive(e);
> print(x, y);
> send(e, 'Got ' & y & '
bytes");
> od;
etc. 488
0
> close(e, d):
true

Usage of black and whitelists: First initialise the net package.
> import net alias

Now put one or more a numeric (1) IPs 1o be blocked into the set net.blacklist to
prohibit connections to these addresses (valid for both net.connect and
net.accept).

> net.blacklist := {'1127.0.0.1"}

> d := open():
3

> connect(d, '127.0.0.1', 1300):
Error in “net.connect’; partner in blacklist, closi ng socket 3.

Stack traceback: in “connect’
stdin, at line 1 in main chunk

Socket d is now closed:

> opensockets():

I

Now define a whitelist with all IPs to which a connection is allowed.

> net.whitelist := {1127.0.0.2'}

> d := open():

3

> return connect(d, '127.0.0.3', 1300)

Error in “net.connect’: partner not in whitelist, ¢ losing socket 3.

Stack traceback: in “connect’
stdin, at line 1 in main chunk

The socket is closed, as well.

> opensockets():

I

agena >> 369

7.19.2 Functions

net.accept (s)

Accepts a connection request from a client on the given server socket handle s. If
the server socket has been set to blocking mode, it waits until there is an incoming
connection.

The function retumns a new socket handle (@ number) for the data to be received
later on, and the address (a string) and port (a number) of the client socket.

Please note that the new socket created by net.accept must be closed separately
to avoid too many open sockets.

The function also checks the global sets net.blacklist and net.whitelist, in this order,
and if they exist. If you are trying to accept a connect fromm an address that is
included in net.blacklist, then net.accept refuses this connection, closes the new
socket that it created (see above), and issues an error. If you are frying o accept a
connection froon an address that is not in net.whitelist, the function does not
establish a connection, closes the freshly created socket, and issues an error, as
well.

Please note that net.blacklist and net.whitelist must only contain numeric IPs, and
not addresses like ‘'sunsite.abc.xyz. However, net.accept tries to convert the
incoming address to a numeric IP address and then checks both lists?’. If an
address could not be resolved, the function does not allow a connection, and
closes the newly created socket, and finally issues an error.

You may use protect in order to intercept the errors described above, but you must
take care yourself for allowing or prohibiting a connection.

You have to set up net.blacklist and/or net.whitelist yourself after initialising the net
package.

The procedure is a binding to C's accept function.

See also: net.accept, net.bind, net.block, net.listen, net.receive, net.survey.

net.admin

Table containing various operating system-specific administrative network settings:

Key Meaning

maxnsockets estimated maximum numioer of open sockets
allowed

protocols a table containing the supported protocols

27 Usually, the server that tries to connect sends its numeric IP address, but probably it does not. So
this is just a precautionary action.

370 7 Standard Libraries

net.address (s)

Returns two values: the IP address (a string) and port number (@ number) to which
socket s is bound.

See also: net.lookup, net.remoteaddress .

net.bind (s [, address [, port]])

Associates a socket s with an IP address and a port on the local machine and
returns its IP address (a string) and the respective port on success or returns false
and a string containing the error message otherwise.

If address is not given, localhost is bound to the socket (i.e. your own computer),
otherwise the numeric IP address or host name is bound.

By default, port 1234 is connected, but you may specify another port (an integer) as
a third argument. This might require administrative rights.

The procedure is a binding fo C's bind function.

To determine your own IP address, open a shell and issue the command ipconfig
in Windows, and ifconfig in Solaris, Linux, Mac, or other UNIX based platforms.

See also: net.accept, net.listen, net.receive, net.survey.

net.block (s, mode)

Sets a socket to blocking or non-blocking mode. The functions expects the socket
handle (a number) s as its first argument and the mode (@ Boolean) as its second
argument. If the second argument is true, the socket is set to blocking mode, else
fo non-blocking mode. The return is true on success and false otherwise.

The procedure is a binding to C's fentl (UNIX) Or ioctlsocket (Windows) function.

net.close (---)

Terminates all the given servers or clients denoted by their socket handles and
returns true on success, or false and a string containing an error message otherwise.

The procedure is a binding to C's close Or closesocket function.

net.closewinsock ([anything])

The function is available only in the Windows edition. It finally terminates the current
network session and returns frue on success, or issues an error otherwise if anything

is not given. If any value anything is passed to the function, in case of an error it
returns fail plus an error message of type string.

agena >> 371

Please note that when you call this function, no further network communication will
e possible. Call net.openwinsock to enable network communication again.

The procedure is a binding to C's WSACIleanup function.

See also: net.openwinsock .

net.connect (s [, address [, port]])

Connects the client denoted by it socket handle s (first argument, a number) to a
server af the specified IP address (second argument, a sting) and ifs port (third
argument) so that data can be sent later. If address is missing, the address is set to
'localhost’ , if port is missing, port 1234 will be used.

If the client socket is set o blocking mode, the function waits until the server
responds; if the client socket is set to non-blocking mode, it immediately returns
without waiting for a server response.

The retumn is either true in case of success or false and the error message (a string)
at failure.

The function also checks the global sets net.blacklist and net.whitelist, in this order,
and if they exist. If you are frying to connect to an address that is included in
net.blacklist, then net.connect does not establish a connection, closes socket s,
and issues an error. If you are frying to connect to a server that is not in net.whitelist,
the function does not establish a connection, closes the socket, and issues an error,
as well.

Please note that net.blacklist and net.whitelist must only contain numeric IPs, and
not addresses like 'sunsite.abc.yz'. However, net.connect fries 10 convert address 10
a numeric IP address and then checks both lists. If an address could not be
resolved, the function does not establish a connection, closes socket s and issues
an error,

You may use protect in order to intercept the errors described above, but you must
take care yourself for allowing or prohibiting the connection.

You have to set up net.blacklist and/or net.whitelist yourself after initialising the net
package.

The procedure is a binding to C's connect function.

See also: net.send.

net.listen (s [, length])

372 7 Standard Libraries

Converts the given socket s to a server socket, enabling it fo accept connections.
You may optionally pass an infeger in the range [1, 1024] determining the length of
the queue for pending connections.

The return is either true, or false and a string with an error message if listening failed.
You must first run this function before calling net.accept and net.receive.

The procedure is a binding fo C's listen function.

net.lookup ([x])

Determines the IP, an optional alias, the official name and the supported protocol
of a given URL or numeric IP x of type string. If no argument is passed, the function
will return the inforrnation on 'localhost'

An example:

> lookup(‘'www.zeit.de"):

[networkaddress ~ [0.0.0.1], alias ~ [zeit.de], off icial ~ Die Zeit, type ~
IPv4]

> lookup('10.137.0.1"):

[networkaddress ~ [10.137.0.1], alias ~ [anything.y z], official ~ Anything,
type ~ IPv4]

See also: net.address, net.remoteaddress .

net.open ([blocking])

Creates a (client) network socket. If the optional first argument blocking is set to
false, the socket is set to non-blocking mode.

The retumn is the socket handle (@ number), the default address 'localhost' and
default port 1234, the protocol (a number) and a Boolean indicating whether the
handle can be reused by the system after the socket has been closed. If a new
socket could not be opened, an error is issued.

net.open does not connect the client to a server - use net.connect for this.

To create a server socket waiting for input, use net.bind, net.listen, and net.accept.

The procedure is a binding fo C's socket function.

See also: net.close.

net.opensockets ()

Returns all open sockets along with their respective aftributes.

The retun is a table with its keys the open socket handles, and their entries tables
containing information on whether the socket is a server or client (key 'server’
tfrue or false), their own address (key ‘address’ , a string), their own port (key

agena >> 373

‘port’ , @ number), the protocol being used (key 'protocol’ , @ number), whether
the socket works in blocking or non-blocking mode (key 'blocking' . frue or false),
and whether the socket has been connected to a server (‘connected , true or
false).

The table key 'mode’ holds inforrnation on the read and write status of the socket:

Value Meaning

‘none’ the socket is not connected

'shutdown’ the socket no longer can receive or send data

‘read’ the socket can only receive data, but cannot send any
‘write' the socket can only send data, but cannot receive any
‘readwrite’ the socket can both send and receive data (the default)

Please note that modifying the contents of the table returned will not have any
effect on the status of the sockets, so you cannot do any harm.

See also: net.shutdown.

net.openwinsock ([anything])

The function is available only in the Windows edition. It re-enables network
communication and returns true on success, or issues an error otherwise if anything

is not given. If any value anything is passed to the function, in case of an error it
returns fail plus an error message of type string.

When initialising the net package by calling readlib or with, Agena automatically
starts the Winsock daemon, so you do not have to call this function explicitly.

The procedure is a binding to C's WSAStartup function.

See also: net.closewinsock .

net.receive (s [, getall [, maxlength]])

Allows a server socket s to receive a string from a client. The function returns this
sting and its length (@ number). s should be the socket handle returned by
net.accept.

If the return is the empty string plus the value O (zero) for its length, the client has
closed the connection - this is also a proper check on whether a client is still
connected with a server socket. Please note that in this case, no further data can
e received on this socket and you have 1o close s manually.

If frue has been passed for the optional argument getall , the function reads in all
data from the client until the latter closes the connection. If the client does not
close the connection, net.receive waits infinitely.

374 7 Standard Libraries

The opftional argument maxlength determines the maximum number of characters
to be received. If a client tries to send more data than specified by maxlength , the
function returns false and the string 'too many bytes received'

The maximum numiber of bytes to be read by one stroke is determined by
environ.kernel['buffersize'] which value depends on the operating system and can
also mbe changed.

If any error occurs during receipt of the data, net.receive does not close the socket
s, but returns false and a string containing either the message ‘failure during
receipt ' Of 'too many bytes received' , the latter if maxlength and the number of
bytes received exceeded it.

The procedure is an extended binding to C's recv function.

See dalso: net.accept, net.bind, net.block, netlisten, net.receive, net.send,
net.survey.

net.remoteaddress (s)

Returns two values: the IP address (a string) and port (@ number) of the server that
the client socket s is connected to.

See also: net.address, net.lookup .

net.send (s, str [, true])

Sends a string str (second argument) from the client denoted by its socket handle
s (first argument, a number) to a server.

The return is the number of the characters actually sent. If the kernel decides not to
send all the data in one chunk, the function might not send the complete string. If
an optional third argument, the Boolean true, is given, net.send, however, fries fo
make sure that the complete string has been sent when it returns.

If str is the empty string, it will not be sent to the server.

The function retumns fail and the string 'socket not connected' if the socket has not
been connected before by either net.connect or net.accept. It also returns fail
and 'socket not connected' if the connection has been disconnected.

If the number of bytes actually sent is not equal to the length of the string str, the
function refumns false, the string ‘transfer size mismatch’ , and the number of
bytes sent.

The procedure is an extended binding to C's send function.

See also: net.connect, net.receive.

agena >> 375

net.shutdown (s, what)

The function stops further sends and receives on a socket s. If what is the string

'read’ , then the socket can no longer receive data; if what is the string ‘write' it
can lo longer send data; and if what is the string 'readwrite' , it will not do both any
longer.

Please note that socket s will still be active. Call net.close if you want to release the
socket completely.

See also: net.opensockets .

net.smallping (ip, port [, iters [, delay [, messag e [, noprint]]]])

Opens a socket, connects to a server given by the string ip (either a domain name
Oor a numeric ip) on its port port , @ number, optionally sends a string to the server,
and then closes the connection again. It resembles the UNIX ping command, but
works on a low-level network connection and does not use ICMP,

By default, only one connection attempt is conducted before the function returns.
You can specify the number of connection attempts by the optional argument
iters , A positive integer.

The function waits one second before connecting to the server again. You can
change this by passing a different number of seconds for the argument delay , a
positive integer.

If message is Not given, the function does not send any data to the server. You can
change this by passing a string as argument message, which might also be the
empty string.

By default, the function prints the connection results at the console with each
iteration. This can be suppressed by passing any non-null value as argument
noprint . If you specify a value for noprint and if you do not want to send a string to
the server, just pass a non-string value as argument message .

The following data is printed af the console if noprint is void: Date and time,
round-trip time for the current connection in seconds, average round-trip time, a
Boolean indicating whether the connection was successful (true) or not (false), and
the numiber of the current iteration. Example:

> net.smallping(‘www.anything.foo', 80, 4, 2)
> # four iterations, 2-second delay, no message
2014/01/01 13:54:30 0.296 0.296 true 1
2014/01/01 13:54:32 0.031 0.163 true 2
2014/01/01 13:54:34 0.047 0.125 true 3
2014/01/01 13:54:36 0.047 0.105 true 4

The function retumns the date and time of the final iteration as a numiber indicating
the number of seconds passed since a given “epoch’, the average round-trip time
in seconds as a number, and a Boolean indicating whether the last connection

376 7 Standard Libraries

attempt was successful (frue) or not (false). Use skycrane.todate to convert the
numeric date into a readable format.

The function is writfen in the Agena language and included in the net.agn file.

net.survey ([o], [timeout [, mode [, throw]]])

The function looks for activity on all open sockets, or of specific sockets. If you want
to scan only specific sockets, pass a sequence o of socket handles as the first
argument.

The returns are three sequences and a Boolean: the first sequence with descriptors
of sockets ready for reading, the second sequence containing all descriptors of
sockets ready for writing, and the third sequence with the descriptors of sockets
which encountered exceptional conditions. (Exceptional conditions are not failures.)
If the Boolean is true then input is available, if it is false it indicates a timeout.

By default, net.survey waits endlessly and only returns if a network action has been
detected (so-called "blocking mode).

If the positive number timeout i passed to the function, the functions will always
return after timeout seconds even if there was no activity. if timeout s infinity, it waits
endlessly for a connection.

If mode is the string 'read' , then the function only scans sockets ready for reading. If
mode is the string 'write' , then the function only scans sockets ready for writing. If
mode is the string 'except’ , then the function only scans sockets where exceptions
occurred. In all three cases, the returns are a sequence of the respective sockets
handles and the Boolean true if input is available, or false at timeout.

If throw is set to false, then the function does not quit with an eror in case the
socket status could not be determined.

A socket handle retumed can be passed to the net.accept function so that an
incoming connection can be further processed.

The function is a binding fo C's select function.

See also: net.accept, net.bind, net.listen, net.receive.

net.wget (domain, [path [, port]]])
The function downloads an HTML file from a web server.

domain , a string, specifies the domain. path , Also of type string, indicates the
absolute path including the HIML file name on the web server. If port , Q
non-negative integer less than 65,535 is given, then the function fries to query this
port instead of the standard HTML port 80.

agena >> 377

If only domain is given, then it may include the absolute path. If you want to
download data from a different port than 80, however, you must pass the absolute
path as the second argument.

The function uses the HTTP 1.0 protocol along with the GET method.

The function retumns the retrieved web page as a string, including its HTTP protocol
header.

Examples:

> import net

> net.wget(‘'www.lua.org', 'about.html’):
HTTP/1.1 200 OK
Server: Zeus/4.3

> net.wget(‘www.lua.org/about.html"):

The function is writfen in the Agena language and included in the net.agn file.

378 7 Standard Libraries

7.20 os - Access 1o the Operating System

This library is implemented through table os.

To determine the operating system and CPU in use by Agena, see the environ.os
and environ.cpu environment variables explained in Appendix A3.

Summary of functions:

File and directory handling:

os.chdir, os.exists, os.fattrib, os.fcopy, os.fstat, os.list, os.listcore, os.mkdir,
os.move, os.readlink, os.remove, os.rmdir, 0s.symlink, os.tmpname.

Hardware access:
os.battery, os.beep, os.cdrom, os.endian, os.freemem, os.ismounted,
os.isremovable, os.isvaliddrive , 0s.memstate, os.mousebuttons,
0s.screensize .

Operating System Access:
os.computername, os.cpuinfo, os.cpuload, os.drives, os.drivestat,
os.environ, os.execute, os.exit, 0s.getenv, 0s.iSANSI, 0s.isSUNIX, os.login,
0s.pid, os.setenv, os.seftime, os.setlocale, os.system, os.wait.

Date and Time:

os.date, os.datetosecs, os.difftime, 0os.now, os.secstodate, os.time,
os.uptime.

agena >> 379

os.battery ()

On Windows 2000 and later, the function returns the current battery status of your
system (usually laptops) as a table with the following information:

Key Meaning

‘acline’ ‘on’, 'off', or 'unknown'

'installed’ frue if a battery is present, and false otherwise

'life’ battery life in percent
either 'low' (capacity < 33%), 'medium' (capacity > 32% and

'status' <67 %), 'high' (capacity > 66%), 'critical' (capacity < 5%),
'‘charging’, 'no battery', 'unknown'

‘charging’ true if battery is currently being charged, or false otherwise

flag’ the battery flag, a number

Jifetime" the remaining battery lifetime in seconds, a number (or
undefined if it could not be determined)

fulllifetime’ the battery lifetime in seconds when at full charge, a number
(or undefined if it could not be determined)

On eComéStation, OS/2 Warp 4 and higher, the functions retumns the status of the
battery as a table with the following information:

Key Meaning

‘acline’ 'on', 'off', 'unknown', or 'invalid'

'life’ battery life in percent, or 'undefined' if not available
'status’ either 'high’, 'low', 'critical', 'charging', 'unknown’, or ‘invalid'
flags' eComstation - OS/2 power flags

'power- : : : ;
management' true if power management is switched on, or false if nof.

On other operating systems, the function returns fail.

0s.beep ()
os.beep (freq, dur)

In the first form, the functions sounds the loudspeaker with a short "beep” and
returns null.

The second form sounds the loudspeaker with frequency freq (a positive integer) for
dur seconds (a positive float) in Windows and eComStation - OS/2. In UNIX and DOS,
the loudspeaker beeps dur times, and the frequency is ignored (just pass any
numiber to freq). Returns null if a sound could be created successfully, or fail if
non-posifive arguments were passed.

os.cdrom (d, action)

Opens and closes the tray of an opfical disk drive d. It can also eject any other
removable drive d. If action is 'open’ Ofr 'eject’ , the tray is opened or the media is

380 7 Standard Libraries

ejected. If action is 'close’ , the fray is closed. The function is available in the
Windows edition of Agena only.

os.chdir ([str])

Changes into the directory given by string str on the file system. Returns frue on
success and issues an error on failure otherwise. If no argument is given or null is
passed for str , the name of the current working directory is returned as a string.

os.computername ()

Returns the name of the computer in Windows, eComStation - OS/2, DOS, Mac OS
X, Haiku, and UNIX. The retumn is a string. On other architectures, the function returns
fail.

os.cpuinfo ()

Returns various information on the CPU in use: its type, frequency, and number of
cores. It is available in Windows 2000 and later, eComStation - OS/2, DOS, Linux,
and Mac OS X only?, The return is a table with the following fields:

Field Meaning eCS | Win- | Mac | Linux
0O§/2 | dows
endianness: true means Big
‘bigendian’ Endian, false Little Endian, and fail X X X X
undetermined.
‘brand’ processor name, a string® X X X
frequency’ clock rate in MHz, a posint X X X
level processor level, a posint X X
'model’ processor model, a posint X X
‘ncpu’ numioer of cores, a posint X X X
‘revision’ Processor revision, a posint X
'stepping’ processor stepping, a posint X X

architecture: in Windows the string:
x86', 'x64', 'ARM', 'ltanium', or
'unknown'; on a Mac: 'x86', 'xé64',
‘type’ 'ppc!, ‘Ppcd4, 'MC680x0!, X X X X
'MC88000, MC98000, HPPA,
'ARM', 'sparc’, 'i860', or 'unknown'. In
Linux: a posint.

vendor ID, e.g. 'GenuineAMD!,
'Genuinelntel'.

‘vendor'

On all supported operating systems, all data is determined by querying the first
processor on the platform, assuming that all other cores have the same features.

28 In Solaris, you may issue io.pcall(’kstat) and parse ifs return.,
2 The retum may include leading or trailing blanks.

agena >> 381

The returns may be platform-dependent - especially, the retun regarding 'level
may have a different meaning.

If executed on systems other than Windows, eComsStation - OS/2, Linux, DOS,
Sparcs, and Mac OS X, the function returns fail.

The Linux version has been written in the Agena language, see the library.agn file;
the other OS versions have been implemented in C.

See also: os.cpuload, os.endian.

os.cpuload ()

In eComdsStation - OS/2, Linux and Mac OS X, returns the 1, 5 and 15 minute load
averages of the computer as a sequence of three numbers in the range [0, 1]. In
Windows, it just returns the current CPU load as a sequence of three equal numibers
in the same range. On other platforms, the function returns fail.

See also: os.cpuinfo.

os.curdir ()

Has been deprecated. Please use os.chdir(null) to determine the current working
directory.

os.curdrive ()

In eComStation - OS/2, DOS, and Windows returns the lefter of the current drive, a
one.character string.

os.date ([format [, time]])

Returns a string or a table containing date and time, formatted according to the
given string format .

If the time argument is present, i.e. the numiber of seconds elapsed since a given
epoch (usually January 01, 1970), this is the time to be formatted. Otherwise, date
formats the current fime. To convert a date and time 1o seconds, see
os.datetosecs.

If format starts with ", then the date is formatted in Co-ordinated Universal Time.
After this optional character, if format is *t , then date returns a table with the
following fields: year (four digits), month (1..12), day (1..31), hour (0..23), min (0..59),
sec (0..59), msec (0..999) - if miliseconds could be determined, wday (weekday,
Sunday is 1), yday (day of the year), andisdst (daylight saving flag, a boolean).

If format is not *t , then date returns the date as a string, formatted according to the
same rules as the C function strftime

382 7 Standard Libraries

When called without arguments, os.date on all supported platforms returns a string
of the format YYYY/MM/DD mm:hh:ss.xxx', where .xxx denotes milliseconds, if they
could be determined; otherwise the retunn would simply be in the format
"YYYY/MM/DD mm:hh:ss'.

See also: 0s.now, os.time.

os.datetosecs (obj)

os.datetosecs (year, month, day [, hour [, minute [, second]]])

In the first form, receives a date and optionally time of the form year, month, date [,
hour [, minute [, second]]], with all values in table or sequence obj being integers,
and fransforms it to the numiber of seconds elapsed since the start of an “epoch.

In the second form, receives the given integers, and conducts the same operation.
The time zone acknowledged may depend on your operating system.

See also: os.time, os.secstodate, ufils.checkdate.

os.difftime (t2, t1)

Returns the number of seconds from fime t1 to fime t2 . In POSIX, Windows, and
some other systems, this value is exactly t2 -t1 .

See also: time, os.time.

os.drives ()

In Windows and eComstation - OS/2, the function retumns all the logical drives
available at the local computer. The return is a sequence of drive lefters. In other
systems, the return is fail.

os.drivestat (driveletter)

In Windows, the function returns information of the given logical drive (a single letter
strinQ) in a table where its keys have the following meaning:

Key Meaning

‘label the drive label

filesystem' the file system (e.g. NTFS, FAT32, etc.)

‘drivetype’ the type of the drive, i.e. Removable', Fixed, 'Remote’,
'CD-ROM!, or 'RAMDISK'

freesize’ the numioer of free space in bytes

'totalsize’ the total numiber of physical bytes

In other systems, the return is fail.

agena >> 383

Example:
> os.drivestat('c’): # get information on drive C: \
[filesystem ~ NTFS, label ~ drive_c, drivetype ~ Fi xed, freesize ~

75547742208, totalsize ~ 85898014720]

See also: os.ismounted, os.isremovable .

os.endian ()

Determines the endianness of your system. Returns O for Little Endian, 1 for Big
Endian, and fail if the endianness could not be determined.

See also: os.cpuinfo.

os.environ ()

Retuns all environment variables of the underlying operating system and their
current settings as a table of key ~ value pairs of type string.

See also: os.getenv, os.setenv.

os.execute ([command])

This function is equivalent to the C function system . It passes command to be
executed by an operafing system shell. It retuns a status code, which is
system-dependent. If commandis absent, then it returns non-zero if a shell is available
and zero otherwise.

See also: io.pcall.

os.exists (filename)

Checks whether the given file or directory (filename is Of type string) exists and the
user has at least read permissions for it. It returns true or false.

os.exit ([code])

Calls the C function exit , with an optional code , to terminate the host programme.
The default value for code is the success code.

os.fattrib (fn, mode)
os.fattrib (fn, time)

In the first form, sets or deletes file permission flags given by the mode string to the file
denoted by the filename fn .

The mode argument must consist of at least three characters and have the following
form:

384 7 Standard Libraries

Character 1 Character 2 Character 3, etc.

'u' - user '+' - add permission T - read permission
'g' - group - - remove permission | 'w' - write permission
‘o' - other X' - execute permission
'a’ - user, group, and

other

The first character in mode denotes the owner of the file, the second character
indicates whether to set or delete a permission, and the following characters
indicate which permissions to set or remove.

In Windows and eComStation - OS/2 the following permission flags are additionally
supported:

Character 3, etc.
'a’ - archive flag
's' - system flag
'h* - hidden flag
T - read-only flag

In the second form, the function changes the modification and access time of the
fle denoted by its name fn to the dafte and time given in table time . The table
must include at least infegers representing a year, month, and day. It may
optiondlly include an hour, a minute, and a second. If they are missing, they
default to zero.

File time stamps can only be changed in UNIX, Windows, Mac OS X , and DOS.

The function returns true on success, and fail otherwise.

Examples:
> os.fattrib(‘file.txt', ‘a-wx'); # deletes write and execute permissions
> os.fattrib(‘file.txt', [2012, 05, 23, 12, 30, 0]) ; # sets time stamp

See also: os.fstat, os.now.

os.fcopy (infile, outfile)

Copies the file and its permissions denoted by the filename infile fo the file called
outfile . If outfile already exists, it is overwritten without warning. The function
infernally uses environ.kernel['buffersize'] for the number of bytes to be copied af
the same time, which you may change to another positive integer.

The function returns frue on success, and fail and infile otherwise. It also returns fail
and infile if the file could be copied, but the file permissions could not be set.

agena >> 385

Please note that outfile ~ cannot specify a target directory. Use skycrane.fcopy
instead which copies files into other files and also 1o directories.

See also: skycrane.fcopy .

os.freemem ([unit])

Returns the amount of free physical RAM available on Windows and Mac OS X,
Haiku, and UNIX machines. In eComStation - OS/2, the function returns the amount
of free virtual RAM.

If no argument is given, the refum is in bytes. If unit is the string 'koytes' , the retumn is
in kBytes; if unit is 'mbytes’ , the retumn is in Mbytes; if unit is 'gbytes' , the return is in
GBytes. On other architectures, the function returns fail.

See also: environ.used, os.memstate.

os.fstat (fn)

Returns information on the file, symbolic link (UNIX and Windows only), or directory
given by the string fn in a fable.

The table includes the following information:

Key Meaning

'FILE' if fn is a regular file, 'LINK' if fn is @ symibolic link (UNIX and
Windows only), 'DIR' if fn is A directory, 'CHARSPECFILE' if fn is G
character special file (a device like a terminal), 'BLOCKSPECFILE' if
fn is a block special file (a device like a disk), or 'OTHER' otherwise
length’ the size of the file in bytes

'date’ last modification date in the form yyyy, mm, dd, hh, mm, ss

file attributes coded in an integer (C type file affrioutes as a string
similar to that in UNIX and DOS, e.Q. ‘'-rw-rw-r--:-----' or
s :-drhas' where the bits fo the left of the colon are set
in the UNIX and DOS versions of Agena, while in Windows and
eComStation - OS/2, the bits to the right of the colon are set.

The lefters indicate:

™ - read permission granted (UNIX & DOS)

w' - write permission granted (UNIX & DOS)

X' - execute permission granted (UNIX & DOS)

'd" - indicates directory (eCS - OS/2 only)

T - readonly file (€CS -OS/2 and Windows)

'h' - hidden file (eCS -O§/2 and Windows)
o
g

'mode’

'perms’

- archived file (eCS -OS/2 and Windows)
- system file (eCS -OS/2 and Windows)
'bits’ The permission bits.

386 7 Standard Libraries

Key Meaning
Access permissions to the file or directory are returned with the
owner, group (UNIX only), and other (UNIX only) keys which each
reference tables with information on read , write , And execute

. . permissions. These fables have the following form: [read -~

owner <boolean>, ‘write'’ ~ <boolean>, ‘execute’ ~ <boolean>],

oren where <boolean> is either true or false.
In eComéStation - OS/2 and Windows, the file attriibutes 'hidden'
'readonly’ , ‘'archived , and 'system' qAre also retumned in the
subtable with key 'owner',

blocks' (UNIX only) Disk space occupied by the file, measured in units of
512-byte blocks.

blocksize' (UNIX only) Optimal block size for reading or writing this file, in
bytes.

'device’ Device containing the file, in Windows 0 = A, 1 = B, etc.

'inode’ (UNIX only) Unique file serial number.

See also: os.fattrib.

os.getenv (varname)

Returns the value of the system environment variable varname , or null if the variable
is not defined.

See also: os.setenv, os.environ.

0S.iISANSI ()

Returns tfrue on Agena editions compiled with the LUA ANSI (strict ANSI C) option,
and false otherwise.

os.ismounted (d)

Checks whether the given drive d has been mounted. It is available in the Windows
edition of Agena only.

See also: os.cdrom, os.drivestat, os.isremovable, os.isvaliddrive .

os.isremovable (d)

Checks whether the given drive d is removable. It is available in the Windows edition
of Agena only.

See also: os.cdrom, os.drivestat, os.istnounted, os.isvaliddrive .

agena >> 387

0S.iISUNIX ()

Returns true if Agena is being run in a UNIX environment (i.e. Solaris, Linux, and
OpenSolaris), and false otherwise.

os.isvaliddrive (d)

Checks whether the given drive d is part of the file system. It is available in the
Windows edition of Agena only.

See also: os.cdrom, os.drivestat, os.ismnounted, os.isremovable .

os.list (d [, options])

Lists the contents of a directory d (given as a string) by retuning a table of strings
denoting the files, subdirectories, and links. The second return is a string with the
absolute path to the main directory scanned. If d is null or the empty string, the
current working directory is evaluated.

d may include the ? and * jokers known from UNIX, eComStation - OS/2, DOS, or
Windows 1o select a subset of files, e.Q. os.list(*.c') to return all files with suffix
.c . Jokers can only be used to select files, but not to parse multiple subdirectories.

If no opfion is given, files, links, and directories are returned. If the optional argument
files' is given, only files are returned. If the optional argument 'dirs' is given,
directories are returned exclusively. If the optional argument 'links' is given, links
are returned (UNIX only). The ' option forces a recursive descent into all subfolders
of d. Multiple options can be given.

If d is ' , then the current working directory is examined. If d is *..' , then the
directory one level higher than the current one is searched.

If the string v is passed as an option, the function traverses all subfolders in d.

The function is writfen in the Agena language and included in the library.agn file.

os.listcore (d)
os.listcore (d [, options] [, pattern])

In the first form, returns a table with all the files, links and directories in the given path
d. If d is void or the string '.' , the current working directory is evaluated. It is the core
function used by os.list.

In the second form, by giving at least one of the options ‘files' , 'dirs’ , Or
links' , the file, directory name, or link names are returned, respectively. These
three options can be mixed.

388 7 Standard Libraries

Another option may be a pattern of type string which can include the wildcards ?
and *. If given, the function only returns those filenames which match this patftern.

os.login ()

Returns the login name of the current user as a string. The return is a string. In DOS,
the function returns fail.

os.memstate ([unit])

(Windows, UNIX, Mac OS X, Haiku, and eComdStation - OS/2 only.) Retuns a table
with information on current memory usage. With no arguments, the return is the
respective number of bytes (integers). If unit is the string 'koytes' , the return is in
kBytes; if unit is 'mbytes’ , the return is in Mbytes; if unit is 'gbytes’ , the return is in
Gbytes.

The resulfing table will contain the following values, an X' indicates which values are
returned on your system.

eCS Win- UNIX/

Key Description OS2 dows Haiku Mac
freephysical’ free physical RAM X X X
'totalphysical installed physical RAM X X X X
‘freevirtual' free virtual memory X X

'totalvirtual' total virtual memory X

‘resident’ occupied resident pages X

maximum number of bytes
available for the active process
maximum number of shareable
bytes available

‘active’ active memory X
current committed memory limit
for the current process

maximum amount of memory the
current process commitable
'inactive’ inactive memory X
unknown meaning, see vm_stat.c

'maxprmem’

'maxshmem’

‘freepagefile’

‘totalpagefile’

'speculative’

X
source code.

wireddown' memory that cannot be paged X
out

'reactivated' memory reactivated X

On Mac, the function returns Mach virtual memory statistics. Type man vm_stat in @
shell to get more information on the meaning of the above mentioned
Mac-specific values.

On other architectures, the function returns fail.

agena >> 389

See also: environ.used, os.freemem.

0s.mkdir (str)

Creates a directory given by string str on the file system. Returns true on success,
and issues an error on failure otherwise.

The function is available on eComStation - OS/2, DOS, UNIX, Haiku, Mac OS X, and
Windows based systems only.

os.mousebuttons ()

In Windows, returns the numlber of buttons of the attached mouse. If a mouse is not
connected to your system, O is returned. On all other platforms, the function returns
fail.

os.move (oldname, newname)

Renames or moves a file or directory named oldname tO newname. The function
retuns true on success, and issues an error on failure otherwise.

See also: skycrane.move.

0s.now ([secs])

Returns rather low-level information on the current or given date and time in form of
a dictionary.

If no argument is passed, the function retumns information on the current date and
fime. If a non-negative number is given which represents the amount of seconds
elapsed since the start of the epoch, information on this date and time are
determined (see os.datetosecs fo convert a date fo seconds).

The "gmt’ table in the return of the function represents the current date and time in
GMT/UTC. The 'localtime” table includes the same information for your local time
zone.

The "tz entry represents the difference between your local time zone and GMT in
minutes with daylight saving time cancelled out, and east of Greenwich. The "td’
entry represents the difference between your local time zone and GMT in minutes
including daylight saving time, and east of Greenwich. “East of Greenwich™ means:
A positive integer indicates that your computer is located east of Greenwich, a
negative value means that you are in a time zone to the west of Greenwich, and O
means your computer is using GMT. The jd" entry features the Julian Date and
Time.

The “seconds’ entry is the number of seconds elapsed since some given start time
(the "epoch), which on most operating systems is January 01, 1970, 00:00:00. The

390 7 Standard Libraries

‘mseconds’ entry represents miliseconds; it may be missing if milliseconds could
not be determined on your platform. The "dst™ entry indicates whether daylight
saving time is in effect.

The "gmt’ and "localtime” entries have the same structure: it is a table of data of
the following order: year, month, day, hour, minute, second, number of weekday
(where 0 means Sunday, 1 is Monday, and so forth), the number of full days since
the beginning of the year (in the range 0:365), whether daylight saving time is in
effect at the time given (0: no, 1: yes), the strings 'AM' or 'PM', the month in English (a
string), and the weekday in English (a string).

If the date and time could not be determined, fails are returned.
See also: utils.calendar, os.datetosecs, os.secstodate, os.time.

0s.pid ()
Returns Agena's process ID as a number.

os.readlink (linkname)

Returns the target of the symbolic link linkname as a string. If the link does not exist or
if an error occurred, it returns fail and optionally a string indicating the type of error.

In Windows, the function only recognises classical Windows shortcut files, it cannot
resolve NTFS symbolic links or junctions.

The function is not available in DOS.

See also: os.symilink.

os.remove (filename)

Deletes the file or directory with the given name. Directories must be empty to be
removed. Returns true on success, and issues an error on failure otherwise.

os.rmdir (dirname)

Deletes a directory denoted by the string dirname on the file system. Returns true on
success, and issues an error on failure otherwise.

os.screensize ()

In Windows, returns the current horizontal and vertical resolution of the display as a
pair of width:height. On all other platforms, the function issues fail.

agena >> 391

0s.secstodate (secs)

Takes the numiber of seconds secs elapsed since the start of an epoch, in your
local time zone, and returns a table of integers in the order: year, month, day, hour,
minute, second. In case of an error, fail is returned.

See also: os.datetosec .

os.setenv (var, setting)

Sets the environment variable in the underlying operating system. var must be a
string. If setting is @ string or number, the environment variable var is set to setting
If var has already been assigned before, ifs value is overwritten.

If setting is null, then the environment variable var is deleted (not supported in
DOS).

See also: os.getenv, os.environ.

os.setlocale (locale [, category])

Sets the current locale of the programme. locale is A string specifying a locale;
category IS an opfional string describing which category to change: ‘all'
‘collate’ , 'ctype' , 'monetary’ , 'numeric'’ , Of 'time' ; the default category is ‘all

The function returns the name of the new locale, or null if the request cannot be
honoured.

When called with null as the first argument or no argument at all, this function only
returns the name of the current locale for the given category.

See also: skycrane.getlocales .

o0s.settime (secs)

Takes the numiber of seconds secs elapsed since the start of an epoch, in your
local time zone, and sefts the system clock accordingly. Agena must be run in root
mode in order 1o change the system time. In case of an error, fail is returned. The
function is only available in the Windows, Solaris, eComStation - OS/2, and Linux
versions of Agena.

See also: os.datetosecs.

os.symlink (target, linkname)

In UNIX, the function creates a symbolic link named linkname to the file called
target . In Windows, the function creates a classical regular Windows shortcut file
that points to a real file. It does not create NTFS junctions or NTFS symibbolic links.

392 7 Standard Libraries

Both arguments must be strings. The function is not available in DOS.

See also: os.readlink.

os.system ()

Returns information on the platform on which Agena is running.

Under Windows, it returns a table containing the string 'Windows', the major version
(e.g9. 'NT 4.0', '2000, efc.) as a string, the Build dwBuildNumber) as a number, the
platform ID (dwPlafformid) as a number, the major version (dwMajorVersion), the
minor version (dwMinorVersion), and the product type (wProductType) in this order.

In UNIX, Mac OS X, Haiku, eComStation - OS/2, and DOS, it retumns a table of strings
with the name of the operating system (e.g. 'SunOS'), the release, the version, and
the machine, in this order. Note that Mac OS X is recognised as 'Darwin'. In eCS -
0OS/2, the major and minor revision, along with the revision, are returned as
numibers, as well.

If the function could not determine the platform propertly, it returns fail.

See also: environ.os.

os.time ([obj])

Returns the current time when called without arguments, or a time representing the
date and time specified by the given table or sequence obj .

If a table is given, it must have fields year , month, and day, and may have fields
hour , min, sec, And isdst . See example below.

If obj is a sequence, it must contain a four-digits year, the month, and the day, all
integers, in this order. It may additionally include the hour, the minute, and the
second, all infegers, 100, in this order. The optional seventh enfry must either be the
Boolean true or false and indicates whether daylight saving time is in effect (default
is false). See example below.

The returned value is a number, whose meaning depends on your system. In POSIX,
Windows, and some other systems, this numiber counts the number of seconds
since some given start time (the "epoch’). In other systems, the meaning is not
specified, and the number returned by time can be used only as an argument to
date and difftime.

If a second number is returned, it denotes the millisecond portion of the current
fime in the range [0, 999].

Examples:

agena >> 393

> os.time(['year' ~ 2013, 'month’' ~ 5, 'day' ~ 23,
> ‘'hour'~ 1, 'min' ~ 2, 'sec' ~ 3)):
1369263723 791

> os.time(seq(2013, 5, 23, 1, 2, 3, false)):
1369267323 791

See also: time, os.date, os.datetosecs, os.difftime, os.now.

os.tmpname ()

Returns a string with a file name that can be used for a temporary file. The file must
e explicitly opened before its use and explicitly removed when no longer needed.

os.uptime ()

Returns the number of seconds a system has been running. It is available in
eComéStation - OS/2, Windows, and Linux. In Windows, there may be an overflow if
system has been up for more than 49.7 days.

os.wait (X)

Waits for x seconds and retumns null. x may be an infeger or a float. This function
does not strain the CPU, but execution cannot be interrupted. The function is
available on eComStation - OS/2, DOS, UNIX, Mac OS X, Haiku, and Windows based
systems only.

On other architectures, the function returns fail.

394 7 Standard Libraries

7.21environ - Access to the Agena Environment

This package comprises functions to access the Agena environment, explore the
internals of data, read settings, and set defaults.

environ.anames ([option])

Returns all global names that are assigned values in the environment. If called
without arguments, all global names are refumned. If option is given and option is a
string denoting a basic or user-defined type (e.9. 'boolean' |, 'table’ , etc.), then all
variables of that type are returned.

The function is writfen in the Agena language and included in the library.agn file.

environ.attrib (obj)

With the table obj , retumns a new table with

e the curent maximum number of key~value pairs allocable to the array and
hash parts of obj ; in the resulting table, these values are indexed with keys
‘array_allocated' and 'hash_allocated' , respectively,

* the number of key~value pairs actually assigned to the respective array and
hash sections of obj; in the resulting table, these values are indexed with keys

‘array_assigned' and 'hash_assigned' .
* an indicator 'array_hasholes' stating whether the array part contains atf least
one hole,

* an indicafor 'bytes' stafing the estimated number of bytes reserved for the
structure,

* an indicator 'metatable’ betoking whether a metatable has been attached to
the structure,

e if present, a user-defined type is indexed by the 'utyper key, otherwise fail,

* if present, a weak table is indexed by the 'weak' key, otherwise fail,

e the 'length’ entry contains the estimated number of elements in a table (see
tables.getsize),

* the 'dummynode' entry indicates whether a table has no allocated has part.

With the set obj , returns a new table with

* the current maximum number of items allocable to the sef; in the resulting
table, this value is indexed with the key 'hash_allocated'

* the number of items actually assigned 1o obj ; in the resulting table, this value is
indexed with the key 'hash_assigned'

* an indicafor 'bytes' stating the estimated number of bytes reserved for the
structure,

* an indicator 'metatable’ betoking whether a metatable has been attached to
the structure,

* if present, a user-defined type is indexed by the 'utype’ key, otherwise fail.

agena >> 395

With the sequence obj , retumns a new table with

the maximum number of items assignable; in the resulting table, this value is
indexed with the key 'maxsize’ . If the numlber of entries is not restricted,
'maxsize’ s infinity.

the current number of items actually assigned to obj ; in the resulting table, this
value is indexed with the key 'size'

an indicator 'bytes' stating the estimated number of bytes reserved for the
structure,

an indicatfor 'metatable’ betoking whether a metatable has been attached to
the structure,

if present, a user-defined type is indexed by the 'utype’ key, otherwise fail,

if present, a weak table is indexed by the 'weak' key, otherwise fail.

With the function obj returns a new table with

the information whether the function is a C or an Agena function. In the resulfing
table, this value is indexed with the key 'C' ;

the information whether a function contains a remember table, indicated by the
key 'mableWritemode', where the entry true indicates that it is an rtable (which is
updated by the return statement), where false indicates that it is an rotable
(which cannot be updated by the return statement), and where fail indicates
that the function has no remember table at all,

an indicator 'bytes' stating the estimated numioer of bytes reserved,

if present, a user-defined type is indexed by the 'utype' key, otherwise fail.

With the pair obj , returns a new table with

an indicator 'bytes' stating the estimated numioer of bytes reserved,

an indicatfor 'metatable’ betoking whether a metatable has been attached to
the structure,

if present, a user-defined type is indexed by the 'utype' key, otherwise fail.

environ.gc ([opt [, arg]])

This function is a generic interface to the garbage collector. It performs different
functions according to its first argument, opt :

» 'stop': stops the garbage collector.

* restart: restarts the garbage collector.

» 'collect: performs a full garbage-collection cycle (if no option is given, this is
the default action).

* 'count: returns the total memory in use by Agena (in Koytes).

» 'step". performs a garbage-collection step. The step 'size' is controlled by arg
(larger values mean more steps) in a non-specified way. If you want to
control the step size you must experimentally tune the value of arg. Returns
frue if the step finished a collection cycle.

» 'setpause': sets arg /100 as the new value for the pause of the collector.

396 7 Standard Libraries

» ‘'setstepmul sets arg /100 as the new value for the step multiplier of the
collector.

» 'status’. determines whether the garbage collector is running or has been
stopped, and returns true - i.e. collection has been activated - or false.

environ.getfenv (f)

Returns the current environment in use by the function. f can be an Agena function
or a number that specifies the function at that stack level: Level 1 is the function
calling geffenv. If the given function is not an Agena function, or if f is O, getfenv
returns the global environment. The default for f is 1.

environ.globals (f)

Determines® whether function f includes global variables (names which have not
been defined local). The return is a sequence of pairs: their left-hand side the
variable name of type string, the right-hand side the respective line numiber (of type
numiboer). If no global variables could be found, the function returns null.

environ.isselfref (obj)
Checks whether a structure obj (table, set, sequence, or pair) references to itself. It
returns true if it is self-referencing, and false otherwise.

The function is writfen in the Agena language and included in the library.agn file.

environ.kernel (setting)

environ.kernel (setting:value)

Queries or defines kernel settings that cannot be changed or deleted automatically
by the restart statement.

In the first form, by passing the given setting as a string, the current configuration is
returned.

In the second form, by passing a pair of the form setting:value , Where setting is Q
string and value the respective sefting given in the table below, the kerel is set fo
the given configuration.

The return is the new configuration.

Settings are:

% Note that the function not always returns all global names.

agena >>

397

Setting

Value

Description

'‘buffersize’

a number

The default buffer size for file operations for
the os.fcopy., net.receive, and
binio.readlines functions. Must be set to [512
.. 1024°] It is equal to the C constant BUFSIZ
in stdio.nh. Grep LUAL BUFFERSIZE in the C
sources.

'debug’

tfrue or false

Prints further debugging information if the
initialisation of a C dynamic library failed

'digits’

an integer in
(1, 17]

Sets the number of digits used in the output
of numbers. Note that this setting does not
affect the precision of arithmetic operations.
The default is 14,

‘emptyline’

tfrue or false

If set frue (the default), two input regions are
always separated by an empty line. If set
false, no empty line is inserted.

'eps’

a number

Stores the accuracy threshold epsilon used
by the ~= operator and the approx
function.

'gUi'

tfrue or false

If set true, tells the interpreter that it has been
invoked by AgenakEdit. Default is false.

'libnamereset’

tfrue or false

If set true, the restart statement resets
libname and mainliboname to their original
values. Default is false.

'longtable’

tfrue or false

If set tfrue, then each key~value pair in a
table will be printed at a separate line,
otherwise a table will be printed like sets or
sequences. Default is false.

'maxlong’

a number

The maximum integral value of the C type
inf32_ t on vyour platform; cannot be
changed. Grep LUAI MAXINT32 in the C
sources.

'maxulong’

a number

The maximum integral value of the C type
unsigned long int on your platform; cannot
be changed. Grep ULONG _MAX in the C
sources.

‘minlong’

a number

The minimum integral value of the C type
inf32 t on your platform; cannot be
changed. Grep LUAI MININT32 in the C
sources.

'‘pathsep’

a sfring

The token that separates paths in lioname;
by default is ';', cannot be changed. Grep
LUA PATHSEP in the C sources.

‘promptnewline’

frue or false

If set to true, prints an empty line between
the input and outputline regions. Default is
false.

'regsize’

a number

Sets the default size of registers, the number
must be a non-negative integer.

398 7 Standard Libraries

Setting Value Description
If set 1o true, the bitwise operators &&, ~~,

i e ||, ~ 7., and shift internally use signed

signedbits frue or false infegers (the default), otherwise they use
unsigned infegers.
When set to true, real and imaginary parts of
complex values close to zero are rounded

‘zeroedcomplex’ frue or false to zero on output. (Note that internally,
complex values are not rounded.) Default is
false.

Examples:

> environ.kernel('signedbits’):
true

> environ.kernel(signedbits = false):
false

environ.pointer (obj)

Converts obj 10 a generic C pointer (void*) and returns the result as a string. obj
may be userdata, a table, set, sequence, register, pair, thread, function, or
complex value; otherwise, pointer returns fail. Different objects will give different
pointers.

environ.setfenv (f, table)

Sets the environment to be used by the given function. f can bbe an Agena function
or a number that specifies the function at that stack level: Level 1 is the function
calling setfenv. seffenv returns the given function.

As a special case, when f is 0 setfenv changes the environment of the running
thread. In this case, setfenv returns no values.

environ.used ([opt])

By default, returns the total memory in use by Agena in Kbytes. If opt is the string
'bytes’ , 'kbytes' , 'mbytes'’ , Of 'gbytes’ , the numlber is returned in the given unit.

See also: os.freemem, os.memstate.

environ.userinfo (f, level [, ---])

Writes information to the user of a procedure f depending on the given level , an
infeger. The information to be printed is passed as the third, etc. arguments and
mMay be either numbers or strings.

agena >> 399

At first the procedure should be registered in the environ.infolevel table along with a
level (an integer) indicating the infolevel setting af which information will be printed,
€.g. environ.infolevel[myfunc] := 1

If you do not enter an entry for the function to the environ.infolevel table, then
nothing is printed.

> f .= proc(x) is

> environ.userinfo(f, 1, 'primary info to the us er: ', x,\nY;
> environ.userinfo(f, 2, 'additional info to the user: ', x, \n")
> end;

If the level argument to userinfo is equal or less than the environ.infolevel table
seffing, then the information is printed, otherwise nothing is printed.

> environ.infolevel[f] := 2;

> f(*hello 1");

primary info to the user: hello!
additional info to the user: hello !

Now the infolevel is decreased such that less information will be output.

> environ.infolevel[f] := 1;

> f(*hello I');
primary info to the user: hello!

400 7 Standard Libraries

7.22 package - Modules

The package library provides a basic facility to inspect which packages have been
loaded in a session.

package.checkclib (pkg)

Checks whether the package denoted by the string pkg and stored 1o a C dynamic
library has already been initialised. If not, it returns a warning printed on screen and
creates an empty package table. Otherwise it does nothing.

package.loadclib (packagename, path)

Loads the C library packagename (with extension .so in UNIX and Mac, or .di in
Windows) residing in the folder denoted by path . path must be the name of the
folder where the C library is stored, and not the absolute path name of the file. The
function refuns true in case of success and false otherwise. On successful
initialisation, the name of the package is entered info the package.readlibbed sef.

See also: readlib, with.

package.loaded

A table containing all the names of the packages that have been initialised.

package.readlibbed

A table with all the names of the packages that have been initialised with the
readlib and with functions, and the import statement.

agena >> 401

7.23 fable - Remember Tables

This package comprises functions to administer remember tables.

rtable.defaults (f)

rtable.defaults (f, tab)

rtable.defaults (f, null)

Administrates read-only remember tables of functions. As it works exactly like the
remember function, except that it creates rememiber tables that cannot be

updated by the return statement, please refer to the description of the
rfable.remember function for further details.

rtable.rdelete (f)

Deletes the remember table or read-only remember table of procedure f entirely.
The function returmns null.

rtable.remember (f)
rtable.remember (f, tab)

rtable.remember (f, null)

Administers remnember tables.

In the first form, the remember table stored to procedure f is returned. See
rtable.rget for more information.

In the second form, remember adds the arguments and returns contained in fable
tab 10 the rememiber table of function f. If the rememlber table of f has not been
initialised before, remember creates it. If there are already values in the remember
table, they are kept and not deleted.

If f has only one argument and one return, the function arguments and returns are
passed as key~value pairs in table tab .

If f has more than one argument, the arguments are passed in a table. If f has
more than one return, the returns are passed in a table, as well.

Valid calls are:

with('rtable’, ‘remember");

remember(f, [0 ~ 1]); # one argument 0 & one return 1
remember(f, [[1, 2] ~ [3, 4]); # two arguments 1, 2 & two returns 3, 4
remember(f, [1 ~ [3, 4]]); #one argument1 & two returns 3, 4
remember(f, [[1, 2] ~ 3]]; # two arguments 1, 2 & one return 3

In the third form, by explicitly passing null as the second argument, the rememlber
table of f is destroyed and a garbage collection run to free up space occupied by
the former rtable.

402 7 Standard Libraries

remember always returns null. It is written in the Agena language and included in
the library.agn file.

See Chapter 6.18 for examples. See also. rtable.defaults .

rtbale.rget (f [, option])

Returns the contents of the current remember table or read-only rememiber table of
procedure f . If any value for option is given, the internal rememiber table including
all the hash values are returned.

> fib := proc(n) is

> assume(n >= 0);

> return fib(n-2) + fib(n-1)
> end;

> rtable.remember(fib, [0~0, 1~1]);

> rget(fib):
({01 ~ [0, [1] ~ [1]]

You cannot destroy the infernal rememiber table by changing the table returned by
rget.

rtbale.rinit (f)

Creates a remember table (an empty table) for procedure f. The procedure must
have been written in the Agena language; reminisce that nables for C API functions
are not supported and that in these cases the function quits with an error.

If there is already a rememiber function for f, it is overwritten. rinit returns null.

rtbale.rmode (f)

Returns the string 'rtable’ if function f has a remember table, 'rotable’ if f has a
read-only remember table (that cannot be updated by the return statement), and
the string 'none’ otherwise.

rtbale.roinit (f)

Creates a read-only rememiber table (an empty table) for procedure f, which may
be either a C function or an Agena procedure.

If there is already a rememiber function for f, it is overwritten. roinit returns null.

agena >> 403

rtbale.rset (f, arguments, returns)

The function adds one (and only one) function-argument-and-retums "pair’ to the
already existing remember table or read-only remember table of procedure f .

arguments Must be a table array, returns mMust also be a table array. If the
argument(s) already exist(s) in the remember table, then the corresponding resulf(s)
are replaced with returns

Given a function f := << x -> x >> for example, valid calls are:

rset(f, [1], [2]) ; rset(f, [1, 2], [2 D; rset(f, [1], [1, 2])

404 7 Standard Libraries

7.24 Coroutines

The operations related to coroutines comprise a sub-library of the basic library and
come inside the table coroutine . To find out what coroutines are, please have a
look at the welbsite of the Lua programming language.

coroutine.resume (co [, vall, ---])

Starts or continues the execution of coroutine co. The first fime you resume a
coroutine, it starts running its body. The values vall , --- are passed as the arguments
to the body function. If the coroutine has yielded, resume restarts it; the values vali |,
- are passed as the results from the yield.

If the coroutine runs without any errors, resume returns frue plus any values passed
fo yield (if the coroutine yields) or any values returned by the body function (if the
coroutine terminates). If there is any eror, resume retuns false plus the error
message.

coroutine.running ()

Returns the running coroutine, or null when called by the main thread.

coroutine.setup (f)

Creates a new coroutine, with body f. f must be an Agena function. Retumns this
new coroutine, an object with type 'thread'.

coroutine.status (co)

Returns the status of coroutine co, as a sting: 'running', if the coroutine is running
(that is, it called status); 'suspended!, if the coroutine is suspended in a call to yield,
or if it has not started running yet; 'normal' if the coroutine is active but not running
(that is, it has resumed another coroutine); and 'dead' if the coroutine has finished
its body function, or if it has stopped with an error.

coroutine.wrap (f)

Creates a new coroutineg, with body f. f must be an Agena function. Retumns a
function that resumes the coroutine each time it is called. Any arguments passed to
the function behave as the extra arguments to resume. Returns the same values
returned by resume, except the first boolean. In case of error, propagates the error.

coroutine.yield (---)

Suspends the execution of the calling coroutine. The coroutine cannot be running a
C function, a metamethod, or an iterator. Any arguments 1o yield are passed as
extra results to resume.

agena >> 405

7.25 debug - Debugging

This library provides the functionality of the debug interface to Agena programmes.
You should exert care when using this library. The functions provided here should be
used exclusively for debugging and similar tasks, such as profiling. Please resist the
femptation to use them as a usual programming tool: they can be very slow.
Moreover, several of its functions violate some assumptions about Agena code
(e.g.. that variables local to a function cannot be accessed from oufside or that
userdata metatables cannot be changed by Agena code) and therefore can
compromise otherwise secure code.

All functions in this liorary are provided inside the debug table. All functions that
operate over a thread have an optional first argument which is the thread to
operate over. The default is always the current thread.

debug.debug ()

Enters an interactive mode with the user, running each string that the user enters.
Using simple commands and other debug facilities, the user can inspect global
and local variables, change their values, evaluate expressions, and so on. A line
containing only the word cont finishes this function, so that the caller continues its
execution.

Note that commmands for debug.debug are not lexically nested within any function,
and so have no direct access o local variables.

debug.getfenv (obj)
Returns the environment of object obj .

See also: debug.setffenv.

debug.gethook ([thread])

Returns the current hook settings of the thread, as three values: the current hook
function, the current hook mask, and the current hook count (as set by the
debug.sethook function).

debug.getinfo (Jthread,] function [, what])

Returns a table with information about a function. You can give the function
directly, or you can give a number as the value of function , which means the
function running af level function of the call stack of the given thread: level O is the
current function (getinfo itself); level 1 is the function that called getinfo; and so on.
If function is a number larger than the number of active functions, then getinfo
returns null.

406 7 Standard Libraries

The returned table may contain all the fields refurned by lua_getinfo, with the string
what describing which fields fo fill in. The default for what is to get all information
available, except the table of valid lines. If present, the opfion ' adds a field
named func with the function itself. If present, the option '’ adds a field named
activelines with the table of valid lines. If present, the option 'g¢ adds a field
named globals with a table of variables that have been globally assigned. The 'a'
option adds a field called arity that includes the number of arguments expected
by function

For instance, the expression debug.getinfo(1, 'n').name returns a name of the
current function, if a reasonable name can be found, and debug.getinfo(print)
returns a table with all available information about the print function.

debug.getlocal ([thread,] level, local)

This function retumns the name and the value of the local variable with index local
of the function at level level of the stack. (The first parameter or local variable has
index 1, and so on, unfil the last active local variable.) The function returns null if
there is no local variable with the given index, and raises an error when called with
a level out of range. (You can call debug.getinfo o check whether the level is
valid.)

Variable names starfing with (" (open parentheses) represent internal variables
(loop control variables, temporaries, and C function locals).

See also: debug.setlocal.

debug.getmetatable (object)
Returns the metatable of the given object or null if it does not have a metatable.
See also: debug.setmetatable.

debug.getregistry ()
Returns the registry table.

debug.getupvalue (f, up)

This function returns the name and the value of the upvalue with index up of the
function f . The function retumns null if there is no upvalue with the given index.

See also: debug.setupvalue.

debug.setfenv (object, t)
Sefts the environment of the given object 10 the given table t . Refurns object .

See also: debug.getfenv.

agena >> 407

debug.sethook ([thread,] hook, mask [, count])

Sefs the given function as a hook. The string mask and the number count describe
when the hook will be called. The string mask may have the following characters,
with the given meaning:

* ¢ :The hookis called every time Agena calls a function;
1 :The hookis called every time Agena returns from a function;
* I :The hookis called every time Agena enters a new line of code.

With a count different from zero, the hook is called after every count instructions.
When called without arguments, debug.sethook tumns off the hook.

When the hook is called, its first parameter is a string describing the event that has
friggered its call: ‘cal’ , 'return’ (or 'tail return’). line' , and 'count’ . For line
events, the hook also gets the new line number as ifs second parameter. Inside a
hook, you can call getinfo with level 2 to get more information about the running
function (level O is the getinfo function, and level 1 is the hook function), unless the
event is 'tail return’ . In this case, Agena is only simulating the retun, and a call
to getinfo will return invalid data.

debug.setlocal ([thread,] level, local, value)

This function assigns the value value 1o the local variable with index local of the
function at level level of the stack. The function retuns null if there is no local
variable with the given index, and raises an error when called with a level out of
range. (You can call getinfo to check whether the level is valid.) Otherwise, it returns
the name of the local variable.

See also: debug.getiocal.

debug.setmetatable (object, t)

Sets the metatable for the given object to the given table t (which can be null).
See also: debug.getmetatable.

debug.setupvalue (f, up, value)

This function assigns the value value to the upvalue with index up of the function f .
The function returns null if there is no upvalue with the given index. Otherwise, it
returns the name of the upvalue.

See also: debug.getupvalue.

408 7 Standard Libraries

debug.system (n)

Returns a table with the following system information: The size of various C types
(char, int, long, long long, float, double, int32 1), the endianness of your plafform,
the hardware and the operating system for which the Agena executable has been
compiled.

debug.traceback ([thread,] [message])

Returns a string with a traceback of the call stack. An optional message string is
appended at the beginning of the fraceback. This function is typically used with
xpcall to produce better error messages.

agena >> 409

7.26 tils - Utilities

The utils package provides miscellaneous functions.

utils.calendar ([x])

Converts x seconds (an integer) elapsed since the beginning of an epoch to a
table representing the respective calendar date in your local time. The table
contains the following keys with the corresponding values:

'year' (integer)

'month' (integer)

'day' (integer)

'hour' (integer)

'min' (integer)

'sec' (infeger)

‘wday' (integer, day of the week)
'yday' (infeger, day of the year)

'DST' (Boolean, is Daylight Saving Time)

If x is null or not specified, then the current system time is returned. If x is invalid, the
function issues fail.

See also: 0s.Now.

utils.checkdate (obj)

utils.checkdate (year, month, day [, hour [, minute [, second]]])

In the first form, receives a date of the form year, month, date [, hour [, minute [,
second]]]. with these values in table or sequence obj being infegers, and checks
whether the given date and optionally time exists and returns true or false.

In the second form, receives the given integers, and conducts the same operation.

utils.decodeb64 (str)
Decodes the Baseb4 encoded string str - and returns it as a string.

See also: utils.encodebé4.

utils.decodexml (str [, options])

Reads a string str containing an XML stream and converts it intfo a dictionary.

You can pass one or two options in any order:

410 7 Standard Libraries

If the Boolean option false is given, the function does not automatically try to
convert strings representing numiers, complex numbers and the Booleans true,
false, and fail into the proper Agena representation.

If the option 'nocomment’ is given, the function does not return XML comments.

The function provides some checking (basic syntax and balanced tags), and
supports namespaces, XML and DOCTYPE declarations, comments and processing
instructions. If a XML tag includes hyphens or colons, then they are converted to
underscores in the corresponding Agena dictionary key.

Since the function does not return processing instructions, you may want to have a
look at the auxiliary utils.aux.decoderawxml function included in the
lib/library.agn fle which retuns a user-defined table containing processing
instructions in the xarg tag.

The function is writfen in the Agena language and included in the libary.agn file.

Here is an example:

> xmlstr ;= '<?xml version="1.0"?>
> <Data>

> <Namel>Agena</Namel>

> <Name2>1</Name2>

> <Name3>1.1</Name3>

> <Name4>1.1+2.2*I</Name4>
> </Data>

> <Lang:Info-All>

> <Name action="interpret">Agena</Name>
> <Version>1.6.1</Version>

> </Lang:Info-All>

> <!-- this is a comment -->

> <Motto>The Power of Procedural Programming</Motto >!

> utils.decodexml(xmilstr):

[Data ~ [Namel ~ Agena, Name2 ~ 1, Name3 ~ 1.1, Nam ed ~ 1.1+2.2%],
Lang_Info_All ~ [Name ~ Agena, Version ~ 1.6.1], Mo tto ~ The Power of
Procedural Programming, header ~ <?xml version="1.0 "?2>]

> for i, j in ans do print(i, j) od

Lang_Info_All [Name ~ Agena, Version ~ 1.6.1]

Motto The Power of Procedural Programming

Data [Namel ~ Agena, Name2 ~ 1, Name3 ~ 1.1, Nam ed ~ 1.1+2.2*]
header <?xml version="1.0"?>

The function is quite slow when parsing deeply nested XML structures, but it is more
exact than xml.decodexml. If you need to parse only certain portions of an XML
stream, just extract them from the string using the strings.match function before
applying utils.decodexml.

See also: utils.encodexml, utils.readxml.

agena >> 411

utils.encodeb64 (str)

Encodes a string str intfo Baseé4 format and returns it as a string.

See also: utils.decodebéA4.

utils.encodexml (obj [, indent [, flag]])

Encodes a dictionary obj of the same format as created by utils.readxml into XML
format.

If indent (O non-negative number) is not given the number of white space
indentations is 3.

If any value is given for flag , the retumn is a flat table of substrings, else the return is
one concatenated string.

See also: utils.decodexml.

utils.findfiles (d, what [, options])
utils.findfiles (obj, what [, options])

Searches a single file - or searches a directory for all the files - that include a cerain
string or which satisfy a given condition.

In the first form, the directory 10 e searched is denoted by the first argument d, a
string, which may include file wildcards. d may also denote a single file. In the
second form, obj is a table of a table with file names of type string, and the
absolute path tfo the directory containing the given files. (os.list returns such a table.)

The second argument what can either be a string to be searched for, or a
procedure of one argument that describes a satisfying condition and which should
result in either true or false.

The returns are two lists: the first list includes all the names of the files where the
search has been successful, and the second lists includes all files that could not be
read due to errors, for example because of missing read permissions.

By default, the function searches all files line by line for a given search criterion. Pass
the option 'whole’ if the search criterion should be applied to the entire file, i.e. to
search in the string concatenation of all the lines of a file, so that line breaks do not
matter.

By passing the further option 'r , the function also searches recursively in all
respective subfolders.

Options may be given in any order affer the second argument what.

412 7 Standard Libraries

Examples:

> utils.findfile("*.c', '#define"):

> utils.findfile(**.c', << x -> '‘#define'inx =1 >> 'whole"):

> utils.findfile([['a.txt’, 'b.txt7, 'c:/text], hello):

utils.readcsv (filename [, options [, fn]])

Reads a comma-separated value (CSV) file and returns its contents in a sequence.
The delimiter of the fields in a line by default is a semicolon.

If a line contains more than one field, then the respective fields are returned in a
sequence®. If a line contains only one field, then it is retumed without including it in
a sequence®, If a line contfains nothing, i.e. \n', it is by default ignored®.

Strings containing numioers are automatically converted to numbers.

Options can be passed as pairs:

Left pair element | Right pair element Example
true or false: If false, do not |convert = true
convert aftempt to convert strings fo

numbers. Default: true.
frue or false: If a field contains a | comma = true
string recognised as a number by

strings.iscenumeric - i.e. with a
decimal comma instead of a
decimal dot - this opftion

comma .
automatically transforms the value

to an Agena number if the option
evaluates to true. Default is false.
This option is applied before
checking for the "convert™ opfion.

A sting. Use this sting as the | delim =7
delim delimiter instead of a semicolon
which is the default.

a positive integer: If given, only the | field =3
given field in the CSV file s
extracted, else all fields are
returned.

field

31 See the flat option to override this behaviour.
%2 See the newseq Option to override this behaviour.
3 See the skipemptylines option to override this behaviour.

agena >>

413

Left pair element

Right pair element

Example

fields

A table or sequence of positive
infegers. If given, only the fields
given in this fable or sequence are
returned, and in the order of the
elements in this table or sequence;
if not given, all fields are returned.

If a CSV file contains a header,
then column numibers or strings
denoting the field name can be
passed, and column numibbers and
field names can be mixed.

fields = [3, 1, 5]

fields =
['name’, 'phone’]

fields =
['name’, 2]

flat

true or false: If true, do not retun
values in each lne in a new
sequence. Default: false.

flat = true

header

frue or false: If tfrue, ignore the very
first line. Default: false.

header = true

ignore

a procedure retuning either true,
false, or fail. If given, the procedure
is applied 1o each line of the CSV
fle and if it evaluates to true, it
does not process the line and
proceeds with the next one.

ignore =
<< X ->
‘text' in x
<> null
>>

ignorespaces

frue or false: all spaces in a line are
deleted before retfumning the fields.
Default is true.

ignore spaces =

false

mapfields

A table or sequence of pairs of the
form posint:procedure. Applies the
given function to a specific field in
the CSV file.

If a CSV file contains a header,
then column numibers or strings
denoting the field name can be
passed along with the procedures,
and column numbers and field
names can be mixed.

mapfields =
[1:f, 3:9]

mapfields =
['name'f, 2:q]

newseq

frue or false: if only one field, i.e.
one value per line, is stored in the
CSV file, always put this single value
in each line into a new sequence
(frue), resulting in a sequence of
sequences retumned by readcsy;
otherwise simply add it to the flat
seguence returned by the function,
which is the default (false).

newseq = true

414 7 Standard Libraries

Left pair element | Right pair element Example
A sting. If the right-hand side is | output = record
record , then a dictionary is
returned, with its keys being defined

output by the tokens in the first line of the

fle (if the header=true option is
also given), otherwise a table array

is returned.
'quotes’ Or ‘'doublequotes’ , Or | 'émove =’quotes’
both.
If ‘quotes’ is given, enclosing
remove single qgo’res are removed from
the CSV field.
If 'doublequotes’ is given,

enclosing double quotes are
removed from the CSV field.

frue or false: If frue, do not return | skipemptylines = true
empty lines. Default is true.
true or false: If frue, do not return | skipspaces = true
skipspaces lines consisting of spaces only.
Default is false.

a pair, or a table or sequence of zﬁggj[ﬂ:%ifgr‘%%
pairs xy. For each line read from | “HyGE VALinfinity]
the CSV file, replaces x with y. If you
subs pass a function as the last
argument, substitution is done
before finally mapping this function
on the return.

skipemptylines

You may also optionally pass a function fn - at any position in the argument list - to
be mapped on each value of the input to be returned, or mix options given as
pairs and a function to be applied to each value to be retumned, e.g.:

> L := utils.readcsv('data.dat’, delim="", flat=tr ue, << X -> X2 >>);
The function is writfen in the Agena language and included in the libary.agn file.

See dadlso: columns, io.ines, io.readlines, utils.readxml, ufils.writecsv,
skycrane.readcsv .

agena >> 415

utils.readini (filename [, options])

Reads a traditional initialisation file and returns its contents as a table. Initialisation
files supported look like the following:

#

This is an example of an ini file
#

; Pizzas

Taxi=Pizza Cab
Agena=

[Pizza] ; <- this is a section name

Ham =yes; <-and this is a key~value pair
Mushrooms = true ;

Capres =0

Cheese ="Non";

Price = 3.99

Preis=3,99

A line beginning with a hash (#), followed optionally by one or more characters, is
completely ignored.

In a line, any text starting with a semicolon is also skipped. Key~value pairs may be
separated by one or more white spaces.

The result is a table.

The file is parsed from top to bottom. As long as no section name has been given
(here '[Pizza]'), any key~value pairs encountered are entered into the table as
such.

If a section name is given, then a subtable of the form section ~ [key ~ value pairs]
is stored to the resulting main fable.

If a key is given, but now value, then the corresponding value will be the empty
string. Values may also be enclosed in double quotes, but double quotes will be
stripped of during import.

By default, any numlber values are automatically fransformed to numbers, and the
strings ‘'true’ , 'false’ , Ofr 'fail are converted to Booleans, and all other values
are refurned as strings. You may prevent any conversion by passing the
convert=false option.

If the option comma=true is given, then all floating point values containing a decimall
comma are converted to a representation with a decimal dot. Default is
comma=false .

416 7 Standard Libraries

The option sections=true reads only the section names in the ini file and returns
them in the order of occurrence in a table array. Default is sections=false

The results of reading the above ini file will look as follows if no option is given:

[Agena ~ , Taxi ~ 'Pizza Cab', Pizza ~ [Capres ~ O, Cheese ~ Non, Ham ~
yes, Mushrooms ~ true, Preis ~ 3,99, Price ~ 3.99]]

See also: utils.writeini.

utils.readxml (filename [, options])

Reads an XML file and returns its data in an Agena dictionary.
You can pass one or two options in any order:

If the Boolean option false is given, the function does not automatically try to
convert strings representing numiers, complex numbers and the Booleans true,
false, and fail into the proper Agena representation.

If the option 'nocomment’ is given, the function does not return XML comments.
For further information on how the function works, see utils.decodexml.

See also: utils.decodexml, utils.readcsv, xml.readxml.

utils.singlesubs (str, sp)

Substitutes individual characters in string str by corresponding replacements in
sequence sp. The retun is a new string. Note that the function fries to find a
replacement for a single character in str by determining its integer ASCII value n
and then accessing index n in sp. If an entry is found for index n, then the character
is replaced, otherwise the character remains unchanged.

utils.writecsv (obj, filename [, delim [, keyoption [, dot]ID

Creates a comma-separated value (CSV) file. The function writes all values or keys
and value(s) of a fable, set, or sequence obj o a text file given by filename . Each
value or key ~ value pair is written on a separate line.

By default only values are written, the keys are ignored.

If the optional argument delim (a string) is given and if the value itself is a structure,
then all entries in this substructure are written in a separate line, separated by the
given delimiter; default is a semicolon. delim might also be of the form delim=< any
sting> or delim :<any string>.

agena >> 417

If the optional argument keyoption is given, of any value other than false, fail, or
null, then the also the keys and the values are written and are separated by the
given delimiter (third argument) which must be passed, as well.

If the argument dot is given, i.e. a single character of type string, then a decimall
dot in a number to be wiritten is replaced by dot . This, for example, allows to
replace a decimal dot in a float with a decimal comma. When wanting to
substitute decimal dots, you must also pass either true or false for the fourth,
keyoption —Argument.

The function returns nothing, is written in the Agena language and included in the
library.agn file.

Example:
> obj := seq(seq(1.1, 2, 3), seq(4, 5.1, 6), seq(7, 8,9)
> utils.writecsv(obj, ‘c:/out.csv', delim="|', true, "

creating a file with the contents:

1/1,1|2|3
2]4/5,1/6
3|7/8|9

See also: utils.readcsv, skycrane.readcsy .

utils.writeini (obj, filename [, options])

Creates a fraditional initialisation file with name filename and writes a dictionary obj
of key~value pairs to it. If values are not tables, they are written af the beginning of
the file. If values are tables of key~value pairs, then they are written 1o the
corresponding sections.

By default, the function writes the entries and sections in ascending order. You may
change the order of the sections and the specific sections to be written by passing
a table array of section names with the sections option, e.g. sections=['Salad',
'Pizza] first writes all entries of the Salad section, and then the Pizza section is
written,

An optional spacer in front and behind the equals signs may be given by passing
the spacer option which accepts any string, e.g. spacer="\t . Default is the empty
string.

A floating point value may be written with a decimal comma instead of a decimall
doft by passing the comma=true option, default is comma=false .

The function returns nothing, is written in the Agena language and included in the
library.agn file.

418 7 Standard Libraries

See also: utils.readini.

utils.writexml (obj, filename [, indent])

Creates an XML file with name filename from the dictionary obj which should be of
the same format as the dictionary returned by utils.decodexml .

The function returns nothing, is written in the Agena language and included in the
library.agn file.

See also: utils.decodexml, utils.encodexml, utils.readxml.

agena >> 419

7.27 skycrane - Auxiliary Functions

As a plus package, the skycrane package is not part of the standard distribution
and must be activated with the import statement, e.Q. import skycrane

The package contains functions that you might or might not find usefully.

skycrane.bagtable (0)

Creates a table of empty bags with its keys determined by the values in the
sequence o. o may include values of any type. If o is empty, an error is issued.

The function automatically loads the bags package if it has not yet been initialised.
The function is writfen in the Agena language and included in the skycrane.agn ~ file.

See also: bags.bag.

skycrane.counter ([start [, step [, mode]]])

Returns an iterator function that, each time it is called, returns a new number.

If no argument is given, the first numlber returned by the iterator is O, the next call
retuns 1, the next one 2, and so forth. This means that the number returned with
each call is increased by 1.

If only start is given, the first number returned by the iterator is start , the next call
retuns start + 1, the next one start + 2, and so forth. This means that the numlber
returned with each call is increased by 1.

If start and step are given, the first number returned by the iterator is start , the
next call returns start + step , the next one start + 2*step , and so forth. This means
that the numiber returned with each call is increased by step , which may be
negative. In the latter case the next number refurned will be less than the current
returned number.

If start Or step are not numbers, the factory issues an error.

If start Or step is @ non-integer, the function by default automatically applies the
Kahan summation algorithm to avoid round-off errors if mode is not given or if mode is
the string 'kahan' . If mode is the string 'ozawa' , then the improved Kahan-Ozawa
summation algorithm is used, which may be a little bit slower with a very large
numiber of calls.

See also: skycrane.iterate .

420 7 Standard Libraries

skycrane.dice ()

Returns random integers in the range [1 .. 6].

See also: math.random, math.randomseed.

skycrane.enclose (str [, d])

Encloses a string str - with the given character or string d. If d is not given, the string is
enclosed in double quotes. If str is a number, it is converted to a string before the
operation starts. Otherwise it returns an error. It also returns an error if the optional
second argument is not a string.

See also: skycrane.removedquotes .

skycrane.fcopy (a, b [, verbose])

This function is an interface to os.fcopy but can also deal with directories. If a and b
are file names, then the function works like os.fcopy. If b is a directory, then a is
copied into it. If a is a directory, then all files in it are copied into b.

If verbose is frue then the name of the file copied successfully is printed at stdout.
The function is written in the Agena language and included in the skycrane.agn file.

See also: os.fcopy, skycrane.move.

skycrane.getlocales ()

Returns all locales available af your operating system. The return is a table with the
keys being valid arguments to os.setlocale, and the entries the result of the
respective call o os.setlocale.

Since the function has been implemented generically, it is very slow, for
os.setlocale is called around 476.000 times. In UNIX, it would be better to issue the
command 'locale -a'in a shell to determine the locales supported by your system.

The function is written in the Agena language and included in the skycrane.agn file.

See also: os.setlocale.

skycrane.iterate (0)

Returns an iterator function traversing a table, set, register, or sequence o always in
strict ascending order.

If o is a table, the function first sorts its keys and returns a function which if called,
retuns the table values of o in the ascending order of these sorted keys.

agena >> 421

If o is a set, the function first sorts its entries and returns a function that if called,
returns the elements one by one in ascending sorted order.

Although unnecessary: if o is a sequence or register, the function returns a function
that if called, returns each value in o one by one in their original order.

The function is written in the Agena language and included in the skycrane.agn file.
For the order how keys or values will be sorted, see sorted.

A note: This function is ufterly slow compared with the for/in statement. But there
may be few situations demanding loops iterating in the strict ascending order of ifs
(numeric or string) indices, or set, register, and sequence values.

See also: next, sorted, skycrane.counter.

skycrane.move (a, b [, verbose])

This function is an interface to 0s.move but can also deal with directories. If a and b
are file names, then the function works like os.move. If b is a directory, then a is
moved into it. If a is a directory, then all files in it are moved into b.

The function is writfen in the Agena language and included in the skycrane.agn ~ file.

If verbose is frue then the file copied successfully moved is printed at stdout.

See also: os.move, skycrane.fcopy.

skycrane.readcsv (filename [, --])

Like utils.readcsv, but with the following default options, which can be overridden:
convert=false, ignorespaces=false, remove='quotes', remove='doublequotes'.

The function is writfen in the Agena language and included in the skycrane.agn ~ file.

skycrane.removedquotes (str)

Removes enclosing double quotes from the string str and returns the modified
string. If str is not enclosed by double quotes, str is returned unmodified.

See also: skycrane.enclose .

skycrane.scribe (fh, obj [, -+-])
skycrane.scribe (obj [, --*])
skycrane.scribe (---)

Like io.write and io.writeline, but if a fable, register, or sequence obj is being
passed, it writes the values in the structure o the file denoted by its handle th (first

422 7 Standard Libraries

form) or the console (second form) instead of throwing an exception. th is a file
handle, not a file name.

The values in the structure obj mMmust either be numbers or strings.
The function accepts the following options of type pair:

* |If the delim option (third fo last argument) has been passed, all values are

separated by the given string. Default is a semicolon. Examples: delim=] : use
a pipe instead of a semicolon, delim=" (i.e. the empty string): do not include a
delimiter.

* If the newline Or nl option has been passed, and if its value is false, then no
newline is included affer the elements have been written. (Include a frailing
delimiter - if needed - by caling io.write.) Default is true. Example:
newline=false

If no structure has been passed (third form), the function just behaves like io.write or
io.writeline .

Examples:

> import skycrane;

> skycrane.scribe('men ne cunnon hwyder helrunan hw yrftum scripad"):
men ne cunnon hwyder helrunan hwyrftum scripad

> fd := io.open('Depeche Mode','wb");

> skycrane.scribe(fd,

> 'Enjoy the silence,

> words are very unnecessary,
> they can only do harm.";

> io.close(fd);

> fd := io.open(‘c:/wulfila.txt’, 'w');

> paternoster 34 = seq(

‘atta’, 'unsar’, 'pu’, 'in', "himinam’,
'‘weihnai', 'namo’, 'pein’,

'gimai’, 'piudinassus’, 'peins’,
'wairpai', 'wilja', 'peins’,

'swe', 'in’, 'himina’, 'jah’, 'ana’, 'airpai’,
'hlaif', 'unsarana’, 'pana’, 'sinteinan’,
'gif', 'uns', 'himma’, 'daga’);

VVVYVYVYVYV

> skycrane.scribe(fd, paternoster, delim ="");

> io.close(fd);
The function is writfen in the Agena language and included in the skycrane.agn ~ file.

See also: io.write, io.writeline, skycrane.tee.

% Taken from the Gothic Language Wulfila Bible edited by Wilhelm Streitberg.

agena >> 423

skycrane.sorted (obj [, f])

Sorts a table, register, or sequence obj non-destructively but contrary to sort and
sorted can cope with structures including values of different types. First, numbers
are sorted, then strings, the others are not. The function, however, is slower than
sorted.

If f is given, then it must be a function that receives two sfructure elements, and
retuns true when the first is less than the second (so that not f(obj[i+1], obj[i])

will be true after the sort). If f is not given, then the standard operator < (less than) is
used instead.

The function is writfen in the Agena language and included in the skycrane.agn ~ file.

See also: sort, sorted, stats.issorted, stats.sorted.

skycrane.stopwatch ()

Implements a stopwatch. Just follow the instructions when calling
skycrane.stopwatch(). The function returns nothing.

The function is writfen in the Agena language and included in the skycrane.agn ~ file.

skycrane.tee (fh, x [,---] [, 'delim":str])

skycrane.tee (fh, x [,--+], 'format':str)

In the first form, the function writes one or more numbers or strings x to both the
console (stdout), and a file denoted by its handle th to the current working
directory. By default, the values are separated with a tabulator (\t). It finally puts a
line feed at the end of the output. By passing the option 'delim' :str , as the last
argument, the delimiter is given by the string str .

In the second form, one or more numbers or strings x are written to both the
console (stdout), and a file denoted by its handle th to the current working
directory. The resulting string is formafted according to the printf-like template
information in str passed with the format option. See strings.format for more
information on the tfemplate string. It does not put a line feed af the end of the
outfput, but to do so, you may add a \n control character to the end of the format
string.

The function returns nothing.

See also: print, skycrane.scribe .

424 7 Standard Libraries

skycrane.tocomma (x)

If x is a number, the function convers x to a sting. If x is a float (containing @
decimal dot), the dot is replaced by a comma. If x is a string and represents an
integer or float, an optional decimal-dot is replaced by a comma.

The return is a string.

skycrane.todate (x)

Returns the calendar date and time represented by the number x, which should
hold the number of seconds (and optionally milliseconds) elapsed since the start of
the given epoch. The retumn is a string of the format "YYYY/MM/DD hh:mm:ss®

If no argument is given, the current system date and time is returned. You may pass
an optional format string if you prefer another representation of the date and time.

See also: strings.format, os.now, os.time.

skycrane.trimpath (str)

Converts backslashes in the string str to slashes and then removes, if existing, one
trailing slash, and returns the modified string. If str does not include backslashes or
trailing slashes/backslashes, str is refurned unmodified.

agena >> 425

7.28 clock - Clock Package

This package contains mathematical routines to perform basic operations on time
values, i.e. hours, minutes, and seconds.

As a plus package, it is not part of the standard distribution and must be activated
with the import statement, e.g. import clock

A time value is always defined by the clock.tm constructor. You may apply the
ordinary +, -, * and / operators in order to add, subtract, multiply or divide values.
The relations <, <=, =, >=, and > are also supported.

Also, the following operators can be used for sexagesimal arithmetic - but please
beware of round-off errors, for they convert a sexagesimal argument to decimal,
apply the operator, and convert the result back to sexagesimal.

The 7~ operator exponentiates sexagesimals, or sexagesimals and numbers, and
returns a sexagesimal.

The abs operator determines the absolute value of a sexagesimal and returns a
sexagesimal.

The sign operator retumns the sign of a sexagesimal and returns a number.

The sqgrt operator retuns the square root of a sexagesimal and returns a
sexagesimal. If the sexagesimal is negative, it returns undefined.

The In operator returns the natural logarithm of a sexagesimal and returns a
sexagesimal. If the sexagesimal is nonnegative, it refumns undefined.

The exp operator returns the value of E 1o the power of the given sexagesimal and
returns a sexagesimal.

The sin operator retuns the sine of a sexagesimal and returns a sexagesimal, in
radians.

The cos operator returns the cosine of a sexagesimal and returns a sexagesimal, in
radians.

The tan operator returns the tangent of a sexagesimal and returns a sexagesimal, in
radians. It returns undefined if poles have been encountered.

The arctan operator returns the arcus tangent of a sexagesimal and refuns a
sexagesimal, in radians. With poles, it refumns undefined.

426 7 Standard Libraries

By default, all time values are properly adjusted to a normalised representation if
the value of the environment variable _clockAdjust is not changed. If it _clockAdjust
is set to a value different from frue, then this normalisation is switched off.

All functions are implemented in Agena and included in the lib/clock.agn file.

A typical example might look like this:

> import clock alias

add, adjust, div, mul, sub, pow, tm, todec, totm

Subtract 10 hours and fifteen minutes from 20 hours and 15 minutes:

> tm(20, 15, 0) - tm(10, 15, 0):
tm(10, 0, 0)

61 seconds are automatically converted to 1 minute and 1 second:

>tm(0, 61):
tm(0, 1, 1)

Turn off normalisation:

> clockAdjust := null

>tm(0, 61):
tm(0, 0, 61)

Turn on normalisation again:

> clockAdjust := true

The functions provided by the package are:

clock.add (t1,t2 [, ---])
The function adds two or more values of type tm. The retumn is a value of type tm.

clock.adjust (t)

The function adjusts the representation of tm values in a time object t by applying
the rules described in the description of clock.tm.

clock.sub (t1, t2 [, ---])

The function subtracts two or more values of type tm. The return is a value of type
tm.

agena >> 427

clock.sgstr (x [, d])

Converts a float or "tm” value x into its sexagesimal string representation of the
format hh:mm:ss. The colon to separate hours, minutes, and seconds can be
changed by passing another optional delimiter d of type string.

See also: clock.totm.

clock.tm (min)
clock.tm (min, sec)

clock.tm (hrs, min, sec)

This function is used to define time values, where hrs , min, sec are numbers.

In the first form, minutes are defined. The return is a value of type tm of the form
tm(0, min, O).

In the second form, both minutes and seconds are defined. The return is a value of
type tm of the form tm(0, min, sec).

In the third form, both hours, minutes, and seconds are defined and returned as a
value of type tm of the form tm(hrs, min, sec). (nrs may be set to 0.)

By default, if min > 59 and / or if sec > §9, proper adjustments are made before
the time value is returned. If min > 59 the call to time retuns tm(hrs + 1, min - 60,
sec). If sec > 59 the call fo time returns tm(hrs, min + 1, sec - 60). The default is set
by the global variable clockAdjust which is assigned frue af initialisation of the
package if it has not already been set false before the clock package has been
loaded.

hrs might be any non-negative number.

If _clockAdjust is set false then no adjustments are made to the arguments. You
can use clock.adjust to apply the adjustments described above.

clock.todec (t)

Converts a tm value t into its decimal representation of type number.

See also: clock.totm, math.todecimal.

clock.totm (t)

Converts a tm value t in decimals (of type number) into its tm representation. The
return is of type tm.

See also: clock.todec.

428 7 Standard Libraries

7.29 astro - Astronomy Functions

As a plus package, the astro package is not part of the standard distribution and
must be activated with the import statement, e.g. import astro

astro.cdate (x)

Converts a Julion date, represented by the float x, into its calendar date
representation, returning three integer values and one float in the following order:
the year, the month, the day, and the fraction of day. Concerming the fraction of
day, please beware of round-off errors.

See also: astro.jdate.

astro.dectodms (x, orientation)

Converts co-ordinates x in decimal degrees (@ number) to the form degree,
minute, second, and their orientation 'N', 'S', 'W', or 'E' (DMS format). You must also
specify whether to compute latitude or longitude values, by passing the strings
latt oOr'lon' , respectively for orientation

The return are three numbers and the orientation, a string.

See also: astro.dmstodec.

astro.dmstodec (degree, minute, second, hour, orien tation)

Converts co-ordinates in DMS format consisting of degree , minute , second , (all
numbers) and their orientation 'N', 'S', 'W', or 'E' (a single-character string) to their
corresponding decimal degree representation (DegDec format). The return is a
number.

See also: astro.dectodms.

astro.isleapyear (x)

Returns true if the given year x (@ number) is a leap year, and false otherwise.

astro.jdate (year, month, day [, hour [, minute [, second]]])

Converts a Gregorian date represented by year , month, day and optionally hour ,
minute , And second (all numbers) fo the corresponding Julian date. The return is a
number, or fail if the date or time is of a wrong format.

The defaults for hour , minute , and second are O.

See also: astro.cdate.

agena >> 429

astro.moon (year, month, day, hour, lon, lat)

Provides an easier-to-use interface to astro.moonriseset . and astro.moonphase .

The first four arguments represent the year , month, day, and hour , all of type number.
Longitudes and latitudes can be given in form of two tables lon , lat contfaining
degrees (a number), minutes (a number), seconds (a number), and the orientation
(the single character ‘N, 'S', 'W', or 'E).

The return is a table with the indices iseset, containing the rise and set times of the
Moon in "tm’ representation, and the index 'phase' which holds the computed
Lunar phase (a float and an integer).

See astro.moonriseset and astro.moonphase for further information.

The function uses the "tm" time notation of the clock package. You do not have to
readlio clock before.

The function is writfen in the Agena language and included in the astro.agn file.

Example for Dusseldorf:

> astro.moon(2013, 1, 7, 0, [7, 6, 0, 'E", [50, 43 , 48, 'N'D):
[phase ~ [0.2995659104481, 7], riseset ~ [tm(2, 27, 0), tm(11, 50, 0)]]

astro.moonphase (year, month, day [, hour])

Takes a year , @ month, a day, and optionally an hour (all numbers) and returns the
moon phase as a real number in the range [0, 1], where 0 is new moon and 1 is full
Moon; and an integer in the range [0, 7], where O indicates new moon and 4
indicates full moon. If hour is not given, it is set 1o 0.

See also: astro.moon.

astro.moonriseset (year, month, day, lon, lat)

Returns the times of Lunar rise and set in GMT. Receives the year , month day, the
longitude and Iatitude lon and lat (all of fype number) and retumns two numbers:
the GMT rise time in a decimal, and the GMT set time also in a decimal.

Use clock.totm to convert the rise and set fimes to sexagesimal format, or try
astro.moon.

Example for Dusseldorf:

> astro.moonriseset(2013, 1, 8,
> astro.dmstodec(6, 46, 58, 'E"), astro.dmstodec(51, 13, 32, 'N")):

3.7666666666667 12.566666666667

430 7 Standard Libraries

astro.sun (year, month, day, lon, lat)

Provides an easier-to-use interface to astro.sunriseset .

year , month, and day must be integers. Longitudes and latfitudes can be given in
form of two tables lon , lat , containing degrees (@ number), minutes (a number),
seconds (a number), and the orientation (the single-character string 'N', 'S, 'W', or 'E).
The return is a table with the indices 'riseset, 'civil, 'astro’, and 'nautical' containing
the rise and set fimes in "tm" representation. The index 'south' holds the time where
the Sun is af south.

See astro.sunriseset for further information.

The function uses the "tm" fime notatfion of the clock package. The function uses
the "tm" time notation of the clock package. You do not have to readlib clock
before.

The function is writfen in the Agena language and included in the astro.agn file.

Example for Dusseldorf:

> astro.sun(2013, 1, 7, [6, 46, 58, 'E'], [51, 13, 32, 'N')):

[astro ~ [tm(5, 34, 5.1483689555826), tm(17, 44, 22 .952745470386)],
civil ~ [tm(6, 56, 25.738372228174), tm(16, 22, 2.3 627421977944)],
nautical ~ [tm(6, 14, 13.023074498407), tm(17, 4, 1 5.078039927568)],
riseset ~ [tm(7, 35, 19.775508661645), tm(15, 43, 8 .325605764323)],

south ~ tm(11, 39, 14.050557212984)]

astro.sunriseset (year, month, day, lon, lat)

Returns the sunrise/sunset times in UTC for years starting with 1800 A.D. to 2099 A.D. It
is a workhorse function, maybe you would like to use astro.sun for a more
convenient interface.

year , month and day, all integers, are the values of the day to evaluate. lon is the
longitude (west/east), and lat the latitude (west/east), both in decimal degrees of
type float of the location that is of interest. Use astro.dmstodec to convert
co-ordinates containing degrees (infeger), minutes (integer), and seconds (infeger
or float), and the orientation to decimal degrees.

Example for Dusseldorf:

> astro.sunriseset(2013, 1, 7,

> astro.dmstodec(6, 46, 58, 'E"), astro.dmstodec(51, 13, 32, 'N)):
7.5888265301838 15.718979334935 0 6.940482881174 5 16.367322983944 0
6.2369508540273 17.070855011091 0 5.568096769154 317.739709095964 0

11.653902932559

agena >> 431

The first and second returns are the sunrise/sunset times which are considered to
occur when the Sun's upper limb is 35 arc minutes below the horizon (this accounts
for the refraction of the Earth's atmosphere).

The third return is O, if the rises and sun sets in a day; +1 if the Sun is above the
specified "horizon™ 24 hours, -1 if the Sun is below the specified "horizon™ 24 hours.

The fourth and fifth returns are start and end fimes of civil twilight. Civil twilight
starts/ends when the Sun's centre is 6 degrees below the horizon.

The sixth return is O, if the rises and sun sefs in a day; +1 if the Sun is above the
specified "civil twilight horizon™ 24 hours, -1 if the Sun is below the specified
“horizon™ 24 hours.

The seventh and eighth retuns are the start and end fimes of nautical twilight.
Nautical twilight starts/ends when the Sun's centre is 12 degrees below the horizon.

The ninth retun is O, if the rises and sun sets in a day; +1 if the Sun is above the
specified "naufical twilight horizon™ 24 hours, -1 if the Sun is below the specified
“horizon™ 24 hours.

The tenth and eleventh returns are the start and end times of astronomical twilight.
Astronomical twilight starts/ends when the Sun's centre is 18 degrees below the
horizon.

The twelfth return is O, if the rises and sun sets in a day; +1 if the Sun is above the
specified "naufical twilight horizon™ 24 hours, -1 if the Sun is below the specified
“astronomical twilight horizon™ 24 hours.

The thirteenth return is the time when the Sun is at south (in decimal UTC).

All times returned are given in decimal hours of type number. Use clock.totm to
convert them info "tm" notation.

See also: astro.sun, astro.moon.

432 7 Standard Libraries

7.30 ads - Agena Database System

As a plus package, this simple database is not part of the standard distribution and
must be activated with the import statement, e.g. import ads

Agena is a database for storing and accessing strings and currently supports three
‘base” types:

1. Sorted "databases” with a key and one or more values,
2. sorted "lists™ which store keys only,
3. unsorted “sequences’ to hold any value (but no keys).

With databases and lists, each record is indexed, so that access to it is very fast. If
you store data with the same key multiple times in a database, the index points
fo the last record stored, so you always get a valid record.

Sequences do not have indexes, so searching in sequences is rather slow.
However, all values can be read info the Agena environment very fast and stored
fo a set (using ads.getall).

The Agena Database System (ADS) pays attention to both file size and fast /O
operation. To reduce file size, the keys (and values) are stored with their actual
lengths (of C type int32_t , sO keys and values can be of almost unlimited size) and
they are not extended to a fixed standard length. To fasten /O operations, the
length of each key (and value) is also stored within the base file.

'Section Description
various information on the data file, including the maximum
gheoder numiber of possible records, the actual number of records, and

the type of the base (database, list, or sequence).
only with databases and lists: area containing all file positions of

%index the actual records. The index section is always sorted. Sequences
do not contain an index section.
records key-value pairs with databases, and keys with lists or sequences.

A sample session:

First activate the package:

> import ads alias

agena >> 433

Creafte a new database (file ctestagb) including all administration data like
number of records, etc.:

> createbase('c:/test.agb’);

Open the database for processing. The variable fth is the file handle which
references 1o the database file (c:test.agh) and is used in all ads functions.

> fh := openbase('c:/test.agb’);
Put an entry info the database with key "Duck”™ and value "Donald .

> writebase(fh, 'Duck’, 'Donald");

Check what is stored for "Duck .

> readbase(fh, 'Duck’):
Donald

Show information on the database:

> attrib(fh):

keylength ~ 31 # Maximum length fo r key

type ~0 # database type, 0 for relational database

stamp ~ AGENA DATA SYSTEM # name of database

indexstart ~ 256 # begin of index se ction in file

commentpos ~ 0 # position of a des cription, O because none
was given.

version ~ 300 # base version, her e 3.00

maxsize ~ 20000 # maximum number of possible records. Agena

automatically ext

ends the database, if

this number is ex ceeded.
indexend ~ 80255 # end of index sect ion
creation ~ 2008/01/18-19:00:50 # number of creatio n
columns ~ 2 # number of columns
size ~1 # number of actual entries

Close the database. After that you cannot read or enter any entries. Use the open
function if you want to have access again.

> closebase(fh);
On all types, you may use the following procedures:

ads.attrib (filehandle)

Returns a table with all attributes of the "base” file. The table includes the following
keys:

Key Description Type
'‘columns' The number of columns in the base. number

The position of a comment in the base. If no

. . . numiber
comment is present, its value is 0.

'‘commentpos'

434

7 Standard Libraries

Key Description Type
creation The date of Cr.eo’rionl of the bose: The retun is @ string
formatted string including date and fime.
indexstart’ the first byte in the base file of the index section. number
indexend' the last byte in the base file of the index section. number
'keysize' the maximum length of the record key. number
'maxsize’ fotal number of data sets allowed. number
size the actual number of valid data sets (see ads.sizeof nuMber
as a shortcut).
'stamp’ The base stamp at the beginning of the file. string
Ttype' Indicator for database (0), list (1), or sequence (2). number
'version' The base version. number

If the file is not open, attrib returns false.

See also: ads.free, ads.size of.

ads.clean (filehandle)

Physically deletes all enfries that have become invalid (i.e. replaced by new values)
from the database or list. The file index section is adjusted accordingly and the file
shrunk to the new reduced size.

If there are no invalid records, false is returned. If all records could be deleted
successfully, true is returned. If the file is not open, the result is fail. If a file truncation
error occurred, clean quits with an error. The function issues an error if the file
contfains a sequence.

ads.closebase (filehandle [, filehandle2, ---])

Closes the base(s) identified by the given file handle(s) and returns true if successful,
and false otherwise. false will be returned if af least one base could not be closed.
The function also deletes the file handles and the corresponding filenames from the
ads.openfiles table.

ads.comment (filehandle)
ads.comment (filehandle, comment)
ads.comment (filehandle, ")

In the first form, the function returns the comment stored to the database or list if
present. The return is a string or null if there is no comment.

In the second form, ads.comment writes or updates the given comment to the
database or list and if successful, retumns frue. The comment is always written o the

agena >> 435

end of the file. If it could not successfully add or update a comment, the function
qQuiits with an error.

In the third form, by passing an empty string, the existing comment is entirely
deleted from the database or list.

If filehandle points to a sequence, an error is issued, and Nno comment is written.
fail is returneq, if the file is not open.

Internally, the position of the comment is stored in the file header. See ads.attrib
[commentpos!].

ads.createbase (filename
[, number_of records [, type [, number_of colum ns

[, length_of_key [, description]]]]])

ads.createbase (filename
[, number_of _records [, type [, length_of key [, description]]]])

Creates and initialises the index section of the new base with the given number of
columns. It returns the file handle as a number, and closes the created file.

The first form defines a database, the second form is used to create sequences
and lists.

Arguments / Options:

flename The path and full name of the base file.

number of records |The maximum number of records in the base. Default is
20000. If you pass O, fail is returned and the base is not
created.

type By default, the type is 'database’. If you pass the string 'list',
then a list will be created. The string 'seq' will create a
sequence. If the type passed is not known, fail is returned
and no base is created.

number_of columns [The number of columns in a database. Default: 2 (key
and value). If the base is not a database, do not pass any
value (see second form). If the number of columns is
non-positive, fail will be returned and no base will be
creqted.

length_of key The maximum length of the base key. Note that internally,
the length is incremented by 1 for the terminating \0
character. Default: 31 including the terminating \0
character.

436 7 Standard Libraries

description A string with a description of the contents of the base. A
maximum of 75 characters is allowed (including the \0
character). If the string is too long, it will be fruncated.
Default: 75 spaces.

ads.createseq (filename)

Creatfes a sequence with the given filename (a string). The function is written in the
Agena language and can be used after running import ads

ads.desc (filehandle)
ads.desc (filehandle, description)

In the first form, returns the description of a base stored in the file header.

In the second form, ads.desc sets or overwrites the description section of a
database or list. Pass the description as a string. If the string is longer than 75
characters, fail is returned and there are no changes to the base file. If the file is
not open, fail is returned, as well. If it was successful, the return is true.

ads.expand (filehandle [, n])

Increases the maximum numiber of datasets by n records (n an integer). By default,
nis 10. Internally, all data sets are shifted, so that the index section in the data file
can be extended - so the greater n, the faster shifting will be, which is significant for
large files.

The function returns fail if the file is not open, and true otherwise. It issues an error if
the file contains a sequence.

ads.free (filehandle)

Defermines the number of free data sets and retuns them as an infeger. |If
the base has not open, it returns fail. See also: ads.aftrib.

ads.getall (filehandle)

Converts a sequence to a set and returns this set. The function automatically
initialises the set with the number of entries in the sequence. If the file is not open,
fail is returned.

See also: ads.getkeys, ads.getvalues.

agena >> 437

ads.getkeys (filehandle)

Gets all valid keys in a database or list and returns them in a fable. Argument: file
handle (integer). If the file is not open, fail is returned. If the base is empty, null is
returned. The function issues an error if the file contains a sequence.

See also: ads.get, ads.getvalues.

ads.getvalues (filehandle [, column])

By default gets all valid entries in the second column in a database and returns
them in a table. If the optional argument column is given, the entries in this column
are refurned. Argument: file handle (integer). If the file is not open or if the column
does not exist, fail is returned. If the base is empty, null is returned. With lists, the
return is always null.

See also: ads.get, ads.getkeys.

ads.index (filehandle, key)

Searches for the given key (a string) in the base pointed to by filehandle and returns
its file position as a number. If their are no entries in the set, the function returns null.
If the file is not open, fail is returned.

ads.indices (filehandle)

Returns the file positions of all valid detests as a table.

If the file is not open, indices returns fail. If there are no entries in the base, the retun
is an empty table, otherwise a table with the indices is returned. The function issues
an error if the file contains a sequence.

See also: ads.retrieve, ads.invalids, ads.peek, ads.index.

ads.invalids (filehandle)

Returns the file positions of all invalid records in a database as a table.

If the file is not open, invalids returns fail. If no invalid entries are found, the retum is
an empty table. See also ads.retrieve. Note that the function also works with lists.
However, since lists never contain invalid records, an empty table will always be
returned with lists.

With sequences, the function issues an error.

ads.iterate (filehandle)

lterates sequentially and in ascending order over all keys in the database or list. With
databases, both the next key and its corresponding value are returned. With lists,
only the next key is returned.

438 7 Standard Libraries

The very first key can be accessed with an empty string. If there are no more keys
left, the function returns null. If the database is empty, null is returned as well. If the
file is not open, the function returns fail.

Example:

> s, t := ads.iterate(fh, ");

> s, t := ads.iterate(fh, s);

ads.lock (filehandle)

ads.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 243
bytes are locked, so you have to use the second form in Windows after the file has
become larger than 2% bytes (= 8,589,934,592 GBytes).

In the second form the function locks size bytes from the curent file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access 1o the file.

See also: ads.unlock.

ads.openbase (filename [, anything])

Opens the base with name filename and returns a file handle (@ number). If it
cannot find the file, or the base has not the correct version number, the function
returns fail. The base is opened in both read and write mode.

If an optional second argument is given (any valid Agena value), the base is
opened in read mode only.

The function also enters the newly opened file into the ads.openfiles table.

ads.openfiles

A global table containing all files currently open. Its keys are the file handles
(infegers), the values the file names (strings). If there are no open files, ads.openfiles
is an empty table.

ads.peek (filehandle, position)

Returns both the length of an entry (including the terminating \O character) and the
entfry itself af the given file position as two values (an integer and a string). The

agena >> 439

function is save, so if you fry to access an invalid file position, the function will exit
returning fail. It issues an error if the file contains a sequence.

See also: ads.index, ads.retrieve.

ads.rawsearch (filehandle, key [, column])

With databases, the function searches all entries in the given column for the
substring key and returns all respective keys and the matching entries in a table. If
column is omitted, the second column is searched. The value for column must be
greater than 0, so you can also search for keys.

With lists and sequences, the function always returns null. If the base is empty, null is
returned.

If the file is not open or the column does not exist, the function returns fail.

See also: ads.read, ads.getvalues.

ads.readbase (filehandle, key)

With databases, the function retumns the entry (a string) to the given key (also a
string). With lists and sequences, the function retumns true if it finds the key, and false
ofherwise.

If the file is not open, read returns fail. If the base is empty, null is returned. The
function uses binary search.

See also ads.rawsearch.

ads.remove (filehandle, key)

With databases, the function deletes a key-value pair from the database; with lists,
the key is deleted. Physically, only the key to the record is deleted, the key or
key-value pair still resides in the record section but cannot be found any longer.

The function returns true if it could delete the data set, and false if the set to be
deleted was not found. If the file is not open, delete returns fail. The function issues
an error if the file contains a sequence.

If you want to physically delete all invalid records, use ads.clean.

ads.retrieve (filehandle, position)

Gefts a key and its value from a database or list (indicated by its first argument, the
file handle) at the given file position (an integer, the second argument). Two values
are returned: the respective key and its value. With lists, only the key is returned.

The function is save, so if you try 1o access an invalid file position, the function will
exit and retumn fail.

440 7 Standard Libraries

If the file is not open, retrieve returns fail. The function issues an error if the file
contains a sequence.

See also ads.indices, ads.invalids.

ads.sizeof (filehandle)

Retuns the number of valid records (an integer) in the base pointed to be
flehandle. If the base pointed to by the numeric filehandle is not open, the
function returns fail.

ads.sync (filehandle)

Flushes all unwritten content to the base file. The function retumns true if successful,
and fail otherwise (e.Q. if the file was not opened before or an error during flushing
occurred).

ads.unlock (filehandle)
ads.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again. For more information, see ads.lock.

ads.writebase (filehandle, key [, valuel, value2, -)

With databases, the function writes the key (a string) and the values (strings) to the
database file pointed to by filehandle (an integer). If value is omitted, an empty
string is writfen as the value.

With lists, the function writes only the key (a string) fo the database file. If you pass
values, they are ignored. If the key already exists, nothing is written or done and true
is returned. Thus, lists never contain invalid records.

In both cases, the index section is updated. If a key already exists, its position in the
index section is deleted and the new index position is inserted instead (in this case
there is no reshifting). This does not remove the actual key-value pair in the record
section. The function always writes the new key-value pair to the end of the file. (The
file position after the write operation has completed is always 0.)

If the maximum numiber of possible records is exceeded, the base is automatically
expanded by 10 records. You do not need to do this manually.

write returns the true if successful. If the file is not open, write returns fail.

agena >> 441

7.31 gdi - Graphic Device Interfface package

As a plus package, this graphics interface is not part of the standard distribution
and must be activated with the import statement, e.g. import gdi

The gdi package provides functions to plot graphics either 1o a window or a PNG,
GIF, JPEG, FIG, or PostScript file. It is available for the Solaris, Linux, Mac OS X for Intel
CPUs, and Windows editions of Agena.

The gdi package provides procedures to plot basic geometric objects such as
points, lines, circles, ellipses, rectangles, etfc.

It also provides means to easily plot graphs of univariate functions and geometric
objects where the user does not need pay attention for proper axis ranges,
mMapping to the internal coordinate systems, etc.

7.31.1 Opening a File or Window

Operation starts by opening a device - window or file - with the gdi.open function.
The function retuns a device handle for later reference. Almost all functions
provided by the package request this device handle.

> import gdi;

> d := gdi.open(640, 480);

7.31.2 Plotting Functions

Plot a point to the window at x=200 and y=100:

> gdi.point(d, 200, 100);

Plot a line between two points [200, 150] and [300, 200]:
> gdi.line(d, 200, 150, 300, 200);

Draw a circle and a filled circle. Besides giving the device number, pass a centre (x
and y co-ordinates) and a radius.

> gdi.circle(d, 320, 240, 50);

> gdi.circlefilled(d, 400, 240, 50);

442 7 Standard Libraries

7.31.3 Colours, Part 1

All functions accept a colour option passed as an additional - the last - argument.
The colour must be given as an integer that must be determined by a call to the
gdi.ink function. gdi.ink requires the device number, and three RGB colour values in
the range [0 .. 1]. Each colour should be determined only once.

There are 26 predefined colours with numbers O to 25, automatically set at each
invocation of a new device (call to the gdi.open function). Thus, these 26 basic
colours do not need to be explicitely set with gdi.ink.

The default colours are:

0 | white /7 light green 14 | grey 21 | purple

1 | black 8 greenish 15 | grey-blue 22 | dark orange
2 | blue % light sky-blue | 16 | bright green | 23 | purple

3 | light blue 10 | bordeaux 17 | light greenish | 24 | light lilac

4 | greenish 11 | lilac 18 | light sky-blue | 25 | yellow

5 | cyan 12 | light lilac 19 | red

6 | sky-blue 13 | khaki 20 | purple

> cyan := gdi.ink(d, .1, .5, .5);
> gdi.rectanglefilled(d, 200, 200, 400, 400, cyan);

If you want to set a default colour for all subseguent drawings, use gdi.useink.

7.31.4 Closing a File or Window

To finally close the window, use gdi.close.

> gdi.close(d);

7.31.5 Supported File Types

To create image files, simply pass the name of the file as the third argument to
gdi.open. Agena determines the type of the image file from its suffix.

If a file name ends in .png , it creates a PNG file. If a file name ends in .gif , it
creates a GIF file. If a file name ends in .jpg , it creates a JPEG file. Likewise, the
suffix .fig creates a FIG, and .ps generates a PostScript file.

agena >> 443

7.31.6 Plotting Graphs of Univariate Functions

The gdi.plotfn function plofs graphs of functions in one real fo a window or file. It
accepts various options for colour, line thickness, line style, sizing, axis type, efc. The
function takes care for opening a device, plotting the graph and axes, so that the
user does not need to draw them manually. The function requires a function and
the left and right border on the x-axis.

> import gdi alias

> plotfn(<< x -> x*sin(x) >>, -10, 10);

For further details and examples see gdi.plotn. For available plot options, see
gdi.options. See calc.nokspline which along with gdi.plotfn generates a smoothed
graph through a given list of interpolation points.

7.31.7 Plotting Geometric Objects Easily

Like gdi.plotfn, the gdi function plot outpufs geometric objects in the Cartesian
co-ordinate system with the point [0, O] its centre. It accepts options for user-defined
colours, window sizes, axis types, etc. The function opens a device automatically,
plots all the objects that are stored in a PLOT data structure optionally along with
axes, a user-defined background colour, etc.

The function requires the PLOT structure as the first argument, and any options as
additional arguments. Contrary to gdi.plotfn, it does not accept left, right, lower or
upper borders, for it determines the borders automatically.

A PLOT data structure is a sequence of the user-defined type 'PLOT, and contains
the geometric objects with their positions and respective colours.

The following geometric objects can be drawn with gdi.plot:

Object Name Object Name

arc ARC line LINE

filled arc ARCFILLED point POINT

circle CIRCLE rectangle RECTANGLE

filled circle CIRCLEFILLED filed rectangle RECTANGLEFILLED
ellipse ELLIPSE triangle TRIANGLE

filled ellipse ELLIPSEFILLED filled triangle TRIANGLEFILLED

A line stretching from [0, O] to [1, 1] in grey colour (RGB values 0.5, 0.5, 0.5) for
example is represented as follows:

LINE(O, O, 1, 1, [0.5, 0.5, 0.5])

A PLOT structure can be created with the gdi.structure function that opftionally
accepts the minimum number of entries (for speed).

444 7 Standard Libraries

> import gdi alias;

> s := structure();

Any geometric objects is inserted into the structure with its respective gdi.set*
function. The line LINE(O, O, 1, 1, [0.5, 0.5, 0.5]) for example is added with the
gdi.setline function:

> setline(s, 0, 0, 1, 1, [0.5, 0.5, 0.5]);

A PLOT structure can include any number of objects:

> setcircle(s, 0, 0, 0.5, [1, O, Q]);

Finally, the plot statement puts them onto the screen:

> plot(s);

The following table shows the various functions to create objects:

Object | Function Object | Function Object Function
arc setarc ellipse | setellipse rectangle setrectangle
filled setarcfilled fIIIQd ?ﬁt(?jllipse— filled ?ﬁtrgctangle-
arc elipse | M€ rectangle | "€

circle setcircle line setline triangle settriangle
fll!ed ?ﬁtcaircle— point setpoint flllled ?ﬁttéiangle—
circle e friangle e

7.31.8 Colours, Part 2

The following colour names (of type string) are built in and are accepted by the
gdi.plot and gdi.plotfn functions only, so that you must not define colours with
gdi.useink or gdi.ink when plotting sefs of points or graphs of functions:

‘aguamarine’, ‘'black’, ‘blue', ‘'bordeaux’, ‘'brown’, ‘coral’, ‘'cyan’,
'darkblue’, ‘'darkcyan’, ‘'darkgrey', 'gold’, 'green’ , 'grey', ‘'khaki',
'lightgrey','magenta’, 'maroon’, 'navy', ‘orange’, 'pink’, 'plum’, 'red’,
'sienna’, 'skyblue', ‘'tan’, ‘turquoise', 'violet', 'wheat', 'white’,
‘yvellow', 'yellow?2'

7.31.9 GDI Functions

gdi.arc (d, x, y, r1, r2, al, a2 [, colour])

Draws an arc around the centre [x, y] with x radius r1, y radius r2 , and the starting
and ending angles a1, a2, given in degrees [0 .. 360], on device d. A colour (an
infeger, see Chapter 7.31.3), may be given optionally.

agena >> 445

gdi.arcfilled (d, x, y, r1, r2, al, a2 [, colour])

Draws a filled arc around the centre [x, y] with x radius r1, y radius r2, and the
starfing and ending angles a1, a2, given in degrees [0 .. 360], on device d. The arc
is filled with either the default colour, or the one given by colour (an integer, see
Chapter 7.31.3).

gdi.autoflush (d, state)

Sets the auto flush mode for device d to either true or false (second argument). If
state is true (the default), then after each graphical operation the output is flushed
so that it is immediately displayed.

This may decrease performance significantly with a large numiber of graphical
operations - Sun Sparcs seem 1o be the only exceptions -, so it is advised to

1. set state 1o false right after opening device d before calling any other function
that plots something,

2. call gdi.flush after the graphical operations have been completed,

3. setstate to true thereafter.

gdi.background (d, c)

Sets the background colour on device d. ¢ must be a number determined by
gdi.ink, see Chapter 7.31.3. Note that in Windows, the image is also cleared so that
the background is properly displayed, whereas in UNIX, the image is not reset.

gdi.circle (d, x, vy, r [, colour])

Draws a circle around the centre [x, y] with radius r, on device d. A colour (an
integer, see Chapter 7.31.3), may be given optionally.

gdi.circlefilled (d, x, vy, r [, colour])

Draws a filled circle around the centre [x, y] with radius r, on device d. The circle is
filled with either the default colour, or the one given by colour (an infeger, see
Chapter 7.31.3).

gdi.clearpalette (d)
Removes all inks on device d.

gdi.close (d)

Closes the window or file referred to by device id d. If d points to a file, all image
contents is saved to it.

gdi.dash (d, s)

Sets the line dash on device id d. The sequence s includes a vector of dash lengths
(black, white, black, ...). If s is the empty sequence, a solid line is restored.

446 7 Standard Libraries

gdi.ellipse (d, x, y, r1, r2 [, colour])

Draws an ellipse around the centre [x, y] with x radius r1 , and y radius r2 , on device
d. A colour (an integer, see Chapter 7.31.3), may be given optionally.

gdi.ellipsefilled (d, x, y, r1, r2 [, colour])

Draws a filled ellipse around the centre [x, y] with x radius r1, and y radius r2, on
device d. The ellipse is filed with either the default colour, or the one given by
colour (an integer, see Chapter 7.31.3).

gdi.flush (d)
Writes all buffered contents to the window or file referred to by device id d.

See also: gdi.autoflush.

gdi.fontsize (d, s)
Sets the font size s for text written by gdi.text, for device d.

See also: gdi.text.

gdi.hasoption (t, o)
lterates a table t and retumns true if one of its keys is equal 10 o.

See also: gdi.options.

gdi.initpalette (d)
Sets up basic colours on device d.

gdi.ink (d, r, g, b)

Returns a palette colour value - an integer - for the colour given by its RGB values r
(red), g (green), and b (blue), for device d. r, g, and b must be numbers x with 0 < x
< 1. The palette colour value can be given as an optional argument in most of the
adi functions, or be used in the gdi.useink function. Subsequent calls with the same
arguments return different palette values.

gdi.lastaccessed ()

Returns the id of the last accessed device as a number.

gdi.line (d, x1, y1, x2, y2 [, colour])

Draws a line from the first point [x1, y1] to the second point [x2, y2] on device d. A
colour , an integer (see Chapter 7.31.3), may be given optionally.

agena >> 447

gdi.mouse (d [, offset])

Returns three numbers: the current horizontal and vertical positions of the mouse
relafive to the screen, and its button state butfon state. The button state is coded
as a positive infeger.

By applying a bitmask to the button state, you can query whether the left or the right
mouse button has been pressed:

* putton_state && 0xOT00 = 0x0100: left button has been pressed,
* putton_state && 0x0400 = 0x0400: right butfon has been pressed.

gdi.open (width, height)
gdi.open (width, height, filename)

In the first form, opens a window with the given width and height and retuns a
device number (an integer) for later reference needed by all other gdi functions.

In the second form, creates the image file with name filename , the given width
and height and returmns a device number (an integer) for later reference needed by
all other gdi functions.

The type of the image file format is determined by the suffix in filename

Suffix Resulting image file format Example

fig FIG format '/export/home/misc/fern.fig'
.gif GIF format 'c:/images/fractal.gif

Jrg JPEG format 'c:/images/fractal.jpg’
ong PNG format 'c:/images/circle.png'

s PostScript format (DIN A4 size) ‘output.ps’

gdi.options (--)

Checks the given plotting options for correctness and returns them in a new table,
along with the defaults for options that have not been passed to this function. The
function currently only works with the gdi.plot, gdi.pointplot, and gdi.plotfn
functions.

Valid options (all key~value pairs) are:

448

7 Standard Libraries

Option (key)

Meaning (value)

Example

‘axes'

'none' - dO Not print axes

'normal' - print axes with labels and tick
marks

'boxed' - print axes at top and bottom,
and at the left and the right side

‘frame' - print axes at the bottom and at
the left side

‘axes":'normal’

‘axescolour’

defines the colour of the axes (a colour
string, see Chapter 7.31.3)

‘axescolour":'red’

'bgcolour’

sets the background colour (a colour
string, see Chapter 7.31.3)

'bgcolour”:
'yvellow'

‘colour’

sets the default colour (a string, see
Chapter 7.31.3) for the objects to be
plotted. Note that the individual colour of
an object overrides the one given by this
option

‘colour':'navy"

‘colourfn’

sets a colouring function

‘colourfn”:
<KX -> ... >>

file'

indicates the name of the file (a string) to
be created

file":'image.png'

'labels’

if set to false, no labels are printed
(default is true)

'labels':false

'labelsize’

sets the font size (a positive number) for
axis labels (gdi.plotfn function only)

'labelsize":6

linestyle’

sets the dash style (a positive numiber) for
the groph to be plofted (gdi.plotfn
function only)

'linestyle":10

'maxtickmarks'

sets the maximum number of tickmarks
on both axes, by default is (around) 20.

'maxtickmarks':5

‘mouse’

prints the current position of the mouse to
the console. Click the right mouse button
to finish. Default is false.

‘mouse’:true

res’

resolution of the window or image file in
pixels (pair of numbers)

'res':(1024:768)

'square’

in a plot, uses the same scale for the
y-axis as given for the x-axis

'square':true

‘thickness'

sets the thickness (a positive number) of
the line to be plofted (gdi.plotfn function
only)

‘thickness':2

title'

sets the fifle (a sftring) for the plot

(gdi.plotfn function only)

title':
‘Graph of sin(x)'

‘titlecolour’

sets the colour (a string, see Chapter
7.31.3) of the title (gdi.plotfn only)

‘titlecolour":
red'

'titlesize'

sets the font size (a positive number) of
the title (gdi.plotfn function only)

'titlesize":15

horizontal range (left and right border)
over which the plot is displayed

'X'":(-2):2

agena >> 449

Option (key) Meaning (value) Example

y vertical range (lower and upper border) 05
over which the plot is displayed o

wscale' seTg the s’repl size for the fick marks on the wscale0.5
horizontal axis

yscale se’rsl the s’rgp size for the fick marks on the yscale0.5
vertical axis

The function is writfen in the Agena language and included in the lib/gdi.agn file.

See also: gdi.setoptions.

gdi.point (d, x, y [, colour])

Plots a point with co-ordinates [x, y] on device d. A colour , an integer (see Chapter
7.31.3), may be given optionally.

gdi.pointplot (p [, options])
gdi.pointplot ([p1 [, p2, ---]11, [, options])

Takes one or more tables or sequences consisting of points Xy« and generates a
plot. xc and yx must be finite numbers. The function automatically determines the
common proper borders automatically.

By passing the option colour =c, where c is either a string denoting a colour, or a
table of strings denoting colours, you can set individual colours for the distributions.
The default is 'black’

By passing the option symbol =s, where s is the name of a symbol or a table of
strings denoting symbols, each point in a distribution is plotted accordingly.
Supported symbols are: 'cross' , 'circle' , ‘circlefilled' , 'box' , 'boxfilled' ,
'triangle’ , 'trianglefilled’ , 'crosscircle’ , and 'dot' . The default is 'dot'

The size of the symbols can e controlled by the symbolsize option which denotes
a radius in pixels. Only one common size can be set for all distributions passed. The
default is 3.

Alternatively, by passing the connect =true option, you can connect all points in
each distribution with a line.

The function supports various plotting options, see gdi.options.

In the first form, only one distribution p is passed, in the second form you can pass
various distributions p1, p2, efc. by putting them into a table.

The function ignores y-values if they evaluate 1o infinity or undefined.

450 7 Standard Libraries

Example:

>s:=seq(0.1,0.2,0.1,0.3,1, 2,5, -1, 0);

> p = nseq(<< X -> x:s[X] >>, 1, size s);
>sli=<<x->In(X)> @ s;
> pl :=nseq(<< x -> x:s1[x] >>, 1, size sl);

> gdi.pointplot([p, p1], colour=[red', 'black’],
> symbol=['circle’, 'cross'], symbolsize=5, conn ect=true);

The function is writfen in the Agena language and included in the lib/gdi.agn file.

gdi.plot (p [, options])

Plots PLOT structures stored in p. PLOT structures are points, lines, circles, friangles,
rectangles, arcs, and ellipses, along with the information given by its optional INFO
structure.

A PLOT structure is created by a call to gdi.structure, and the respective gdi.set*
functions.

The function accepts all plot options (see gdi.options).

Example:

> p := gdi.structure();

> gdi.setline(p, 0, 0, 1, 1, 'navy');
> gdi.setcircle(p, 0, 0, 1, 'red");

> gdi.plot(p);

> gdi.plot(p, axes='normal’', square=true, x=-2:2, y =-2:2);

The function is writfen in the Agena language and included in the lib/gdi.agn file.

gdi.plotfn (f, a, b [[¢, d], options])
gdi.plotfn (ft, a, b [[¢, d], options])

Plots graphs of one or more functions.
In the first form, the graph of the function f is plotted.

In the second form, by passing a table ft of functions, the graphs of the functions
are plotted on one device - to one file or window.

If the file option is missing, the graphs are plotted in a window (UNIX/Mac and
Windows, only). If the file option is given, the file type is determined by the suffix of
the file you pass to this option.

agena >> 451

a and b (both numbers with a < b) must be given explicitly and specify the horizontal
range. If c and d are missing, the vertical range is determined automatically.

You may specify one or more options for proper layout of the graphs. See
gdi.options for more details.

If a table of function is passed, you may specify an individual colour, line style, and
the thickness for each of their graphs. Just pass a table of seftings at the right-hand
side of the respective option. See the examples below.

See gdi.autoflush if you experience performance problems while plofting.
Examples:

Plot the graph of the sine function on the horizontal range a fo b. The vertical range
is computed automatically.

> with(‘'gdi’):

> plotfn(<< x -> sin(x) >>, -10, 10);

Plot the graph of the sine function on the horizontal range a 1o b and the vertical
range c fo d.

> plotfn(<< x -> sin(x) >>, -10, 10, -2, 2);

Specify a colour other than black:

> plotfn(<< x -> sin(x) >>, -10, 10, colour="red");

Give a specific thickness for the line:

> plotfn(<< x -> sin(x) >>, -10, 10, thickness=3);

Combine the options - their order does not matter:

> plotfn(<< x -> sin(x) >>, -10, 10, thickness=3, ¢ olour="red";
Plot two and more functions:

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10);
Give options, t00:

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10, colour="navy");

Specify individual colours. The graph of the sine function shall be red, the cosine
function shall by cyan:

452 7 Standard Libraries

agena == plot 1

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0,10,
> colour=[red", 'cyan’);

Choose another colour for the axes and another axes style:

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10,
> colour~['red’, 'cyan’], axescolour='grey', axe s='boxed'
> res=480:200);

Do not draw axes:

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10,
> colour=[red’, 'cyan’], axes="'none");

If you want to set default options that will always e used by plotfn and that do not
need to be specified with each call to plotfn, use gdi.setoptions:

> gdi.setoptions(colour~'red’, axescolour~'grey");
> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10)
The function is written in the Agena language and included in the lib/gdi.agn file.

See also: calc.clampedspline, calc.nakspline .

gdi.rectangle (d, x1, y1, x2, y2 [, colour])

Draws a rectangle with the lower left and upper right corners [x1, y1] and [x2, y2] on
device d. A colour (an infeger, see Chapter 7.31.3), may be given optionally for the
lines.

gdi.rectanglefilled (d, x1, y1, x2, y2 [, colour])

Draws a filled rectangle with the lower left and upper right corners [x1, y1] and [x2,
y2] on device d. The rectangle is filled with either the default colour, or the one
given by colour (an integer, see Chapter 7.31.3).

agena >> 453

gdi.reset (d)
Clears the entire window or image file contents of device d.

gdi.resetpalette (d)

Clears the colour palette by removing all inks and reallocates basic colours, on
device d.

gdi.setarc (s, x, Y, r1, r2, al, a2 [, colour])

Inserts an arc around the cenfre [x, y] with x radius r1, y radius r2 , and the starting
and ending angles a1, a2, given in degrees [0 .. 360], to PLOT structure s. The
optional colour argument may be either a string denoting a colour like 'black’
red , etc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.setarcfilled (s, x, y, r1, r2, al, a2 [, colour)

Inserts a filed arc around the centre [x, y] with x radius r1, y radius r2, and the
starting and ending angles a1, a2, given in degrees [0 .. 360], to PLOT structure s.
The optional colour argument may be either a string denoting a colour like 'black'
red , etc., or a table with three RGB numeric values in therange 0 .. 1.

gdi.setcircle (s, x, y, r [, colour])

Inserts a circle around the centre [x, y] with radius r, 1o PLOT structure s. The optional
colour aArgument may be either a string denoting a colour like 'black' , 'red' , etc.,
or a table with three RGB numeric values in the range O .. 1.

gdi.setcirclefilled (s, x, y, r [, colour])

Inserts a filled circle around the centre [x, y] with radius r, to PLOT structure s. The
optional colour argument may be either a string denoting a colour like 'black’
red , etc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.setellipse (s, x, vy, r1, r2 [, colour])

Inserts an ellipse around the centre [x, y] with x radius r1, and y radius r2, to PLOT
structure s. The optional colour argument may be either a string denoting a colour
like 'black’ , 'red" , etc., or a table with three RGB numeric values in the range O ..
1.

gdi.setellipsefilled (s, x, y, r1, r2 [, colour])

Inserts a filled ellipse around the centre [x, y] with x radius r1, and y radius r2, to
PLOT structure s. The optional colour argument may be either a string denoting a
colour like 'black' , 'red" , etc., or a table with three RGB numeric values in the
range O .. 1.

454 7 Standard Libraries

gdi.setinfo (s, ---)

Inserts information on the minimum and maximum values (x- and y values) and their
scaling of all the geometric objects included in the PLOT data structure s into its
INFO substructure. The INFO object always is the last element in s.

The options xdim=a:b and ydim=c:d set the x-range and y-range on which objects
will be plotted, respectively, where a, b, ¢, d are numbers (i.e. borders). The
unconstrained = false option scales the x and y dimensions equally, the
unconstrained = true does not.

The information is useful so that gdi.plot can automatically determine the proper
plotting ranges for s.

Example:

> gdi.setinfo(s, xdim = 0:10, ydim = -5:5, unconstr ained = true);

gdi.setline (s, x1, y1, x2, y2 [, colour])

Inserts a line drawn from point (x1, y1) o point (x2, y2) with the optional colour into
the PLOT structure s. x1, y1, x2, y2 should be numbers. colour may be either a string
denoting a colour like 'black' , 'red , etc., or a table with three RGB numeric
values intherange 0 .. 1.

gdi.setoptions (---)

Checks the given plotting options (all key~value pairs) for correctness and sets
them as the respective defaults for subseguent calls o the gdi.plot and gdi.plotfn
functions.

For a list of valid plotting opftions, see gdi.options.

Internally, the function assigns the given options to the global environment variable
environ.gdidefaultoptions which is checked by gdi.plot and gdi.plotfn.

gdi.setpoint (s, x, y [, colour])

Inserts a point with co-ordinates [x, y] to PLOT structure s. The optional colour
argument may be either a string denoting a colour like 'black' , 'red" , etc., or a
table with three RGB numeric values in the range 0 .. 1.

gdi.setrectangle (s, x1, y1, x2, y2 [, colour])

Inserts a rectangle with the lower left and upper right corners [x1, y1] and [x2, y2] tO
PLOT structure s. The optional colour argument may be either a string denoting a
colour like 'black’ , 'red" , efc., or a table with three RGB numeric values in the
range 0 .. 1.

agena >> 455

gdi.setrectanglefilled (s, x1, y1, x2, y2 [, colour)

Inserts a filled rectangle with the lower left and upper right corners [x1, y1] and [x2,
y2] to PLOT structure s. The optional colour argument may be either a string
denoting a colour like 'black' , 'red” , etc., or a table with three RGB numeric
valuesintherange 0 .. 1.

gdi.settriangle (s, x1, y1, x2, y2, x3, y3 [, colou)]

Inserts a triangle with the corners [x1, y1], [x2, y2]. and [x3, y3] to PLOT structure s.
The optional colour argument may be either a string denoting a colour like 'black’
'red” , etc., or a table with three RGB numeric values in the range O .. 1.

gdi.settrianglefilled (s, x1, y1, x2, y2, x3, y3 |, colour])

Inserts a filled triangle with the corners [x1, y1], [x2, y2], and [x3, y3] to PLOT structure
s. The optional colour argument may be either a string denoting a colour like
'black' , 'red' , etfc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.structure ([n])

Creates a PLOT data structure with n pre-allocated entries. Of course, the structure
may contain less or more entries. If n is not given, no pre-allocation is done which
may slow down inserting new objects info s later in a session. The retumn is the PLOT
data structure (a sequence of user type 'PLOT).

See also: gdi.setinfo.

gdi.system (d, x, y, Xs, yS)

Sets the user's co-ordinate system on device d, where x, y, xs, and ys are numbers.
The pixel [x, y] determines the origin. The horizontal unit is given in xs pixels, the
vertical unit in ys pixels. The function returns nothing.

> d := open(640, 480);

> gdi.system(d, 320, 240, 320, 240);
> gdi.line(d, -1, 0, 1, 0);

> gdi.line(d, 0, -1, 0, 1);

gdi.text (d, x, vy, str [, colour])

Prints the string str af [x, y] on device d. A text colour (an integer), may be given
opftionally.

See also: gdi.fontsize.

456 7 Standard Libraries

gdi.thickness (d, t)
Sets the default thickness for all lines to t pixels, on device d.

gdi.triangle (d, x1, y1, x2, y2, x3, y3 [, colour])

Draws a friangle with the corners [x1, y1], [x2, y2], and [x3, y3] on device d. A colour
(an integer, see Chapter 7.31.3), may be given optionally for the lines.

gdi.trianglefilled (d, x1, y1, x2, y2, x3, y3 [, co lour])

Draws a filled triangle with the corners [x1, y1], [x2, y2], and [x3, y3] on device d. The
friangle is filled with either the default colour, or the one given by colour (an integer,
see Chapter 7.31.3).

gdi.useink (d, c)

Sets the default colour ¢ (@ number) for all subsequent drawings, on device d. c
must be a numiber determined by gdi.ink.

agena >> 457

7.32 fractals - Library to Create Fractals

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distrioution and must be activated with the import statement, e.Q.
import fractals

Since it needs gdi graphics functions, it is of no use in OS/2 and DOS.
The library creates fractals and includes three types of functions:

1. escape-time iteration functions like fractals.mandel,
2. auxiliary mathematical functions lie fractals.flip,
3. fractals.draw to draw fractals using escape-time iteration functions.

See Chapter 7.32.4 for some examples.

7.32.1 Escape-time Ilteration Functions

fractals.amarkmandel (X, v, iter, radius)

This function computes the escape-time fractal created by Mark Peterson of the
formula:

z2:=22*c% +c

It returns the number of iterations a point [x, y] needs to escape radius . The
nmMaximum number of iterations conducted is given by iter

See also: fractals.markmandel .

fractals.albea (x, vy, iter, radius)

This function calculates the Julia set of the formula lombda * beaq(z), where lambda
is the point 110.4 and z =xly, and iter is the maximum number of iteration. Its
retun is the numioer of iterations the function needs to escape radius . The function
is written in the Agena language.

See also: fractals.lbea.

fractals.alcos (x, vy, iter, radius)

This function calculates the Julia set of the formula lambda * cos(z), where lambda
is the point 110.4 and z =xly, and iter is the maximum number of iteration. Its
return is the number of iterations the function needs to escape radius . The function
is writfen in the Agena language.

458 7 Standard Libraries

fractals.alcosxx (X, y, iter, radius)

This function calculates the Julia set of the formula lambda * cosxx(z), where
lambda is the point 110.4 and z =xly, and iter is the maximum number of
iteration. Its retun is the numiber of iterations the function needs to escape radius .
The function is written in the Agena language.

The function implements FRACTINT's buggy cos function ftil v16, and creates
beautiful fractals.

fractals.alsin (x, vy, iter, radius)

This function calculates the Julia set of the formula lambda * sin(z), where lambda is
the point 110.4 and z =xly, and iter is the maximum number of iteration. Its return
is the number of iterations the function needs to escape radius . The function is
written in the Agena language.

fractals.anewton (x, v, iter, radius)

This function implements Newton's formula for finding the roots of z° - 1, with z = xly,
and returns the number of iterations it takes for an orbit to be captured by a rooft.
The iteration formula itself is

z:=z-(2-1)/(3*2)

The function stops if |z>-1| < radius or the maximum number of iterations iter s
reached. The function is written in the Agena language.

See also: fractals.newton.

fractals.lbea (x, v, iter, radius)

This function calculates the Julia set of the formula lambda * beaq(z), where lambda
is the point 110.4 and z =xly, and iter is the maximum number of iteration. Its
return is the number of iterations the function needs to escape radius . The function
is implemented in C.

See also: fractals. albea.

fractals.mandel (x, y, iter, radius)

This function computes the Mandelbrot set of the formula
z:=7"+cC
using complex arithmetic. It returns the number of iterations a point [x, y] needs to

escape radius . The maximum number of iterafions conducted is given by iter
The function is implemented in C.

agena >> 459

fractals.mandelbrot (x, v, iter, radius)

Like fractals.mandel, but written in Agena and using complex arithmetic.

fractals.mandelbrotfast (x, y, iter, radius)

Like fractals.mandel, but written in Agena and using real arithmetic.

fractals.mandelbrottrig (x, v, iter, radius)

Like fractals.mandel, but wriften in Agena and using real arithmetic and
frigonometric functions.

fractals.markmandel (X, y, iter, radius)

Like fractals.amarkmandel , but implemented in C.

fractals.newton (X, v, iter, radius)

Like fractals.anewton, but implemented in C.

7.32.2 Auxiliary Mathematical Functions

fractals.bea (z)

The function has been removed. Please use the faster bea operator.

fractals.cosxx (z)

The function has been removed. Please use the faster cosxx operator.

fractals.flip (z)
The function has been removed. Please use the much faster flip operator.

7.32.3 The Drawing Function fractals.draw

The function takes an escape-time iterator, various other parameters, and creates
either image files or windows of fractals. By default a window is opened (see file
option on how to create image files).

460

7 Standard Libraries

fractals.draw (iterator, x_centre, y_centre, x_widt h [, options])
Draws a fractal given by the escape-time iterator function iterator with image
centfre [x_centre , y_centre] and of the total length on the x-axis x_width . x_centre
andy centre Are numbers whereas x_width is a positive number.
Options are:
Option Meaning Example
a colouring function f of the form f := | colour ~ << x ->
<< X -> 1, 9 b >>. Predefined |0, 0, 0.05*x >>
colour ~ f

functions are: red, blue, violet, cyan,
cyannew.

colour ~ blue

file~'flename.suf'

creates a GIF, PNG, or JPEG file, if the
file suffix is .gif, .png, or .jpg

fle ~ 'mandel.qif

iter ~ n

maximum number of iterations with n a
positive number; default is 128

iter ~ 512

lambda ~ p

lombda value p, a complex number,
for fractals.[a]l* functions like albea

lambda ~ 110.4

map ~
filename.map'

FRACTINT colour map to be used to
draw the fractal.

The FRACTINT maps can
downloaded separately from:
http://agena.sourceforge.net/
downloads.html#fractinfraps

be

Put these files into the share folder of
your Agena distribution, preserving the
subfolder fractint. A valid path may thus
be: /usr/fagena/share/fractint.

Alternatively, set the environment
variable environ.fractintcolourmaps to
the folder where your map files reside.

map ~ 'basic.Map'

mouse ~ bool

display pointer co-ordinates on console
after image has been finished, if bool
= true. Default: bool = false. Click the
right mouse button fo quit printing
co-ordinates.

mouse ~ true

radius ~ r

iteration radius r, a positive number

radius ~ 2

resolution of the window or image, with

res ~ 1024:768

res ~ width:height | width and height positive numbers.
Default is 640:480
with n a non-negative number:

update ~ n

determines the number of rows after an
image is being flushed to a file or
window during computation

agena >> 461

Notes on the update option:

On all operating systems the default is 1. This behaviour can globally be changed in
a session by assigning a non-negative infeger to the environment variable
environ. fractscreenupdates.

In Sun x86 Solaris and Linux, update ~ 0O is the fastest, but when outputting to a
window, it does not plot anything while the fractal is being computed (of course, if
computation finishes, the fractal will be displayed).

Sparcs do not show any effect when changing the update rate, at least with
XVR-1200 VGAs. The same applies to Microsoft Windows XP and 7, as well as Mac
OS X 10.5.

7.32.4 Examples

> import fractals alias

> draw(fractals.lbea, 1.75, 0.5, 0.001, map='grayis h.map', radius=1024,
> iter=1024, lambda=1!0.4);

There are further examples at the bottom of the fractals.agn file residing in the main
Agena library folder.

462 7 Standard Libraries

> draw(mandel, -1.0037855135, 0.2770816775, 0.08668 6273, iter~255);

> draw(mandel, -1.0037855135, 0.2770816775, 0.08668 6273, file~'out.png’,
> iter~255, res~1024:768); # create a PNG file of the Mandelbrot set

agena >> 463

7.33 divs - Library to Process Fractions

As a plus package, this library is not part of the standard distribution and must be
activated with the import statement, e.g. import divs

The library provides basic arithmetic to calculate with fractions. To create a fraction,
use divs.divs which accepts mixed, improper and proper fractions. The package
implements metamethods so that the common addition, subtraction, division, and
unary minus operators can be used.

The + operator adds two fractions, or a number and a fraction in any order.

The - operator subtracts two fractions, or a numiber and a fraction in any order.

The * operator multiplies two fractions, or a number and a fraction in any order.

The / operator divides two fractions, or a number and a fraction in any order.

The © operator exponentiates two fractions, or a numiber and a fraction in any
order.

The ** operator raises a fraction to an integer power, in this order.
The abs operator returns the absolute value of a fraction and returns a fraction.
The sign operator returns the sign of a fraction and returns a number.

The sqrt operator retumns the square root of a fraction and returns a fraction. If the
resulting fraction could not be evaluated with albsolute precision, it refumns a
number.

The In operator returns the natural logarithm of a fraction and returns a fraction. If
the resulting fraction could not be evaluated with absolute precision, it returns a
number.

The exp operator returns the value of E to the power of the given fraction and
returns a fraction. If the resulting fraction could not be evaluated with absolute
precision, it returns a number.

The sin operator returns the sine of a fraction and returns a fraction in radians. If the
resulting fraction could not be evaluated with albsolute precision, it refumns a
number (in radians).

The cos operator returns the cosine of a fraction and returns a fraction in radians. If
the resulting fraction could not be evaluated with absolute precision, it retuns a
number (in radians).

464 7 Standard Libraries

The tan operator returns the tangent of a fraction and returns a fraction in radians. If
the resulting fraction could not be evaluated with absolute precision, it retuns a
number (in radians). It retfurns undefined if poles have been encountered.

The arctan operator returns the arcus tangent of a fraction and returns a fraction in
radians. If the resulting fraction could not be evaluated with absolute precision, it
returns a number (in radians). It returns undefined if poles have been encountered.

The int operator returns the integer quotient of the numerator of a fraction divided
by its denominator.

The numerators and denominators should all be integers.

The return always is an improper fraction. There are also two functions to convert
fractions to decimals and vice versa.

Examples:

> import divs;

> divs.divs(l, 2, 3) + divs.divs(1, 3):
2

> divs.divs(1, 2) * divs.divs(1, 3):
divs(5, 6)

> divs.divs(1, 2) * divs.divs(1, 3):
divs(1, 6)

> 2 * divs.divs(1, 3):
divs(2, 3)

> divs.todec(divs.divs(1, 2)):
0.5

> divs.todiv(ans):
div(1, 2) 0

Relations: Two fractions can be compared with the <, <=, =, ==, ~=, >=, and
> operators.

agena >> 465

Functions:

divs.denom (a)

This function returns the denominator of the fraction a of the user-defined type
'divs' and returns it as a number.

The function is written in the Agena language and is included in the lib/divs.agn
file.

See also: divs.numer.

divs.divs ([x, 1Yy, 2)
divs.divs ([x:]y:2)

This function defines a fraction and returns it as a value of the user-defined type
'divt if z is not 1, with proper metamethods added. It returns a number if z equals
1, and undefined if z is O.

y
In the first form: if all three arguments are given, representing a mixed fraction x 7,
the function converts it info an improper fraction and retumns it. If only y and z are

given, the function returns a reduced improper or proper fraction %

The second form allows to pass x, y, and z as a nested pair x:y:z, representing a
mixed fraction, or the pair y:z representing an improper or proper fraction.

In both forms, x, y, and z should be integers.

The function is written in the Agena language and is included in the lib/divs.agn
file.

divs.equals (a, b [, option])

This function checks two fractions a, b for equality. Alternatively, either a or b may be
simple Agena numbers. The result is either true or false. If any non-null option is
given, the function checks for approximate equality (see approx function). Note
that the equality operators =, ==, and ~= cannot check values of different types.

The function is written in the Agena language and is included in the lib/divs.agn
file.

divs.numer (a)

This function returns the numerator of the fraction a of the user-defined type 'divs'
and returns it as a number.

The function is written in the Agena language and is included in the lib/divs.agn
file.

466 7 Standard Libraries

See also: divs.denom.

divs.todec (a)

This function converts a fraction a of the user-defined type 'divs's 1o a float and
returns it.

The function is written in the Agena language and is included in the lib/divs.agn
file.

See also: divs.todiv.

divs.todiv (x)

This function converts a number x to an improper fraction of the user-defined type
'divs' and returns it. The second return is the accuracy (see math.fraction for
further information).

The function is written in the Agena language and is included in the lib/divs.agn
file.

See also: divs.todec, math.fraction.

agena >> 467

7.34 cordic - Numerical CORDIC Library

As a plus package, this library is not part of the standard distribution and must be
activated with the import statement, e.g. import cordic

The CORDIC algorithm (CORDIC stands for COordinate Rotation Digital Computer)
also known as the “Volders algorithm™, is used to calculate hyperbolic,
trigonometric, logarithmic, and root functions, on hardware not featuring multipliers,
requiring only addition, subtraction, bitshift and table lookup.

The algorithm, similar to one published by Henry Briggs around 1624, has been
developed in 1959 by Kack E. Volder to improve an aviation system. According to
Wikipediq, it has not only been used in pocket calculators, but also in x87 FPUs, in
CPUs prior to Infel 80486 - and in Motorola's 68881, in signal and image processing,
communication systems, robotics, and also 3D graphics - and other applications.

This binding fo John Burkardt's CORDIC implementation uses additon, subtraction,
table lookups, multiplication, divisions, and the absolute function.

The package accepts and returns Agena number only.

Available functions are:

cordic.carccos (X)

Returns the inverse cosine operator in radians.

cordic.carcsin (X)

Returns the inverse sine operator in radians.

cordic.carctan2 (y, X)

Returns the arc tangent of y/x in radians, but uses the signs of both parameters to
find the quadrant of the result.

cordic.carctanh (x)

Returns the inverse hyperbolic tangent of x in radians.

cordic.cchbrt (x)

Returns the cubic root of the number x.

cordic.ccos (X)

Returns the cosine of x in radians.

468

7 Standard Libraries

cordic.ccosh (x)

Returns the hyperbolic cosine of x in radians.

cordic.cexp (X)

Returns €%, the exponential function 1o the base e =2.718281828459 ...

cordic.chypot (x, y)
Retuns /x2+y? , the hypotenuse.

cordic.cln (x)

Returns the natfural logarithm of x.

cordic.csin (x)

Returns the sine of x in radians.

cordic.csinh (x)

Returns the hyperbolic sine of x in radians.

cordic.csqrt (x)

Returns the square root of x.

cordic.ctan (x)

Returns the tangent of x in radians.

cordic.ctanh (x)

Retumns the hyperbolic tangent of x in radians.

agena >>

469

7.35 usb - libusb Binding

As a plus package, this library is not part of the standard distribution and must be
activated with the import statement, e.Q. import usb

The package provides 1:1 access to libusb functions. Please have a look at the
libuslb man pages and is available in the Windows version of Agena, only.

The functions provided by this binding are:

7.35.1 CTX Functions

Package function name

Corresponding libusb function

usb.event handler active

libusb event handler active

usb.event handling ok

libusb event handling ok

usb.get device list

libusbb get device list

usb.get next timeout

libuslbo_get next timeout

usb.get polifds

libuslb _get polifds

usb.handle events

libusb handle events

usb.handle events locked

libusb handle events locked

usb.handle events timeout

libusb handle events fimeout

usb.lock event waiters

libusb lock event waiters

usb.lock events

libusb lock events

usb.pollfds handle timeouts

libusb pollifds handle fimeouts

usb.set debug

libusb set debug

usb.set pollfd notifiers

libusb set pollfd notifiers

usb.try lock events

libusb try lock events

usb.unlock event waiters

libusb unlock event waiters

usb.unlock events

libusb unlock events

usb.wait_for event

libusb wait for event

7.35.2 DEV Functions

Package function name

Corresponding libusb function

usb.get active config descriptor

libustb get active config descriptor

usb.get bus number

libusbb get bus number

usb.get config descriptor

libusb get config descriptor

usb.get config descriptor by value

libusbb get config descriptor by value

usb.get device address

libuslo_get device address

usb.get device descriptor

libusto_get device descriptor

usb.get max iso packet size

libuslb_get max iso_packet size

usb.get max_packet size

libuslb_get max_packet size

usb.open

libusb open

470

7 Standard Libraries

7.35.3 Handles

Package function name

Corresponding libusb function

usb.attach kernel driver

libusb aftach kernel driver

usb.bulk tfransfer

libusb bulk transfer

usb.claim interface

libusb claim interface

usb.clear halt

libusb clear halt

usb.close

closehandle

usb.control transfer

libusb control fransfer

usb.detach kernel driver

libusb detach kernel driver

usb.get configuration

libusto_get configuration

usb.get descriptor

libusbb get descriptor

usb.get device

libusbb get device

usb.get string descriptor

libusb get string descriptor

usb.get string descriptor ascii

libusb get string descriptor_asci

usb.get string descriptor utf8

libuslb get string descriptor utf8

usb.interrupt transfer

libusb interrupt transfer

usb.kernel driver active

libusb kernel driver active

usb.release interface

libusb release interface

usb.reset device

libusb reset device

usb.set_configuration

libusb set configuration

usb.set interface alt setting

libusb set interface alf setfting

7.35.4 Transfer Functions

Package function name

Corresponding libusb function

usb.cancel tfransfer

libustb_cancel transfer

usb.control transfer get data

libuslb control transfer get data

usb.control_transfer_get setup

libuslb control transfer get setup

usb.fill bulk fransfer

libusb fill bulk transfer

usb.fill control setup

libusb fill control setup

usb.fill control transfer

libusb fill control fransfer

usb . fill interrupt fransfer

libusb fill interrupt transfer

usb.fill iso transfer

libusb fill iso fransfer

usb.get iso packet buffer

libuslo _get iso packet buffer

usb.set iso packet buffer

libusb set iso packet buffer

usb.set iso_packet lengths

libusb set iso_packet lengths

usb.submit transfer

libusb submit fransfer

usb.tfransfer_get data

libusb transfer get data

7.35.5 Miscellaneous Functions

Package function name

Corresponding libusb function

usb.init

libusbo _init

usb.open device with vid pid

libusb open device with vid pid

usb.tfransfer

libusb transfer

agena >> 471

7.36 Registers
Summary of Functions:
Queries
countitems, filled, in, size.
Retrieving Values
getentry, unique, unpack, values.
Operations
cCopy, map, purge, remove, select, selectremove, sort, sorted, subs, zip.
Relational Operators
=, ==, ~=, <>,
Cantor Operations
infersect, minus, subbset, union, xsubset.

With the excepftion of getentry, map and zip, the following functions have been
built into the kernel as unary operators:

7.36.1 Kernel O perators

copy (r)

The operator deep-copies the entire contents of a register r into a new register. See
Chapter 7.1 for more information.

countitems (item, r)
countitems (f, r [, ---])

Counts the number of occurences of an item in the register r. For further
information, see Chapter 7.1.

duplicates (obj [, option])

Returns all the values that are stored more than once to the given register obj , and
retuns them in a new register. Each duplicate is retfurned only once.

472 7 Standard Libraries

If option is ot given, the structure is sorfed before evaluation since this is needed to
determine all duplicates. The original structure is left untouched, however.

The total size of the new register is equal to the number of the elements in the result.

If a value of any type is given for option , the function assumes that the reqgister has
been already sorted. Otherwise it is suggested o use skycrane.sorted before the
call to duplicates if the reqister contains values of different types, to prevent errors.

The function is writfen in the Agena language and included in the library.agn file.

filled (r)

The operator checks whether the reqister r contains af least one element. The return
is frue or false.

getentry (r [, k Lo K n])

Retuns the entry ik 4, -+ , k] from the register r without issuing an error if one of
the given indices k; (second to last argument) does not exist.

map (f! r [1])

Maps the function f on all elements of a register r. See map in Chapter 7.1 for
more information. See also: remove, select, subs, zip.

purge (obj [, pos])
Removes from register obj the element aft position pos, shifting down other
elements to close the space, if necessary. Returns the value of the removed
element, or nothing if pos is invalid. The default value for pos is N, where n is the
length of the table or sequence, so that a call purge(obj) removes the last
element of obj .

Note that the function als reduces the top pointer of obj by one.

remove (f,r[, ---])

Returns all values in reqister r that do not satisfy a condition determined by function
f. The fotal size of the new register is equal to the number of the elements in the
result. See remove in Chapter 7.1 for more information. See also: map, select,
subs, zip.

select (f, r [, ---])

Returns all values in reqister r that satisfy a condition determined by function f. The
total size of the new register is equal to the number of the elements in the result. See
select in Chapter 7.1 for more information. See also: map, remove, subs, zip.

agena >> 473

selectremove (f, r [, ---])

Returns all values in register r that satisfy and do not satisfy a condition determined
by function f, in two new registers. The total size of the new registers is equal to the
number of the elements in the respective results. See selectremove in Chapter 7.1
for more information.

See also: map, remove, select, subs, zip.

size (r)

Returns the total numiber of items assignable in reqister r .

sort (r [, comp])

Sorts reqister r in a given order, and in-place. All the values in the register up fo the
position pointed o by registers.gettop must be of the same type and non-null. See
sort in Chapter 7.1 for more information. See also: sorted.

sorted (r [, comp])

Sorts register elements in r in a given order, but - unlike sort - not in-place, and
non-destructively. All the values in the register up to the position pointed to by
registers.gettop must be of the same type and non-null. See sorted in Chapter 7.1
for more information. See also: sort.

subs (x:v [, ---], 1)

Substitutes all occurrences of the value x in register r with the value v. See subs in
Chapter 7.1 for more information. See also: map, remove, select, zip.

unique (r)

With a register r, the unique operator removes multiple occurrences of the same
item, if present in r, and returns a new reqister. The total size of the new register is
equal to the number of the elements in the result. See unique in Chapter 7.1 for
more information.

values (r, i L 2D

Retuns the elements from the given reqister r in a new register. This operator is
equivalent to

return reg(rfi o ffi 2],)

The total size of the new reqister is equal to the number of the elements in the result.
See also: ops, select, unpack.

474 7 Standard Libraries

zip (f, r1, r2)

This function zips together two reqisters r1, r2 by applying the function f to each of
its respective elements. See Chapter 7.1 for more information. See also: map,
remove, select, subs.

The following functions have been built info the kernel as binary operators.

Please note that the operators retfurning a Boolean work in a Cantor way, i.e. reg(1,
1) =reg(1) — true, reg(1, 2) xsubset reg(1, 1, 2, 2, 3, 3) - true.

ri=_r2

This equality check of two registers r1, r2 first tests whether r1 and r2 point to the
same register reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same values without
regard to their keys, and returns true or false. In this case, the search is quadratic.

rl==_r2

This strict equality check of two reqisters r1, r2 first tests whether r1 and r2 point to
the same register reference in memory. If so, it returns true and quits.

If not, the operator then checks whether r1 and r2 contain the same number of
elements and whether all enfries in the registers are the same and are in the same
order, and returns true or false. In this case, the search is linear.

ri~= r2

This approximate equality check of two registers r1, r2 first tests whether r1 and r2
point to the same register reference in memory. If so, it retuns true and quits.

If not, the operator then checks whether r1 and r2 contain the same number of
elements and whether all entries in the registers are approximately equal and are in
the same order, and retumns true or false. In this case, the search is linear. See
approx for further information on the approximation check.

rt<> r2

This inequality check of two registers s1, s2 first tests whether s1 and s2 do not point
fo the same register reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same values,
and returns true or false. In this case, the search is quadratic.

agena >> 475

cin_r

Checks whether the register s contains the value ¢ and returns true or false. The
search is linear.

rl intersect r2

Searches all values in register r1 that are also values in register r2 and returns them
in a new register. The search is quadratic. The totfal size of the new register is equal
to the number of the elements in the result.

rl minus _ r2

Searches all values in register r1 that are not values in register sr2 and returns them
as a new regqister. The search is quadratic. The total size of the new reqister is equal
to the number of the elements in the result.

rl subset r2

Checks whether all values in register r1 are included in register r2 and returns true or
false. The operator also retumns frue if r1 = r2 . The search is quadratic. The total size
of the new register is equal to the number of the elements in the result.

rl union r2

Concatenates two registers r1 and r2 simply by copying all its elements - even fif
they occur multiple times - to a new register. The fotal size of the new reqister is
equal to the number of the elements in the result.

rl x_subset r2

Checks whether all values in register r1 are included in register r2 and whether r2
contains at least one further element, so that the result is always false if ri = r2 . The
search is quadratic. The total size of the new register is equal to the number of the
elements in the result.

The following functions in the base library also support registers:

7.36.2 registers Library

This liorary provides generic functions for register manipulation. It provides all its
functions inside the table registers

registers.extend (r, n)

Extends the given register r fo - and not by - the given number of elements. All the
elements already residing in r are kept. If n is less or equal to the current fop (see
registers.gettop), the structure is left unchanged and false is returned - otherwise
returns true.

476 7 Standard Libraries

See also: registers.reduce.

registers.gettop (r)

Returns the current position of the pointer 1o the top of the register r . The return is an
infeger. This is contrary to size which returns the total number of slots allocated to r .

See also: registers.settop .

registers.reduce (r, n)

Reduces register r to - and not by - fo the first n given number of elements. All the
elements residing above are removed. If the current top pointer is greater than n, it
is reset to n.

See also: registers. extend.

registers.settop (r, n)

Sets the current position of the pointer to the top of register r to the given position n,
a non-negatfive integer. Values above this position cannot be altered by any
functions and operators. It returns frue on success, and false otherwise. If the return
is false, the current position of the top pointer is not changed.

See also: registers. gettop.

agena >> 477

7.37 hashes - Hashes

As a plus package, the hashes package is not part of the standard distribution and
must be activated with the import statement, e.g. import hashes

7.37.1 Infroduction

The packages computes various hashes for variable-sized strings. All the functions
require a strings as the first argument, and with the exception of the hashes.md5b
function, the maximum numioer of slotfs in an assumed hash table.

For aimost each of the functions listed below an algorithm in the Agena language
roughly explaining its mode of operation has been given. Please be aware that the
respective hashes liorary functions work in unsigned bits mode and internally also
use C unsigned long ints, so the results will differ for the Agena “equivalents .

7.37.2 Functions

hashes.collisions (s, f [, iters [, factor]])

Takes a sequence s of strings and one of the hash functions f and retumns the
number of collisions and the time it took to compute the hashes, as numbers. If
iters , A positive integer, is not given, then the function determines the hash values
only once. If factor , Q positive infeger, is not given, the number of slofs of the virtual
hash table is twice the numiber of elements in s.

The function is written in the Agena language.

hashes.djb (s, n)

Computes the Daniel J. Bemnstein hash for strings s with an assumed number of n
slofs. The return is a number. The algorithm used roughly resembles:

djb := proc(s :: string, n :: number) is
local h ;= 5381;
foriinsdo
inc h, (h<<<5) +absi
od;
return h % n

end;

478 7 Standard Libraries

hashes.djb2 (s, n)

Computes a modified Daniel J. Bernstein hash for strings s with an assumed number
of n slofs. The return is @ numiber. The algorithm used roughly resembles:

djb2 := proc(s :: string, n :: number) is
local h :=5381;
foriin s do
h:=33*h ™ abs i;
od;
return h % n
end;

hashes.fnv (s, n)

Computes the Fowler-Noll-Vo hash for strings s with an assumed number of n slots.
The retun is a number. The algorithm used roughly resembles:

fnv ;= proc(s :: string, n :: number) is
local h ;= 2166136261
foriinsdo
h:=(h*16777619) ™ abs i
od;
return h % n

end;

hashes.jen (s, n)

Computes the Bolb Jenkins' hash for strings s with an assumed number of n slots. The
retun is @ numiber. Please see the C hashes.c source file for its implementation.

hashes.md5 (s)

Computes the MD5 hash for strings s. The refumn is a string of 32 characters that
represent 16 pairs of hexagesimal numibers where the alphabetical letter is in
upper-case. Please see the C hashes.c source file for its implementation.

hashes.oaat (s, n)

Computes the One-at-a-Time hash for strings s with an assumed numiber of n slots.
The return is a number. The algorithm used roughly resembles:

hashmask := << n-> (1 <<<n)-1>>

oaat := proc(s :: string, n :: number) is
local h :=0;
foriinsdo
inc h, abs i;
inc h, h <<< 10;
h := h " (h >>> 6);
od;
inc h, h <<< 3;
h:=h " (h>>>11);
inc h, h<<< 15
return h && hashmask(n)

end;

agena >> 479

hashes.pl (s, n)

Computes Paul Larson's hash of Microsoft Research for strings s with an assumed
numiber of n slofs. The return is a number. The algorithm used roughly resembles:

pl := proc(s :: string, n :: number) is
local h ;= 0;
foriin s do
h:=h*101 + abs i
od;
return h % n
end;

hashes.raw (s, n)

Computes a self-invented hash for strings s with an assumed number of n slots that
works quite well with dictionaries of lower and upper-case strings of German
language words. The return is a numiber. The algorithm used roughly resembles:

raw := proc(s :: string, n :: number) is
local h :=0;
foriinsdo
h:=38*h <<< 1) + absi- 63;
od;
return h % n
end;

hashes.sax (s, n)

Computes the Shift-Add-XOR hash for strings s with an assumed numiber of n slots.
The return is a number. The algorithm used roughly resembles:

sax := proc(s :: string, n :: number) is
local h :=5381;
foriinsdo
h:=h ™ ((h<<<5) + (h>>>2)+absi)
od;
return h % n
end;

hashes.sdbm (s, n)

Computes the ndlbbm database library hash for strings s with an assumed number of
n slofs. The retun is a number. The algorithm uses a public-domain
implementation. The algorithm used roughly resembles:

sdbm := proc(s :: string, n :: number) is
local h :=0;
foriinsdo
h:=absi+ (h <<<6) + (h<<< 16) - h;
od;
return h % n
end;

480 7 Standard Libraries

hashes.sth (s, n)

Computes the sth hash for string s with an assumed number of n slotfs. The refumn is a
number. The algorithm has been published at StackOverflow. The algorithm used
roughly resembles:

sth ;= proc(s :: string, n :: number) is
local h ;= 0;
foriinsdo
h := (h <<< 6) ™ (h >>> 26) " abs i;
od;
return h % n
end

agena >> 481

Chapter Eight

C API Functions

482 8 C API Functions

agena >> 483

8 C API Functions

As dlready noted in Chapter 1, Agena features the same C APl as Lua 5.1 so you
are able to easily integrate your C packages and functions written for Lua 6.1 in
Agena. Actually, Agena's C APl is a superset of Lua's C API*®, For a description of the
API functions taken from Lua, see its Lua 5.1 manual.

The functions listed cannot be used in your Agena procedures - they have been
created to access Agena's features from within C code. It generally supports GCC
3.4.6 and above.

If you would like to compile a Lua C package for Agena, usually only the names of
following header files have to be changed:

Lua Header File | Corresponding Agena Header File
lua.h agena.h

lauxlib.h agnxlib.h

lualib.h agenalib.h

luaconf.h agnconf.h

The following Agena-specific header files exist:
Agena Header | Functionality

This file will be created when executing "make config™. It
defermines the Endianess of your system, extends C long ints fo
eight bytes, and determines the date and time for the Agena
build. It is advised to not change the contents of this header file.
Establishes cross-platform compatibility for certain
mathematical C functions, a few 64-bit C types, and functions
to work with files beyond the 2 GBytes size limit. Applicable
primarily to Solaris, but also Linux, eComStation - OS/2, Windows,
and GCC.

Provides C helper functions and definitions, primarily for file
access, further 64-bit types, quicksort, |EEE, Endian,
mathematical operations & constants, cross-platform keylboard
access, and fast and secure sting concatenation and
search-and-replace functions. Useful fo compile Agena on
SPARCs, PPCs, other RISC systems, and also on Litfle Endian
architectures, since the binio package, read, and save work in
Big Endian mode.

agncfg.h

agncmpt.h

agnhlps.h

agnté4.h,

agnté4 _c.h,
agnté4 1.h

Year 2038-fix headers for 32-bit systems.

cephes.h

Interface to Stephen L. Moshier's mathematical functions.

rThmath.h

API to exponential integral functions written by RLH.

5 Full compatibility to Lua's APl has been established with Agena 1.6.0 in May 2012,

484 8 C API Functions

Agena Header | Functiondlity
. Interface to Professor Brian Bradie's various interpolation and
interp.h . .
spline functions.
sofa.h Interface 1o the IAU Standards of Fundamental Astronomy (SOFA)
' Libraries.
moqn.h, Miscellaneous astronomical C functions
sunriset.h
xbase.h Interface to dBASE Il file support of the Shapelib library.

Agena features a macro agn_Complex which is a shortcut for complex double.

The following API functions have been added (see files lapi.c and agena.h):
agn_araytoseq
void agn_arraytoseq (lua_State *L, lua_Number *a, s ize_tn)

Converts a numeric array a with n elements to a sequence and pushes it on the top
of the stack.

agn_asize
size_t agn_asize (lua_State *L, int idx);

Returns the numibber of items actually currently stored to the array part of the table at
stack index idx , using a linear method. See also: agn_size.

agn_ccall
agn_Complex agn_ccall (lua_State *L, int nargs, int nresults); (Non-ANSI)
agn_Complex agn_ccall (lua_State *L, int nargs, int nresults,

lua_Number *real, lua_Number *imag); (ANSI)

There are two different versions of this APl function available. The first form supports
Non-ANSI versions of Agena, e.g. Solaris, eComStation - OS/2, etc. The second form
can be used in the ANSI versions of Agena (compiled with the LUA_ANSI option).

Non-ANSI version: Exactly like lua_call, but returns a complex value as its result, so a
subsequent conversion to a complex number via stack operation is avoided. If the
result of the function call is not a complex value, an error is issued. agn_ccall pops
the function and its arguments from the stack.

ANSI version: Like lua_call, but returns the real and imaginary parts of the complex
result through the parameters real and imag . If the result of the function call is not a
complex value, an error is issued. agn_ccall pops the function and its arguments
from the stack.

agena >> 485

agn_checkcomplex

LUALIB_API agn_Complex agn_checkcomplex (lua_State *L, int idx)

Checks whether the value atf index idx is a complex value and returns it. An error is
raised if the value at idx is not of type complex.

agn_checkinteger

lua_Number agn_checkinteger (lua_State *L, int idx)

Checks whether the value at index idx is a number and an integer and returns this
infeger. An error is raised if the value at idx is not a number, or if it is a float.

agn_checklstring

const char *agn_checklstring (lua_State *L, int idx , Size_t *len);

Works exactly like luaL_checklstring but does not perform a conversion of numbers
fo strings.

agn_checknumber

lua_Number agn_checknumber (lua_State *L, int idx);

Checks whether the value atf index idx is a number and retumns this number. An error
is raised if the value at idx is not a number. This procedure is an alternative to
luaL_checknumber for it is around 14 % faster in execution while providing the
same functionality by avoiding different calls o internal Auxiliary Library functions.

agn_checkstring

const char *agn_checkstring (lua_State *L, int idx) ;

Works exactly like lual_checkstring but does not perform a conversion of numbers
fo strings. An error is raised if idx is not a string.

If idx is negative: due fo garbage collection, there is no guarantee that the pointer
returned will be valid after the corresponding value is removed from the stack.

agn_complexgetimag
LUA_API void agn_complexgetimag (lua_State *L, int idx)

Pushes the imaginary part of the complex value at position idx onto the stack.

486 8 C API Functions

agn_complexgetreal
LUA_API void agn_complexgetreal (lua_State *L, int idx)

Pushes the real part of the complex value at position idx onto the stack.

agn_compleximag (ANSI version only)

lua_Number agn_compleximag (lua_State *L, int idx)

Retuns the imaginary part of the complex value at stack index idx as a
lua_Numlber.

agn_complexreal (ANSI version only)

lua_Number agn_complexreal (lua_State *L, int idx)

Returns the real part of the complex value at stack index idx as a lua Number.
agn_copy

LUA_API void agn_copy (lua_State *L, int idx)

Returns a frue copy of the table, set, or sequence at stack index idx. The copy is put
on top of the stack, but the original structure is not removed.

agn_createcomplex

LUA_API void agn_createcomplex (lua_State *L, agn_C omplex c)

Pushes a value of type complex onto the stack with its complex value given by c.
agn_createpair

void agn_createpair (lua_State *L, int idxleft, int idxright);

Pushes a pair onto the stack with the left operand determined by the value at index

idxleft , and the right operand by the value at index idxright . The leftf and right
values are not popped from the stack.

agn_createpairnumbers

void agn_createpaimumber (lua_State *L, lua_ Number |, lua Number 1);

Pushes a pair onto the stack with the left-hand side of the pair given by the
lua_Numlber I, and ifs right-hand side by the lua_Number r .

agena >> 487

agn_createreg

LUA_API void agn_createreg (lua_State *L, int nrec)

Pushes a register onto the top of the stack with nrec pre-allocated places (nrec mMay
be zero).

agn_creatertable

LUA_API void agn_creatertable (lua_State *L, int id X)

Creates an empty remember table for the function at stack index idx . It does not
change the stack.

agn_createseq

void agn_createseq (lua_State *L, int nrec);

Pushes a segquence onto the top of the stack with nrec pre-allocated places (nrec
may be zero).

agn_createset

void agn_createset (lua_State *L, int nrec);

Pushes an empty set onto the top of the stack. The new set has space
pre-allocated for nrec items.

agn_createtable

LUA_API void agn_createtable (lua_State *L, int nar ray, int nrec)

Like lua_createtable, but marks the new table such that the size operator will always
return the correct numiber of elements stored in its array part. Note that size is slower
on these special tables (arrays) since it has to conduct a linear count - instead of a
binary one - on its array part.

agn_deletertable
LUA_API void agn_deletertable (lua_State *L, int ob jindex)

Deletes the remember table of the procedure at stack index idx . If the procedure
has no remember table, nothing happens. The function leaves the stack
unchanged.

488 8 C API Functions

agn_fnext

int agn_fnext (lua_State *L, int indextable, indexf unction, int mode);

Pops a key from the stack, and pushes three or four values in the following order:
the key of a table given by indextable , its corresponding value (if mode = 1), the
function at stack number indexfunction , and the value from the table af the given
indextable . If there are no more elements in the table, then agn_fnext retumns O
(and pushes nothing).

The function is useful to avoid duplicating values on the stack for lua_call and the
iterator to work correctly.

A typical traversal looks like this:

/* table is in the stack at index 't', function is at stack index 'f* */
lua_pushnil(L); /* first key */
while (lua_fnext(L, t, f, 0) = 0) {

/* 'key' is at index -3, function at -2, and 'va lue' at -1 */
lua_call(L, 1, 1); /* call the function with on e arg & one result */
lua_pop(L, 1); /* removes result of lua_cal l;
keeps 'key' for next iter ation */
}

While fraversing a table, do not call lua_tolstring directly on a key, unless you know
that the key is actually a string. Recall that lua_tfolstring changes the value at the
given index; this confuses the next call to lua_next.

agn_free

void *agn_free (lua_State *L, ...);

De-allocates one or more blocks of memory pointed to by pointers of type void *.
The last argument must be NULL.

See also: agn_malloc.

agn_getbitwise

void agn_getbitwise (lua_State *L)

Returns the current mode for bitwise arithmetic: O if the bitwise operators (&&, ||,
~ 7, ~~, and shift), infernally calculate with unsigned integers, and 1 if signed

integers are used.

See also: agn_setbitwise.

agena >> 489

agn_getemptyline

void agn_getemptyline (lua_State *L)

Returns the current setting for two input prompts always being separated by an
empty line and pushes a Boolean on the stack.

See also: agn_setemptyline.

agn_geteps

lua_Number agn_geteps (lua_State *L)

Returns the value of the Agena system variable Eps (epsilon) without changing the
stack.

agn_getepsilon
lua_Number agn_getepsilon (lua_State *L)

Returns the setting of the accuracy threshold epsilon used by the ~= operator and
the approx function. See also: agn_setepsilon .

agn_geffunctiontype
LUA_API int agn_getfunctiontype (lua_State *L, int idx)

Returns 1 if the function at stack index idx is a C function, O if the function at idx is an
Agena function, and -1 of the value at idx is no function at all.

agn_getinumber

lua_Number agn_getinumber (lua_State *L, int idx, i nt n);

Returns the value 1[n] as a lua_Numlber, where 1 is a table at the given valid index
idx . If f[n] is not a number, the retun is 0. The access is raw; that is, it does not
invoke metamethods.

agn_getistring
const char *agn_getistring (lua_State *L, int idx, int n);
Returns the value t[n] as a const char *, where t is a table at the given valid index

idx. If tf[n] is not a string, the return is NULL. The access is raw; that is, it does not
invoke metamethods.

490 8 C API Functions

agn_getlibnamereset

void agn_getlibnamereset (lua_State *L)

Retuns the current sefting for the restart statfement to also reset liboname and
pushes a Boolean on the stack.

See also: agn_setlongtable.

agn_getlongtable

void agn_getlongtable (lua_State *L)

Retuns the current setting for key~value pairs in tables being output line by line
instead of just a single line and puts a Boolean on the stack.

See also: agn_setlongtable.

agn_getnoroundoffs
void agn_getnoroundoffs (lua_State *L)
Returns the current mode used by for/in loops with step sizes that are not integral: O

if the improved precision method to prevent round-off errors in iteration is not used,
and 1 if it is.

See also: agn_setnoroundoffs .

agn_getrtable

LUA_API int agn_getrtable (lua_State *L, int idx)

Pushes the remember table if the function at stack index idx onto the stack and
returns 1. If the function does not have a remember table, it pushes nothing and
returns O.

agn_getrtablewritemode

int agn_getrtablewritemode (lua_State *L, int idx)

Returns O if the remember table of the function at stack index idx cannot be
updated by the return statement (i.e. if it is an rotable), 1 if it can (i.e. if it is an
rable), 2 if the function at idx has no remember table atf all, and -1 if the value at
idx is not a function.

agena >> 491

agn_getseqistring

const char *agn_getseqlstring (lua_State *L, int id X, int n, size_t *);

Gets the string at index n in the sequence at stack index idx . The length of the string
is stored fo I.

agn_getutype

int agn_getutype (lua_State *L, int idx);

Returns the user-defined type of a procedure, table, sequence, set, userdata, or
pair at stack position idx as a string, pushes it onfo the fop of the stack and returns
1. If no user-defined type has been defined, the function returns 0 and pushes
nothing onto the stack.

See also: agn_isutype, agn_setutype.

agn_isfail

int agn_isfail (lua_State *L, int idx);

Retuns 1 if the Boolean value at the given acceptable index results to fail, O
otherwise (tfrue and false).

agn_isfalse
int agn_isfalse (lua_State *L, int idx);

Retuns 1 if the Boolean value at the given acceptable index results to false, O
ofherwise (tfrue and fail).

agn_islinalgvector
int agn_islinalgvector (lua_State *L, int idx, size _t*dim)
Tests if a value af the given acceptable index is a vector created with the linalg

package, and retuns 1 if true and O otherwise. It also stores the dimension of the
vector in dim .

agn_isnumber

int agn_isnumber (lua_State *L, int idx);

Returns 1 if the value at the given acceptable index is a number, and 0 otherwise.

492 8 C API Functions

agn_issequiype
int *agn_issequtype (lua_State *L, int idx, const ¢ har *str);
Checks whether the type at stack index idx is a sequence and whether the

sequence has the user-defined type denoted by str . It retuns 1 if the above
condition is frue, and O otherwise.

agn_issetutype
int *agn_issetutype (lua_State *L, int idx, const ¢ har *str);
Checks whether the type at stack index idx is a set and whether this set has the

user-defined type denoted by str . It returns 1 if the above condition is true, and 0
otherwise.

agn_isstring

int agn_isstring (lua_State *L, int idx);

Retumns 1 if the value at the given acceptable index idx is a string, and O otherwise.

agn_istableutype
int *agn_istableutype (lua_State *L, int idx, const char *str);
Checks whether the type at stack index idx is a table and whether the table has the

user-defined type denoted by str . It returns 1 if the above condition is true, and O
otherwise.

agn_istrue
int agn_istrue (lua_State *L, int idx);

Returns 1 if the Boolean value at the given acceptable index idx results to true, O
otherwise (false and fail).

agn_isutype

int *agn_isutype (lua_State *L, int idx, const char *str);

Checks whether a user-defined type str has been set for the given table, sef,
sequence, pair, or procedure at stack position idx . It retuns 1 if the user-defined
type has been set, and O otherwise.

agena >> 493

agn_isutypeset

int *agn_isutypeset (lua_State *L, int idx, const ¢ har *str);

Checks whether a user-defined type has been set for the given object at stack
position idx. It returns 1 if a user-defined type has been set, and 0 otherwise. The
function accepts any Agena types. By default, if the object is not a table,
sequence, a pair, set, or procedure, it returns 0.

agn_ncall

lua_Number agn_ncall (lua_State *L, int nargs, int nresults);

Exactly like lua_call, but retunns a numeric result as an Agena number, so a
subsequent conversion to a number via stack operations is avoided. If the result of
the function call is not numeric, an error is issued. agn_ncall pops the function and
its arguments from the stack.

agn_malloc

void *agn_malloc (lua_State *L, size_t size, const char *prochame, ...);

Allocates size bytes of memory and returns a pointer 1o the newly allocated block.
In case memory could not be allocated, it returns an error message including
procname that called agn_malloc. The function optionally can free one or more
objects referenced by their pointers in case memory allocation failed.

In all cases, the last argument must be NULL.

See also: agn _free.

agn_nops

size_t agn_nops (lua_State *L, int idx);

Determines the number of actual table, set, or sequence entries of the structure at
stack index idx . If the value at idx is not a table, set, or sequence, it returns 0. With
tables, this procedure is an alternative to lua_objlen if you want to get the size of a
table since lua_objlen does noft return correct results if there are holes in the fable or
if the table is a dictionary.

agn_optcomplex

agn_Complex agn_optcomplex (lua_State *L, int narg, agn_Complex z);

If the value at index narg is a complex number, it retumns this number. If this
argument is absent or is null, the function returns complex z. Otherwise, raises an
eror.

494 8 C API Functions

agn_paircheckbooloption
agn_paircheckbooloption (lua_State *L, const char * prochame, int idx,
const char *option)

For the given Agena procedure procname , checks whether the value af index idx is a
pair, and whether its left operand is equals to option (of type string), and whether
the right operand is a Boolean.

Returns -2 if the value atf idx is not a pair, or the result of the call to the
lua_toboolean C API function.

The function issues an error if the left operand of the pair is not equals to option , Or if
the right operand is not a Boolean.

The function does nof pop the pair at idx .

agn_pairgeti

void agn_pairgeti (lua_State *L, int idx, int n);

Retumns the left operand of a pair af stack index idx if nis 1, and the right operand if
n is 2, and puts it onto the top of the stack. You have to make sure that n is either 1
or 2.

agn_pairgetnumbers

void agn_pairgetnumbers (lua_State *L, const char * prochame, int idx,
lua_Number *x, lua_Number *y)

For the given Agena procedure procname , checks whether the value at sfack index
idx is a pair (i.e. idx must be negative). It then checks whether the left-hand and
right-nand side are numbers and refurns these numibers in x and y. Finally, the
function pops the pair from the stack.

If the value at idx is not a pair, or if at least one of its operands is not a number, it
issues an error.

agn_pairawget

void agn_pairrawget (lua_State *L, int idx);

Pushes onto the stack the left or the right hand value of a pair t, where t is the value
at the given valid index idx and the number k (k=1 for the left hand side, k=2 for
the right hand side) is the value at the top of the stack. It does not invoke any
metamethods. This function pops both k from the stack.

agena >> 495

agn_pairawset

void agn_pairrawset (lua_State *L, int idx);

Does the equivalent to plk] := v, where p is a pair af the given valid index idx , v is
the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. It does not invoke any
metamethods.

agn_pairstate

LUA_API void agn_pairstate (lua_State *L, int idx, size_tal])

Retuns a flag indicating whether a metatable has been assigned to the pair at
index idx in a, a C array with one entry, where 1 indicates that the pair features a
metatable, and 0 means it does not.

agn_poptop
void agn_poptop (lua_State *L);

Pops the top element from the stack. The function is more efficient than lua_pop(L,
1).

agn_poptoptwo
void agn_poptoptwo (lua_State *L);

Pops the top element and the value just below the top from the stack. The function
is more efficient than lua_pop(L, 2).

agn_pushboolean

void agn_pushboolean (lua_State *L, int b);

Pushes true onto the stack if b is 1 or larger, and pushes false onto the stack if b is O.
If b is -1, it pushes fail onto the stack.

agn_regextend

LUA_API int agn_regextend (lua_State *L, int idx, s ize_t newsize)

Extends the size of the reqister at stack position idx 10 newsize elements and fills the
newly created slots with null. If newsize is less than the current size, it simply retumns O
and does not change the size of the register, otherwise the function returns 1. If the
current top pointer already refers to the total size of the register, it is set to newsize ,

496 8 C API Functions

otherwise it is leff unchanged.

agn_reggeti
LUA_API void agn_reggeti (lua_State *L, int idx, si ze tn)

Pushes the value stored at position n of the resister located at stack index idx to the
fop of the stack. If n is out-of-range, or larger than the position of the top pointer, it
issues an error.

agn_reggetinumber
LUA_API void agn_reggeti (lua_State *L, int idx, si ze tn)

Pushes the number stored at position n of the resister located at stack index idx 1o
the top of the stack. If n is out-of-range, or larger than the position of the top pointer,
it issues an error. It returns infinity if the value at n is non-numeric.

agn_reggettop

LUA_API size_t agn_reggettop (lua_State *L, int idx)

Retuns the position of the top pointer of a register at stack index idx . See also:
agn_regsettop .
agn_regpurge

LUA_API void agn_regpurge (lua_State *L, int idx, i nt n)

Removes the value at position n of the register at stack index idx and shifts down all
values beyond n if necessary. The function does not reduce the size of the register,
but decrements the top pointer by 1.

agn_regrawget

LUA_API void agn_regrawget (lua_State *L, int idx)

Pushes onto the stack the value t[k], where t is the register at the given valid index
idx and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). It
does not invoke metamethods.

agn_regrawget2
void agn_regrawget? (lua_State *L, int idx);

Pushes onto the stack the register value t[k], where 1 is the register at the given valid
index idx and k is the value at the top of the stack.

agena >> 497

Contrary to agn_regrawget, the function does noft issue an error if an index does not
exist in the reqister. Instead, null is returned.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

agn_regreduce

LUA APl int agn_regreduce (lua_State *L, int idx, s ize_t newsize, int nil)

Reduces the size of the register residing at stack index idx 10 newsize entries. If nil is
1, then all values residing at positions larger then newindex , are null'ed, otherwise set

nil fo 0. The function returns O if newindex is less than O, and 1 otherwise. See also:
agn_regextend.

agn_regset

LUA_API void agn_regset (lua_State *L, int idx)

Assumes that the value 1o be set to a reqister residing at stack position idx is at the
top of the stack and the numeric key just below the stack and conducts the
assignment.

agn_regseti
LUA_API void agn_regseti (lua_State *L, int idx, in tn)

Setfs the value residing at the top of the stack to position n of the register af index
idx and pops the inserted value from the stack.

agn_regsettop
LUA_API int agn_regsettop (lua_State *L, int idx)

Sets the current top pointer of a register residing at index idx to the number stored
at the top of the stack. See also: agn_reggettop .

agn_regstate

LUA_API void agn_regstate (lua_State *L, int idx, s ize_tal])

Returns the current top pointfer, the total number of items, and a flag indicating
whether a metatable has been assigned to the register af index idx in a, a C array
with three entries. The position of the top pointer is stored to q[0], the total number of
entries to a[1]. The metatable flag is stored to a[2], where 1 indicates that the
sequence features a metatable, and 0 means it does not.

498 8 C API Functions

agn_seqgetinumber

lua_Number agn_seqgetinumber (lua_State *L, int idx , int n);

Returns the value t[n] as a lua_Numlber, where t is a sequence at the given valid
index idx . If t[n] is not a number, the return is 0. The access is raw; that is, it does not
invoke metamethods.

See dlso: lua_seqgetinumber.

agn_seqsize
size_t agn_segsize (lua_State *L, int idx);

Returns the numiber of items currently stored 1o the sequence at stack index idx .

agn_segstate

void agn_segstate (lua_State *L, int idx, size_t a[)

Returns the actual number of items, the maximum numlber of items assignable to,
and a flag indicating whether a metatable has been assigned fo the sequence at
index idx in a, a C array with three entries. The actual numiber of items is stored 1o
a[0], the maximum number of entries to a[l1]. If q[1] is O, then the number of
possible entries is infinite. The metatable flag is stored in q[2], where 1 indicates
that the sequence features a metatable, and 0 means it does not.

agn_setbitwise

void agn_setbitwise (lua_State *L, int value)

Sets the mode for bitwise arithmetic. If value is greater than 0, the bitwise functions
&& ||. ~~, ~~, and shift) infemally calculate with signed integers, otherwise
Agena calculates with unsigned integers.

See also: agn_getbitwise .

agn_setemptyline

void agn_setemptyline (lua_State *L, int value)

If value is greater than 0, then two input prompts are always separated by an
empty line. If set false, no empty line is inserted.

See also: agn_getempityline.

agena >> 499

agn_setepsilon

lua_Number agn_setepsilon (lua_State *L, lua_Number X)

Sets the accuracy threshold epsilon used by the ~= operator and the approx
function to the number x. See also: agn_getepsilon.

agn_setlibnamereset

void agn_setlibnamereset (lua_State *L, int value)

If value is greater than O, then the restart statement resets libname to its default. If
value is non-positive, then libname is not changed with a restart.

See also: agn_getlibonamereset.

agn_setlongtable

void agn_setlongtable (lua_State *L, int value)

If value is greater than O, then the print function outputs key~value pairs in tables
line-by-line. If value is non-positive, then the print function prints all pairs in a single
consecutive line.

See also: agn_getlongtable .

agn_setnoroundoffs

void agn_setnoroundoffs (lua_State *L, int value)

Sets the mode used by for/in loops with step sizes that are not integral: pass O for
value if the improved precision method to prevent round-off errors in iteration shall

not used, and 1 if it shall be used.

See also: agn_getnoroundoffs .

agn_setreadlibbed

int agn_setreadlibbed (lua_State *L, const char *na me)

Inserts name into the global set package.readlibbed .

500 8 C API Functions

agn_setrtable

LUA_API void agn_setrtable (lua_State *L, int find, int kind, int vind)

Sets argument~return values to the function at stack index find . The argument list
reside at a table array at stack index kind , the return list are in another table at stack
index vind . See the description for the rset function for more information.

agn_setudmetatable

LUA_API void agn_setudmetatable (lua_State *L, int idx)

Expects a valid userdata metatable at the top of the stack, assigns it to the
userdata residing at stack index idx, and pops the value at the fop of the stack
thereafter. If the value at the top of the stack is null, then a metatable assigned to a
userdatum is deleted, and null is popped from the stack.

agn_setutype

void agn_setutype (lua_State *L, int idxobj, int id xtype);

Sets a user-defined type of a procedure, table, sequence, set, userdata, or pair.
The object is at stack index idxobj , the type (a string) is at position idxtype . The
function leaves the stack unchanged.

If null is atf idxtype , the function deletes the user-defined type.

Setting the type of a sequence, set, table, procedure, or pair also causes the pretfty

printer to display the string passed to the function instead of the usual oufput at the
console.

See also: agn_getutype.
agn_size
int agn_size (lua_State *L, int idx);

Returns the numiber of items currently stored to the array and the hash part of the
table af stack index idx . See also: agn_asize.

agn_ssize

int agn_ssize (lua_State *L, int idx);

Returns the numiber of items currently stored 1o the set at stack index idx .

agena >> 501

agn_sstate

void agn_sstate (lua_State *L, int idx, size_t a[])

Returns the actual number of items and the current maximum number of items
allocable to the set at index idx in a, a C array with three entries. The actual
number of items is stored to q[0], the current allocable size to q[1]. a[2] indicates
whether a metatable has been assigned to the set, where 0 means it does nof,
and 1 that it does.

agn_tablesize

void agn_tablesize (lua_State *L, int idx, size ta)]

Returns a guess on the number of elements in a table at stack index idx in a[0] , an
indicator on whether a table contains an allocated hash part a[1] , and an
indicator on whether null has been assigned o a table (a[2]).

The function is useful to determine the size of a table much more quickly than the
size operator does, using a logarithmic instead of linear method, but may refun
incorrect results if the array part of a table has holes, so the programmer should
make sure that the array part of a table has no holes. It also does not count the
numiber of elements in the hash part of a table.

See also: agn_tablestate.

agn_tablestate

void agn_tablestate (lua_State *L, int idx, size t a[], int mode)

Retuns the number of key~value pairs allocable and actually assigned to the
respective array and hash sections of the table at index idx by storing the result in a,
a C array with nine entries.

The number of key~value pairs currently stored in the array part is stored to q[0], the
numiber of pairs currently stored in the hash part 1o q[1]. a[2] contains the
information whether the array part has holes (1) or not (0). The number of allocable
key~value pairs to the array part is stored to a[3], and the number of allocable
key~value pairs o the hash part is stored fo q[4]. a[5] indicates whether null has
been set to the table, where O = false, and 1 = true. If q[6] is O, then the table does
not feature a metatable, if it is 1 then a metatable has been assigned. q[7]
contains information on whether the hash part of a table does not have an
dllocated node (N0 dummynode), q[?] contains a guess on the number of
elements in the array part of a table (see agn_tablesize for further information).

If mode is not 1, then the number of pairs actually assigned is not determined,
which may save time. In this case q[0] = q[1] = q[2] = 0.

502 8 C API Functions

agn_tocomplex (non-ANSI versions only)

agn_Complex agn_tocomplex (lua_State *L, int idx)

Assumes that the value at stack index idx is a complex value and returns it as a
lua_Number. It does not check whether the value is a complex number.

agn_tonumber

lua_Number agn_tonumber (lua_State *L, int idx)

Assumes that the value at stack index idx is a number and returns it as a
lua_Number. It does not check whether the value is a number. The strings or names
'undefined’ and infinity' are recognised properly.

The function does not change the stack.

agn_tonumberx

lua_Number agn_tonumberx (lua_State *L, int idx, in t *exception)

If the value at stack index idx is a number or a string containing a number, it returns
it as a lua Number. The strings or names ‘undefined' and infinity’ are
recognised propertly. If successful, exception is assigned to O.

If the value could not be converted to a number, O is returned, and exception S
assigned to 1.

agn_tostring

const char *agn_tostring (lua_State *L, int idx)

Assumes that the value at stack index idx is an Agena string and returns it as a C
string of type const char *. It does not check whether the value is a string.

If idx is negative: due fo garbage collection, there is no guarantee that the pointer
returned will be valid after the corresponding value is removed from the stack.

agn_usedbytes
LUAI_UMEM agn_usedbytes (lua_State *L)

Returns the numiber of bytes used by the interpreter.

agena >> 503

agnlL_gettablefield
agnL_gettablefield (lua_State *L, const char *table , const char *field,
const char *procname, int issueerror);

Determines the entry from the table field <table >. <field > and pufts it on top of
the stack. procname is the name of the function that calls agnL_gettablefield .

If issueerror s set fo 1, then an error is issued if table is not a table. If issueerror is
set to O and table is not a table, then no such error will be issued and the global
value found is pushed on the stack. In the latter case, the function returns
LUA TNONE-1.

The function returns the Lua/Agena type, an integer (e.g. LUA TBOOLEAN), in case of
success. If the field does not exist, LUA TNIL is refurned and the function instead
pushes null on fop of the stack. See the agena.h source file for the proper type

mapping (grep "basic types").

A typical call might look like this:

"environ.userinfo", 1);
if (type != LUA_TTABLE) {
/* do something */

}

agnl_optboolean
LUALIB_API int agnL_optboolean (lua_State *L, int n arg, int def)
If the value at stack index narg is a Boolean, returns this Boolean as an infeger: -1 for

fail, O for false, and 1 for true. If there is Nno value at index narg or if it is null, returns
def . Otherwise, raises an error.

agnl_opftinteger

lua_Integer agnL_optinteger (lua_State *L, int narg , lua_Integer def)

If the function argument narg is a number, returns this number cast o a lua_Integer.
If this argument is absent or is NULL, returns def . Otherwise, raises an error.

The function internally uses agn_checknumber which avoids infernal calls to other C
APl auxiliary library functions and thus is somewhat faster than lual_opftinteger .

agnlL_optnumber
LUALIB_API agnL_optnumber(lua_State *L, int narg, | ua_Number d)

If the value at stack index narg is a number, returns this number. If this stack value is
absent or is NULL, retumns d. Otherwise, raises an error. Contrary to lual_optnumber,
agnlL_optnumber does not try to convert a string fo a number.

504 8 C API Functions

lua_iscomplex

void lua_iscomplex (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a complex number. It
retfurns 1 if the value is a complex number, and 0 otherwise. It does not pop
anything.

lua_isreg
void lua_isreg (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a reqister. It returns 1 if the
value is a pair, and O otherwise. It does not pop anything.

lua_ispair

void lua_ispair (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a pair. It returns 1 if the
value is a pair, and O otherwise. It does not pop anything.

lua_isseq
void lua_isseq (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a sequence. It returns 1 if
the value is a sequence, and 0 otherwise. It does not pop anything.

lua_isset

void lua_isset (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a set. It returns 1 if the
value is a set, and 0 otherwise. It does not pop anything.

lua_pushfail

void lua_pushfail (lua_State *L);

This macro pushes the Boolean value fail onto the stack.

lua_pushfalse

void lua_pushfalse (lua_State *L);

This macro pushes the Boolean value false onto the stack.

agena >> 505

lua_pushundefined

void lua_pushundefined (lua_State *L);

Pushes the value undefined onto the stack.

lua_pushtrue

void lua_pushtrue (lua_State *L);
This macro pushes the Boolean value tfrue onto the stack.

lua_rawaequal
int lua_rawaequal (lua_State *L, int index1, intin dex2);

Returns 1 if the two values in acceptable indices indexl and index2 are primitively
approximately equal (that is, without calling metamethods, see also approx, ~=).
Otherwise returns 0. Also returns O if any of the indices are non valid.

lua_rawset2

void lua_rawset2 (lua_State *L, int idx);
Similar to lua_settable, but does a raw assignment (i.e., without metamethods).

Contrary to lua_rawset, only the value is deleted from the stack, the key is kept, thus
you save one call to lua_pop. This makes it useful with lua_next which needs a key
in order to iterate successfully.

lua_rawsetilstring
void lua_rawsetilstring (lua_State *L, int idx, int n, const char *str,
int len);

This macro does the equivalent of f[n] := string, where t is the table af the given
valid index idx , n is an integer, str the string fo be inserted and len the length of
then string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetikey

void lua_rawsetikey (lua_State *L, int idx, int n);

Does the equivalent of t[n] := k, where tis the value at the given valid index idx and
k is the value just below the top of the stack.

506 8 C API Functions

This function pops the topmost value from the stack and leaves everything else
untouched. The assignment is raw; that is, it does not invoke metamethods.

lua_rawsetinumber

void lua_rawsetinumber (lua_State *L, int idx, int n, lua_Number num);

This macro does the equivalent of t[n] := num, where t is the value at the given valid
index idx , n is an integer, and num an Agena numiber (a C double).

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetistring

void lua_rawsetistring (lua_State *L, int idx, int n, const char *str);

This macro does the equivalent of t[n] = str , where 1 is the value at the given valid
index idx , nis an integer, and str a string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetstringlboolean
void lua_rawsetstringboolean
(lua_State *L, int idx, const char *str, int n);

This macro does the equivalent of f[str | := (n == 1), where 1 is the value af the
given valid index idx , str @ string, and n an infeger.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetstring number
void lua_rawsetstringnumber
(lua_State *L, int idx, const char *str, lua_Num ber n);

This macro does the equivalent of t[str | := n, where t is the value at the given valid
index idx , str @ string, and n a number.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

agena >> 507

lua_rawseftstring string
void lua_rawsetstringstring
(lua_State *L, int idx, const char *str, const ¢ har *text);

This macro does the equivalent of t[str | := text , where 1 is the value at the given
valid index idx , str a sfring, and text is a string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_regnext

int lua_regnext (lua_State *L, int idx);

Pops a key from the stack, and pushes the next key~value pair from the reqister at
the given index idx . If there are no more elements in the reqister or the position of
the top pointer has been exceeded, then lua regnext returns O (and pushes
nothing). To access the very first item in a register, put null on the stack before (with
lua_pushnil).

While traversing a register, do not call lua_tolstring directly on the key. Recall that
lua_tolstring changes the value at the given index; this confuses the next call to
lua_regnext.

lua_sdelete

void lua_sdelete (lua_State *L, int idx);

Deletes the element residing at the top of the stack from the set at stack position
idx . The element at the stack top is popped thereafter.

lua_seqgeti

void lua_seqgeti (lua_State *L, int idx, int n);

Gets the n-th item from the sequence at stack index idx and pushes it onto the
stack. You have to make sure that the index is valid, otherwise there may be
segmentation faults.

See also: lua_seqgseti.

lua_seqggetinumber

lua_Number lua_seqgetinumber (lua_State *L, int idx , int n);

Returns the value t[n] as a lua_Numlber, where t is a sequence at the given valid
index idx . If f[n] is not a number, the retumn is HUGE_VAL The access is raw; that is, it
does not invoke metamethods.

508 8 C API Functions

See also: agn_seqgetinumber.

lua_seqinsert

void lua_seqinsert (lua_State *L, int idx);

Inserts the element on top of the Lua stack intfo the sequence at stack index idx .
The element is inserfed at the end of the sequence. The value added to the
sequence is popped from the stack thereafter,

lua_segnext

int lua_seqnext (lua_State *L, int idx);

Pops a key from the stack, and pushes the next key~value pair from the sequence
at the given index idx . If there are no more elements in the sequence, then
lua_seqgnext returns O (and pushes nothing). To access the very first item in a
sequence, put null on the stack before (with lua_pushnil).

While traversing a sequence, do not call lua_tolstring directly on the key. Recall that
lua_tolstring changes the value at the given index; this confuses the next call to
lua_segnext.

lua_seqgrawget

void lua_seqrawget (lua_State *L, int idx);

Pushes onto the stack the sequence value tk], where t is the sequence at the given
valid index idx and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

lua_seqrawgeti
void lua_seqrawgeti (lua_State *L, int idx, size_t n);

Pushes onto the stack the sequence value 1[n], where t is the sequence at the given
valid index idx .

The function does not invoke any metamethods. Contrary to lua_rawgeti, it issues
an error if n is out of range.

agena >> 509

lua_seqrawget?2

void lua_seqrawget2 (lua_State *L, int idx);

Pushes onto the stack the sequence value tk], where t is the sequence at the given
valid index idx and k is the value at the top of the stack.

Contrary to lua_seqgrawget, the function does not issue an error if an index does not
exist in the sequence. Instead, null is returned.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

lua_seqrawset

void lua_seqrawset (lua_State *L, int idx);

Does the equivalent o s[k] := v, where s is a sequence at the given valid index idx ,
v is the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. It does not invoke any
metamethods.

lua_seqrawsetilstring

void lua_seqrawsetilstring (lua_State *L, int idx, int n, const char *str,
int len);

This macro does the equivalent of s[n] = string , where s is the sequence af the
given valid index idx , n is an infeger, str the string 1o be inserfed and len the length
of then string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_seqseti
void lua_seqseti (lua_State *L, int idx, int n);

Sets the value at the top of the stack to the non-zero and positive index n of the
sequence at stack index idx .

If the value added is null, the entry at sequence index n is deleted and all elements
to the right of the value deleted are shifted fo the left, so that their index positions
get changed, as well.

The function pops the value at the top of the stack.

If there is already an item at position n in the sequence, it is overwritten.,

510 8 C API Functions

If you want to extend a current sequence, the function allows to add a new item
only at the next free index position. Larger index positions are ignored, but the value
to be added is popped from the stack, as well.

See also: lua_seqgeti.
lua_segsetinumber
void lua_seqsetinumber (lua_State *L, int idx, int n, lua_Number num);

This macro sets the given Agena number numto the non-zero and positive index n of
the sequence at stack index idx .

lua_segsetistring
void lua_seqsetistring (lua_State *L, int idx, int n, const char *str);

This macro sets the given string str to the non-zero and positive index index n of the
seqguence at stack index idx .

lua_sinsert
void lua_sinsert (lua_State *L, int idx);

This macro inserts an item info a set. The set is at the given index idx , and the item
is at the top of the stack.

This function pops the item from the stack.
lua_sinsertistring
void lua_sinsertlstring (lua_State *L, int idx, con st char *str, size tl);

This macro sets the first | characters of the string denoted by str into the set at the
given index idx .

lua_sinsertnumber

void lua_sinsertnumber (lua_State *L, int idx, lua_ Number n);

This macro setfs the number denoted by n into the set at the given index idx .
lua_sinsertstring

void lua_sinsertstring (lua_State *L, int idx, cons t char *str);

This macro sefs the string denoted by str into the set at the given index idx .

agena >> 511

lua_srawget

void lua_srawget (lua_State *L, int idx);

Checks whether the set af index idx contains the item at the top of the stack. The
function pops this item from the stack putting the Boolean value true or false in its
place.

This function pops the value from the stack. It does not invoke any metamethods.

lua_srawset

void lua_srawset (lua_State *L, int idx);

Does the equivalent to insert vinto S, where s is the set at the given valid index
idx , v is the value at the top of the stack.

This function pops the value from the stack. It does not invoke any metamethods.
lua_toboolean

int lua_toboolean (lua_State *L, int idx)

Converts the value at the given acceptable index to an integer value (-1, O or 1).
If the value at idx is null or false, the functions returns O.

If the value at idx is fail, the function returns -1.

If the value af idx is different from false, fail, and null, the function retumns 1.

The function also returns O when called with a non-valid index. (If you want to
accept only actual Boolean values, use lua_isboolean to fest the value's type.)

lua_toint32_t

int32_t lua_toint32_t (lua_State *L, int idx)

Converts the value at the given acceptable index to the signed integral type
int32_t. The value must be a numiloer or a string convertible to a number; otherwise,
lua_toint32_t returns O.

If the numiber is not an integer, it is fruncated in some non-specified way.

512 8 C API Functions

lua_usnext

int lua_usnext (lua_State *L, int idx);

Pops a key from the stack, and pushes the next item twice (!) from the set at the
given idx . If there are no more elements in the set, then lua_usnext returns O (and
pushes nothing). To access the very first item in a set, put null on the stack before
(with lua_pushnil).

While fraversing a setf, do not call lua_tolstring directly on an item, unless you know
that the item is actually a string. Recall that lua_tolstring changes the value at the
given index; this confuses the next call to lua_usnext.

lual_checkint32 t
int32_t lualL_checkint32_t (lua_State *L, int narg)

Checks whether the function argument narg is a number and retumns this numiber
cast fo an int32_t.

luaL_getudata

void *luaL_getudata (lua_State *L, int narg, const char *tnhame,
int *result);

Checks whether the function argument narg is a userdata of the type tname.
Contrary to lual_checkudata, it does not issue an error if the argument is not a
userdata, and also stores 1 to result if the check was successful, and O otherwise.

agena >> 513

Appendices

514 Appendix

agena >> 515

Appendix A

A1l Operators

Unary operators are:

&& ~~, || ., ™ , abs, arccos , arcsec , arcsin , arctan , assigned , atendof , bea, char ,
conjugate , copy, cos, cosh, cosxx , entier , even, exp, filled , finite , first , flp ,
float , Ingamma, gethigh , getlow , imag, instr , int , join , last , left , In, lower , nan,
nargs , not , gsadd, real , recip , replace , right , sadd, sign , sin , sinh , size , sqrt ,
tan , tanh , trim , type , unassigned , unique , upper , typeof , - (UNAry Minus).

Binary operators are:

in , intersect , minus, shift , split , subset , union , xor , xsubset , + (addition), -
(subtraction), * (muiltiplication), / (division), *% (percentage) /% (ratio), \ (infeger
division), % (modulus), ~ (exponentiation), ** (infeger exponentiation), &
(concatenation), = (equality), < (less than), <= (less or equal), > (greater than), >=
(greater or equal), @ (Mapping), $ (selection), : (pair constructor), ! (complex
constructor), && (bitwise and), || (bitwise or), ~ (bitwise xor), -~ (bitwise
complement), <<< (bitwise shift to the left), >>> (right-shift).

A2 Metamethods

The following metamethods were inherited from Lua 5.1:

Index to metatable Meaning

" index' Procedure invoked when a value shall to be read from
— a table, set, sequence, or pair.

' gc Garbage collection (for userdata only).

'__mode' Sets weakness of a table.

'__add’ Addition of two values.

__sub’ Subtraction of two values.

'__mul Multiplication of two values.

' div’ Division of two values.

'__mod' Modulus.

__pow' Exponentiation.

__unm'’ Unary minus.

__eq Equality operation.

__It Less-than operation.

__le’ Less-than or equals operation.

'__concat' Concatenation.

'__call See Lua 5.1 manual.

'__tostring’ Method for pretty printing values at stdout.
'__metatable’ Protection for metatables.

'__weak' Declaration of weak tables, sets, and sequences.

Table 20: Metamethods taken from Lua

516 Appendix

The len metamethod in Lua 5.1 to determine the size of an object was replaced
with the __size mefamethod. Lud's __mode metamethod has been renamed
__weak.

The following methods are new in Agena:

Index to metatable Meaning

'_abs’ abs operator

'__aeq’ approximate equality operator

'_arctan’ arctan operator

__cos' Cos operator

'__eeq’ strict equality operator (==

'__even' even operator

_in’ in binary operator (for tables and sequences only)
__intdiv’ integer division

'__intersect' intersect operator (for tables, sets, sequences only)
'__ipow’ exponentiation with an integer power

'__minus' minus operator (for tables, setfs, sequences only)

. gsadd gsadd operator for table or sequence based

user-defined types
sadd operator for table or sequence based

' sadd'

— user-defined types

'__size' size operator

__sin’ sin operator

__tan’ tan operator

"__union’ union operator (for tables, sets, sequences only)

" writeindex’ Procedure invoked when a value shall to be written to

a table, set, sequence, or pair.

Table 21: Metamethods infroduced with Agena

agena >>

517

A3 System Variables

Agena lets you configure the following settings, where "n/e” means "no effect”.

System variable

Meaning

Write

libname

The paths to Agena libraries.

yes

mainliboname

The path to the main Agena directory.

yes

environ.cpu

Contains the name of the CPU in use as a
lower-case string, e.Q. 'sparc’ , 'ppc’ for
PowerPC, or 'xge' for Intel 386-compatible
processors. See also system variable
environ. os.

no

environ.nomedir

The path to the user's home directory.

yes

environ.gdidefaultoptions

A table with all default plotting options for
some functfions in the gdi package. This
table is set by gdi.setoptions .

no

environ.liopatchlevel

The update version of the main Agena
library (in lio/library.agn). Mostly defaults to
null.

no

environ.maxnumber

The maximum value an Agena number can
represent. See aAlso system variable
environ.minnumber .

no

environ.maxpathlength

The maximum number of characters for a
file path (excluding C's \O character).

no

environ.minnumber

The minimum value an Agena number can
represent. See aAlso system variable
environ.maxnumber.

no

environ.more

The numiber of entries in tables and sets
printed by print and the end-colon
functionality before issuing the “press any
key' prompt. Default is 40.

yes

€nviron.os

Contains the name of the operating system
in use as a lower-case string, €.g. 'windows'
'macosx’ , 'solaris' ,'os/2'" , 'haiku’ , 'dos' ,
or 'linux’ . Do not change this value. See
also system variable environ. cpu.

no

environ.release

A sequence containing the string "AGENA",
the main interpreter version as a number,
the subversion as a number, and the C
patch numiber as a numiber, as well. The
lib/library.agn patch level is denoted by
the fourth entry, or O if non-existent. Do not
change environ.release. See also system
variable RELEASE.

no

518

Appendix

System variable

Meaning

Write

environ.withprotected

A set of names (passed as stings) that
cannot by overwriften by the with function.
Currently the names next’, “print’, “with’,
‘wiite’, ‘read’, “writeline’ have been
assigned.

yes

environ.withverbose

If set to false, the with functfion will not
display warnings, the initialisation string, and
the short names assigned. Default is true.

yes

A table holding all currently assigned global
names and their values, and itself. You can
add or delete entries by simple table
assignment or unassignment, e.g. fo delete
the print function in the current session, just
enter.

> delete print from _G

> print('KloRe 1)

Error in stdin, at line 1:

attempt to call global “print” (a null
value)

yes

_PROMPT

Defines the prompt Agena displays at the
console. If unassigned, by default the
prompt is >

yes

_RELEASE

Release information on the installed Agena
release, retuned as a string, e.g. 'AGENA
>> 2.2.0. See also system variable
environ.release.

no

Table 22; System variables

All environ.* seffings are reset by the restart statement to their original defaulfs,
whereas those setffings the user defines with the environ.kernel function will never be
modified or deleted by a restart.

Some of the default settings can be found at the botftom of the library.agn

See also:

* Chapter 7.21 for a description of the kermnel functions for other seffings.
* Appendix A5 for settings that contfrol how Agena outputs data at the console.

file.

agena >> 519

A4 Command Line Usage

Agena can be used in the command line as follows:
agena [options] [script [arguments]]

This means that any option, an Agena script, and the arguments are all optional. If
you just enter

shell> agena
Agena is started in inferactive mode immediately.

There are two ways to run an Agena script with some arguments and then return to
the command line immediately without entering inferactive mode:

A4.1 Using the -e Option

We may write a script with a text editor, e.g. one to print the sine of a number. This
script may look like the following two lines:

n :=nor Pi; #if nis not set from the shell, ju stassign Piton
writeline(sin(n));

This script prints the sine fo a user-given numeric argument which is passed by using
the -e option and a string containing a valid Agena statement. It uses a variable n
which you must assign via the -e option:

shell> agena -e "n := Pi/2" sin.agn
1

Note that you first have to enter the -e option along with the Agena statement, and
then the name of the scripf.

520 Appendix

A4.2 Using the internal args Table
Everything you pass to the interpreter from the command line is stored in the args
table.

The name of the script is always stored at index O, the arguments are stored at the
positive indices 1, 2, etc., in the order given by the user. Any options are accessible
via negative keys. The name of the interpreter is always at the smallest index.

Consider the following script called 'args.agn':
fori, jin args do

writeline(i, j, delim~"\t")
od;

If it is run, the output is:

shell> agena args.agn 0

-1 agena
0 args.agn
1 0

Just play around with this a little bit.

Let us use our new knowledge: The script In.agn' requires a string and a number
and calculates the natural logarithm of this number. The number entered at the
command line is entered into the args table as a string, so you first must convert it
info a “real” number.

argl := args[1];
arg2 := tonumber(args[2]);

assume(argl :: string, 'expected a string’);

assume(arg?2 :: number, 'expected a number");
writeline(argl, In(arg2));

Use it:

shell> agena In.agn "The natural logarithm of 1 is: "1
The natural logarithm of 1 is: 0

A4.3 Running a Script and then Entering Interactive Mode

The -i option allows you to enter the interactive level after running a script or
passing other options to Agena. The position of the -i option does not matter. The
following shell statement resets the Agena prompt and starts the interpreter:

shell> agena -i -e "_PROMPT := '"AGENA> "
AGENA>

agena >> 521

A4.4 Running Scripts in UNIX and Mac OS X

If you use Agena in UNIX and Mac OS X, then you can execute Agena scripts
directly by just entering the name of the script followed by any arguments (if
needed).

Just insert the following line at the head (i.e. line 1) of each script:
#l/usr/local/bin/agena

and set the appropriate rights for the script file (e.g. chmod a+x scriptname).
An example:

bash> ./sin.agn 1
0.8414709848079

In all other operating systems, the first line is ignored by the interpreter, so you do not
have to delete the first line of the script in order to use scripts you have originally
written under UNIX or Mac.

A4.5 Command Line Switches

The available switches are:

Option Function

-e "stat" | execute string "stat" (double quotes needed)

-h help information

-i enter interactive mode after executing “script” or other options
-| print licence information

-m print the amount of free RAM at start-up
-n do not run initialisation file "agena.ini’

* sets <path> fo libname, overriding the standard initialisation
-p path procedure for this environment variable. The path does not need 1o

e put in quotes if it does not contain spaces.
readlib liorary <name>. The name of the library does not need to be
put in quotes.
-V show version information and compilation time
-- stop handling options
- execute stdin and stop handling options

Table 23: Command line options

522

Appendix

A5 Define Your Own Printing Rules for Types

You can tell Agena how to output strings, tables, sets, sequences, pairs, and
complex values at the console.

With each call to the internal printing routine, the interpreter uses the respective

environ.aux.print* function or settings defined in the library.agn

fle. You may

change these functions or settings according to your needs.

Table index Type Functionality
environ.aux.printtable function defines how to print a table, overriding
e the built-in default
environ.aux.printflongtable function defines how fo print a fable if
T kemel/longtable has been set true
environ.aux.printset function defines how fo print a set, overriding the
T built-in default
environ.aux.printsequence | function defines how fo print a sequence,
T overriding the built-in default
environ.aux.printpair function defines how to print a pair, overriding the
T built-in default
environ.aux.printcomplex function defines how to print a complex value,
T overriding the built-in default
. if set, Agena outputs strings with the
environ. , .) :
orinfenclosestings string prelpendlng orjd qppendlng .s’rrlng
assigned to environ.printenclosestrings
, , , defines how to print a procedure,
environ.aux.printprocedure | function

overriding the built-in default

Table 24: Printing functions

Alternative environ. aux.print* functions might ook like the following one:

> environ.aux.printset := proc(s) is

> write('set();
> if size s> 0 then
> foriinsdo
> write(i, ', 9;
> od;
> write(\b\b");
> fi;

> write()";

> end;

> environ.aux.printcomplex := proc(s) is
> write('cmplx(, real(s), ', ', imag(s), ")");

> end;

>{1, 2}
set(1, 2)

> 1%2%:
cmplx(1, 2)

agena >> 523

A6 The Agena Initialisation File

You can customise your personal Agena environment via special initialisation files.

The initialisafion files may include code wrtten in the Agena language and will
always be executed when Agena is started or restarted. They can include
definitions or redefinitions of predefined (environment) variables, and feature
self-written procedures or statements 10 be executed at start-up.

Two kinds of initialisation files are supported:

1. a global initialisatfion file, and
2. a personal initialisation file for the current user.

Agena first tries to read the global inifialisation file, and then the user's initialisation
file. If the inifialisation files do not exist, nothing happens and Agena starts without
errors.

The global initialisation file should reside in the lib folder of your Agena installation
and is always named agena.ini for all operating systems. You may find your Agena
installation in /usrfagena on UNIX platforms, and usuadlly in <drive:>/Program
Files/Agena Of <drive:>/Program Files(x86)/Agena on Windows systems.

In Solaris, Linux, Mac OS X and Haiku, the personal initialisation file resides in the
folder pointed to be the HoOMEenvironment variable. The personal Agena initialisation
fle on UNIX machines is called .agenainit (not agena.ini). Thus the path is
$HOME/.agenainit

In Windows, the system environment variable UserProfile points to the user's home
folder, and the personal initialisation file is called agena.ini , (NOt .agenainit), thus
the file path is %UserProfile%/agena.ini

On Windows platforms, the user's inifialisation file should be put intfo the user's
respective home folder:

Windows version | Path to user's home directory

NT 4.0 <drive:>\WINNT\Profiles\<username>

2000, XP, 2003 <drive:>\Documents and Settings\<username>
Vista and 7 <drive:>\Users\<username>

Table 25: Windows' "home™ paths

In eComStation - OS/2 and DOS, Agena fries to find the user's personal agena.ini
fle in the directory pointed to by the environment variable HOME if it has been
defined. If HOME has not been defined, it searches in the folder pointed to by the
environment variable USER if the latter has been defined. Otherwise, the personal
file is not read.

524 Appendix

that resides in the lib folder of
Or .agenainit and play with it - but

Agena is shipped with a file called agena.ini.sample
your installation. You can rename it to agena.ini

beware not to overwrite the initialisation which you may already have created.

Here is a sample file:

HH T
#

Agena initialisation file

#

HHEHHHH T T

assign short names for the following library func
execute := 0s.execute;

HHEHHHH T T
Extend libname to include paths to additional lib

if directories exist)

HH T T

if 0s.isWin() or 0s.isOS2() or 0s.isDOS() then
addpaths := seq(
'd:/agena/phq’,
'd:/agena/pcomp’

elif os.isSolaris() then
addpaths := seq(
'lexport/home/proglang/agena/phq’,
‘lexport/home/proglang/agena/pcomp’

elif os.isLinux() then
addpaths = seq(
‘~/agena/phq’,
'~/agena/pcomp'

fi;

for i in addpaths do
if 0s.exists(i) and i in libname = null then
libname := libname & ;' & i
fi
od;

clear addpaths;

writeline('Have fun with Agena \n");

T B R B R B B B B T A R
Set default plotting options for gdi.plotfn

B B R B R B B B B T A R

import gdi;
gdi.setoptions(colour~'red’, axescolour~'grey');

BHAHHHHH A
#
#
#

BHAHHHHH A

tions:

HH T T T
raries (but only #

#
HH T T T

BHARHHHH A AR AR
#
BHARHHHHHH A AA AR

agena >> 525

A7 Escape Sequences
Agena supports the following escape sequences known from ANSI C:

Sequence | Meaning

\a alert

\b backspace

\f formfeed

\n new line

\r carriage retun

\t horizontal tabulator
\v vertical tabulator

Table 26: Escape sequences

A8 Backward Compatib ility

Aliases for deprecated functions in Agena versions prior to 1.0 are no longer
automatically initialised af start-up. However, by entering

> import compat;

you can activate them in your current session if you prefer compatibility to Agena
1.0. For all other cases, please consult the change.log file distributed with the source
and binary editions.

This concerns all deprecated function names in the base liorary, in the math,
package, strings, tables, utils packages, as well as the former Env* environment
control variables.

Deprecated names of functions in the linalg package can only be used by
uncommenting the alias assignments at the bottom of the lib/linalg.agn file.

Users of the mapm package should first import the mapm package and then load
the compat.agn file.

526

Appendix

A9 Mathematical Constants

Constant Meaning

degrees Factor 1/z*180 to convert radians to degrees

Eps Equals 1.4901161193847656e-08

EulerGamma | Euler-Mascheroni constant, equals 0.57721566490153286061
E. Exp Constant e = exp(1) = 2.7182818284590452353¢6

I Imaginary unit /-1

infinity Infinity oo

Pi Constant z = 3.14159265358979323846

Pi2 Constant 2z = 6.283185307179586476926

PiO2 Constant 7/2 = 1.570796326794896619232

PiOC4 Constant 7/4 = 0.78539816339744830961¢

radians Factor /180 to convert degrees 1o radians

undefined An expression stating that it is undefined, e.g. a singularity
math.Phi the Golden number (1+/5)/2

Table 27: Constants

A10 Some Few Technical Notes

All Solaris and Linux binaries of Agena have been created with GCC 4.4.5.

All eComStation binaries have been created with Paul Smith's GCC 4.4.6.

All Windows binaries of Agena have been created with MinGW/GCC 4.5.2.

All Mac OS X binaries of Agena have been created with Apple's GCC 4.2.1.

The C Sources should be ANSI C99 compatible, mostly due 1o Agena's support of
complex arithmetic. Since Agena 1.4.0, the sources have been successfully
compiled with GCC in Solaris 10, Windows 2000 and above, Linux, Mac OS X 10.7,
and DJGPP for the DOS version. The same applies to Agena 2.2.7 for eComStation.

agena >> 527

Appendix B

B1 Agena Licence

The Agena source code is licenced under the terms of the following licence:

Agena is free for private, non-military scienfific, and educational purposes and does
not require any agreement by the author. For any other usage please contact the
author for an agreement.

If Agena is used in private, non-military scientific, and educational projects, or if you
received an agreement for use in any other project, then always the following
original MIT licence applies:

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distrioute, sublicence, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notfices and this permission notice shall be included in all
copies or portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS' WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

B2 GNU GPL v2 Licence
The Solaris, Linux, Windows, eComStation - OS/2, Mac OS X, and DOS binaries are
distributed under the GNU GPL v2 licence reproduced below:

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is pemitted to copy and distribute verbatim copies of this licence
document, but changing it is not allowed.

528 Appendix

Preamble

The licences for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licence is intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public Licence applies to most of the
Free Software Foundation's soffware and to any other program whose authors
commit to using if. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public Licence instead.) You can apply it to your programs,
foo.

When we speak of free software, we are refering to freedom, not price. Our
General Public Licences are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want if, that you can change the software
or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need 1o make restrictions that forbid anyone to deny you
these rights or to ask you fo surrender the rights. These restrictions franslate to cerain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you
this licence which gives you legal permission to copy, distrioute and/or modify the
software.

Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the software
is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistrioutors of a free program will individually obtain patent
licences, in effect making the program proprietary. To prevent this, we have made
it clear that any patent must be licenced for everyone's free use or not licenced at
all.

The precise terms and conditions for copying, distribution and modification follow.

agena >> 529

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This Licence applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distribbuted under the terms of this
General Public Licence. The "Program’, below, refers to any such program or work,
and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion
of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, franslation is included without limitafion in the term "modification”.)
Each licencee is addressed as "you".

Activities other than copying, distrioution and modification are not covered by this
Licence; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the
Program). Whether that is frue depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notfice and disclaimer of warranty;
keep intact all the notices that refer 1o this Licence and to the absence of any
warranty; and give any other recipients of the Program a copy of this Licence along
with the Program.

You may charge a fee for the physical act of transfering a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distrioute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the datfe of any change.

b. You must cause any work that you distrioute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licenced as a
whole at no charge to all third parties under the terms of this Licence.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
nofice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this Licence. (Exception: if the
Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections

530 Appendix

of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this Licence, and its terms, do
not apply 1o those sections when you distrioute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the ferms of this Licence, whose
permissions for other licencees extend 1o the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights 1o work
wriffen entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this Licence.

3. You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source
code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software intferchange; or,

c. Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for
non-commercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the maijor
components (compiler, kemnel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access 1o copy the source code
from the same place counts as distrioution of the source code, even though third
parties are not compelled to copy the source along with the object code.

agena >> 531

4. You may not copy, modify, sublicence, or distribute the Program except as
expressly provided under this Licence. Any attempt otherwise to copy, modify,
sublicence or distribute the Program is void, and will automatically terminate your
rights under this Licence. However, parties who have received copies, or rights, from
you under this Licence will not have their licences terminated so long as such
parties remain in full compliance.

5. You are not required to accept this Licence, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program or
its derivative works. These actions are prohibited by law if you do not accept this
Licence. Therefore, by modifying or distributing the Program (or any work based on
the Program), you indicate your acceptance of this Licence to do so, and all its
terms and conditions for copying, distriouting or modifying the Program or works
based on it.

6. Each fime you redistribute the Program (or any work based on the Program), the
recipient automatically receives a licence from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
Licence.

7. If, as a consequence of a court judgement or allegation of patent infingement
or for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this Licence, they do not excuse you from the conditions of this Licence. If you
cannot distrioute so as to safisfy simultaneously your obligations under this Licence
and any other pertinent obligations, then as a consequence you may not distribute
the Program af all. For example, if a patent licence would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this Licence would be
fo
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is infended to apply and the section as a
whole is infended to apply in other circumstances.

It is not the purpose of this section fo induce you 1o infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public licence practices. Many people have made generous
contributions fo the wide range of software distriouted through that system in
reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is wiling to distribute software through any other system and a
licencee cannot impose that choice.

532 Appendix

This secftion is infended to make thoroughly clear what is believed to be a
consequence of the rest of this Licence.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this Licence may add an explicit geographical distribution
limitafion excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this Licence incorporates the
limitation as if written in the body of this Licence.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public Licence from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail 10 address new problems or
concems.

Each version is given a distinguishing version number. If the Program specifies a
version numibper of this Licence which applies to it and "any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version numiber of this Licence, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distrioution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS 15" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

agena >> 533

WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use
to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, aftach the following nofices fo the program. It is safest to aftach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the
full nofice is found.

<one line fo give the program's name and a brief idea of what it does. >
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public Licence as published by
the Free Software Foundation; either version 2 of the Licence, or

(af your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public Licence for more details.

You should have received a copy of the GNU General Public Licence along
with this program; if not, write fo the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is intferactive, make it output a short noftice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type "show w',
This is free software, and you are welcome to redistribute it

under certain conditions; type “show c' for details.

The hypothetical commands “show w' and “show c¢' should show the appropriate
parts of the General Public Licence. Of course, the commands you use may be
called something other than ‘show w' and ‘show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

534 Appendix

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a "copyright disclaimer" for the program, if necessary. Here is a
sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
“Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public Licence does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Lesser General Public Licence instead of this Licence.

B3 Sun Microsystems Licence for the fdliom IEEE 754 Style Arithmetic Library

* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Developed at SunPro, a Sun Microsystems, Inc. bu siness.

* Permission to use, copy, modify, and distribute this

* software is freely granted, provided that this n otice

B4 GNU Lesser General Public Licence

Agena uses the g2 graphic library which is distribbuted under the GNU LGPL v2.1
licence reproduced below:

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this licence document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of
the GNU Library Public Licence, version 2, hence the version number 2.1.]

Preamble

The licences for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licences are intended fo
guarantee your freedom to share and change free software--to make sure the
software is free for all its users.

agena >> 535

This licence, the Lesser General Public Licence, applies to some specially
designated software packages--typically libraries--of the Free Software Foundation
and other authors who decide fo use it. You can use it too, but we suggest you first
think carefully about whether this licence or the ordinary General Public Licence is
the befter strategy to use in any paricular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price.
Our General Public Licences are designed to make sure that you have the freedom
fo distribute copies of free software (and charge for this service if you wish); that you
receive source code or can get it if you want it; that you can change the software
and use pieces of it in new free programs; and that you are informed that you can
do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny
you these rights or to ask you to surrender these rights. These restrictions franslate to
certain responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distrioute copies of the library, whether gratis or for a fee, you
must give the recipients all the rights that we gave you. You must make sure that
they, too, receive or can get the source code. |If you link other code with the
library, you must provide complete object files to the recipients, so that they can
relink them with the library after making changes to the library and recompiling it.
And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2)
we offer you this licence, which gives you legal permission to copy, distribute and/or
modify the library.

To protect each distributor, we want to make it very clear that there is no warranty
for the free library. Also, if the library is modified by someone else and passed on,
the recipients should know that what they have is not the original version, so that the
original author's reputation will not be aoffected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of any free
program. We wish to make sure that a company cannot effectively restrict the
users of a free program by obtaining a restriictive licence from a patent holder.
Therefore, we insist that any patent licence obtained for a version of the library must
e consistent with the full freedom of use specified in this licence.

Most GNU software, including some libraries, is covered by the ordinary GNU
General Public Licence. This licence, the GNU Lesser General Public Licence,
applies to cerain designated libraries, and is quite different from the ordinary
General Public Licence. We use this licence for certain libraries in order to permit
linking those
libraries into non-free programs.

536 Appendix

When a program is linked with a library, whether statically or using a shared liorary,
the combination of the two is legally speaking a combined work, a derivative of the
original library. The ordinary General Public Licence therefore permits such linking
only if the entire combination fits its criteria of freedom. The Lesser General Public
Licence permits more lax criteria for linking other code with the library.

We call this licence the "Lesser' General Public Licence because it does Less to
protect the users freedom than the ordinary General Public Licence. It also
provides other free software developers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary
General Public Licence for many libraries. However, the Lesser license provides
advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the
widest possible use of a certain library, so that it becomes a de-facto standard. To
achieve this, non-free programs must be allowed to use the library. A more
frequent case is that a free library does the same jolb as widely used non-free
libraries. In this case, there is little to gain by limiting the free library 1o free software
only, so we use the Lesser General Public Licence.

In other cases, permission to use a particular library in non-free programs enables
a greater number of people 1o use a large body of free software. For example,
permission to use the GNU C Library in non-free programs enables many more
people to use the whole GNU operating system, as well as its variant, the GNU/Linux
operating system.

Although the Lesser General Public Licence is Less protective of the users'
freedom, it does ensure that the user of a program that is linked with the Library has
the freedom and the wherewithal to run that program using a modified version of
the Library.

The precise terms and conditions for copying, distrioution and modification follow.
Pay close attention to the difference between a "work based on the library" and a
"'work that uses the library". The former contains code derived from the library,
whereas the latter must be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This Licence Agreement applies to any software library or other program which
contains a notice placed by the copyright holder or other authorized party saying it
may be distributed under the terms of this Lesser General Public Licence (also
called "this Licence"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to
e conveniently linked with application programs (which use some of those
functions and data) to form executables.

agena >> 537

The "Library", below, refers to any such software library or work which has been
distriouted under these terms. A "work based on the Library" means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Liorary or a portion of it, either verbatim or with modifications and/or translated
straightforwardly intfo another language. (Hereinafter, franslation is included without
limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
Licence; they are outside its scope. The act of running a program using the Library
is not restricted, and output from such a program is covered only if its contents
constitute a work based on the Library (independent of the use of the Library in a
tool for writing it). Whether that is true depends on what the Library does and what
the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright nofice and
disclaimer of warranty; keep intact all the notices that refer to this Licence and to
the absence of any warranty; and distribute a copy of this Licence along with the
Liorary.

You may charge a fee for the physical act of fransferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you
changed the files and the dafe of any change.

c. You must cause the whole of the work to be licensed af no charge fo all third
parties under the terms of this Licence.

d. If a facility in the modified Library refers to a function or a table of data to be
supplied by an qgpplication program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort t0o ensure that, in the event an application does not supply such function
or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roofs has a purpose
that is entirely well-defined independent of the aqpplication. Therefore,
Subsection 2d requires that any application-supplied function or table used by

538 Appendix

this function must be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Library, and can e reasonably considered
independent and separate works in themselves, then this Licence, and its terms, do
not apply 1o those sections when you distrioute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Liorary, the distribution of the whole must be on the terms of this Licence, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the infent of this section to claim rights or contest your rights 1o work
wriffen entirely by you; rather, the intent is to exercise the right to control the
distrioution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this Licence.

3. You may opt to apply the terms of the ordinary GNU General Public Licence
instead of this Licence to a given copy of the Library. To do this, you must alter all
the notices that refer to this Licence, so that they refer to the ordinary GNU General
Public Licence, version 2, instead of to this Licence. (If a newer version than version
2 of the ordinary GNU General Public Licence has appeared, then you can specify
that version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the
ordinary GNU General Public Licence applies to all subsequent copies and
derivative works made from that copy.

This opftion is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distrioute the Library (or a portion or derivative of it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you accompany it with the complete corresponding
machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access 1o copy the source code from
the same place satisfies the requirement to distibute the source code, even
though third parties are not compelled to copy the source along with the object
code.

5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is called a

agena >> 539

"work that uses the Library". Such a work, in isolation, is not a derivative work of the
Library, and therefore falls outside the scope of this Licence.

However, linking a "work that uses the Library" with the Library creates an
executable that is a derivative of the Library (because it contains portions of the
Library), rather than a "work that uses the library'. The executable is therefore
covered by this Licence. Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library
even though the source code is not. Whether this is true is especially significant if the
work can be linked without the Library, or if the work is itself a liorary. The threshold
for this to be frue is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (tfen lines or less in length),
then the use of the object file is unrestricted, regardiess of whether it is legally a
derivative work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object
code for the work under the terms of Section 6. Any executables containing that
work also fall under Section 6, whether or not they are linked directly with the Library
itself.

6. As an exception to the Sections above, you may also combine or link a "work
that uses the Library" with the Library 1o produce a work containing portions of the
Library, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this Licence. You must supply a
copy of this Licence. If the work during execution displays copyright notices, you
must include the copyright nofice for the Library among them, as well as a
reference directing the user 1o the copy of this Licence. Also, you must do one
of these things:

a. Accompany the work with the complete corresponding machine-readable
source code for the Library including whatever changes were used in the work
(which must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work
that uses the Library", as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing
the modiified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present

540 Appendix

on the user's computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Sulbbsection 6a, above, for a charge no
more than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the
same place.

e. Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must
include any data and utility programs needed for reproducing the executable from
it. However, as a special exception, the materials to be distributed need not
include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an
executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side
in a single library together with other library facilities not covered by this Licence,
and distribute such a combined library, provided that the separate distribution of
the work based on the Library and of the other library facilities is otherwise permitted,
and provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Liorary, uncombined with any other library facilities. This must e distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this Licence. Any attempt otherwise 1o copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this Licence. However, parties who have received copies, or
rights, from you under this Licence will not have their licenses ferminated so long as
such parties remain in full compliance.

9. You are not required to accept this Licence, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Library or its
derivative works. These actions are prohibited by law if you do not accept this

agena >> 541

Licence. Therefore, by modifying or distributing the Library (or any work based on
the

Library), you indicate your acceptance of this Licence to do so, and all its terms
and conditions for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy,
distrioute, link with or modify the Library subject to these terms and conditions. You
may not impose any further restrictions on the recipients' exercise of the rights
granted herein. You are not responsible for enforcing compliance by third parties
with this Licence.

11. If, as a consequence of a court judgement or allegation of patent
infringement or for any other reason (not limited to patent issues), conditions are
imposed on you (Whether by court order, agreement or otherwise) that contradict
the conditions of this Licence, they do not excuse you from the conditions of this
Licence. If you cannot distribute so as to satisfy simultaneously your obligations
under this Licence and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
Licence would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is infended to apply, and the section as
a whole is infended to apply in other circumstances.

It is not the purpose of this section fo induce you 1o infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the inteqrity of the free software distribution system which
is implemented by public license practices. Many people have made generous
contributions fo the wide range of software distriouted through that system in
reliance on consistent application of that system,; it is up to the author/donor to
decide if he or she is wiling to distribute software through any other system and a
licensee cannot impose that choice.

This secftion is infended to make thoroughly clear what is believed to be a
consequence of the rest of this Licence.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Library under this Licence may add an explicit geographical distribution
limitafion excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this Licence incorporates the
limitation as if written in the body of this Licence.

13. The Free Software Foundation may publish revised and/or new versions of the
Lesser General Public Licence from time to time. Such new versions will be similar in

542 Appendix

spirit o the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a
version numiber of this Licence which applies to it and "any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by the Free
Software Foundation.

14. If you wish to incorporate pars of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For sofftware which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER
SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it o be of the greatest possible use to
the public, we recommend making it free software that everyone can redistribute

and change. You can do so by permitting redistrioution under these terms (or,
alternatively, under the terms of the ordinary General Public Licence).

agena >> 543

To apply these terms, aftach the following notices to the library. It is safest to
attach them to the start of each source file 10 most effectively convey the exclusion
of warranty; and each file should have at least the "copyright" line and a pointer to
where the full notice is found.

<one line fo give the library's name and a brief idea of what it does. >
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
Licence as published by the Free Software Foundation; either
version 2.1 of the Licence, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public Licence for more details.

You should have received a copy of the GNU Lesser General Public
Licence along with this library; if not, write fo the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample;
alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
liorary “Frob' (a library for tweaking knolbs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is 10 it!

B5 SOFA Software Licence

Copyright (C) 2012
Standards Of Fundamental Astronomy Board
of the International Astronomical Union.

NOTICE TO USER:

544 Appendix

BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND CONDITIONS
WHICH APPLY TO ITS USE.

1. The Software is owned by the IAU SOFA Board ("SOFA").

2. Permission is granted to anyone to use the SOFA software for any purpose,
including commercial applications, free of charge and without payment of
royalties, subject to the conditions and restrictions listed below.

3. You (the user) may copy and distribute SOFA source code to others, and use and
adapt its code and algorithms in your own software, on a world-wide, royalty-free
basis. That portion of your distribution that does not consist of intact and
unchanged copies of SOFA source code files is a "derived work" that must comply
with the following requirements:

a) Your work shall be marked or carry a statement that it (i) uses routines and
computations derived by you from software provided by SOFA under license to you;
and (ii) does not itself constitute software provided by and/or endorsed by SOFA.

b) The source code of your derived work must contain descriptions of how the
derived work is based upon, contains and/or differs from the original SOFA software.

c) The names of all routines in your derived work shall not include the prefix "iau" or
"sofa" or frivial modifications thereof such as changes of case.

d) The origin of the SOFA components of your derived work must not be
misrepresented; you must not claim that you wrote the original software, nor file a
patent application for SOFA software or algorithms embedded in the SOFA
software.

e) These requirements must be reproduced intact in any source distribution and
shall apply to anyone to whom you have granted a further right to modify the
source code of your derived work.

Note that, as originally distributed, the SOFA software is intended to be a definitive
implementation of the IAU standards, and consequently third-party modifications
are discouraged. All variations, no matter how minor, must be explicitly marked as
such, as explained above.

4. You shall not cause the SOFA software to be brought into disrepute, either by
misuse, or use for inappropriate tasks, or by inappropriate modification.

5. The SOFA software is provided "as is" and SOFA makes no warranty as to its use or
performance. SOFA does not and cannot warrant the performance or results which
the user may obtain by using the SOFA software. SOFA makes no warranties,
express or implied, as to non-infingement of third party rights, merchantability, or
fitness for any particular purpose. In no event will SOFA be liable to the user for any
consequential, incidental, or special damages, including any lost profits or lost

agena >> 545

savings, even if a SOFA representative has been advised of such damages, or for
any claim by any third party.

6. The provision of any version of the SOFA software under the terms and conditions
specified herein does not imply that future versions will also be made available
under the same terms and conditions.

In any published work or commercial product which uses the SOFA software directly,
acknowledgement (see www.iausofa.org) is appreciated.

Correspondence concerning SOFA software should be addressed as follows:

By email: sofa@ukho.gov.uk

By post: IAU SOFA Center
HM Nautical Aimanac Office
UK Hydrographic Office
Admiralty Way, Taunton
Somerset, TA1T 2DN
United Kingdom

B6 MAPM Copyright Remark (Mike's Arbitrary Precision Math Library)
Copyright (C) 1999 - 2007 Michael C. Ring

This software is Freeware.

Permission to use, copy, and distribute this software and its documentation for any
purpose with or without fee is hereby granted, provided that the above copyright
nofice appear in all copies and that both that copyright notice and this permission
noftice appear in supporting documentation.

Permission to modify the software is granted. Permission to distribute the modified
code is granted. Modifications are to be distributed by using the file license.txt' as a
template to modify the file header. 'license.ixt' is available in the official MAPM
distribution.

To distribute modified source code, insert the file 'license.txt' at the top of all
modified source code files and edit accordingly.

This software is provided "as is" without express or implied warranty.

546 Appendix

B7 RSA Security/MD5 Licence
Copyright (C) 1990, RSA Data Security, Inc. All rights reserved.

License to copy and use this software is granted provided that it is identified as the
"RSA Data Security, Inc. MD5 Message Digest Algorithm" in all material mentioning or
referencing this software or this function.

License is also granted o make and use derivative works provided that such works
are identified as "derived from the RSA Data Security, Inc. MD5 Message Digest
Algorithm" in all material mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either the
merchantability of this software or the suitability of this software for any particular
purpose. It is provided "as is" without express or implied warranty of any kind.

These nofices must be retained in any copies of any part of this documentation
and/or software.

B8 Other Copyright Remarks

The Solaris, Linux, Mac OS X, and Windows binaries include code from the gd
package which has been published with the following copyright notices:

Portions copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 by Cold
Spring Harbor Laboratory. Funded under Grant P41-RR02188 by the National
Institutes of Health.

Portions copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 by
Boutel.Com, Inc.

Portions relating 1o GD2 format copyright 1999, 2000, 2001, 2002
Philip Warner.

Portions relafing to PNG copyright 1999, 2000, 2001, 2002 Greg
Roelofs.

Portions relating to gdttf.c copyright 1999, 2000, 2001, 2002 John
Ellson (ellson@lucent.com).

Portions relating to gdft.c copyright 2001, 2002 John Ellson
(ellson@lucent.com).

Portions copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
Pierre-Alain Joye (pierre@libgd.org).

Portions relating to JPEG and to color quantization copyright 2000, 2001, 2002,
Doug Becker and copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,

agena >> 547

2002, Thomas G. Lane. This software is based in part on the work of the
Independent JPEG Group. See the file README-JPEG.TXT for more information.

Portions relating to WBMP copyright 2000, 2001, 2002 Maurice Szmurlo and Johan
Van den Brande.

Permission has been granted to copy, distribute and modify gd in any context
without fee, including a commercial application, provided that this nofice is present
in user-accessible supporting documentation.

This does not affect your ownership of the derived work itself, and the infent is to
assure proper credit for the authors of gd, noft to interfere with your productive use of
gd. If you have questions, ask. "Derived works" includes all programs that utilise the
library. Credit must be given in user-accessible documentation.

This software is provided "AS IS." The copyright holders disclaim all warranties, either
express or implied, including but not limited to implied warranties of merchantability
and fitness for a particular purpose, with respect o this code and accompanying
documentation.

Although their code does not appear in gd, the authors wish to thank David Koblas,
David Rowley, and Hutchison Avenue Software Corporation for their prior
contributions.

548 Appendix

Appendix C

C1: Further Reading

A selection of books that helped a lof in recent years when advancing Agena:

Niklaus Wirth: Algorithmen und Datenstrukturen mit Modula-2,

Roberto lerusalimschy: Programming in Luag,

Kurt Jung & Aaron Brown: Beginning Lua Programming,

Jurgen Wolf: C von A bis Z,

Brian W. Kernighan & Dennis M. Ritchie: The C Programming Language,

Federico Biancuzzi & Shane Warden (Ed.): Masterminds of Programming,

Michael. B. Monagan, Keith O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter,

J. McCarron, P. DeMarco: Maple 7 Programming Guide,

* Brian "Beej Jorgensen” Hall, Beej's Guide to Network Programming, Using Intermnet
Sockets,

* Frank G. Pagan: A Practical Guide to Algolé8.

agena >> 549

Index

550 Index

agena >>

551

A

AgenaEdit, 33, 41, 397
Algol 68, 23
Arithmetic, 44, 60, 61, 253

Absolute Value, 257, 260, 276

Addition, 62, 276, 277

Add-on, 255

Arbitrary Precision, 61

Bessel Functions, 259

Beta Function, 259

Binomial, 259

Bitwise Operators, 63, 186, 201, 256,
257, 398

Checking Integers and Floats, 187, 188,
189, 265, 266

Complex Math, 65, 66, 68, 70

Complex Number Functions, 259, 260,
267

Conjugate, 260

Constants, 274

Conversion Functions, 270, 271, 274,
275

cordic Library, 467

Cosine Integral, 279

Dawson's Integral, 280

dec Statement, 64

Degrees & Radians, 526

Digamma Function, 287

Dilogarithm, 280

Discount, 255

div Statement, 65

Division, 62, 255, 268, 276, 277

divs Library, 463

Error Functions, 261, 262

Exponential Functions, 262, 263, 266,
273

Exponential Integral, 281

Exponentiation, 60, 62, 256, 271, 275,
276

Factorial, 262, 276

Floating Point Functions, 263, 273

Fractions, 463

Fresnel Integral, 281

Gamma Functions, 263, 266

GCD, 272

Heaviside Function, 263

Higher & Lower Bits, 63, 268

Higher & Lower Bytes, 263

Hypotenuse, 264

inc Statement, 64

Increment and Decrement, 64

Integer Division, 255, 264, 276

Integer Functions, 267, 271, 272

LCM, 272

Logarithmic Functions, 264, 266, 267,
272,276

mapm Library, 276

math Library, 270

MiniMax Functions, 190, 273, 307

Modulus, 62, 256, 277

mul Statement, 65

Multiplication, 62, 202, 255, 276, 277,
281, 307

Normalisation, 274

Number Evaluation Functions, 262, 267,
273

Operators, 62, 255

Operators & Functions, Overview, 62

Percentage, 255

Polynomial, 282, 283, 287

Power, 62, 256, 276, 277

Premium, 255

Primes, 272, 274

Product function, 281

Psi Function, 287

Random Number Generator, 274

Ratio, 255

Remainder Function, 261, 264

Root Functions, 260, 267, 268, 269, 276

Rounding Functions, 260, 261, 264, 267,
268, 270, 277

Round-Off Errors, 121

Sexagesimal Values, 271, 275, 425

Sign, 269, 270, 276

Sine Integral, 287, 288

Subftraction, 62, 255, 276, 277

Summation, 195, 199, 202, 232, 233,
241, 255, 291, 308, 312, 323

Trigonometric & Related Functions, 257,
258, 259, 260, 261, 268, 269, 270,
276

Arrays, 81
Assignment, 44, 46, 47, 56, 86, 93, 97

Checking for Assigned Names, 181, 206
Defining new Variables, 151
Enumeration, 58

Multiple Assignment, 57, 58

Short-Cut Multiple Assignment, 58
Unassignment, 58

Assumptions, 140, 181

5592 Index

agn_getnoroundoffs, 490
B agn_getreginumber, 496
agn_getrtable, 490

Bags , agn_getrtablewritemode, 490
(please see Multisets), 250 agn_getseqistring, 491
Baseb4 . agn_getutype, 491
Decodmg, 409 agn _isfail, 491
Encoding, 411 agn_isfalse, 491
Block, 146 agn_islinalgvector, 491
Booleans, 45, 55, 80, 137, 187 agn_isnumber, 491
Expressions, 79 agn_issequtype, 492
fail, 79, 80 agn_issetutype, 492
Logical Operators, 79 agn_isstring, 492
Relational Operators, 79, 272 agn_istableutype, 492
Short-Circuit Evaluation, 80 agn_istrue, 492
agn_isutypeset, 492, 493
agn_malloc, 493
C agn_ncall, 493
. agn_nops, 493
C API Functions, 483 agn_paircheckbooloption, 494
agn_arrayfoseq, 484 agn_pairgeti, 494
agn_asize, 484 agn_pairgetnumbers, 494
agn_ccall, 484 agn_pairrawget, 494
agn_checkcomplex, 485 agn_pairawset, 495
agn_checkinteger, 485 agn_pairstate, 495
agn_checkistring, 485 agn_poptop, 495
agn_checknumber, 485 agn_poptoptwo, 495
agn_checkstring, 485 agn_pushboolean, 495
agn_complexgetimag, 485 agn_regextend, 495
agn_complexgetreal, 485 agn _reggeti, 496
agn_compleximag, 486 agn_reggettop, 496
agn_complexreal, 486 agn_regpurge, 496
agn_copy, 486 agn_regrawget, 496
agn_createcomplex, 486 agn_regrawget2, 496
agn_createpair, 486 agn_regreduce, 497
agn_createreg, 487 agn _regset, 497
agn_creatertable, 487 agn_regsettop, 497
agn_createseq, 487 agn_seqgetinumber, 498
agn_createset, 487 agn_seqsize, 498
agn_createtable, 487 agn_segstate, 498
agn_deletertable, 487 agn_setbitwise, 498
agn_fnext, 488 agn_setemptyline, 498
agn_free, 488 agn_setepsilon, 499
agn_getbitwise, 488 agn_setlibnamereset, 499
agn_getempytine, 489 agn_setlongtable, 499
agn_geteps, 489 agn_setnoroundoffs, 499
agn_getepsilon, 489 agn_setreadlibbed, 499
agn_getfunctiontype, 489 agn_setrtable, 500
agn_getinumber, 489 agn_setudmetatable, 500
agn_getistring, 489 agn_setutype, 500
agn_getlionamereset, 490 agn_size, 500

agn_getlongtable, 490 agn_ssize, 484, 500

agena >> 553

agn_sstate, 501 lua_usnext, 512
agn_tablesize, 501 luaL_checkint32 t, 512
agn_tablestate, 501 luaL_getudata, 512
agn_tocomplex, 502 Calculus, 278
agn_tonumber, 502 Differentiation, 280, 288
agn_tonumberx, 502 Extrema, 284, 285
agn_tostring, 502 Fresnel Integral, 281
agn_usedbytes, 502 Integration, 281, 282, 283, 287
agnlL_gettablefield, 503 Interpolation, 279, 280, 283, 284, 285,
agnlL_optboolean, 503 286
agnL_optinteger, 503 Spline, 279, 285
agnL_optnumber, 503 Summation, 281
lua_iscomplex, 504 Zeros, 287, 288
lua_ispair, 504 Cantor Sets
lua_isreg, 504 (please see Sets), 92
lua_isseq, 504 Captures, 74
lua_isset, 504 case Statement, 47, 116
lua_pushfail, 504 Fall Through, 116
lua_pushfalse, 504 of Clause, 116
lua_pushtrue, 505 onsuccess Clause, 116
lua_pushundefined, 505 then Clause, 116
lua_rawaequal, 505 clear Statement, 44, 58, 164, 184
lUa_rawset2, 505 cls Staternent, 43
lua rawsetikey, 505
Iuo_rowse’rils‘rring, 505 Codepages

- : 1252, 216
lua_rawsetinumber, 506 850 ’2] 6
lua_rawsetistring, 506 ' , ,
lua_rawsetstringlboolean, 506 Command L!ne Switches, 521
lua_rawsetstingnumber, 506 Command Line Usage, 519
lua_rawsetstringstring, 506 Comments, 50
lua_regnext, 507 Complex Numbers, 44, 55, 66, 187, 261,
lua_sdelete, 507 265, 484
lua_seqgeti, 507 Imaginary Unit, 526
lua_seqggetinumber, 507 Operators, 65
lua_seqinsert, 498, 508 Polar Form, 267
lua_segnext, 507, 508 Printing Values Close to Zero, 398
lua_segrawget, 508 Conditions, 47, 113
lua_seqgrawget2, 509 case Statement, 116
lua_seqrawgeti, 508 Evaluation Rules, 113, 115, 117
lua_seqrawset, 509 if Operator, 115
lua_segrawsetilstring, 509 if Statement, 113
lua_seqseti, 509 Configuration, 396, 517, 522, 523
lua_seqgsetinumiber, 510 Complex Number Output, 522
lua_seqgsetistring, 510 Debugging Information, 397
lua_sinsert, 510 Number of Digits on Output, 397
lua_sinserlstring, 510 Pair Output, 522
lua_sinsertnumber, 510 Procedure Output, 522
lua_sinsertstring, 510 Prompt, 43, 397
lua_srawget, 511 Sequence Output, 522
lua_srawset, 511 Set Output, 522
lua_toboolean, 511 Table Output, 397, 517, 522

lua_toint32 1, 511

554

Index

Console, 32, 81, 158, 193, 196, 209,
216, 337, 383, 388, 448, 460, 500, 518,
520, 522
cls Statement, 43
Command Line Switches, 521
Command Line Usage, 51, 519
Configuring the Output, 522
restart Statement, 43
Running a Script, 520
Constants
Eps, 526
EulerGamma, 526
Exp (e), 526
fail, 80
false, 79
Golden Number, 274, 526
[, 526
infinity, 526
null, 80
Pi, 526
Pi2, 526
PiO2, 526
PiO4, 526
radians, 526
frue, 79
undefined, 526
CORDIC, 467
Coroutines, 404
create Statement, 84, 85, 86, 87, 97,
101
CSV Files, 172
skycrane.readcsy, 421
utils.readcsv, 412
uftils.writecsv, 416

D

Data Types
Bags/Multisets, 247
Boolean, 79
Complex Numbers, 65
Lightuserdata, 109
Linked Lists, 247, 477
Number, 60
Pair, 102
Reqister, 109
Sequence, 95
Set, 92
String, 68
Table, 81, 86

Thread, 109

Userdata, 109

User-defined, 96, 102, 145, 159
Database, 346, 432

dBASE llI-Compatibility, 346
Date & Time, 204, 271, 275, 381, 382,
389, 392, 409, 424, 425, 428

Moon Phase, 429

Moonrise & Moonset, 429

Setting System Clock, 391

Sunrise & Sunset, 430
dBASE Files, 172

xbase Package, 346

xobase.readdbf, 352
Debugging, 405
dec Statement, 64
Default Input File

Files, 329
delete Statement, 85, 98, 99, 107
Dictionaries, 86
do/as Loops, 48, 118
do/od Loops, 119
DQOS, 34, 36, 41, 43, 197, 216, 276, 379,
380, 385, 388, 389, 392, 393, 457, 523,
527

E

eComStation, 14, 23, 34, 41, 43, 170,
196, 216, 276, 337, 356, 362, 379, 380,
381, 382, 384, 385, 386, 387, 388, 389,
391, 392, 393, 483, 484, 523, 526
Endianness, 344, 345, 383, 408
enum Statement, 58
Environment
Reading the Environment of a
Procedure, 150
See also " System Variables/ G, 149
Setting an Environment for a Procedure,
149
Errors
Catching Errors, 140, 141, 194, 210
Issuing Errors, 138, 186
fry/catch Statement, 141
Escape Sequences, 69, 525

agena >>

555

F

File System Access
Changing Directories, 380
Current Working Directory, 380
Directories, 381, 385, 389, 390
Drives, 382
Files, 383, 384, 389, 390, 391
Files
Attributes, 383, 385
Binary Files, 339
Changing Time Stamp, 384
Closing Files, 328, 340
Compressed Files, 362
Copying Files, 384, 420
CSV Files, 172, 416, 421
DBF Files, 346
Default Input File, 329
End Of File, 328, 340
Existence, 383
File Descriptor, 328
File Handles, 327, 329
Flushing Files, 343
Getting and Setting File Positions, 328,
331, 334, 336, 340, 343
INI Files, 415, 417
Locking Files, 330, 336, 340, 344
Moving Files, 389, 421
Opening Files, 329, 331, 340, 341

Reading Files, 330, 333, 334, 341, 342,

343
Removing Files, 390
Rewinding Files, 334
Searching in Files, 329
Size, 328, 331
Streams, 327
Symbolic Links, 390, 391
UNIX Text Files, 170
utils.readcsv, 412
utils.readxmil, 416
utils.writecsv, 416
ufils.writexml, 418
Writing Files, 336, 344, 345
XML, 418
xml.readxml, 357
for/as Loops, 125
for/downto Loops, 121
for/in Loops, 121
for/to Loops, 47, 119
for/until Loops, 125
for/while Loops, 48, 124

Functions & Operators

-, 60, 65, 255, 291

I, 60, 66

S, 88, 90

%, 60, 62, 256

-%, 255

&, 60, 212

&&, 63, 256

*, 60, 65, 255, 291

*%, 255

** 60, 62, 65, 256

/., 60, 65, 255

/%, 255

., 102

-, 60, 96, 137, 138

60, 96,137,138

@, 88, 90

\, 60, 255

~, 60, 65, 256

~ 7,60, 63, 256

||, 63, 256

~~, 60, 63, 256

~=, 60, 234, 238, 243, 246, 474

+, 60, 65, 255, 290

+%, 255

<, 60, 66, 79

<< <, 257

<=, 60, 66,79

<>, 60, 65, 66, 79, 87, 94, 98, 103,
106, 235, 239, 243, 246, 474

=, 60, 65, 66, 79, 87, 94, 98, 103, 106,
234, 238, 243, 245, 474

==, 60, 79, 87, 94, 98, 103, 106, 234,
238, 243, 246, 474

>, 60, 66, 79

->, 60

>=, 60, 66, 79

>>>, 257

abs, 65, 71, 181, 213, 257, 291

ads.clean, 434

ads.closebase, 434

ads.comment, 434

ads.createbase, 435

ads.createseq, 436

ads.desc, 436

ads.expand, 436

ads.free, 436

ads.getall, 436

ads.getkeys, 437

ads.getvalues, 437

ads.index, 437

ads.indices, 437

556 Index

ads.invalids, 437 beq, 259

ads.iterate, 437 besselj, 259

ads.lock, 438 bessely, 259
ads.openbase, 438 beta, 182, 259
ads.openfiles, 438 binio.close, 340
ads.peek, 438 binio.eof, 340
ads.rawsearch, 439 binio.filepos, 340
ads.readbase, 439 binio.length, 340
ads.remove, 439 binio.lock, 340
ads.retrieve, 439 binio.open, 341
ads.sizeof, 440 binio.readbytes, 341
ads.sync, 440 binio.readchar, 342
ads.unlock, 440 binio.readlong, 342
ads.writebase, 440 binio.readnumber, 342
alternate, 181 binio.readshortstring, 342
and, 60, 79 binio.readstring, 343
approx, 257 binio.rewind, 343
arccos, 65, 257 binio.seek, 343
arccosh, 257 binio.sync, 343
arccot, 258 binio.toend, 343
arccoth, 258 binio.unlock, 344
arccsc, 258 binio.writebytes, 344
arccsch, 258 binio.writechar, 344
arcsec, 258 binio.writelong, 344
arcsech, 258 binio.writenumber, 345
arcsin, 65, 258 binio.writeshortstring, 345
arcsinh, 258 binio.writestring, 345
arctan, 65, 258 binomial, 259
arctan2, 259 bintersect, 182, 244
arctanh, 259 bisequal, 182, 244
argerror, 181 bminus, 183, 244
argument, 259 bottom, 99, 107, 183
assigned, 181 bye, 183

assume, 140, 181 cabs, 260
astro.cdate, 428 calc.Chi, 279
astro.dectodms, 428 calc.Ci, 279
astro.dmstodec, 428 calc.clampedspline, 279
astro.isleapyear, 428 calc.clampedsplinecoeffs, 280
astro.jdate, 428 calc.dawson, 280
astro.moon, 429 calc.diff, 280
astro.moonphase, 429 calc.dilog, 280
astro.moonriseset, 429 calc.ki, 281

astro.sun, 430 calc.fprod, 281
astro.sunriseset, 430 calc.fresnelc, 281
atendof, 60, 71, 73, 212 calc.fresnels, 281
augment, 182 calc.fsum, 281
bags.aftrib, 251 calc.gtrap, 281
bags.bag, 251 calc.intde, 282
bags.bagtoset, 251 calc.intdei, 282
bags.include, 251 calc.intdeo, 282
bags.minclude, 251 calc.integral, 283

bags.remove, 251 calc.interp, 283

agena >> 557

calc.linterp, 284 coroutine.wrap, 404
calc.maximum, 284 coroutine.yield, 404
calc.minimum, 285 cos, 65, 260
calc.nakspline, 285 cosh, 65, 260
calc.naksplinecoeffs, 286 cosxx, 260
calc.neville, 286 cot, 261
calc.newtoncoeffs, 286 coth, 261
calc.polyfit, 286 countitems, 185, 231, 240, 471
calc.polygen, 287 csc, 261
calc.Psi, 287 csch, 261
calc.shi, 287 debug.debug, 405
calc.Si, 287 debug.getfenv, 405
calc.simaptive, 287 debug.gethook, 405
calc.Ssi, 288 debug.getinfo, 405
calc.xpdiff, 288 debug.getlocal, 406
calc.zero, 288 debug.getmetatable, 406
cbrt, 260 debug.getreqistry, 406
ceil, 260 debug.getupvalue, 406
char, 71 debug.setfenv, 406
checkoptions, 183 debug.sethook, 407
checktype, 184 debug.setlocal, 407
clear, 184 debug.setmetatable, 407
clock.add, 426 debug.setupvalue, 407
clock.adjust, 426 debug.system, 408
clock.sgstr, 427 debug.tfraceback, 408
clock.sub, 426 dimension, 185, 232
clock.tm, 427 divs.denom, 465
clock.todec, 427 divs.divs, 465
clock.totm, 427 divs.equals, 465
columns, 184 divs.numer, 465
conjugate, 260 divs.todec, 466
copy, 88, 94, 99, 107, 185, 231, 237, divs.todiv, 466

245 drem, 261
cordic.carccos, 467 duplicates, 185, 244, 471
cordic.carcsin, 467 entier, 65, 261
cordic.carctan2, 467 environ.anames, 394
cordic.carctanh, 467 environ.attrib, 394
cordic.ccbrt, 467 environ.gc, 395
cordic.ccos, 467 environ.getfenv, 150, 396
cordic.ccosh, 468 environ.globals, 133, 396
cordic.cexp, 468 environ.isselfref, 396
cordic.chypot, 468 environ.kernel, 63, 81, 396
cordic.cln, 468 environ.pointer, 398
cordic.csin, 468 environ.setfenv, 149, 398
cordic.csinh, 468 environ.used, 398
cordic.csqrt, 468 environ.userinfo, 398
cordic.ctan, 468 erf, 261
cordic.ctanh, 468 erfc, 262
coroutine.resume, 404 error, 186
coroutine.running, 404 even, 262
coroutine.setup, 404 exp, 65, 262

coroutine.status, 404 expx2, 262

558

Index

fact, 262
filled, 87, 94, 99, 107, 186, 232, 237,
240, 472
finite, 133, 262
flip, 262
float, 263
fma, 263
frac, 263
fractals.albea, 457
fractals.alcos, 457
fractals.alcosxx, 458
fractals.alsin, 458
fractals.amarkmandel, 457
fractals.anewton, 458
fractals.draw, 460
fractals.loeq, 458
fractals.mandel, 458
fractals.mandelbrot, 459
fractals.mandelbrotfast, 459
fractals.mandelbroftrig, 459
fractals.markmandel, 459
fractals.newton, 459
frexp, 263
gamma, 263
gdi.arc, 444
gdi.arcfilled, 445
gdi.autoflush, 445
gdi.background, 445
gdi.circle, 445
gdi.circlefilled, 445
gdi.clearpalette, 445
gdi.close, 445
gdi.dash, 445
gdi.ellipse, 446
gdi.ellipsefilled, 446
gdi.flush, 446
gdi.fontsize, 446
gdi.hasoption, 446
gdi.initpalette, 446
gdi.ink, 446
gdi.lastaccessed, 446
gdi.line, 446
gdi.mouse, 447
gdi.open, 447
gdi.opftions, 447
gdi.plot, 450
gdi.plotfn, 450
gdi.point, 449
gdi.pointplot, 449
gdi.rectangle, 452
gdi.rectanglefilled, 452
gdi.reset, 453

gdi.resetpalette, 453
gdi.setarc, 453
gdi.setarcfilled, 453
gdi.sefcircle, 453
gdi.setcirclefilled, 453
gdi.setellipse, 453
gdi.setellipsefiled, 453
gdi.sefinfo, 454
gdi.setline, 454
gdi.setoptions, 454
gdi.setfpoint, 454
gdi.setrectangle, 454
gdi.sefrectanglefiled, 455
gdi.settriangle, 455
gdi.seftrianglefilled, 455
gdi.structure, 455
gdi.system, 455
gdi.text, 455
gdi.thickness, 456
gdi.triangle, 456
gdi.trianglefilled, 456
gdi.useink, 456

getbit, 186

getentry, 83, 99, 107, 186, 232, 240,

241, 471, 472
gethigh, 64, 263
getlow, 64, 263
getmetatable, 100, 104, 108, 186
geftype, 96, 100, 103, 104, 187
gzip.close, 362
gzip.flush, 362
gzip.lines, 362
gzip.open, 362
gzip.read, 363
gzip.seek, 363
ozip.write, 363
has, 187
hashes.collisions, 477
hashes.djb, 477
hashes.djb2, 478
hashes.fnv, 478
hashes.jen, 478
hashes.mdb, 478
hashes.oaat, 478
hashes.pl, 479
hashes.raw, 479
hashes.sax, 479
hashes.sdbm, 479
hashes.sth, 480
heaviside, 263
hypot, 264
ilog2, 264

agena >>

559

in, 60, 71, 72, 79, 87, 94, 99, 104, 107,

212, 235, 239, 243, 246, 475
instr, 72, 75, 213
int, 264

intersect, 60, 87, 94, 99, 107, 235, 239,

243, 475
io.anykey, 171, 327
io.close, 169, 172, 327, 328, 332
io.eof, 328
io.fileno, 328
io.filepos, 328
io.filesize, 328
io.geftclip, 328
io.getkey, 171, 329
io.infile, 329
io.input, 329
io.isfdesc, 329
io.isopen, 329
io.lines, 169, 330, 332
io.lock, 330
io.move, 331
io.nlines, 331
io.open, 168, 327, 331
io.output, 332
io.pcall, 332
io.popen, 171, 332
io.putclip, 333
io.read, 168, 170, 171, 327, 333
io.readfile, 333
io.readlines, 334
io.rewind, 334
io.seek, 334
io.setvbuf, 335
io.skiplines, 335
io.sync, 335, 336
io.tmpfile, 336
io.toend, 336
io.unlock, 336
io.write, 169, 336
io.writefile, 338
io.writeline, 169, 336
iqr, 264
irem, 264
isboolean, 187
iscomplex, 187, 261, 265
isequal, 187
isint, 187, 265
isnegative, 188, 265
isnegint, 188, 265
isnonneg, 188, 265
isnonnegint, 188, 265
isnumber, 188, 265

isnumeric, 188, 266
ispair, 188

isposint, 188, 265, 266
ispositive, 189, 266
isreg, 189

isseq, 189

isstring, 189

isstructure, 189

istable, 189

join, 88, 99, 213, 232, 241
Idexp, 266

left, 102, 104, 189
linalg.add, 291
linalg.augment, 291
linalg.backsub, 291
linalg.backsubs, 292
linalg.checkmaitrix, 292
linalg.checksquare, 292
linalg.checkvector, 292
linalg.coldim, 292
linalg.column, 292
linalg.crossprod, 293
linalg.det, 293
linalg.diagonal, 293
linalg.dim, 293
linalg.dotprod, 293
linalg.forsub, 293
linalg.getdiagonal, 294
linalg.gsolve, 294
linalg.hiloert, 294
linalg.identity, 294
linalg.inverse, 294
linalg.isantisymmetric, 294
linalg.isdiagonal, 294
linalg.isidentity, 295
linalg.ismatrix, 295
linalg.issquare, 295
linalg.issymmetric, 295
linalg.isvector, 295
linalg.ludecomp, 295
linalg.maeq, 296
linalg.matrix, 295
linalg.meeq, 296
linalg.mmap, 296, 300
linalg.mmul, 296
linalg.mulrow, 296
linalg.mulrowadd, 296
linalg.mzip, 296, 297
linalg.norm, 297
linalg.rowdim, 297
linalg.ref, 297
linalg.scalarmul, 298

560 Index

linalg.scale, 298 math.morton, 273
linalg.stack, 298 math.ndigits, 273
linalg.sub, 299 math.nextafter, 273
linalg.swapcol, 298 math.nextprime, 274
linalg.swaprow, 298 math.norm, 274
linalg.trace, 299 math.prevprime, 274
linalg.franspose, 299 math.random, 274
linalg.vaeq, 299 math.randomseed, 274
linalg.vector, 299 math.splitdms, 275
linalg.veeq, 300 math.todecimal, 275
linalg.vmap, 300 math.toradians, 275
linalg.vzip, 300 math.tosgesim, 275
linalg.zero, 300 math.tworaised, 275
list.append, 247 max, 190
list.iterate, 248 mdf, 267
llist.list, 248 min, 190
llist.listtotable, 248 minus, 60, 88, 94, 99, 107, 235, 239,
list.prepend, 248 244, 475
list.purge, 249 modf, 267
list.put, 249 nan, 267
list.replicate, 249 net.accept, 369
In, 65, 266 net.address, 370
Ingamma, 65, 266 net.admin Table, 369
load, 189 net.bind, 370
loadfile, 190 net.block, 370
loadstring, 190 net.close, 370
log, 266 net.closewinsock, 370
log10, 267 net.connect, 371
log2, 267 net.listen, 371
lower, 71, 213 net.lookup, 372
map, 99, 107, 190, 214, 232, 237, 241, net.open, 372

245, 472 net.opensockets, 372
mapm Package Functions, 276 net.openwinsock, 373
math.arccosh, 270 net.receive, 373
math.ceillog2, 270 net.remoteaddress, 374
math.ceilpow?2, 270 net.send, 374
math.convertbase, 270 net.shutdown, 375
math.copysign, 270 net.smallping, 375
math.dd, 271 net.survey, 376
math.dms, 271 net.wget, 376
math.expminusone, 271 next, 191
math.fpbtoint, 272 not, 60, 80, 87
math.fraction, 271 nreg, 191
math.gcd, 272 nseq, 192
math.inttofplo, 272 numeric, 267
math.isordered, 272 ops, 143, 192
math.isprime, 272 or, 60, 79
math.lcm, 272 os.battery, 379
math.Inplusone, 272 0s.beep, 379
math.log2exp, 273 os.cdrom, 379
math.max, 273 0s.chdir, 380

math.min, 273 os.computername, 380

agena >>

561

0s.cpuinfo, 380
os.cpuload, 381
os.curdir, 381
os.curdrive, 381
0s.date, 381
os.datetosecs, 382
os.difffime, 382
0s.drives, 382
0s.drivestat, 382
os.endian, 383
0s.environ, 383
os.execute, 383
0s.exists, 383
os.exit, 383
os.fattrib, 383
os.fcopy, 384
os.freemem, 385
os.fstat, 385
0s.getenv, 386
0s.iSANSI, 386
os.ismounted, 386
os.isremovable, 386
0s.isUNIX, 387
os.isvaliddrive, 387
os.list, 387
os.listcore, 387
0s.login, 388
os.memstate, 388
0s.mkdir, 389
0s.mousebuttons, 389
0s.move, 389
0s.now, 389

0s.pid, 390
os.readlink, 390
os.remove, 390
os.rmdiir, 390
0s.screensize, 390
os.secstodate, 391
0s.setenv, 391
os.setlocale, 391
0s.settime, 391
0s.symlink, 391
0s.system, 392
os.fime, 392
os.tmpname, 393
os.uptime, 393
os.wait, 393
package.checkclib, 400
package.loadclib, 400
package.loaded, 400
package.readlibbed, 400
pop, 101

print, 42, 193

printf, 193

proot, 267

protect, 140, 194

purge, 89, 194, 472

put, 89, 195

gsadd, 88, 195, 232, 241, 291

rawequal, 195

rawget, 195

rawset, 195

read, 196

readlib, 36, 400

recip, 268

recurse, 197

remove, 198, 232, 237, 241, 472

replace, 71,73, 214

restart, 198

right, 102, 104, 199

root, 268

roundf, 268

rable.defaults, 157, 401

rable.rdelete, 158, 401

rnable.rememiber, 155, 198, 401

nable.rget, 1568, 401, 402

rable.rinit, 158, 402

rnable.rmode, 158, 402

rable.roinit, 158, 402

rable.rset, 158, 403

run, 199

sadd, 88, 199, 233, 241

save, 200

sec, 268

sech, 268

select, 200, 233, 238, 241, 472

selectremove, 201, 233, 238, 241, 473

seq, 95

setbit, 201

sethigh, 64, 268

setlow, 64, 268

setmetatable, 100, 104, 108, 159, 202

seftype, 96, 100, 102, 104, 145, 202

shift, 63, 257

sign, 65, 269

sin, 65, 269

sinh, 65, 269

size, 71, 88, 94, 99, 107, 202, 214, 233,
238, 242, 245, 473

skycrane.bagtable, 419

skycrane.counter, 419

skycrane.dice, 420

skycrane.enclose, 420

skycrane.fcopy, 420

562

Index

skycrane.getlocales, 420
skycrane.iterate, 420
skycrane.move, 421
skycrane.readcsv, 421
skycrane.removedquotes, 421
skycrane.scribe, 421
skycrane.sorted, 423
skycrane.stopwatch, 423
skycrane.tee, 423
skycrane.tocomma, 424
skycrane.todate, 424
skycrane.fimpath, 424
sort, 88, 99, 107, 203, 233, 242, 473
sorted, 203, 233, 242, 473
split, 71, 212

sqrt, 65, 269

stats.acf, 302

stats.acv, 302

stats.ad, 302
stats.amean, 303
stats.cdf, 304
stats.chauvenet, 304
stats.colnorm, 305
stats.countentries, 305
stats.cumsum, 305
stats.dobscan, 306
stats.ema, 306
stats.extrerna, 307
stats.fprod, 307
stats.fsum, 308
stats.gema, 308
stats.gini, 309
stats.gmean, 309
stats.gsma, 310
stats.gsmm, 310
stats.herfindahl, 310
stats.hnmean, 310
stats.ios, 311

stats.igr, 311
stats.issorted, 312
stats.kosumdata, 312
stats.mad, 312
stats.mean, 313
stats.meanmed, 313
stats.median, 313
stats.minmax, 313
stats.mode, 314
stats.moment, 314
stats.nde, 314

stats.ndf, 314
stats.neighbours, 315
stats.numbcomb, 315

stats.numbperm, 315
stats.obcount, 315
stats.obpart, 316
stats.pdf, 317
stats.percentile, 318
stats.prange, 318
stats.gmean, 318
stats.quartiles, 318
stats.rownorm, 319
stats.scale, 319
stats.sd, 319
stats.skewness, 320
stats.sma, 320
stats.smallest, 321
stats.smm, 321
stats.sorted, 322
stats.ssd, 322
stats.sum, 323
stats.sumdata, 323
stats.tovals, 324
stats.timmean, 324
stats.var, 324
stats.zscore, 325
strings.align, 215
strings.capitalise, 215
strings.diamap, 216
strings.dleven, 216
strings.dump, 216
strings.fields, 216, 225
strings.find, 73, 74, 217
strings.format, 217
strings.glob, 217
strings.gmatch, 218
strings.gmatches, 218
strings.gsub, 218
strings.hits, 219
strings.include, 219
strings.isabbrev, 220
strings.isalpha, 220
strings.isalphanumeric, 220
strings.isalphaspace, 220
strings.isalphaspec, 221
strings.isblank, 221
strings.iscenumeric, 221
strings.isending, 221
strings.isfloat, 221
strings.isisoalpha, 222
strings.isisolower, 222
strings.isisoprint, 222
strings.isisospace, 222
strings.isisoupper, 222
strings.islatin, 222

agena >> 563

strings.islatinnumeric, 223 typeof, 96, 99, 104, 137, 206, 238, 242,
strings.isloweralpha, 223 245
strings.islowerlatin, 223 unassigned, 206
strings.ismagic, 223 union, 60, 87, 94, 100, 108, 235, 239,
strings.isnumber, 223 244, 475
strings.isnumberspace, 223 unique, 88, 99, 107, 206, 234, 242, 473
strings.isnumeric, 223 unpack, 99, 107, 207
strings.isolower, 224 upper, 71, 215
strings.isoupper, 224 utils.calendar, 409
strings.isspace, 224 utils.checkdate, 409
strings.isspec, 224 utils.decodebéb4, 409
strings.isupperalpha, 224 utils.decodexmil, 409
strings.isupperlatin, 224 utils.encodebb4, 411
strings.isutf8, 225 utils.encodexml, 411
strings.ljustify, 225 utils.findfiles, 411
strings.Irfrim, 225 utils.readini, 415
strings.Itrim, 225 utils.readxml, 416
strings.match, 75, 225 utils.singlesubs, 416
strings.mfind, 226 utils.writecsv, 416
strings.remove, 226 utils.writeini, 417
strings.repeat, 226 utils.writexml, 418
strings.reverse, 226 values, 207, 234, 242, 473
strings.rjustify, 226 whereis, 207
strings.rrim, 227 with, 36, 207, 400
strings.separate, 227 write, 209
strings.tobytes, 227 writeline, 209
strings.tochars, 227 xbase.attiib, 346
strings.tolatin, 227 xbase.close, 347
strings.toutf8, 228 xbase.field, 347
strings.transform, 228 xbase.fields, 347
strings.utf8size, 228 xbase. filepos, 347
strings.words, 228 xbase.header, 347
subs, 203, 233, 242, 473 xbase.ismarked, 347
subset, 60, 79, 87, 94, 99, 108, 235, xbase.isopen, 348

239, 244, 475 xbase.isvoid, 348
tables.allocate, 236 xbase.lock, 348
tables.entries, 236 xbase.new, 348, 349
tables.getsize, 236 xbase.open, 351
tables.indices, 236 xbase.purge, 351
tables.maxn, 236 xbase.readdbf, 352
tan, 65, 269 xbase.readvalue, 352
tanh, 65, 269 xbase.record, 352
fime, 204 xbase.records, 352
tfonumber, 214 xbase.sync, 353
top, 99, 107, 204 xobase.unlock, 353
toreg, 204 xbase.wipe, 353
toseq, 204 xbase.writeboolean, 353
toset, 204, 205 xbase.writedate, 353
tostring, 215 xbase.writedouble, 354
totable, 205 xbase.writefloat, 354
fim, 71, 215 xbase.writenumber, 354

type, 99, 104, 107, 137, 206, 245 xbase.writestring, 355

564

Index

xdf, 270

xml.close, 357

xml.decode, 356

xml.decodexml, 357

xml.getbase, 357

xml.getcallbacks, 357

xml.new, 357

xml.parse, 358

xml.pos, 358

xml.readxml, 357

xml.setbase, 358

xml.setencoding, 358

xor, 79

xpcall, 210, 408

xsubset, 60, 79, 87, 94, 235, 239, 244,
475

zip, 99, 107, 210, 234, 242, 474

G

Garbage Collection, 44, 59, 163, 184,
199, 277, 395, 401, 515
Global Environment, 35, 186
Graphics, 441

Arc, 444, 445, 453

Background Colour, 445

Circle, 445, 453

Colour Palette, 445, 446, 453

Colours, 442, 444, 446, 456

Elipse, 446, 453

File Formats, 447

Flushing, 445, 446

Font, 446, 455

Line, 446, 454

Line Dash, 445

Line Thickness, 456

Plotting, 441, 443, 449

Point, 449, 454

Rectangle, 452, 454, 455

Triangle, 455, 456

H

Haiku, 35, 36, 41, 43, 276, 380, 385,
388, 389, 392, 393, 523
Hardware

Battery Status, 379

Clock, 393

CPU, 380

Drives, 379, 381, 382, 386, 387

Endianness, 380, 383, 408
Keyboard, 170, 171, 327, 329
Memory, 385, 388
Mouse, 389
Screen, 390
Sound, 379
USB, 469
Hashes
Bob Jenkins' Hash, 478
Daniel J. Bernstein Hash, 477, 478
Fowler-Noll-Vo Hash, 478
MD5 Hash, 478
ndom Hash, 479
One-at-a-Time Hash, 478
Shift-Add-XOR Hash, 479
Home Directory, 517

/O, 168, 326, 339
Applications, 171, 172, 332, 383
Baseb4, 409, 411
Buffering, 335
Closing Files, 328
CSV Files, 172, 421
dBASE Il Files, 346
Flushing, 336
INI Files, 415, 417
io Library, 326
Keyboard, 170, 327, 333, 336
Locks, 330
Opening Files, 327
Output, 193, 336, 421
Text Files, 168, 169, 333, 334
Windows Clipboard, 328, 333
XML Files, 172, 357, 409, 411, 416
if Operator, 115
if Statement, 47, 113
elif Clause, 113, 114
else Clause, 113, 114
onsuccess Clause, 113, 114, 115
import/alias Statement, 51
inc Statement, 64
infinity, 526
INI
Reading & Writing Initialisation Files, 172
Initialisation, 35, 36, 153, 193, 199, 208,
521, 523
Input
(please see 1/0O), 168

agena >>

565

Input Conventions, 41
insert Statement, 45, 84, 98, 99
Installation

DOS, 34

Haiku, 35

Linux, 31

Mac OS X, 35

OS/2 Warp 4, 34

Solaris 10 & OpenSolaris, 31

UNIX Dependencies, 31

Windows Binary Installer, 32

Windows Portable Edition, 33
Internet

(please see Network), 364
ISO 8859/1 Latin-1, 222
lterator, 124, 166, 419, 420

K
Keywords, 56

L

LANs
(please see Network), 364
Latin-1/15
(please see Strings), 215
Libraries
ads Library, 432
astro Library, 428
bags Library, 250
binio Library, 339
calc Library, 278
clock Library, 425
cordic Library, 467
coroutine Library, 404
debug Library, 405
divs Library, 463
environ Library, 394
fractals Library, 457
gdi Library, 441
Initialisation, 51
io Library, 326
libusb Binding, 469
linalg Library, 289
list Library, 247, 477
mapm Library, 276
net Library, 364
os Library, 378

rtable Library, 401
skycrane Library, 419
stats Library, 301
strings Library, 215
tables Library, 236
utils Library, 409
xBase Library, 346
xml Library, 356
library.agn, 36, 193, 216, 518, 522
Licence, 548
Linear Algebra, 289
Back Substitution, 290, 294
Backward Substitution, 293
Cross Product, 290, 293
Determinant, 293
Diagonal, 293, 294
Equality Check, 296, 299, 300
Forwardward Sulbstitution, 291
Gaussian Elimination, 291, 293, 294
Hilbert Matrix, 294
|dentity Matrix, 294
Inverse Matrix, 294
LU Decomposition, 295
Matrix, 295
Matrix Multiplication, 296
Norm, 297
Normalisation, 298
Reduced Row Echelon Form, 297
Scalar Multiplication, 298
Solving Linear Equations, 295
Trace, 299
Transpose, 299
Vector, 299
Vector Dot Product, 293
Zero Vector, 300
Linked Lists, 173, 247, 477
Linux, 31, 216, 276, 327, 329, 346, 362,
364, 387, 441, 457, 523, 527, 546
Locale, 391, 420
Loops, 47, 117, 132, 146, 148
break Statement, 49, 120, 126
Control Variables, 121, 122
Counting Backwards, 120
do/as Loops, 48, 118
do/od Loops, 119
do/until Loops, 118
for/as Loops, 49, 125
for/downto Loops, 121
for/in Loops, 121
for/to Loops, 119
for/until Loops, 49, 125

566

Index

for/while Loops, 124
Interruption, 138
[teration Over Procedures, 124
[teration Over Sequences, 122
lteration Over Sets, 123
[teration Over Strings, 123
lteration Over Tables, 121
Key ~ Value Pairs, 121
keys Keyword, 122
redo Statement, 127
relaunch Statement, 127
Round-Off Errors, 121
skip Statement, 48, 126
to/do Loops, 121
while Loops, 117

Luq, 23

M

Mac, 35, 36, 41, 43, 276, 329, 346, 362,

364, 380, 385, 388, 389, 392, 393, 441,
457, 461, 521, 523, 527, 546
Maple V Release 3, 26
Mapping & Zipping, 90, 190, 210, 214,
232, 234, 237, 241, 242, 245, 296, 297,
300, 474
Matrices, 232, 289, 295
Memory, 385, 398
Metamethods, 158, 186, 195, 202, 515,
516

Protecting, 163

Weak References, 164
Multisets, 55, 250, 419

N

Names, 56

nargs, 135

Network, 364
Accepting Connections, 365, 369
Administrative Information, 369
Bi-directional Connections, 367
Binding Sockets, 365, 370
Black and White Lists, 368, 369, 371
Blocking Mode, 370
Closing Connections, 365, 370
Connecting to a Server, 366, 371
Creating Sockets, 364, 372
HTTP, 376

Listening for Incoming Connections,
365, 372
Lookups, 372
Maximum Number of Sockets, 369
Ping, 375
Receiving Data, 365, 373
Sending Data, 366, 374
Socket Activities, 376
Socket Status Information, 366, 372
Sockets, 364
Windows & Winsock, 370, 373
null, 44, 55, 59, 79, 121
Numibers, 42, 55, 60, 63, 65, 137, 170,
188, 206, 215, 217, 265, 266
Abbreviations, 61
Binary, 61
Conversion to String, 215
Decimal Commaq, 424
Hexadecimal, 61
Octal, 61
Scientific Notation, 61

O

Opening Files
Files, 329
OpenSolaris, 31, 387
Operating System Access
os Library, 378
Waiting, 393
Operators
Binary, 515
Logical, 80
Unary, 62, 66, 515
0S/2, 385
(olease see eComsStation), 34
Output
Formatting, 193, 217
printf Function, 193, 217
Printing Results, 41, 42, 148, 193
Prinfing Tables, 81, 193
Writing to Console or File, 209, 423
Writing to CSV Files, 416
Writing to DBF Files, 353
Writing to XML Files, 418

P
Packages, 150, 151

agena >>

567

Agena Environment, 394
Algebra, 253, 276
Analysis, 278

Arbitrary Precision, 276
Astronomy, 428

Bags, 250

Basic Library, 179

Binary I/O, 339
Calculus, 278

Clock, 425

Coroutines, 404
Databases, 346, 432
Fractals, 457

Fractions, 463
Graphics, 441

gzip Compression, 362
/O, 326

Initialisation, 51, 400
Initialisation Message, 1563
Initialisation Procedure, 154
Linear Algebra, 289
Linked Lists, 247, 477
Modules, 400

Multisets, 250
Networking via IPv4, 364
Operating System, 378
readlib Function, 400
Reqisters, 471
Remember Tables, 401
Sequences, 240

Sets, 237, 245
Sexagesimals, 425
Statistics, 301

Strings, 211

Tables, 231

Utilities, |, 409

Utilities, II, 419

with Function, 183, 207
XML Parser, 356

Pairs, 47, 85, 60, 102, 136, 137, 1588,

183, 188
Assignment, 47, 102
Colon Operator, 102
Deep Copying, 245
Indexing, 102
left & right Operators, 102
Operators & Functions, 104, 108
Size, 245
Type, 245
User-defined Type, 245
pop Statement, 98, 99, 100, 107
Precedence, 60, 66

Associativity, 60

Procedures, 49, 55, 124, 131, 137, 145

Arguments, 132, 134, 136

Attributes, 395

Closures, 166

Double Colon Notation, 137, 139

Error Handling, 137, 186, 194

Exception Handling, 140, 194, 210

Extending Built-in Functions, 163, 165

Global Variables, 134, 396

[terator Functions, 124, 166

Local Variables, 132, 146, 406

Loops, 148

Metamethods, 158, 406

Multiple Returns, 142

nargs, 135

Numlber of Arguments Passed, 135

Optional Arguments, 134, 136, 183

Parameters, 131, 134

Predefined Results, 157

Protected Calls, 140

Remember Tables, 154

Returning Procedures, 144

Returns, 49, 131, 144

Sandboxes, 149

Scoping Rules, 146

Shortcut Definition, 50, 145

Summary, 168

Type Checking, 137, 139, 140, 146

User Information, 398

varargs System Table, 135, 136

Variable Number of Arguments, 135,
145

Programmes, 50

R

Running, 50, 189, 199
Saving, 50

Registers, 104, 189

Creation, 191
Deletion, 473
Entries, 473
Equality, 474
Indexing, 472
Inequality, 474
nreg Function, 191
Numeric Registers, 191
Set Operations, 475
Size, 473

Subset Check, 475

568

Index

Regular Expressions, Lua-style
Examples, 74

Remember Tables, 154
Functions, 158, 401, 402
Read-Only, 156
Standard, 155

Replacing
within Strings, 214, 218, 220, 226
within Structures, 90, 194, 195, 232, 233,

237, 241, 242, 472, 473

restart Statement, 43, 198, 397

return Statement, 131

rotate Statement, 101

S

Sandboxes, 149
Scope, 146, 147, 165, 166
Block, 146
scope Keyword, 147, 165
Searching
in Files, 329
in Strings, 71, 72, 73, 74, 212, 213, 219,
220, 225, 226, 228
in Structures, 87, 90, 94, 99, 104, 107,
185, 187, 197, 198, 200, 201, 207,
217,218, 233, 236, 238, 239, 241,
243, 246, 471, 472, 473, 475
Sequences, 46, 55, 87, 89, 95, 101, 122,
137,158, 170, 189
Assignment, 46, 95
Atftributes, 395
bottom Operator, 100
Counting Items, 185, 305
create Statement, 97, 101
Creation, 192
Deep Copying, 99, 103, 107
delete Statement, 97
Deletion, 206, 242
Duplicate Entries, 206
Entries, 143, 192, 207, 242
Equality, 243
Indexing, 95, 241
Indices, 207
Inequality, 243
insert Statement, 97
Insertion and Deletion, 97
nseq Function, 192
Numeric Sequences, 192
Operators & Functions, 100

pop Statement, 98, 100
Read-Only, 162
Self-Reference, 98
seq Operator, 95
Set Operations, 243, 244
Size, 99, 107, 202, 242
Sorting, 99, 107, 203, 312
Subset Check, 244
Substitution, 203
top Operator, 100
Weak Ones, 164
Sets, 46, 55, 87, 92, 101, 123, 137, 158,
170
Assignment, 46, 92
Affributes, 394, 395
Bags, 250
Counting ltems, 185, 231
create Statement, 93
Deep Copying, 94, 237
delete Statement, 93
insert Statement, 93
Multisets, 250
Operators, 94
Read-Only, 163
Self-Reference, 94
Size, 94, 202, 238
Substitution, 203
Short-Circuit Evaluation, 80
Size
Files, 331
Sockets
(olease see Network), 364
Solaris, 31, 43, 216, 276, 327, 329, 346,
362, 364, 441, 457, 484, 523, 527, 546
Sorting, 203, 322
Check, 312
Destructive, 203, 233, 242
Non-destructive, 203, 242, 322, 423
Quicksort, 322
Sound, 379
Sparc, 26, 31, 445
Stack Programming, 100
bottom Operator, 100
duplicate Topmost ltem, 101
exchange Topmost Items, 101
insert Statement, 100
pop Operator, 101
pop Statement, 100
rotate Statement, 101
top Operator, 100

agena >>

569

Statements

Assignment, 56

break Jump Control, 126

case Condition, 116

clear Deletion, 58

create dict Initialisation, 86, 101
create sequence Initialisation, 97, 101
create set Initialisation, 93, 101
create table Initialisation, 85, 101
dec Decrementation, 64

delete Data Removal, 85, 93, 98
div Division, 65

do/as Loop, 118

do/od Loop, 118

do/until Loop, 118

duplicate Sequence Elements, 101
enum Enumeration, 58
exchange Sequence Elements, 101
for/as Loop, 125

for/in Loop, 121, 122, 123, 124
for/to Loop, 119

for/until Loop, 125

for/while Loop, 124

if Condition, 113

inc Incrementation, 64

insert Data Entry, 84, 93, 98
insert Stack tem Entry, 100

local Declaration, 132

mul Multiplication, 65

pop Stack ltem Deletion, 100
redo Jump Control, 127
relaunch Jump Control, 126
rotate Structure Elements, 101
scope Statement, 147

skip Jump Control, 126

tfry/catch Error Interception, 141
when Clause, 126

while Loop, 117

Statistics, 301

Absolute Deviation, 302
Autocorrelation, 302

Clusters, 306

Combinations, 259, 315
Cumulative Density Function, 304
Cumulative Sum, 305
Exponential Moving Average, 306, 308
Geometric Mean, 309

Harmonic Mean, 310
Herfindahl-Hirschman index, 310
Interquartile Range, 311

Local Extrema, 307

Mean, 313, 324

Mean Deviation, 302
Median, 313
Median Absolute Deviation, 312
Mode, 314
Moment, 314
Neighbourhoods, 315
Normalisation, 305, 319
Observation, 315
Outlier, 304, 318
Percentile, 318
Permutations, 315
Probability Density Function, 317
Quadratic Mean, 318
Sample Standard Deviation, 322
Simple Moving Average, 310, 320
Simple Moving Median, 310, 321
Skewness, 320
Standard Deviation, 319
Standard Normal Distribution, 317
Standard Score, 325
Summation Function, 195, 199, 202,
232, 233, 312, 323
Variance, 324
Volatility, 311
Z-Score, 325
stdin, stdout, stderr, 171, 327
Streams
stdin, stdout, stderr, 171
Strings, 44, 55, 68, 123, 137, 160, 189,
206, 211
Alignment, 215, 225, 226
ASCIl Code, 71,72, 171, 181, 213, 227,
329
Captures, 230
Character Classes, 229
Checks, 73, 220, 221, 222, 223, 224,
225
Concatenation, 44, 60, 88, 212, 213,
220, 226, 232, 241, 515
Conversion to Number, 214
Counting, 219, 228
Damerau-Levenshtein, 216
Deletion, 226
Diacritics, 212
Diacritics and Ligatures, 216
Empty Strings, 68
Escape Sequences, 69, 525
Formatting, 217
Insertion, 220
ISO 8859/1 Latin-1, 222, 224, 227, 228
Lower & Upper Case, 72, 212, 213, 215,
223, 224

570 Index

liboname, 35, 36, 152, 196, 197, 199,
208, 397, 517, 521, 524

mainlibname, 35, 36, 196, 199, 208,
397,517

Setting Environment Variables, 391

Mapping a Function, 214, 228

Multiline Strings, 68

Operators, 71

Pattern Items, 230

Pattern Matching, 74, 218, 225, 229

Repetition, 226

Search & Replace Functions, 44, 71, 72,
73,78,212, 213, 214, 216, 217, T
218, 220, 221, 225, 226, 227, 416

Size, 72, 214, 228 Tables, 45, 65, 81, 87, 89, 91, 101, 121,

137,151, 154,158, 170, 173, 189, 231

Special Characters, 221, 224
Splitting into Characters, 204, 205
Splitting info Words, 71, 212, 227
strings Library, 215
Substrings, 44
Timming, 71, 215, 225, 227
UTF-8, 225, 227, 228
Structures, 55
Read-Only, 162
Recursive Descent, 187, 197
Weak Ones, 164
Substrings, 44
Sun Microsystems, 26
System Information, 388, 389, 390, 392
System Settings, 81, 396, 517, 522
System Variables, 35, 386, 517
G, 151,186, 198,518
_origG, 198
_PROMPT, 518
_RELEASE, 197
AGENAPATH, 32, 34, 35, 196
ans, 43
environ.buffersize, 341
environ.homedir, 36, 198, 517
environ.kernel/debug, 397
environ.kernel/digits, 397
environ.kermel/emptyline, 397
environ.kernel/gui, 397
environ.kernel/libonamereset, 397
environ.kernel/longtable, 397
environ.kemel/promptnewline, 397
environ.kernel/signeddigits, 398
environ.kemel/zeroedcomplex, 398
environ.withprotected, 208
environ.withverbose, 208
Getting Environment Variables, 383
io.stderr, 171
jo.stdin, 171
io.stdout, 171
lasterror, 140, 194

Arrays, 81

Assignment, 45, 81, 86, 236, 476
Attributes, 394

bottom Operator, 100
Counting ltems, 185, 231, 305
create Statement, 84, 101
Cycles, 92

Deep Copying, 91, 231

delete Statement, 85

Deletion, 85, 89, 90, 194, 206, 234, 472
Dictionaries, 86

Duplicate Entries, 185, 206, 471
Empty Tables, 84

Entries, 90, 143, 192, 207, 232, 236
Equality, 234

Functions, 90, 198, 200, 203
Holes, 85, 89, 236, 501

Holes, Removing, 206, 234
Indexing, 45, 82, 83, 232
Indices, 207, 236, 399
Inequality, 235

insert Statement, 84

Insertion, 84, 89, 90, 195, 236
Key ~ Value Pairs, 86

Linked Lists, 173

Nested Tables, 82

Operators, 88

pop Statement, 100
Read-Only, 162

References, 91, 173, 396
Self-Reference, 92

Set Operations, 235

Size, 85, 202, 233, 236, 501
Sorting, 88, 203, 312

Sparse Tables, 185

Subset Check, 235
Substitution, 203

tables Library, 236

top Operator, 100

Weak Ones, 164

agena >>

571

TCP
(please see Network), 364
Threads, 404
TI-30, 271, 275
Tokens, 56, 70
fry/catch Statement, 141
Types, 55, 104, 109, 137, 139, 184, 187,
202, 206, 489
Double Colon Notation, 139
Lightuserdata, 109
Threads, 109
Userdata, 109
User-Defined, 96, 102, 145

U

Unassignment, 44

clear Statement, 58, 184
undefined, 526
UNIX, 36, 41, 43, 50, 196, 207, 330, 332,
340, 348, 379, 380, 385, 387, 388, 389,
392, 393, 400, 438, 445, 450, 521, 5623
UTF-8

(please see Strings), 215

\Y%

Values
Assigned Names, 181, 206
Comparisons, 195, 234, 238, 243, 245,
246, 257, 474
Defining new Variables within
Procedures, 151
Reading Values from File, 196
Reading Values within Procedures, 151
Saving Values to File, 200
Vectors, 289, 299

w

while Loops, 48, 117
Windows, 32, 36, 41, 43, 50, 51, 196,
207, 216, 276, 327, 329, 330, 333, 340,
346, 348, 362, 364, 379, 380, 382, 384,
385, 387, 388, 389, 390, 392, 393, 400,
438, 441, 445, 450, 457, 461, 523, 527,
546

Clipboard, 328, 333

X

XBASE Files, 346
XML
Dealing with SOAP Messages, 150
expat Binding, 356
Reading XML Streams, 172, 356, 357,
409, 416
Writing XML Streams, 172, 411, 418

