
agenaagenaagenaagena >>>> > > > >

aaaa pppprogramming rogramming rogramming rogramming llllanguageanguageanguageanguage

pppprimer and rimer and rimer and rimer and rrrreferenceeferenceeferenceeference
for for for for vvvversion ersion ersion ersion 2.3.32.3.32.3.32.3.3

by alexander walz

december 05, 2014

agena Copyright 2006 to 2014 by alexander walz. bundeshauptstadt bonn.
All rights reserved.Portions Copyright 2006 Lua.org, PUC-Rio. All rights reserved.

None of the Agena project members or anyone else connected with this
documentation, in any way whatsoever, can be responsible for your use of the
information contained in or linked from it.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
manual, and the author was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

The latest release of Agena can be found at http://sourceforge.net/projects/agena.

This manual has been created with Lotus Word Pro 98 running on Sun Microsystems
VirtualBox and Microsoft Windows 2000, yWorks yEd Graph Editor 3.12.2, and PDF
Creator 1.2.3.

CreCreCreCredddditsitsitsits

The SThe SThe SThe Sourcesourcesourcesources

Agena has been developed on the ANSI C sources of Lua 5.1, written by
Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. Used
by their kind permission back in 2006.

Chapter 7: Standard Library documentationChapter 7: Standard Library documentationChapter 7: Standard Library documentationChapter 7: Standard Library documentation

Many portions of Chapter 7 have been taken from the Lua 5.1 Reference
Manual written by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes. Used by kind permission.

environ.anamesenviron.anamesenviron.anamesenviron.anames

environ.anamesenviron.anamesenviron.anamesenviron.anames has been invented by Joe Riel, put to the Maple community
back in the early nineties.

case ofcase ofcase ofcase of statement

The original code has been written by Andreas Falkenhahn and posted to the
Lua mailing list on September 01, 2004. In Agena, the functionality has been
extended to check multiple values in the ofofofof branches.

skipskipskipskip statement

The skipskipskipskip functionality for loops has been written by Wolfgang Oertl and posted to
the Lua Mailing List on September 12, 2005.

environ.environ.environ.environ.globalsglobalsglobalsglobals base library function

The original Lua and C code for environ.environ.environ.environ.globalsglobalsglobalsglobals has been written by David
Manura for Lua 5.1 in 2008 and published on www.lua.org. The C source has
been changed so that in Agena, C functions are no longer checked.

mmmmkkkkddddiriririr, cccchdirhdirhdirhdir, and rrrrmdirmdirmdirmdir functions in the osososos library

These functions are based on code taken from the `lposix.c` file of the POSIX
library written by Luiz Henrique de Figueiredo for Lua 5.0. These functions are
themselves based on the original ones written by Claudio Terra for Lua 3.x.

agenaagenaagenaagena >> 3

No automatic auto-conversion of strings to numbersNo automatic auto-conversion of strings to numbersNo automatic auto-conversion of strings to numbersNo automatic auto-conversion of strings to numbers

was inspired by Thomas Reuben's no_auto_conversion.patch available at
lua.org.

Kilobyte/Megabyte Kilobyte/Megabyte Kilobyte/Megabyte Kilobyte/Megabyte NumberNumberNumberNumber Suffix ('k', 'm') Suffix ('k', 'm') Suffix ('k', 'm') Suffix ('k', 'm')

taken from Eric Tetz's k-m-number-suffix.patch available at lua.org.

Binary and octal numbers Binary and octal numbers Binary and octal numbers Binary and octal numbers ('('('('0b0b0b0b', '', '', '', '0o0o0o0o')')')')

taken from John Hind's Lua 5.1.4 patch available at lua.org.

Integer divisionInteger divisionInteger divisionInteger division

taken from Thierry Grellier's newluaoperators.patch available at lua.org.

math.fractionmath.fractionmath.fractionmath.fraction

was originally written in ANSI C by Robert J. Craig, AT&T Bell Laboratories.

math.nextaftermath.nextaftermath.nextaftermath.nextafter

uses a modified version of the C function nextafter that has originally been
published by Sun Microsystems with the fdlibm IEEE 754 floating-point C library.
The author of the modifications is unknown, but the modified code can be
found at http://www.koders.com (file s_nextafter.c). See Appendix B3 for the
licence.

calc.diffcalc.diffcalc.diffcalc.diff

based on Conte and de Boor's `Coefficients of Newton form of polynomial of
degree 3`.

Advanced precision algorithmAdvanced precision algorithmAdvanced precision algorithmAdvanced precision algorithm used in forforforfor/to loopsto loopsto loopsto loops, calc.fsumcalc.fsumcalc.fsumcalc.fsum, linalg.trace,,,, nseqnseqnseqnseq,
stats.ameanstats.ameanstats.ameanstats.amean, skycrane.skycrane.skycrane.skycrane.councouncouncounterterterter, stats.cumsumstats.cumsumstats.cumsumstats.cumsum, and stats.sumstats.sumstats.sumstats.sum.

The method to prevent round-off errors in iterations with non-integral step sizes
has been developed by William Kahan and published in his paper `Further
remarks on reducing truncation errors` as of January 1965. Agena mostly uses a
modified version of the Kahan algorithm developed by Kazufumi Ozawa,

published in his paper `Analysis and Improvement of Kahan's Summation
Algorithm`.

calccalccalccalc.minimum.minimum.minimum.minimum, calc.maximumcalc.maximumcalc.maximumcalc.maximum

use the subroutine calc.fminbrcalc.fminbrcalc.fminbrcalc.fminbr originally written by Dr. Oleg Keselyov in ANSI C
which implements an algorithm published by G. Forsythe, M. Malcolm, and C.
Moler, `Computer methods for mathematical computations`, M., Mir, 1980,
page 202 of the Russian edition.

besseljbesseljbesseljbesselj, besselybesselybesselybessely

The complex versions of the functions use procedures originally written in
FORTRAN by Shanjie Zhang and Jianming Jin, Computation of Special Functions,
Copyright 1996 by John Wiley & Sons, Inc. Used by Jianming Jin's kind
permission.

GraphicsGraphicsGraphicsGraphics

The graphical capabilities of Agena in the Solaris, Linux, Mac, and Windows
versions have been made possible through a Lua binding of Alexandre Erwin
Ittner to the g2 graphical library which has been written by Ljubomir Milanovic
and Horst Wagner.

ADS packageADS packageADS packageADS package

The core ANSI C functions to create, insert, delete and close the database have
been written by Dr. F. H. Toor.

MAPMMAPMMAPMMAPM binding binding binding binding

Mike's Arbitrary Precision Math Library has been written by Michael C. Ring. See
Appendix B6 for the licence.

The MAPM Agena binding is an adaptation of the Lua binding written by Luiz
Henrique de Figueiredo, put to the public domain.

Year 2038 fix for 32-bit machinesYear 2038 fix for 32-bit machinesYear 2038 fix for 32-bit machinesYear 2038 fix for 32-bit machines

was written by Michael G. Schwern, and has been published under the MIT
licence at http://github.com/schwern/y2038.

agenaagenaagenaagena >> 5

gzipgzipgzipgzip package package package package

and its description of the binding has originally been written and published
under the MIT licence by Tiago Dionizio for Lua 5.0.

Internal string concatenationInternal string concatenationInternal string concatenationInternal string concatenation

Some internal initialisation routines use a C function written by Solar Designer
placed in the public domain.

Functions arctanarctanarctanarctan, expx2expx2expx2expx2, gammagammagammagamma, lngammalngammalngammalngamma, calc.dawsoncalc.dawsoncalc.dawsoncalc.dawson, calc.dilogcalc.dilogcalc.dilogcalc.dilog, calc.Cicalc.Cicalc.Cicalc.Ci,
calc.Chicalc.Chicalc.Chicalc.Chi, calc.fresnelccalc.fresnelccalc.fresnelccalc.fresnelc , calc.fresnelscalc.fresnelscalc.fresnelscalc.fresnels , calc.calc.calc.calc.PsiPsiPsiPsi, calc.Sicalc.Sicalc.Sicalc.Si, calc.Shicalc.Shicalc.Shicalc.Shi, and calc.Ssicalc.Ssicalc.Ssicalc.Ssi

use algorithms written in ANSI C by Stephen L. Moshier for the Cephes Math
Library Release 2.9 as of June, 2000. Copyright by Stephen L. Moshier.

erferferferf, erfcerfcerfcerfc, calc.intdecalc.intdecalc.intdecalc.intde, calc.intdeicalc.intdeicalc.intdeicalc.intdei , calc.intdeocalc.intdeocalc.intdeocalc.intdeo

These functions use procedures originally written in C by Takuya Ooura, Kyoto,
Copyright(C) 1996 Takuya OOURA: "You may use, copy, modify this code for any
purpose and without fee."

math.randommath.randommath.randommath.random

The algorithm used to compute random numbers has been written by George
Marsaglia and published on en.wikipedia.org.

ioioioio....anykeyanykeyanykeyanykey

The Linux version uses code written by Johnathon in 2008 which was published
under the MIT licence.

xBxBxBxBASEASEASEASE file support file support file support file support

The xbasexbasexbasexbase package is a binding to xBASE functions written by Frank Warmerdam
in ANSI C for the Shapelib 1.2.10 library. The Shapelib library has been published
under the MIT licence.

6 Contents

AgenaEditAgenaEditAgenaEditAgenaEdit GUI GUI GUI GUI

The GUI is based on an editor published under the GPL licence and written by Bill
Spitzak and others for FLTK 1.3 http://www.fltk.org. Thanks to Albrecht Schlosser for
making the editor work with Agena.

The net packageThe net packageThe net packageThe net package

Most of the functions are based on Jürgen Wolf’s C examples published in his
book `C von A bis Z`, 3rd Edition, Galileo Computing, Bonn, 2009.

`Beej's Guide to Network Programming, Using Internet Sockets`, written by Brian
“Beej Jorgensen” Hall, was of great help. Some of the netnetnetnet functions use part of
Mr. Hall's public domain code published in his tutorial. Copyright © 2009 Brian
“Beej Jorgensen” Hall.

Studying the code of the LuaSocket 2.0.2 package, Copyright © 2004-2007 by
Diego Nehab, and published under the MIT licence, was very worthwhile.

strings.dlevenstrings.dlevenstrings.dlevenstrings.dleven

The implementation of Damerau-Levenshtein Distance is a blend of C code
written by Lorenzo Seidenari and Anders Sewerin Johansen.

utils.readxmlutils.readxmlutils.readxmlutils.readxml

The original version of the core XML parser has been written in Lua 5.1 by
Roberto Ierusalimschy, published on LuaWiki.

utils.utils.utils.utils.decodedecodedecodedecodeb64b64b64b64 and utils.utils.utils.utils.encodeencodeencodeencodeb64b64b64b64

The Base64 functions have been originally written in pure ANSI C by Bob Trower,
Copyright (c) 2001, published under the MIT licence.

printfprintfprintfprintf

was taken from the compat.lua file shipped with the Lua 5.1 sources published
under the MIT licence.

.. operator

has been written by Sven Olsen and published in Lua Wiki/Power Patches.

agenaagenaagenaagena >> 7

copycopycopycopy

The deep copying mechanism has originally been written by Kurt Jung and by
Aaron Brown for Lua, and published in their book 'Beginning Lua Programming',
Wiley Publishing, Indianapolis, Indiana, 2007, page 151.

os.getenvos.getenvos.getenvos.getenv, os.setenvos.setenvos.setenvos.setenv, os.environos.environos.environos.environ

have been written by Mark Edgar, Copyright 2007, published under the MIT
licence, and were taken from http://lua-ex-api.googlecode.com/svn.

bags packagebags packagebags packagebags package

The idea and its core implementation - ported to C - has been taken from the
book `Programming in Lua` by Roberto Ierusalimschy, 2nd Edition, Lua.org, p.
102.

xml packagexml packagexml packagexml package

The xml package actually is the LuaExpat binding to the expat library with some
few Agena-specific non-OOP modifications. LuaExpat 1.0 was designed by
Roberto Ierusalimschy, André Carregal and Tomás Guisasola as part of the
Kepler Project which holds its copyright. The implementation was coded by
Roberto Ierusalimschy, based on a previous design by Jay Carlson.

LuaExpat development was sponsored by Fábrica Digital and FINEP.

bintersectbintersectbintersectbintersect , bminusbminusbminusbminus, bisequalbisequalbisequalbisequal, stats.obcountstats.obcountstats.obcountstats.obcount

The algorithm for binary comparison has been taken from Niklaus Wirth's book,
`Algorithmen und Datenstrukturen mit Modula-2`, 4th ed., 1986, p. 58.

linalg.mulrowlinalg.mulrowlinalg.mulrowlinalg.mulrow, linalg.mulrowaddlinalg.mulrowaddlinalg.mulrowaddlinalg.mulrowadd, stats.deltaliststats.deltaliststats.deltaliststats.deltalist, stats.cumsumstats.cumsumstats.cumsumstats.cumsum, stats.colnormstats.colnormstats.colnormstats.colnorm,
stats.rownormstats.rownormstats.rownormstats.rownorm, stats.sumstats.sumstats.sumstats.sum

These functions have been inspired by the deltaList, and cumulativeSum,
colNorm, rowNorm, mrow, and mrowdd functions available on the TI-Nspire™
CX CAS.

8 Contents

llllinalginalginalginalg....scalescalescalescale, stats.scalestats.scalestats.scalestats.scale

is a port of function REASCL, included in the ALGOL 60 NUMAL package
published by The Stichting Centrum Wiskunde & Informatica (Stichting CWI) (legal
successor of Stichting Mathematisch Centrum) at Amsterdam. Original authors:
T. J. Dekker, W. Hoffmann; contributors: W. Hoffmann, S. P. N. van Kampen.

osososos....nownownownow

uses C routines of the IAU Standards of Fundamental Astronomy (SOFA) Libraries,
See Appendix B5 for the licence.

Functions calc.clampedsplinecalc.clampedsplinecalc.clampedsplinecalc.clampedspline , calc.clampedsplinecoeffscalc.clampedsplinecoeffscalc.clampedsplinecoeffscalc.clampedsplinecoeffs , calc.interpcalc.interpcalc.interpcalc.interp ,
calc.nevillecalc.nevillecalc.nevillecalc.neville , calc.newtoncoeffscalc.newtoncoeffscalc.newtoncoeffscalc.newtoncoeffs , calc.noksplinecalc.noksplinecalc.noksplinecalc.nokspline , calc.noksplinecoeffscalc.noksplinecoeffscalc.noksplinecoeffscalc.noksplinecoeffs

use C++ routines (ported to C) provided or written by Professor Brian Bradie,
Department of Mathematics, Christopher Newport University, VA, to the course
`An Introduction to Numerical Analysis with Applications to the Physical, Natural
and Social Sciences`. There have been no copyright remarks, so at least
Agena's MIT licence is not applicable to the source files `interp.c` and
`interp.h`.

stats.smalleststats.smalleststats.smalleststats.smallest

is based on N. Devillard's C implementation of an algorithm published in various
books written by Niklaus Wirth, published for example in `Algorithmen und
Datenstrukturen mit Modula-2`. Mr. Devillard put his code in the public domain.

sssstringstringstringstrings....isiso*isiso*isiso*isiso* and strings.iso*strings.iso*strings.iso*strings.iso* functions

use ISO 8859/1 Latin-1 bit vector tables taken from the entropy utility ENT written
by John Walker, January 28th, 2008, Fourmilab, put in the public domain.

astroastroastroastro....moonmoonmoonmoonrisesetrisesetrisesetriseset

Uses C functions Copyright © 2010 Guido Trentalancia IZ6RDB. This program is
freeware - however, it is provided as is, without any warranty.

astroastroastroastro....phasephasephasephase

Uses C functions taken from: http://www.voidware.com/moon_phase.htm. There
have not been any copyright remarks.

agenaagenaagenaagena >> 9

astro.astro.astro.astro.sunrisesetsunrisesetsunrisesetsunriseset

Uses C functions written as DAYLEN.C, 1989-08-16. Modified to SUNRISET.C,
1992-12-01, (c) Paul Schlyter, 1989, 1992. Released to the public domain by
Paul Schlyter, December 1992.

astro.astro.astro.astro.ccccdatedatedatedate & astro.astro.astro.astro.jjjjdatedatedatedate

uses C routines of the IAU Standards of Fundamental Astronomy (SOFA) Libraries,
See Appendix B5 for the licence.

strstrstrstrings.ings.ings.ings.utf8sizeutf8sizeutf8sizeutf8size

of the core C code procedure has been written by mpez0, published at
StackOverflow.

strstrstrstrings.ings.ings.ings.isisisisutf8utf8utf8utf8

of the core C code procedure has been written by written by Christoph,
published on StackOverflow.

strstrstrstrings.ings.ings.ings.isisisisooootolatintolatintolatintolatin & strings.isotoutf8strings.isotoutf8strings.isotoutf8strings.isotoutf8

of the core C code procedures have been written by Nominal Animal published
on StackOverflow.

strstrstrstrings.ings.ings.ings.globglobglobglob

uses C code written by Arjan Kenter, Copyright 1995, Arjan Kenter.

ststststatsatsatsats....sortedsortedsortedsorted

uses an iterative Quicksort algorithm written by Nicolas Devillard in 1998, put to
the public domain.

////%, %, %, %, *%,*%,*%,*%, +%, -% +%, -% +%, -% +%, -% operators, math.ddmath.ddmath.ddmath.dd, math.dmsmath.dmsmath.dmsmath.dms, math.splitdmsmath.splitdmsmath.splitdmsmath.splitdms, polarpolarpolarpolar, stats.cdfstats.cdfstats.cdfstats.cdf,
stats.numbcombstats.numbcombstats.numbcombstats.numbcomb , stats.numbpermstats.numbpermstats.numbpermstats.numbperm , and stats.pdfstats.pdfstats.pdfstats.pdf

have been inspired by the TI™-30 ECO RS, TI™-30X Pro, and Sharp™ EL-W531XG
pocket calculators.

10 Contents

E

as a constant, defines the former Maple V Release 3 implementation of E =
exp(1) = 2.71828182845904523536.

Complex arithmeticComplex arithmeticComplex arithmeticComplex arithmetic

for various mathematical functions and operators has been implemented by
primarily using Maple V Release 3, and Maple V Release 4, and Maple 7.

ioioioio....getclipgetclipgetclipgetclip and io.putclipio.putclipio.putclipio.putclip

are based on C code written by banders7, published on Daniweb.

try/catchtry/catchtry/catchtry/catch statement

has been invented and written by Hu Qiwei for Lua 5.1 back in 2008, and was
extended for Agena.

debug.getinfodebug.getinfodebug.getinfodebug.getinfo

the 'a'/arity extension has been written by Rob Hoelz in 2012.

calccalccalccalc....polypolypolypolyfitfitfitfit & calc.linterpcalc.linterpcalc.linterpcalc.linterp

uses C code published by Harika in 2013 at http://programbank4u.blogspot.de.

Review of the Review of the Review of the Review of the AgenaAgenaAgenaAgena interpreter at the Web interpreter at the Web interpreter at the Web interpreter at the Web

Many thanks to softpedia.softpedia.softpedia.softpedia.comcomcomcom for the very kind critique and fine ranking.

linalg.detlinalg.detlinalg.detlinalg.det & linalg.inverselinalg.inverselinalg.inverselinalg.inverse

are based on C functions written by Edward Popko published on Paul Bourke's
website at http://paulbourke.net/miscellaneous.

redoredoredoredo & relaunchrelaunchrelaunchrelaunch

have been inspired by the Ruby programming language.

agenaagenaagenaagena >> 11

linalg.linalg.linalg.linalg.gsolvegsolvegsolvegsolve

is based on C functions written by Edward Popko and Alexander Evans; for the
former see the link above, and for the latter the following address:
http://www.dailyfreecode.com/code/basic-gauss-elimination-method-gauss-29
49.aspx.

calc.simaptivecalc.simaptivecalc.simaptivecalc.simaptive and linalg.linalg.linalg.linalg. ludecompludecompludecompludecomp

are based on C functions written by RLH, available at
http://www.mymathlib.com, Copyright © 2004 RLH. All rights reserved.

~=~=~=~=, approxapproxapproxapprox

use a numerical approximation method developed by Donald Knuth.

calc.calc.calc.calc.EiEiEiEi

uses a combination of C algorithms written by Stephen L. Moshier and RLH.

linalg.linalg.linalg.linalg.rrefrrefrrefrref

is based on a C# function published at http://rosettacode.org.

linalg.linalg.linalg.linalg.forsubforsubforsubforsub

is based on an algorithm explained by Timothy Vismor found on his site
http://vismor.com.

cordiccordiccordiccordic package package package package

is based on a C package written by John Burkardt, taken from
http://people.sc.fsu.edu/~jburkardt/c_src/cordic/cordic.c, with modifications
using Maple V Release 4 and TI-Nspire CX CAS. Sources provided separately.

libusblibusblibusblibusb binding

is based on lualibusb1 - Lua binding for libusb 1.0, written by Tom N Harris. See:
http://lualibusb1.googlecode.com.

12 Contents

statsstatsstatsstats....extremaextremaextremaextrema

is the Agena port of the `peakdet` function written by Eli Billauer for MATLAB.

mdfmdfmdfmdf, xdfxdfxdfxdf

have been inspired by the Sharp PC-1403H pocket computer.

os.cpuloados.cpuloados.cpuloados.cpuload & os.drivestatos.drivestatos.drivestatos.drivestat

The Windows version of os.cpuloados.cpuloados.cpuloados.cpuload and the UNIX version of os.drivestatos.drivestatos.drivestatos.drivestat have
been taken from Nodir Temirkhodjaev's LuaSys package.

utilsutilsutilsutils....readinireadinireadinireadini

uses modified C sources written by Nicolas Devillard for his iniparser 3.1
package.

Various Various Various Various eComStationeComStationeComStationeComStation - OS/2 - OS/2 - OS/2 - OS/2 systemnahesystemnahesystemnahesystemnahe functions functions functions functions

have been made possible by the website http://www.edm2.com/os2api.

llistllistllistllist package package package package

The C implementation has been accomplished by reading Michal Kottman's tip
at nabble.com on how to code new data structures using Lua's userdata.

stats.dbscanstats.dbscanstats.dbscanstats.dbscan & stats.stats.stats.stats.neighboursneighboursneighboursneighbours

The dbscan algorithm has been invented by Martin Ester, Hans-Peter Kriegel,
Jörg Sander, and Xiaowei Xu, published at University of Munich. The Agena port
is based on a Matlab implementation written by Peter Kovesi, Centre for
Exploration Targeting, The University of Western Australia, with stats.neighboursstats.neighboursstats.neighboursstats.neighbours a
C-based split-off.

hashes packagehashes packagehashes packagehashes package

uses code published by RSA Data Security, Inc. Copyright (C) 1990. All rights
reserved. For further credits, please see the hashes.c file in the Agena sources.

agenaagenaagenaagena >> 13

math.math.math.math.ceilpow2ceilpow2ceilpow2ceilpow2 and math.math.math.math.ilog10ilog10ilog10ilog10

use code presented by Sean Eron Anderson at his `Bit Twiddling Hacks`
webpage http://graphics.stanford.edu/~seander/bithacks.html.

os.cdromos.cdromos.cdromos.cdrom, os.ismountedos.ismountedos.ismountedos.ismounted , os.isremovableos.isremovableos.isremovableos.isremovable , os.isvaliddriveos.isvaliddriveos.isvaliddriveos.isvaliddrive

The Windows versions are based on code published at MSDN, page
http://support.microsoft.com/kb/165721#.

Finally, due to very kind help and feedback, and in chronological orderFinally, due to very kind help and feedback, and in chronological orderFinally, due to very kind help and feedback, and in chronological orderFinally, due to very kind help and feedback, and in chronological order

Many thanks to the Lua team at PUC-Rio, Brasil, and to Agena users in Israel, Italy,
Australia, Palestine, Poland, the eComStation - OS/2 community around the world,
and to many other users of various nations.

14 Contents

Table of ContentsTable of ContentsTable of ContentsTable of Contents

604.6 Arithmetic .
604.5 Precedence .
584.4 Deletion and the null Constant .
584.3 Enumeration .
564.2 Assignment .
564.1 Names, Keywords, and Tokens .
554 Data & Operations .

513.18 Using Packages .
503.17 Writing, Saving, and Running Programmes .
503.16 Comments .
493.15 Procedures .
473.14 Loops .
473.13 Conditions .
473.12 Pairs .
463.11 Sequences .
463.10 Sets .
453.9 Tables .
453.8 Booleans .
443.7 Strings .
443.6 Arithmetic .
443.5 Assignment and Unassignment .
433.4 Useful Statements .
423.3 Getting Familiar .
413.2 Input Conventions in AgenaEdit .
413.1 Input Conventions in the Console Edition .
413 Summary .

362.9 Installing Library Updates .
352.8 Agena Initialisation .
352.7 Haiku .
352.6 Mac OS X 10.5 and higher .
342.5 DOS .
342.4 eComStation and OS/2 Warp 4 .
322.3 Windows .
312.2 Linux .
312.1 Sun Solaris 10 .
312 Installing and Running Agena .

261.5 Origins .
261.4 History .
241.3 In Detail .
231.2 Features .
231.1 Abstract .
231 Introduction .

agenaagenaagenaagena >> 15

1265.2.11 Loop Jump Control .
1255.2.10 for/as & for/until Loops .
1245.2.9 for/while Loops .
1245.2.8 for/in Loops over Procedures .
1235.2.7 for/in Loops over Sets .
1235.2.6 for/in Loops over Strings .
1225.2.5 for/in Loops over Sequences .
1215.2.4 for/in Loops over Tables .
1215.2.3 for/downto Loops .
1195.2.2 for/to Loops .
1175.2.1 while Loops .
1175.2 Loops .
1165.1.3 case Statement .
1155.1.2 if Operator .
1135.1.1 if Statement .
1135.1 Conditions .
1135 Control .

1094.17 Other types .
1094.16 Exploring the Internals of Structures .
1044.15 Registers .
1024.14 Pairs .
1014.13 More on the create Statement .
1004.12 Stack Programming .
954.11 Sequences .
924.10 Sets .
914.9.5 Table References .
894.9.4 Table Functions .
874.9.3 Table, Set and Sequence Operators .
864.9.2 Dictionaries .
814.9.1 Arrays .
814.9 Tables .
794.8 Boolean Expressions .
744.7.8 Patterns and Captures .
734.7.7 Comparing Strings .
714.7.6 String Operators and Functions .
704.7.5 More on Strings .
704.7.4 Concatenation .
694.7.3 Escape Sequences .
684.7.2 Substrings .
684.7.1 Representation .
684.7 Strings .
664.6.6 Comparing Values .
654.6.5 Complex Math .
654.6.4 Mathematical Constants .
644.6.3 Increment, Decrement, Multiplication, Division .
624.6.2 Arithmetic Operations .
604.6.1 Numbers .

16 Contents

1736.25 Linked Lists .
1726.24.10 INI Files .
1726.24.9 dBASE III Files .
1726.24.8 XML Files .
1726.24.7 CSV Files .
1716.24.6 Interaction with Applications .
1716.24.5 Locking Files .
1716.24.4 Default Input, Output, and Error Streams .
1706.24.3 Keyboard Interaction .
1696.24.2 Writing Text Files .
1686.24.1 Reading Text Files .
1686.24 I/O .
1686.23 Summary on Procedures .
1666.22 Closures: Procedures that Remember their State .
1656.21 Extending Built-in Functions .
1636.20 Memory Management, Garbage Collection, and Weak Structures
1586.19 Overloading Operators with Metamethods .
1586.18.3 Functions for Administering Remember Tables .
1566.18.2 Read-Only Remember Tables .
1556.18.1 Standard Remember Tables .
1546.18 Remember Tables .
1526.17.2 The with Function .
1516.17.1 Writing a New Package .
1516.17 Packages .
1506.16 Altering the Environment at Run-Time .
1496.15 Sandboxes .
1486.14 Access to Loop Control Variables within Procedures .
1466.13 Scoping Rules .
1456.12 User-Defined Procedure Types .
1456.11 Shortcut Procedure Definition .
1446.10 Procedures that Return Procedures .
1426.9 Multiple Returns .
1416.8.6 Trapping Errors with the try/catch Statement .
1406.8.5 Trapping Errors with protect/lasterror .
1406.8.4 The assume Function .
1396.8.3 Checking the Type of Return of Procedures .
1396.8.2 Type Checks in Procedure Parameter Lists .
1386.8.1 The error Function .
1386.8 Error Handling .
1376.7 Type Checking .
1366.6 Passing Options in any Order .
1346.5 Optional Arguments .
1346.4 Changing Parameter Values .
1346.3 Global Variables .
1326.2 Local Variables .
1316.1 Procedures .
1316 Programming .

agenaagenaagenaagena >> 17

4257.28 clock - Clock Package .
4197.27 skycrane - Auxiliary Functions .
4097.26 utils - Utilities .
4057.25 debug - Debugging .
4047.24 Coroutines .
4017.23 rtable - Remember Tables .
4007.22 package - Modules .
3947.21environ - Access to the Agena Environment .
3787.20 os - Access to the Operating System .
3697.19.2 Functions .
3647.19.1 Introduction and Examples .
3637.19 net - Network Library .
3627.18 gzip - Library to Read and Write UNIX gzip Compressed Files
3587.17.6 Callbacks .
3577.17.5 Functions .
3577.17.4 Constructor .
3567.17.3 Shortcuts .
3567.17.2 Parser objects .
3567.17.1 Introduction .
3557.17 xml - XML Parser .
3467.16 xbase - Library to Read and Write xBase Files .
3397.15 binio - Binary File Package .
3267.14 io - Input and Output Facilities .
3017.13 stats - Statistics .
2897.12 linalg - Linear Algebra Package .
2787.11 calc - Calculus Package .
2767.10 mapm - Arbitrary Precision Library .
2707.9.2 math Library .
2557.9.1 Operators and Basic Functions .
2537.9 Mathematical Functions .
2517.8.2 Functions .
2507.8.1 Introduction and Examples .
2497.8 bags - Mulitsets .
2477.7.2 Functions .
2477.7.1 Introduction and an Example .
2477.7 llist - Linked Lists .
2457.6 Pairs .
2407.5 Sequences .
2377.4 Sets .
2367.3.2 tables Library .
2317.3.1 Kernel Operators .
2317.3 Tables .
2297.2.3 Patterns .
2157.2.2 The strings Library .
2127.2.1 Kernel Operators and Basic Library Functions .
2117.2 Strings .
1797.1 Basic Functions .
1797 Standard Libraries .

18 Contents

525A8 Backward Compatibility .
525A7 Escape Sequences .
523A6 The Agena Initialisation File .
522A5 Define Your Own Printing Rules for Types .
521A4.5 Command Line Switches .
521A4.4 Running Scripts in UNIX and Mac OS X .
520A4.3 Running a Script and then Entering Interactive Mode .
520A4.2 Using the internal args Table .
519A4.1 Using the -e Option .
519A4 Command Line Usage .
517A3 System Variables .
515A2 Metamethods .
515A1 Operators .
515Appendix A .

4838 C API Functions .

4777.37.2 Functions .
4777.37.1 Introduction .
4777.37 hashes - Hashes .
4757.36.2 registers Library .
4717.36.1 Kernel Operators .
4717.36 Registers .
4707.35.5 Miscellaneous Functions .
4707.35.4 Transfer Functions .
4707.35.3 Handles .
4697.35.2 DEV Functions .
4697.35.1 CTX Functions .
4697.35 usb - libusb Binding .
4677.34 cordic - Numerical CORDIC Library .
4637.33 divs - Library to Process Fractions .
4617.32.4 Examples .
4597.32.3 The Drawing Function fractals.draw .
4597.32.2 Auxiliary Mathematical Functions .
4577.32.1 Escape-time Iteration Functions .
4577.32 fractals - Library to Create Fractals .
4447.31.9 GDI Functions .
4447.31.8 Colours, Part 2 .
4437.31.7 Plotting Geometric Objects Easily .
4437.31.6 Plotting Graphs of Univariate Functions .
4427.31.5 Supported File Types .
4427.31.4 Closing a File or Window .
4427.31.3 Colours, Part 1 .
4417.31.2 Plotting Functions .
4417.31.1 Opening a File or Window .
4417.31 gdi - Graphic Device Interface package .
4327.30 ads - Agena Database System .
4287.29 astro - Astronomy Functions .

agenaagenaagenaagena >> 19

549Index .

548C1: Further Reading .
548Appendix C .

546B8 Other Copyright Remarks .
546B7 RSA Security/MD5 Licence .
545B6 MAPM Copyright Remark (Mike's Arbitrary Precision Math Library)
543B5 SOFA Software Licence .
534B4 GNU Lesser General Public Licence .
534B3 Sun Microsystems Licence for the fdlibm IEEE 754 Style Arithmetic Library
527B2 GNU GPL v2 Licence .
527B1 Agena Licence .
527Appendix B .

526A10 Some Few Technical Notes .
526A9 Mathematical Constants .

20 Contents

Chapter Chapter Chapter Chapter OneOneOneOne

IntroductionIntroductionIntroductionIntroduction

agenaagenaagenaagena >> 21

22 1 Agena

1 Introduction1 Introduction1 Introduction1 Introduction

1.1 1.1 1.1 1.1 AbstractAbstractAbstractAbstract

Agena is a procedural programming language designed to be used in scientific,
educational, network, linguistic, and many other applications, including scripting.

Agena provides fast real and complex arithmetic, graphics, efficient text
processing, flexible data structures, intelligent procedures, package management,
plus various multi-user configuration facilities.

Its syntax looks like very simplified Algol 68 with elements taken primarily from Maple,
Lua and SQL. It has been implemented on the ANSI C sources of Lua 5.1 created
by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes.

Agena binaries are available for Solaris, Linux, Windows, eComStation & OS/2, Mac
OS X, Haiku, and DOS.

You may download Agena, its sources, and its manual from

http://sourceforge.net/projects/agena.

1.2 Features1.2 Features1.2 Features1.2 Features

Agena combines features of Lua 5, Maple, Algol 60, Algol 68, ABC, SQL, ANSI C,
Sinclair ZX Spectrum BASIC, and SuperBASIC for Sinclair QL.

Agena supports all of the common functionality found in imperative languages:

� assignments,
� loops,
� conditions,
� procedures.

Besides providing these basic operations, it has extended programming features
described later in this manual, such as

� high-speed processing of extended data structures,
� fast string and mathematical operators,
� extended conditionals,
� abridged and extended syntax for loops,
� special variable increment, decrement and deletion statements,
� efficient recursion techniques,
� an arbitrary precision mathematical library,
� a network package to exchange data over the Internet and LANs,
� easy-to-use package handling,
� and much more.

agenaagenaagenaagena >> 23

Like Lua, Agena is untyped and includes the following basic data structures:
numbers, strings, booleans, tables, and procedures. In addition to these types, it
also supports Cantor sets, sequences, registers, pairs, complex numbers, linked lists,
and multisets. With all of these types, you can build fast applications easily.

1.1.1.1.3333 IIIIn Detailn Detailn Detailn Detail

Agena offers various flow control facilities such as

� ifififif/elifelifelifelif/elseelseelseelse conditions,
� case ofcase ofcase ofcase of/elseelseelseelse conditions similar to C's switch/case statements,
� ifififif operator to return alternative values,
� numerical forforforfor/fromfromfromfrom/totototo/downto/bybybyby loops with optional start and step values, and

automatic round-off error correction of iteration variables,
� combined forforforfor/whilewhilewhilewhile loops,
� forforforfor/inininin loops over strings and complex data structures,
� whilewhilewhilewhile and dodododo/asasasas loops similar to Modula's while and repeat/until not() iterators,
� dodododo/odododod loops equal to the ones in Maple,
� a skipskipskipskip statement to prematurely trigger the next iteration of a loop,
� a breakbreakbreakbreak statement to prematurely leave a loop,
� fast and easy data type validation with the optional double colon facility in

parameter lists.

Data types provided are:

� rational and complex numbers with extensions such as infinityinfinityinfinityinfinity and undefinedundefinedundefinedundefined,
� strings,
� booleans such as truetruetruetrue, falsefalsefalsefalse, and failfailfailfail,
� the nullnullnullnull value meaning the absence of a value,
� multipurpose tables implemented as associative arrays to hold any kind of data,

taken from Lua,
� Cantor sets as collections of unique items,
� sequences, i.e. vectors, to internally store items in strict sequential order,
� pairs to hold two values or pass arguments in any order to procedures,
� threads, userdata, and lightuserdata inherited from Lua.

For performance, most basic operations on these types were built into the Agena
kernel.

Procedures with full lexical scoping are supported, as well, and provide the following
extensions:

� the << (args) -> expression >> syntax to easily define simple functions,
� user-defined types for procedures to allow individual handling (the same feature

is available to the above mentioned tables, sets, sequences, and pairs),
� a facility to return predefined results,
� remember tables for conducting recursion at high speed and at low memory

consumption,
� closures, a features to let functions remember their state, taken from Lua,

24 1 Agena

� the nargsnargsnargsnargs system variable which holds the number of arguments actually
passed to a procedure,

� metamethods to define operations for tables, sets, sequences, and pairs,
inherited from Lua.

Some other features are:

� graphical capabilities in the Solaris, Mac, Linux, and Windows editions, provided
by the gdigdigdigdi package,

� networking with the Internet and LANs,
� functions to support fast text processing (see inininin, atendofatendofatendofatendof, replacereplacereplacereplace, lowerlowerlowerlower, and

upper upper upper upper operators, as well as the functions in the stringsstringsstringsstrings and utilsutilsutilsutils packages),
� easy configuration of your personal environment via the Agena initialisation file,
� an easy-to-use package system also providing a means to both load a library

and define short names for all package procedures at a stroke (withwithwithwith function),
� the biniobiniobiniobinio package to easily write and read files in binary mode,
� facility to store any data to a file and read it back later (savesavesavesave and readreadreadread

functions),
� undergraduate Calculus, Linear Algebra, and Statistics packages,
� enumeration and multiple assignment,
� transfer of the last iteration value of a numeric forforforfor loop to its surrounding block,
� scope control via the scopescopescopescope/epocsepocsepocsepocs keywords,
� efficient stack programming facilities with the insertinsertinsertinsert/intointointointo and poppoppoppop/fromfromfromfrom

statements,
� bitwise operators,
� direct access to the file system,
� an arbitrary precision mathematical library,
� XML import,
� xBase file support,
� a simple editor called AgenaEdit for Solaris, Linux, and Windows.

Agena is shipped with the packages mentioned above and all Lua C packages
that are part of Lua 5.1. Some of the very basic Lua library functions have been
transformed to Agena operators to speed up execution of programmes and thus
have been removed from the Lua packages. The Lua mathematical and string
handling packages have been tuned and extended with new functions.

Agena code is not compatible to Lua. Its C API, however, has been left unchanged
and many new API functions have been added. As such, you can integrate any C
package you have already written for Lua by just replacing the Lua- specific header
files, see Chapter 8.

agenaagenaagenaagena >> 25

1.1.1.1.4444 History History History History

I have been dreaming of creating my own programming language for the last 25
years, my first rather unsuccessful attempt tried on a Sinclair ZX Spectrum in the
early 1980s.

Plans became more serious in 2005 when I learned Lua to write procedures for
phonetic analysis and also learned ANSI C to transfer them into a C package. In
autumn 2006 the first modifications of the Lua parser began with extensive
modifications and extensions of the lexer, parser and the Lua Virtual Machine in
summer 2007. Most of Agena's functionality had been completed in March 2008,
followed by the first new data structure, Cantor sets, one month later, some more
data structures, and a lot of fine-tuning and testing thereafter. Finally, in January
2009, the first release of Agena was published at Sourceforge.

Study of many books and websites on various programming languages such as
Algol 68, Maple, Algol 60, and ABC, and my various ideas on the `perfect`
language helped to conceive a completely new Algol 68-syntax based
language with high-speed functionality for arithmetic and text processing.

You may find that at least the goal of designing a perfect language has not yet
been met. For example, the syntax is not always consistent: you will find
Algol 68-style elements in most cases, but also ABC/SQL-like syntax for basic
operations with structures. The primary reason for this is that sometimes natural
language statements are better to reminisce. I have stopped bothering on this
inconsistency issue.

Agena has been designed on Windows 2000, NT 4.0, Vista, and Windows 7 using
the MinGW GCC 3.4.6 and 4.4.0 compilers. Further programming has been done
on a Sun Sparc Ultra 5, a Sun Blade 150, and a Sun Blade 1500 running Solaris 10,
and on openSUSE 10.3 for x86 and on Xubuntu 10.04 for Mac Mini PowerPC to
make the interpreter work in UNIX environments. The original x86 Mac Version has
been developed on an x86 Mac Mini. A lot of testing has been done on an Acer
Aspire ONE netbook running Linpus Linux/Fedora 8.

After almost four years of development, Agena 1.0 has been released in August
2010.

1.5 Origins1.5 Origins1.5 Origins1.5 Origins

Most of all functionality stems from Lua, Maple and C. Some of my favourite
additions to the Lua C sources include:

Maple V Release 3Maple V Release 3Maple V Release 3Maple V Release 3 and later and later and later and later

� ifififif/elifelifelifelif/elseelseelseelse/fifififi, forforforfor/whilewhilewhilewhile, map map map map, removeremoveremoveremove, selectselectselectselect, selectremoveselectremoveselectremoveselectremove, subssubssubssubs, withwithwithwith, readlibreadlibreadlibreadlib,
package management, library.agn, agena.ini, readreadreadread, savesavesavesave, substrings, Cantor
sets and its operators, sequences, remember tables, inininin, nargsnargsnargsnargs, opopopop(ssss), restartrestartrestartrestart,
tabletabletabletablessss.indices.indices.indices.indices, the linalglinalglinalglinalg package, maybe all the pretty printers, argument type

26 1 Agena

checks, :::::::: type check, and multiple :::::::: type parameter checks surely all
mathematical functions and complex arithmetic, and much, much more.

The Maple V Release 3 language has been designed by Michael B. Monagan,
Keith O. Geddes, K. M. Heal, George Labahn, and S. M. Vorkoetter for Waterloo
Maple Inc./Maplesoft, Waterloo, Ontario. Very kind thanks to WMI's support back
in the 1990s.

This is also why Agena looks a lot like Maple, and thus somewhat like:

AlgolAlgolAlgolAlgol 68 68 68 68

has many times been called the queen of all programming languages,

� casecasecasecase/ofofofof/esacesacesacesac.

has been introduced with Algol 68.

AlgolAlgolAlgolAlgol 60 60 60 60

� entier.entier.entier.entier.

Algol 60 is the parent of Algol 68.

ModulaModulaModulaModula----2222

� incincincinc and decdecdecdec.

CCCC

� printfprintfprintfprintf, and most of Lua's system functions.

C actually is a descendent of Algol 68.

SinclairSinclairSinclairSinclair ZXZXZXZX Spectrum B Spectrum B Spectrum B Spectrum BASICASICASICASIC

� clearclearclearclear, clsclsclscls, intintintint.

SQLSQLSQLSQL and ABCABCABCABC

� insertinsertinsertinsert/intointointointo and thus indirectly createcreatecreatecreate, delete/fromdelete/fromdelete/fromdelete/from, and poppoppoppop/fromfromfromfrom.

agenaagenaagenaagena >> 27

PL/I and PL/I and PL/I and PL/I and REXXREXXREXXREXX

� Some of the stringsstringsstringsstrings library functions have been taken from the symbiosis of
BASIC and Algol 60, expressed with PL/I and REXX.

EiffelEiffelEiffelEiffel

� Checking the type of return of procedures by the proc(···) :: <typename> is

statement sequence has been taken from this language.

AdaAdaAdaAda

� inspired the skip whenskip whenskip whenskip when and break whenbreak whenbreak whenbreak when statements.

28 1 Agena

Chapter Chapter Chapter Chapter TwoTwoTwoTwo

Installing & Running Installing & Running Installing & Running Installing & Running AgenaAgenaAgenaAgena

agenaagenaagenaagena >> 29

30 2 Installing and Running Agena

2 Installing and Running 2 Installing and Running 2 Installing and Running 2 Installing and Running AgenaAgenaAgenaAgena

2.2.2.2.1111 Sun Sun Sun Sun SolarisSolarisSolarisSolaris 10 10 10 10

In Sun Solaris, and some of its forks, e.g. OpenSolaris, put the gzipped Agena
package into any directory. Assuming you want to install the Sparc version,
uncompress the package by entering:

> gzip -d agena-x.y.z-sol10-sparc-local.gz

Then install it with the Solaris package manager:

> pkgadd -d agena-x.y.z-sol10-sparc-local

This installs the executable into the /usr/local/bin folder and the rest of all files into
/usr/agena . The /usr/agena/lib directory is called the `main Agena library folder`.

Make sure you have the expat, fontconfig, freetype, jpeg, libgcc, libgd, libiconv,
libintl, libncurses, libpng, readline, xpm, and zlib libraries installed. From the
command line, type agena and press RETURN.

Image 1: Start-up message in Solaris

The procedure for OpenSolaris and Solaris for x86 CPUs is the same. The package
always installs as SMCagena.

2.2 2.2 2.2 2.2 LinuxLinuxLinuxLinux

On Debian based distributions, install the deb installer by typing:

> sudo dpkg -i --force-depends agena-x.y.z-linux-i3 86.deb

On Red Hat systems, install the rpm distribution by typing as root:

> rpm -ihv --nodeps agena-x.y.z-linux-i386.rpm

This installs the executable into the /usr/local/bin folder and the rest of all files into
/usr/agena . The /usr/agena/lib directory is called the `main Agena library folder`.

Note that you must have the expat, fontconfig, freetype, jpeg, libgcc, libgd,
libiconv, libintl, libncurses, libpng, readline, xpm, and zlib libraries installed before.

agenaagenaagenaagena >> 31

From the command line, type agena and press RETURN.

The name of the Linux package is agena .

2.3 2.3 2.3 2.3 WindowsWindowsWindowsWindows

Just execute the Windows installer, and choose the components you want to install.

Make sure you either let the installer automatically set the environment variable
called AGENAPATH containing the path to the main Agena library folder (the
default) or set it later manually in the Windows Control Panel, via the `System` icon.

Image 2: Leave the framed settings checked

You may start Agena either via the Start Menu, or by typing agena in a shell.

Image 3: Start-up message in Windows

32 2 Installing and Running Agena

Alternatively you may start AgenaEditAgenaEditAgenaEditAgenaEdit, the Agena editor and runtime environment,
via the Start Menu or by typing agenaedit in a shell.

If you do not have admin rights to start the installer, or want to use the interpreter on
a removable stick, download the portable version of Agena available at
Sourceforge.net and study the readme.w32 file.

For the portable version:

If you would like to use Agena on a removable drive or do not have Admin rights to
run the binary Windows installer, just install this portable release.

In a NT shell, create a folder called 'agena' anywhere on your drive, change into
this directory and decompress this file into this folder preserving the subdirectory
structure of the ZIP file.

(Only if you use Windows 2000 or earlier: Now set the environment variable
AGENAPATH, referring to the main Agena library `agena.lib` file. For example, if you
install Agena into the folder c:\agena, the library files will reside in the c:\agena\lib
subfolder, so enter the following statement:

 set AGENAPATH=c:/agena/lib

Note the forward slashes in the path and the variable name in capital letters.

In XP and later, Agena determines the path to the main Agena library
automatically, provided you do not alter the subdirectory structure of the portable
distribution.

For all Windows versions:

Also append the path to the folder where the agena.exe binary resides to the PATH
system variable, this time using backslashes, so that the statement looks something
like this:

 PATH=%path%;c:\agena\bin

In the NT shell, type

 agena

to start Agena.

If you installed Agena on a fixed drive, you can permanently set these two values in
Windows. Start the online help of Windows, search for `environment variable` and
set the following two values in the `current user` section as follows:

agenaagenaagenaagena >> 33

Create a new environment variable AGENAPATH and set it to c:/agena/lib (with
slashes).

Search for the already existing PATH variable and append the path c:\agena\bin
(with backslashes) to it putting a semicolon in front of this path to separate it from all
the other paths already existing.

2.4 2.4 2.4 2.4 eComStationeComStationeComStationeComStation and and and and OS/2 Warp 4OS/2 Warp 4OS/2 Warp 4OS/2 Warp 4

The WarpIN installer allows you to choose a proper directory for the interpreter, and
installs all files into it.

Make sure you either let the installer automatically set the environment variable
called AGENAPATH containing the path to the main Agena library folder (the WarpIN
default) by leaving the `Modify CONFIG.SYS` entry in the System Configuration
window checked, or set it later by manually editing config.sys.

Just enter agena in an eCS shell to run the interpreter, or doubleclick the Agena icon
in the programme folder. Agena may require EMX runtime 0.9d fix 4 or higher in
OS/2.

2.5 2.5 2.5 2.5 DOSDOSDOSDOS

In DOS, create a folder called agena anywhere on your drive, change into this
directory and decompress the agena.zip file into this folder preserving the
subdirectory structure of the ZIP file.

Now set the environment variable AGENAPATH in the autoexec.bat file. Use a text
editor for this. For example, if you installed Agena into the folder c:\agena , and the
library.agn file is in the lib subfolder, enter the following line into the autoexec.bat

file:

 set AGENAPATH=c:/agena/lib

Note the forward slash in the path and the variable name in capital letters.

Also append the path to the agena folder to the PATH system variable using
backslashes, so that the entry looks something like this:

 PATH C:\;C:\NWDOS;C:\AGENA\BIN

Although it is not necessary in FreeDOS 1.1, at least with Novell DOS 7, you must
install CWSDPMI.EXE delivered with the DJPGG edition of GCC as a TSR programme
before starting Agena. The binary can be found in the DJGPP distribution.

In order to always load this TSR when booting your computer, open the
autoexec.bat file with a text editor. Assuming the CWSDPMI.EXE file is in the c:\tools

folder, add the following line:

34 2 Installing and Running Agena

 loadhigh c:\tools\cwsdpmi.exe -p

Novell DOS's command line history works correctly on the Agena prompt.

2.6 2.6 2.6 2.6 Mac OS X 10.5 and higherMac OS X 10.5 and higherMac OS X 10.5 and higherMac OS X 10.5 and higher

Simply double-click the agena-x.y.z-mac.pkg installer in the file manager and follow
the instructions. Do not choose an alternative destination for the package.

The Agena executable is copied into the /usr/local/bin folder, supporting files into
/usr/agena , and the documentation to /Library/Documentation/Agena . The
/usr/agena/lib directory is called the `main Agena library folder`.

Note that you may have to install the readline library before.

From the command line, type agena and press RETURN.

2.7 Haiku2.7 Haiku2.7 Haiku2.7 Haiku

Put the agena-x.y.z-haiku.zip file into the /boot directory and unpack it.

This installs the executable into the /boot/common/bin folder and the rest of all files
into /boot/common/share/agena . The /boot/common/share/agena/lib directory is
called the `main Agena library folder`.

Note that you must have the ncurses and readline libraries installed before.

From the command line, type agena and press RETURN.

2.2.2.2.8888 AgenaAgenaAgenaAgena Initiali Initiali Initiali Initiali ssssationationationation

When you start Agena, the following actions are taken:

1. The package tables for the C libraries shipped with the standard edition of
Agena (e.g. math, strings, etc.) are created so that these package procedures
become available to the user.

2. All global values are copied from the _G_G_G_G table to its copy _origG_origG_origG_origG, so that the
restartrestartrestartrestart function can restore the original environment if invoked.

3. The system variables libnamelibnamelibnamelibname and mainlibnamemainlibnamemainlibnamemainlibname pointing to the main Agena
library folder and optionally to other folders is set by either querying the
environment variable AGENAPATH or - if not set - checking whether the current
working directory contains the string /agena , building the path accordingly.

The main Agena library folder contains library files with file suffix agn written in the
Agena language, or binary files with the file suffix so or dll originally written in
ANSI C.

agenaagenaagenaagena >> 35

In UNIX, Mac OS X, Haiku and Windows, if the path could not be determined as
described before, libnamelibnamelibnamelibname and mainlibnamemainlibnamemainlibnamemainlibname are by default set to
/usr/agena/lib in UNIX and Mac OS X, /boot/common/share/agena/lib in Haiku,
and %ProgramFiles%\agena\lib in Windows, if these directories exist and if the
user has at least read permissions for the respective folder. The libnamelibnamelibnamelibname variable
is used extensively by the withwithwithwith and readlibreadlibreadlibreadlib functions that initialise packages. If it
could not be set, many package functions will not be available.

4. Searching all paths in libnamelibnamelibnamelibname from left to right, Agena tries to find the standard
Agena library library.agn and if successful, loads and runs it. The library.agn

file includes functions written in the Agena language that complement the C
libraries. If the standard Agena library could not be found, a warning message,
but no error, is issued. If there are multiple library.agn files in your path, only the
first one found is initialised.

5. The global Agena initialisation file - if present - called agena.ini in DOS based
systems and .agenainit in UNIX based systems including Haiku is searched by
traversing all paths in libnamelibnamelibnamelibname from left to right. As with library.agn , this file
contains code written in the Agena language that an administrator may
customise with pre-set variables, auxiliary procedures, etc. that shall always be
available to every Agena user. If the initialisation file does not exist, no error is
issued. If there are multiple Agena initialisation files in your libnamelibnamelibnamelibname path, only
the first one found is processed.

6. The user's personal Agena initialisation file called .agenainit on UNIX-based
platforms including Haiku, and agena.ini on DOS-based platforms - if present - is
searched in the user's home folder and run. If this initialisation file does not exist,
no error is issued. After that the Agena session begins. See Appendix A6 for
further details.

7. The path to the current user's home directory is assigned to the environ.environ.environ.environ.homedirhomedirhomedirhomedir
environment variable.

2.9 Installing Library Updates2.9 Installing Library Updates2.9 Installing Library Updates2.9 Installing Library Updates

Sometimes, library updates will be provided at Sourceforge if library functions written
in the Agena language have been patched or also if new functions written in the
language have been developed.

For instructions on how to easily install such an update, have a look at the
libupdate.read.me file residing on the root of the agena-x.y.z-updaten.zip archive
which can be downloaded from the Binaries Agena Sourceforge folder.

In general, the updates can be installed by just unpacking the ZIP archive into the
main Agena folder.

36 2 Installing and Running Agena

A library update can be installed on every supported operating system, but you
may need administrative rights.

agenaagenaagenaagena >> 37

38 2 Installing and Running Agena

Chapter Chapter Chapter Chapter ThreeThreeThreeThree

OverviewOverviewOverviewOverview

agenaagenaagenaagena >> 39

40 3 Overview

3 3 3 3 SummarySummarySummarySummary

Let us start by just entering some commands that will be described later in this
manual so that you can become acquainted with Agena as fast as possible. In this
chapter, you will also learn about some of the basic data types available.

On UNIX-based systems, Haiku, or DOS, type agena in a shell to start the interpreter.
On eComStation - OS/2 and Windows, either click the Agena icon in the
programme folder or type agena in a shell.

Alternatively, in Solaris, Linux, and Windows, you may start AgenaEditAgenaEditAgenaEditAgenaEdit, the Agena
editor and runtime environment, by typing agenaedit in a shell or via the
Programme Manager (Windows only).

3.1 3.1 3.1 3.1 Input CInput CInput CInput Conventionsonventionsonventionsonventions in the in the in the in the CCCConsole onsole onsole onsole EEEEditionditionditiondition

Any valid Agena code can be entered at the console with or without a trailing
colon or semicolon:

� If an expression is finished with a colon, it is evaluated and its value is printed at
the console.

� If the expression ends with a semicolon or neither with a colon nor a semicolon,
it is evaluated, but nothing is printed on screen.

You may optionally insert one or more white spaces between operands in your
statements.

3.2 Input Conventions in 3.2 Input Conventions in 3.2 Input Conventions in 3.2 Input Conventions in AgenaEditAgenaEditAgenaEditAgenaEdit

The Intel Solaris, Linux, Windows, and Mac distributions contain an editor providing
syntax-highlighting and the facility to run the code you edited.

Any valid Agena code can be entered in the editor with or without a trailing
semicolon.

The output of an Agena programme typed into the editor is displayed in a second
window:

� Hit the F5 key to compute all statements you entered.

� Consecutive statements can be executed by selecting them and hitting the F6
key.

� To display results in the output window, pass the respective expression to the
printprintprintprint function, e.g.:

print(exp(2*Pi*I)) or a := 1; print(a);

agenaagenaagenaagena >> 41

You may optionally insert one or more white spaces between operands in your
statements.

3.3.3.3.3333 Getting Getting Getting Getting FFFFamiliaramiliaramiliaramiliar

From this point on, this manual will deal with the console (and not AgenaEdit) edition
only.

Assume you would like Agena to add the numbers 1 and 2 and show the result.
Then type:

> print(1+2)
3

If you want to store a value to a variable, type:

> c := 25;

Now the value 25 is stored to the name c , and you can refer to this number by the
name c in subsequent calculations.

Assume that c is 25° Celsius. If you want to convert it to Fahrenheit, enter:

> print(1.8*c + 32);
77

There are many functions available in the kernel and various libraries. To compute
the inverse sine, use the arcsinarcsinarcsinarcsin operator:

42 3 Overview

> print(arcsin(1));
1.5707963267949

The rootrootrootroot function determines the n-th root of a value:

> print(root(2, 3));
1.2599210498949

3.3.3.3.4444 Useful Statements Useful Statements Useful Statements Useful Statements

Instead of using printprintprintprint, you may also output results by entering an expression and
completing it with a colon:

> root(2, 3):
1.2599210498949

The global variable ansansansans always holds the result of the last statement you completed
with a colon.

> ln(2*Pi):
1.8378770664093

> ans:
1.8378770664093

The console screen can be cleared in the Solaris, Windows, UNIX, Mac OS X, Haiku,
eComStation - OS/2, and DOS versions by just entering the keyword clsclsclscls1111:

> cls

The restartrestartrestartrestart statement2 resets Agena to its initial state, i.e. clears all variables you
defined in a session.

> restart

The byebyebyebye statement quits a session - but could also press CTRL+C.

> bye

If you prefer another Agena prompt instead of the predefined one, assign:

> _PROMPT := 'Agena$ '

Agena$ _

You may put this statement into the initialisation file in the Agena lib or your home
folder, if you do not want to change the prompt manually every time you start
Agena. See Appendix A6 for further detail.

Agena$ restart;

agenaagenaagenaagena >> 43

2 dito.

1 The statement is not supported by AgenaEdit.

Let us have a closer look at the functionality and data types available in Agena:

3.5 3.5 3.5 3.5 Assignment and Assignment and Assignment and Assignment and UnassignmentUnassignmentUnassignmentUnassignment

As we have already seen, to assign a number, say 1, to a variable called a, type:

> a := 1;

Variables can be deleted by assigning nullnullnullnull or using the clearclearclearclear statement. The latter
also performs a garbage collection.

> a := null:
null

> clear a;

> a:
null

3.6 3.6 3.6 3.6 ArithmeticArithmeticArithmeticArithmetic

Agena supports both real and complex arithmetic with the ++++ (addition), ----
(subtraction), **** (multiplication), //// (division) and ^̂̂̂ (exponentiation) operators:

> 1+2:
3

Complex numbers can be input using the IIII constant or the !!!! operator:

> exp(1+2*I):
-1.1312043837568+2.4717266720048*I

> exp(1!2):
-1.1312043837568+2.4717266720048*I

3.7 3.7 3.7 3.7 StringsStringsStringsStrings

A text can be put between single or double quotes:

> str := 'a string':
a string

Substrings are extracted by passing their indexes:

> str[3 to 6]:
stri

Concatenation, search, and replace operations:

> str := str & ' and another one, too':
a string and another one, too

> instr(str, 'another'):
14

44 3 Overview

> replace(str, 'and', '&'):
a string & another one, too

There are various other string operators and functions available.

3.8 3.8 3.8 3.8 BooleansBooleansBooleansBooleans

Agena features the truetruetruetrue, falsefalsefalsefalse, and failfailfailfail to represent Boolean values. failfailfailfail may be
used to indicate a failed computation. The operators <<<<, >>>>, ====, <><><><>, <=<=<=<=, and >=>=>=>=
compare values and return either truetruetruetrue or falsefalsefalsefalse. The operators andandandand, orororor, notnotnotnot, and xorxorxorxor
combine Boolean values.

> 1 < 2:
true

> true or false:
true

3.9 3.9 3.9 3.9 TablesTablesTablesTables

Tables are used to represent more complex data structures. Tables consist of zero,
one or more key-value pairs: the key referencing to the position of the value in the
table, and the value the data itself.

> tbl := [
> 1 ~ ['a', 7.71],
> 2 ~ ['b', 7.70],
> 3 ~ ['c', 7.59]
>];

To get the subtable ['a', 7.71] indexed with key 1, and the second value 7.71 in
this first subtable, input:

> tbl[1]:
[a, 7.71]

> tbl[1, 2]:
7.71

The insertinsertinsertinsert statement adds further values into a table.

> insert ['d', 8.01] into tbl

> tbl:
[[a, 7.71], [b, 7.7], [c, 7.59], [d, 8.01]]

Alternatively, values may be added by using the indexing method:

> tbl[5] := ['e', 8.04];

> tbl:
[[a, 7.71], [b, 7.7], [c, 7.59], [d, 8.01], [e, 8.0 4]]

Of course, values can be replaced:

agenaagenaagenaagena >> 45

> tbl[3] := ['z', -5];

> tbl:
[[a, 7.71], [b, 7.7], [z, -5], [d, 8.01], [e, 8.04]]

Another form of a table is the dictionary, which indices can be any kind of data -
not only positive integers. Key-value pairs are entered with tildes.

> dic:= ['donald' ~ 'duck', 'mickey' ~ 'mouse'];

> dic['donald']:
duck

3.10 3.10 3.10 3.10 SetsSetsSetsSets

Sets are collections of unique items: numbers, strings, and any other data except
null. Any item is stored only once and in random order.

> s := {'donald', 'mickey', 'donald'}:
{donald, mickey}

If you want to check whether 'donald' is part of the set s, just index it or use the inininin
operator:

> s['donald']:
true

> s['daisy']:
false

> 'donald' in s:
true

The insertinsertinsertinsert statement adds new values to a set, the deletedeletedeletedelete statement deletes them.

> insert 'daisy' into s;

> delete 'donald' from s;

> s:
{daisy, mickey}

Three operators exist to conduct Cantor set operations: minusminusminusminus, intersectintersectintersectintersect, and unionunionunionunion.

3.11 3.11 3.11 3.11 SequencesSequencesSequencesSequences

Sequences can hold any number of items except nullnullnullnull. All elements are indexed
with integers starting with number 1. Compared to tables, sequences are twice as
fast when adding values to them. The insertinsertinsertinsert, deletedeletedeletedelete, indexing, and assignment
statements as well as the operators described above can be applied to
sequences, too.

> s := seq(1, 1, 'donald', true):
seq(1, 1, donald, true)

46 3 Overview

> s[2]:
1

> s[4] := {1, 2, 2};

> insert [1, 2, 2] into s;

> s:
seq(1, 1, donald, {1, 2}, [1, 2, 2])

3.12 3.12 3.12 3.12 PairsPairsPairsPairs

Pairs hold exactly two values of any type (including nullnullnullnull and other pairs). Values can
be retrieved by indexing them or using the leftleftleftleft and rightrightrightright operators. Values may be
exchanged by using assignments to indexed names.

> p := 10:11;

> left(p), right(p), p[1], p[2]:
10 11 10 11

> p[1] := -10;

3.13 3.13 3.13 3.13 ConditionsConditionsConditionsConditions

Conditions can be checked with the ifififif statement. The elifelifelifelif and elseelseelseelse clauses are
optional. The closing fifififi is obligatory.

> if 1 < 2 then
> print('valid')
> elif 1 = 2 then
> print('invalid')
> else
> print('invalid, too')
> fi;

valid

The casecasecasecase statement facilitates comparing values and executing corresponding
statements.

> c := 'agena';

> case c
> of 'agena' then
> print('Agena!')
> of 'lua' then
> print('Lua!')
> else
> print('Another programming language !')
> esac;
Agena!

3.14 3.14 3.14 3.14 LoopsLoopsLoopsLoops

A forforforfor loop iterates over one or more statements. It begins with an initial numeric
value (fromfromfromfrom clause), and proceeds up to and including a given numeric value (totototo

agenaagenaagenaagena >> 47

clause). The step size can also be given (stepstepstepstep clause). The odododod keyword indicates the
end of the loop body.

The fromfromfromfrom and stepstepstepstep clauses are optional. If the fromfromfromfrom clause is omitted, the loop starts
with the initial value 1. If the stepstepstepstep clause is omitted, the step size is 1.

The current iteration value is stored to a control variable (i in this example) which
can be used in the loop body.

> for i from 1 to 3 by 1 do
> print(i, i^2, i^3)
> od;
1 1 1
2 4 8
3 9 27

A whilewhilewhilewhile loop first checks a condition and if this condition is truetruetruetrue or any other value
except falsefalsefalsefalse, failfailfailfail, or nullnullnullnull, it iterates the loop body again and again as long as the
condition remains truetruetruetrue. The following statements calculate the largest Fibonacci
number less than 1000.

> a := 0; b := 1;

> while b < 1000 do
> c := b; b := a + b; a := c
> od;

> print(c);

987

A variation of while is the do/asdo/asdo/asdo/as loop which checks a condition at the end of the
iteration. Thus the loop body will always be executed at least once.

> c := 0;

> do
> inc c
> as c < 10;

> print(c);

10

All flavours of forforforfor loops can be combined with a whilewhilewhilewhile condition. As long as the
whilewhilewhilewhile condition is satisfied, i.e. is truetruetruetrue, the forforforfor loop iterates.

> for x to 10 while ln(x) <= 1 do
> print(x, ln(x))
> od;
1 0
2 0.69314718055995

The skipskipskipskip statement causes another iteration of the loop to begin at once, thus
skipping all of the following loop statements after the skipskipskipskip keyword for the current
iteration.

48 3 Overview

The breakbreakbreakbreak statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop. Thus the above loop could also be
written as:

> for x to 10 do
> if ln(x) > 1 then break fi;
> print(x, ln(x))
> od;
1 0
2 0.69314718055995

which of course is equivalent to

> for x to 10 while ln(x) <= 1 do
> print(x, ln(x))
> od
1 0
2 0.69314718055995

forforforfor loops can also be combined with a closing asasasas or untiluntiluntiluntil condition. In this case, the
loop body is always executed at least once. The loop is iterated as long as the asasasas
condition remains truetruetruetrue, or the untiluntiluntiluntil condition evaluates to falsefalsefalsefalse.

> for x to 10 do
> print(x, ln(x))
> as ln(x) <= 1
1 0
2 0.69314718055995
3 1.0986122886681

> for x to 10 do
> print(x, ln(x))
> until ln(x) > 1
1 0
2 0.69314718055995
3 1.0986122886681

3.15 3.15 3.15 3.15 ProceduresProceduresProceduresProcedures

Procedures cluster a sequence of statements into abstract units which then can be
repeatedly invoked.

Local variables are accessible to its procedure only and can be declared with the
locallocallocallocal statement.

The returnreturnreturnreturn statement passes the result of a computation.

> fact := proc(n) is
> local result;
> result := 1;
> for i from 1 to n do
> result := result * i
> od;
> return result
> end;

> print(fact(10));
3628800

agenaagenaagenaagena >> 49

A procedure can call itself.

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as ifififif, forforforfor, insertinsertinsertinsert, etc.

> deg := << (x) -> x * 180 / Pi >>;

To compute the value of the function at , just input:
✜
4

> print(deg(Pi/4));
45

A function with two arguments:

> sum := << (x, y) -> x + y >>;

> print(sum(1, 2));
3

3.3.3.3.16161616 CommentsCommentsCommentsComments

You should always document the code you have written so that you and others will
understand its meaning if reviewed later.

A single line comment starts with a single hash. Agena ignores all characters
following the hash up to the end of the current line.

> # this is a single-line comment

> a := 1; # a contains a number

A multi-line comment, also called the `long comment` is started with the token
sequence #/ and ends with the closing /# token sequence3.

> #/ this is a long comment,
> split over two lines /#

3.17 Writing, Saving, and Running Programmes3.17 Writing, Saving, and Running Programmes3.17 Writing, Saving, and Running Programmes3.17 Writing, Saving, and Running Programmes

While short statements can be entered directly at the Agena prompt, it is quite
useful to write larger programmes in a text editor (or with AgenaEdit that is shipped
with the interpreter) and save them to a text file so that they can be reused in future
sessions.

Note that Agena comes with language scheme files for some common text editors.
Look into the schemes subdirectory of your Agena installation.

Let us assume that a programme has been saved to a file called myprog.agn in the
directory /home/alex in UNIX, or c:\Users\alex in Windows. Then you can execute it
at the Agena prompt by typing:

50 3 Overview

3 Multi-line comments cannot begin in the very first line of a programme file. Use a single comment,
i.e. #, instead.

> run '/home/alex/myprog.agn'

in UNIX or

> run 'c:/users/alex/myprog.agn'

in Windows. Note the forward slashes used in Agena for Windows.

If you both want to start an Agena session and also run a programme from a shell,
then enter:

$ agena -i /home/alex/myprog.agn

in UNIX or

C:\>agena -i c:\users\alex\myprog.agn

in Windows. See Appendix A4 for further command-line switches.

3.18 Using Packages3.18 Using Packages3.18 Using Packages3.18 Using Packages

Many functions are included in packages, also called libraries, which must at first
be initialised so that the package functions can be used.

For example, all statistics functions are included in the stats package which can be
invoked with the importimportimportimport statement:

> import stats;

> stats.amean([1, 2, 3, 4]):
2.5

All packages to be initially initialised in such a way are marked in Chapter 7.

Shortcuts to the package functions can be defined by passing the aliasaliasaliasalias option to
the importimportimportimport statement.

> amean([1, 2, 3, 4]):
Error in stdin, at line 1:
 attempt to call global `amean` (a null value)

> import stats alias
Warning: iqr, sorted have been reassigned.

> amean([1, 2, 3, 4]):
2.5

If you want to define shortcuts to certain package functions, pass their names right
after the aliasaliasaliasalias option. You may specify one or more function names:

> import stats alias amean, smm;

agenaagenaagenaagena >> 51

You may also have a look at the readlibreadlibreadlibreadlib and withwithwithwith functions described in Chapter
7.1.

52 3 Overview

Chapter Chapter Chapter Chapter FourFourFourFour

Data & OperationsData & OperationsData & OperationsData & Operations

agenaagenaagenaagena >> 53

54 4 Data

4 Data & Operations4 Data & Operations4 Data & Operations4 Data & Operations

Agena features a set of data types and operations on them that are suited for both
general and specialised needs. While providing all the general types inherited from
Lua - numbers, strings, booleans, nulls, tables, and procedures - it also has four
additional data types that allow very fast operations: sets, sequences, pairs, and
complex numbers.

a non-preemptive multithread object (a coroutine)thread

a value representing a C pointer; available only if you modify the
ANSI C sources of the interpreter

lightuserdata

part of system memory containing user-defined data; userdata
objects can only be created by modifying the ANSI C sources of
the interpreter

userdata

a complex number consisting of a real and an imaginary numbercomplex
a pair of two values of any typepair

a fixed-size vector storing any value including null and featuring a
top position pointer to prevent access to elements above it

register

a vector storing numbers, strings, booleans, and all other data
types except nullnullnullnull in sequential order

sequence

the classical Cantor set storing numbers, strings, booleans, and all
other data types available

set

a predefined collection of one or more Agena statementsprocedure

a multipurpose structure storing numbers, strings, booleans,
tables, and any other data type

table

a value representing the absence of a valuenull
booleans (e.g. truetruetruetrue, falsefalsefalsefalse, and failfailfailfail)boolean
any textstring
any integral or rational number, plus undefinedundefinedundefinedundefined and infinityinfinityinfinityinfinitynumber
DescriptionDescriptionDescriptionDescriptionTypeTypeTypeType

Table 1: Available types

Tables, sets, sequences, registers, and pairs are also called structures in this
manual.

You can determine the type of a value with the typetypetypetype operator which returns a string:

> type(0):
number

> type('a text'):
string

There is also a structure derived from both tables and sets: bags, see Chapter 7.8;
also linked lists have been implemented using tables, see Chapter 7.7.

agenaagenaagenaagena >> 55

4.1 4.1 4.1 4.1 Names,Names,Names,Names, K K K Keywords, and Tokenseywords, and Tokenseywords, and Tokenseywords, and Tokens

In Chapter 3, we have already assigned data - such as numbers and procedures -
to names, also called `variables`. These names refer to the respective values and
can be used conveniently as a reference to the actual data.

A name always begins with an upper-case or lower-case letter or an underscore,
followed by one or more upper-case or lower-case letters, underscores or numbers
in any order.

Since Agena is a dynamically typed language, no declarations of variable names
are needed.

valueTwo
ValueOne
_1
_var1n
var1

1__var
1varvar
Invalid namesInvalid namesInvalid namesInvalid namesValid namesValid namesValid namesValid names

Table 2: Examples for valid and invalid names

The following keywords are reserved and cannot be used as names:

 abs alias and arccos arcsec arcsin arctan as ass igned atendof bea bottom
 break by bye case catch char clear cls conjugate copy cos cosh cosxx dec
 delete dict div do downto duplicate elif else en d entier enum esac even
 exchange exp fail false fi filled first finite f lip for from gethigh
 getlow global if imag import in inc infinity ins ert int intersect into
 is join keys last left ln lngamma local lower mi nus mul nan nargs not
 numeric od of onsuccess or pop proc qsadd real r edo reg relaunch replace
 restart return right rotate sadd seq sethigh set low shift si sign sin
 sinh size skip smul split sqrt subset tan tanh t hen to top trim true try
 type typeof unassigned undefined union unique un til upper values when
 while xor xsubset yrt

 boolean complex lightuserdata null number pair r egister procedure
 sequence set string table thread userdata

The following symbols denote other tokens:

 + - * ** / *% /% +% -% \ & && || ~ ~~ % ^ ^^ $ # = <> <= >= < > = == ~=
 <<< >>> () { } [] ; : :: :- -> @ $, . .. ? `

4.2 4.2 4.2 4.2 AssignmentAssignmentAssignmentAssignment

Values can be assigned to names in the following fashions:

name := value
name1, name2, ··· , namek := value1, value2, ··· , valuek

name1, name2, ··· , namek -> value

56 4 Data

In the first form, one value is stored in one variable, whereas in the second form,
called `multiple assignment statement`, name1 is set to value1, name2 is assigned
value2, etc. In the third form, called the `short-cut multiple assignment statement`,
a single value is set to each name to the left of the -> token.

First steps:

> a := 1;

> a:
1

An assignment statement can be finished with a colon to both conduct the
assignment and print the right-hand side value at the console.

> a := 1:
1

> a := exp(a):
2.718281828459

Multiple assignments:

> a, b := 1, 2

> a:
1

> b:
2

If the left-hand side contains more names than the number of values on the
right-hand side, then the excess names are set to nullnullnullnull.

> c, d := 1

> c:
1

> d:
null

If the right-hand side of a multiple assignment contains extra values, they are simply
ignored.

The multiple assignment statement can also be used to swap or shift values in
names without using temporary variables.

> a, b := 1, 2;

> a, b := b, a:
2 1

agenaagenaagenaagena >> 57

A short-cut multiple assignment statement:

> x, y -> exp(1);

> x:
2.718281828459

> y:
2.718281828459

4.3 4.3 4.3 4.3 EnumerationEnumerationEnumerationEnumeration

Enumeration with step size 1 is supported with the enumenumenumenum statement:

enumenumenumenum name1 [, name2,···]
enumenumenumenum name1 [, name2, ···] fromfromfromfrom value

In the first form, name1, name2, etc. are enumerated starting with the numeric
value 1.

> enum ONE, TWO;

> ONE:
1

> TWO:
2

In the second form, enumeration starts with the numeric value passed right after the
fromfromfromfrom keyword.

> enum THREE, FOUR from 3

> THREE:
3

> FOUR:
4

4.4 4.4 4.4 4.4 DeletionDeletionDeletionDeletion and the null Constant and the null Constant and the null Constant and the null Constant

You may delete the contents of one or more variables with one of the following
methods: Either use the clearclearclearclear command:

clearclearclearclear name1 [, name2, ··· , namek]

> a := 1;

> clear a;

58 4 Data

> a:
null

which also performs a garbage collection useful if large structures shall be removed
from memory, or set the variable to be deleted to nullnullnullnull:

> b := 1;

> b := null:
null

The nullnullnullnull value represents the absence of a value. All names that are unassigned
evaluate to nullnullnullnull. Assigning names to nullnullnullnull quickly clears their values, but does not
garbage collect them.

The nullnullnullnull constant has its own type: 'nullnullnullnull'.

> type(null):
null

If you want to test whether a value is of type 'null', contrary to all other types, you
have to put the type name in brackets:

> type(null) = 'null':

true

In all cases - whether using the clearclearclearclear statement or assigning to nullnullnullnull - the memory
freed is not given back to the operating system but can be used by Agena for
values yet to be created.

There are two operators that quickly check whether a value is assigned or not:
assigned assigned assigned assigned and unassignedunassignedunassignedunassigned.

> assigned(v):
false

> unassigned(v):
true

agenaagenaagenaagena >> 59

4.5 4.5 4.5 4.5 PrecedencePrecedencePrecedencePrecedence

Operator precedence in Agena follows the table below, from lower to higher
priority:

 or xor
 and
 < > <= >= = == ~= <> :: :-
 in subset xsubset union minus intersect atendof
 & : @ $
 + - || ^^ split
 * / % \ && shift *% /% +% -% <<< >>>

 not - (unary minus)
 ^ **

 ! and all unary operators including ~~

As usual, you can use parentheses to change the precedence of an expression.
The concatenation (&), exponentiation (^ , **), pair (:), mapping (@), and selction ($)
operators are right associative, e.g. x^y^z = x^(y^z). All other binary operators
are left associative.

> 1+3*4:
13

> (1+3)*4:

16

4.6 4.6 4.6 4.6 ArithmeticArithmeticArithmeticArithmetic

4.6.1 4.6.1 4.6.1 4.6.1 NumNumNumNumbersbersbersbers

In the `real` domain, Agena internally only knows floating point numbers which can
represent integral or rational numeric values. All numbers are of type numbernumbernumbernumber.

An integral value consists of one or more numbers, with an optional sign in front of it.

� 1
� -20
� 0
� +4

A rational value consists of one or more numbers, an obligatory decimal point at
any position and an optional sign in front of it:

� -1.12
� 0.1
� .1

Negative integral or rational values must always be entered with a minus sign, but
positive numbers do not need to have a plus sign.

60 4 Data

You may optionally include one or more single quotes within a number to group
digits:

> 10'000'000:
10000000

You can alternatively enter numbers in scientific notation using the e symbol.

> 1e4:
10000

> -1e-4:
-0.0001

If a number ends in the letter K, M, G, T , or D, then the number is multiplied by 1,024,
1,048,576 (= 1,0242), 1,073,741,824 (= 1,0243), 1,099,511,627,776 (= 1,0244), or
12, respectively. If a number ends in the letter k , m, g, or t , then the number is
multiplied by 1,000, 1,000,000, 1,000,000,000, 1,000,000,000,000 or respectively.

> 2k:
2000

> 1M:

1048576

> 12D:

144

Besides decimal numbers, Agena supports binary, octal, and hexadecimal
numbers. They are represented by the first two letters 0b or 0B, 0o or 0O, 0x or 0X,
respectively:

0xa = decimal 100x<hexadecimal number> or
0X<hexadecimal number>

hexadecimal

0b10 = decimal 90o<octal number> or
0O<octal number>

octal

0b10 = decimal 20b<binary number> or
0B<binary number>

binary

ExamplesExamplesExamplesExamplesSyntaxSyntaxSyntaxSyntaxSystemSystemSystemSystem

If you use only real numbers in your programmes, then Agena will calculate only in
the real domain. If you use at least one complex value (see Chapter 4.6.5), then
Agena will calculate in the complex domain.

Since Agena internally stores numbers in double or complex double precision, you
will sometimes encounter round-off errors. For example, some values such as or2

 cannot be accurately represented on a machine.1
3

The mapmmapmmapmmapm package can be used in such situations because it provides arbitrary
precision arithmetic. See Chapter 7.10 for more information.

agenaagenaagenaagena >> 61

4.6.2 4.6.2 4.6.2 4.6.2 Arithmetic OperationsArithmetic OperationsArithmetic OperationsArithmetic Operations

Agena has the following arithmetical operators:

100 -% 2 » 98Percents, discount-%

100 +% 2 » 102Percents, add-on (premium)+%

100 /% 2 » 5kPercents, ratio/%

100 *% 2 » 2Percents, percentage*%

5 \ 2 » 2Integer division\
5 % 2 » 1 Modulus%
2 ** 3 » 8Exponentiation with integer power, faster than ^**

2 ^ 3 » 8Exponentiation with rational power^
4 / 2 » 2Division/
2 * 3 » 6Multiplication*
3 - 2 » 1Subtraction-
1 + 2 » 3Addition+
Details / ExampleDetails / ExampleDetails / ExampleDetails / ExampleOperationOperationOperationOperationOperatorOperatorOperatorOperator

Table 3: Arithmetic operators

The modulus operator is defined as a % b = a - entier(a/b)*b, the integer division as
a \ b = sign(a) * sign(b) * entier(abs(a/b)).

Agena has a lot of mathematical functions both built into the kernel and also
available in the mathmathmathmath, statsstatsstatsstats, linalglinalglinalglinalg, and calccalccalccalc libraries. Table 4 shows some of the
most common.

The mathematical procedures that reside in packages must always be entered by
passing the name of the package followed by a dot and the name of the
procedure. Use the importimportimportimport statement to activate the package before using these
functions, e.g. to initialise the statistics package called stats, type:

> import stats;

Unary operators4 like lnlnlnln, expexpexpexp, etc. can be entered with or without simple brackets.

abs(-1) » 1KernelAbsolute value of xabsabsabsabs(x)

tanh(0) » 0KernelHyperbolic tangenttanhtanhtanhtanh(x)

cosh(0) » 1KernelHyperbolic cosinecoshcoshcoshcosh(x)

sinh(0) » 0KernelHyperbolic sinesinhsinhsinhsinh(x)

arctan(Pi) » 1.262627..KernelArc tangent (x in radians)arctanarctanarctanarctan(x)

arccos(0) » 1.570796..KernelArc cosine (x in radians)arccosarccosarccosarccos(x)

arcsin(0) » 0KernelInverse sine (x in radians)arcsinarcsinarcsinarcsin(x)

tan(1) » 1.557407..KernelTangent (x in radians)tantantantan(x)

cos(0) » 1KernelCosine (x in radians)coscoscoscos(x)

sin(0) » 0KernelSine (x in radians)sinsinsinsin(x)
Example and resultExample and resultExample and resultExample and resultLibraryLibraryLibraryLibraryOperationOperationOperationOperationProcedureProcedureProcedureProcedure

62 4 Data

4 See Appendix A1 for a list of all unary operators.

stats.median(
 [1, 2, 3, 4]) » 2.5statsMedianmedianmedianmedianmedian([[[[···]]]])

stats.mean([1, 2, 3]) » 2statsArithmetic meanmeanmeanmeanmean([[[[···]]]])

sadd([1, 2, 3]) » 6KernelSumssssaddaddaddadd([[[[···]]]])

sqrt(2) » 1.414213..KernelSquare root of xsqrtsqrtsqrtsqrt(x)

sign(-1) » -1KernelSign of xsignsignsignsign(x)

roundf(
 sqrt(2), 2) » 1.41Base

Rounds the real value x to
the d-th digit

roundfroundfroundfroundf(x, d)

log(8, 2) » 3Kernel
Logarithm of x to the
base b

loglogloglog(x, b)

ln(1) » 0KernelNatural logarithmlnlnlnln(x)

int(2.9) » 2
int(-2.9) » -2

Kernel
Rounds x to the nearest
integer towards zero

intintintint(x)

exp(lngamma(3+1)) » 6Kernelln ✄ xlnlnlnlngammagammagammagamma(x)

exp(0) » 1KernelExponentiation exexpexpexpexp(x)

even(2) » trueKernelChecks whether x is eveneveneveneveneven(x)

entier(2.9) » 2
entier(-2.9) » -3

Kernel
Rounds x downwards to
the nearest integer

entierentierentierentier(x)

Example and resultExample and resultExample and resultExample and resultLibraryLibraryLibraryLibraryOperationOperationOperationOperationProcedureProcedureProcedureProcedure

Table 4: Common mathematical functions

In addition, Agena can conduct bitwise operations on numbers.

If the right-hand side is positive,
the bits are shifted to the left
(multiplication with 2), else they
are shifted to the right (division
by 2).

Bitwise shiftshiftshiftshiftshift

~~7 » -8Bitwise complementary operation~~~~~~~~

7 ^^ 2 » 5Bitwise `exclusive-or` operation^^^^^^^^

1 || 2 » 3Bitwise `or` operation||||||||

7 && 2 » 2Bitwise `and` operation &&&&&&&&
Details / ExampleDetails / ExampleDetails / ExampleDetails / ExampleOperationOperationOperationOperationOperatorOperatorOperatorOperator

Table 5: Bitwise operators

By default, the operators internally calculate with signed integers. You can change
this behaviour to unsigned integers by using the environ.kernelenviron.kernelenviron.kernelenviron.kernel function:

> environ.kernel(signedbits = false);

The default is restored as follows:

> environ.kernel(signedbits = true);

You can query the higher and lower bits of a number with the gethighgethighgethighgethigh and getlowgetlowgetlowgetlow
operators and change them with the sethighsethighsethighsethigh and setlowsetlowsetlowsetlow operators.

agenaagenaagenaagena >> 63

> a := gethigh(Pi):
1074340347

> b := getlow(Pi):
1413754136

> x := 0;

> x := sethigh(x, a):
3.1415920257568

> x := setlow(x, b):
3.1415926535898

> Pi = x:
true

4.6.3 4.6.3 4.6.3 4.6.3 IncrementIncrementIncrementIncrement ,,,, DecrementDecrementDecrementDecrement , Multiplication, Division, Multiplication, Division, Multiplication, Division, Multiplication, Division

Instead of incrementing or decrementing a value, say

> a := 1;

by entering a statement like

> a := a + 1:

2

you can use the incincincinc and decdecdecdec commands5 which are also around 10% faster:

incincincinc name [, value]
decdecdecdec name [, value]

If value is omitted, name is increased or decreased by 1.

> inc a;

> a:
3

> dec a;

> a:
2

> inc a, 2;

> a:
4

> dec a, 3;

> a:
1

64 4 Data

5 Finishing an incincincinc or decdecdecdec statement with a colon instead of a semicolon is refused.

Likewise, the mulmulmulmul and divdivdivdiv statements multiply or divide their argument by a scalar,
its default also being 1.

4.6.4 Mathematical Constants4.6.4 Mathematical Constants4.6.4 Mathematical Constants4.6.4 Mathematical Constants

Agena features arithmetic constants mentioned in Appendix A9.

All mathematical functions return the constant undefinedundefinedundefinedundefined instead of issuing an error
if they are not defined at a given point:

> ln(0):
undefined

With values of type number, the finitefinitefinitefinite function can determine whether a value is
neither infinityinfinityinfinityinfinity nor undefinedundefinedundefinedundefined.!

> finite(fact(1000)), finite(sqrt(-1)):
false false

The floatfloatfloatfloat function checks whether a value is a float and not an integer.

> float(1):
false

> float(1.1):
true

4.6.5 4.6.5 4.6.5 4.6.5 Complex MathComplex MathComplex MathComplex Math

Complex numbers can be defined in two ways: by using the ! constructor or the
imaginary unit represented by the capital letter I . Most of Agena's mathematical
operators and functions know how to handle complex numbers and will always
return a result that is in the complex domain. Complex values are of type complexcomplexcomplexcomplex.

> a := 1!1;

> b := 2+3*I;

> a+b:
3+4*I

> a*b:
-1+5*I

The following operators work on rational numbers as well as complex values: +, - , * ,
/ , ^ , ** , =, <>, abs , arccos , arcsec , arcsin , arctan , conjugate , cos , cosh , entier ,
exp , flip , lngamma, ln , log , sign, sin , sinh , sqrt , tan , tanh , and unary minus. With
these operators, you can also mix numbers and complex numbers in expressions.
You will find that most mathematical functions are also applicable to complex
values.

> c := ln(-1+I) + ln(0.5):
-0.34657359027997+2.3561944901923*I

agenaagenaagenaagena >> 65

The real and imaginary parts of a complex value can be extracted with the realrealrealreal
and imagimagimagimag operators.

> real(c), imag(c):
-0.34657359027997 2.3561944901923

Three further functions may also be of interest: absabsabsabs returns the absolute value of a
complex number, argumentargumentargumentargument returns its phase angle in radians, and conjugateconjugateconjugateconjugate
computes the complex conjugate.

Note that the ! operator has the same precedence as unary operators like - , sin ,
cos , etc. This means that -1!2 = -1+2*I , but also that sin 1!2 = (sin 1)!2 . It is
advised that you use brackets when applying unary operators on complex values.

The setting environ.kernel(zeroedcomplex = true) makes Agena print complex
values that are close to zero as just 0 in the output region of the console. Internally,
however, complex values are not rounded by this or any other setting.

4.6.6 4.6.6 4.6.6 4.6.6 ComComComCompppparing Valuesaring Valuesaring Valuesaring Values

Relational operators can compare both numeric and complex values. Whereas all
relational operators work on numbers, complex numbers can only be compared for
equality or inequality.

yesnot equals<>
yesequals=
nogreater than or equals>=
noless than or equals<=
nogreater than>
noless than<
Complex values supportedComplex values supportedComplex values supportedComplex values supportedDescriptionDescriptionDescriptionDescriptionOperatorOperatorOperatorOperator

> 1 < 2:
true

> 1 = 1:
true

> 1 <> 1:
false

The result truetruetruetrue indicates that a comparison is valid, and falsefalsefalsefalse indicates that it is
invalid. See Chapter 4.8 for more information.

Most computer architectures cannot accurately store number values unless they
can be expressed as halves, quarters, eighths, and so on. For example, 0.5 is
represented accurately, but 0.1 or 0.2 are not.

66 4 Data

Since Agena is not a computer algebra system, you will sometimes encounter
round-off errors in computations with numbers and complex numbers:

> 0.2 + 0.2 + 0.2 = 0.6:
false

In such cases, the approxapproxapproxapprox function might be of some help since it compares values
approximately.

> approx(0.2 + 0.2 + 0.2, 0.6):
true

> 0.2!0.2 + 0.2!0.2 + 0.2!0.2 = 0.6!0.6:

false

> approx(0.2!0.2 + 0.2!0.2 + 0.2!0.2, 0.6!0.6):
true

To determine whether a number is part of a closed interval, use the inininin operator:

> 2 in 0:10:

true

agenaagenaagenaagena >> 67

4.7 4.7 4.7 4.7 StringsStringsStringsStrings

4.7.1 4.7.1 4.7.1 4.7.1 RepresenRepresenRepresenRepresenttttationationationation

Any text can be represented by including it in single or double quotes:

> 'This is a string':
This is a string

Of course, strings - like numbers - can be assigned to variables.

> str := "I am a string.";

> str:
I am a string.

Strings - regardless whether included in single or double quotes - are all of type
stringstringstringstring,

> type(str):
string

and can be of almost unlimited length. Strings can be concatenated, characters
or sequences of characters can be replaced by other ones, and there are various
other functions to work on strings.

Multiline-strings can be entered by just pressing the RETURN key at the end of each
line:

> str := 'Two
lines';

which prints as

> str:
Two
lines

A string may contain no text at all - called an empty string -, represented by two
consecutive single quotes with no spaces or characters between them:

> '':

4.7.2 4.7.2 4.7.2 4.7.2 SubstringsSubstringsSubstringsSubstrings

You may obtain a specific character by passing its position in square brackets right
behind the string name. If you use a negative index n, then the |n|-th character
from the right end of the string is returned.

> str := 'I am a string.';

> str[1];
I

68 4 Data

In general, parts of a string consisting of one or more consecutive characters can
be obtained as with the notation:

string[start [totototo end]]

You must at least pass the start position of the substring. If only start is given then the
single character at position start is returned. If end is given too, then the substring
starting at position start up to and including position end is returned.

> str := 'string'

> str[3]:
r

> str[3 to 5]:
rin

> str[3 to 3]:
r

You may also pass negative values for start and/or end. In these cases, the
positions are determined with respect to the right end of the string.

> str[3 to -1]:
ring

> str[3 to -2]:
rin

> str[-3 to -2]:
in

> str[-3]:
i

4.7.3 Escape Sequences4.7.3 Escape Sequences4.7.3 Escape Sequences4.7.3 Escape Sequences

In Agena, a text can include any escape sequences6 known from ANSI C, e.g.:

� \n : inserts a new line,
� \t : inserts a tabulator
� \b : puts the cursor one position to the left but does not delete any characters.

> 'I am a string.\nMe too.':
I am a string.
Me too.

> 'These are numbers: 1\t2\t3':
These are numbers: 1 2 3

> 'Example with backspaces:\b but without the colon .':
Example with backspaces but without the colon.

agenaagenaagenaagena >> 69

6 See also Appendix A7.

If you want to put a single or double quote into a string, put a backslash right in front
of it:

> 'A quote: \'':
A quote: '

> "A quote: \"":
A quote: "

Likewise, a backslash is inserted by typing it twice.

4.7.4 Concatenation4.7.4 Concatenation4.7.4 Concatenation4.7.4 Concatenation

Two or more strings can be concatenated with the & operator:

> 'First string, ' & 'second string, ' & 'third str ing':
First string, second string, third string

Numbers (but not complex ones) are supported, as well, so you do not need to
convert them with the tostringtostringtostringtostring function before applying &:

> 1 & ' duck':
1 duck

4.7.5 More on Strings4.7.5 More on Strings4.7.5 More on Strings4.7.5 More on Strings

Instead of putting single or double quotes around a text, you may also use a back
quote in front of the text, but not at its end. The string then automatically ends with
one of the following tokens7:

 <space> " , ~ [] { } () ; : # ' = ? & % $ § \ ! ^ @ < > | \r \n \t

This also allows UNIX-style filenames to be entered using this short-cut method.

> `text:
text

> `/proglang/agena/lib/library.agn:
/proglang/agena/lib /library.agn

If you want to include double quotes in a string that is delimited by single quotes,
backslashes may be omitted:

> '"Agena"':
"Agena"

And vice versa:

> "'Agena'":
'Agena'

70 4 Data

7 For the current settings of your Agena version see the bottom of the agnconf.h file in the src

directory of the distribution.

4.7.6 String Operators and Functions4.7.6 String Operators and Functions4.7.6 String Operators and Functions4.7.6 String Operators and Functions

Agena has basic operators useful for text processing:

Deletes leading and trailing spaces as well as
excess embedded spaces.

stringtrimtrimtrimtrim(s)

Converts a number to one string. If a complex
value is passed, the real and imaginary parts
are returned separately as two strings.

stringtostringtostringtostringtostring(n)

Converts a string into a number or complex
number.

number or
complex value

tonumbertonumbertonumbertonumber(s)

Converts a string to uppercase. Western
European diacritics are recognised.

stringupperupperupperupper(s)

Converts a string to lowercase. Western
European diacritics are recognised.

stringlowerlowerlowerlower(s)

Returns the character corresponding to the
given numeric ASCII code n.

stringcharcharcharchar(n)

Returns the numeric ASCII code of character
s.

numberabsabsabsabs(s)

Returns the length of string s. If s is the empty
string, 0 is returned.

numbersizesizesizesize(s)

Splits a string into its words with d as the
delimiting character(s). The items are returned
as a sequence of strings.

sequence of
strings

s splitsplitsplitsplit d

Replaces all patterns p in string s with substring
r. If p is not in s, then s is returned unchanged.
p might also be the position (a positive
integer) of the character to be replaced.

stringrrrreplaceeplaceeplaceeplace(s, p, r)

Checks whether a string t ends in a substring s.
If true, the position of the position of s in t is
returned; otherwise nullnullnullnull is returned.

number or nullnullnullnulls atendofatendofatendofatendof t

Checks whether a substring s is included in
string t. If true, the position of the first
occurrence of s in t is returned; otherwise nullnullnullnull
is returned.

number or nullnullnullnulls inininin t

FunctionFunctionFunctionFunctionReturnReturnReturnReturnOperatorOperatorOperatorOperator

Table 7: String operators

Some examples:

> str := 'a string';

The character s is at the third position:

> 's' in str:
3

Let us split a string into its components that are separated by white spaces:

agenaagenaagenaagena >> 71

> str split ' ':
seq(a, string)

str is eight characters long:

> size(str):

8

The ASCII code of the first character in str , a, is:

> abs(str[1]):
97

translated back to

> char(ans):
a

Put all characters in str to uppercase:

> upper(str):
A STRING

And now the reverse:

> lower(ans):
a string

The following functions can be used to find and replace characters in a string:

instr(
 'agena',
 '[aA]g',
 1) » 1

instr('agena', 'a',
 'reverse') » 5

Looks for the first match of a pattern
(second argument) in a string (first
argument). If it finds a match, then instrinstrinstrinstr
returns its position; otherwise, it returns nullnullnullnull.
An optional numerical argument specifies
where to start the search. The function
supports pattern matching, almost similar
to regular expressions. The operator is
more than twice as fast as strings.strings.strings.strings.findfindfindfind. If
truetruetruetrue is given as a fourth argument, pattern
matching is switched off to speed up the
search.

If the option 'reverse' is given, then starting
from the right end and always running to
its left beginning, the operator looks for the
first match of the substring and returns the
position where the pattern starts with

instrinstrinstrinstr

'tr' in 'string' » 2Returns the first position of a substring (left
operand) in a string (right operand); if the
substring cannot be found, itititit returns nullnullnullnull.

inininin

ExampleExampleExampleExampleFunctionalityFunctionalityFunctionalityFunctionalityFunctionFunctionFunctionFunction

72 4 Data

replace(str,
 'string', 'text')
» text

replace('string',
 seq('s':'S',
 't':'T'))
» STring

In a string (first argument) replaces all
occurrences of a substring (second
argument) with another one (third
argument) and returns a new string.
Pattern matching facilities are not
supported.

A sequence of replacement pairs can be
passed to the operator, too.

replacereplacereplacereplace

strings.find(
 'string', 'tr')
» 2, 3

strings.find(
 'string', 'tr',
3)
» null

strings.find(
 'string', 't.')
» 2, 3

Returns the first match of a substring
(second argument) in a string (first
argument) and returns the positions where
the pattern starts and ends. An optional
third argument specifies the position
where to start the search. If it does not find
a pattern, the function returns nullnullnullnull.

The function supports pattern matching
facilities described in Chapter 7.2.3.

See also: strings.mfindstrings.mfindstrings.mfindstrings.mfind. which returns all
occurrences.

strings.findstrings.findstrings.findstrings.find

'ing' atendof
 'raining'
» 5

Checks whether a string (right operand)
ends in a substring (left operand). If true,
the position is returned; otherwise nullnullnullnull is
returned.

atendofatendofatendofatendof

respect to its left beginning. When
searching from right to left, pattern
mathing is not supported.

ExampleExampleExampleExampleFunctionalityFunctionalityFunctionalityFunctionalityFunctionFunctionFunctionFunction

Table 8: Search and replace functions and operators

For more information on these functions, check Chapter 7.2.1 and Chapter 7.2.2.
See also the descriptions of strings.matchstrings.matchstrings.matchstrings.match and strings.gmatchstrings.gmatchstrings.gmatchstrings.gmatch .

The replace operator can be used to find and replace characters in a string.

4.7.7 Comparing Strings4.7.7 Comparing Strings4.7.7 Comparing Strings4.7.7 Comparing Strings

Like numbers, single or multiple character strings can be compared with the familiar
relational operators based on their sorting order which is determined by your current
locale.

> 'a' < 'b':
true

> 'aa' > 'bb':
false

agenaagenaagenaagena >> 73

If the sizes of two strings differ, the missing character is considered less than an
existing character.

> 'ba' > 'b':
true

4.7.8 4.7.8 4.7.8 4.7.8 Patterns and CapturesPatterns and CapturesPatterns and CapturesPatterns and Captures

Sometimes, just looking for a fixed pattern, e.g. a simple substring, in a string does
not suffice. You may want to search for a pattern of different kinds of characters -
e.g. both numbers and letters, or either letters or numbers, or a subset of them -, or
of variable number of characters, or both of them.

Agena provides both character classes and modifiers to accomplish this. While
common Regular Expressions are not supported, Agena offers quite similar facilities,
all taken from Lua.

For performance reasons, you may use the following rule of thumb8:

� If you would like to determine the start position of the very first match of a fixed
pattern only, use the inininin operator, for inininin is the fastest.

� If you want to look as fast as possible only for the start position of the very first
match of a `variable` pattern, using character classes and/or modifiers, or
would like to give the position where to start the quickest search, use instrinstrinstrinstr.

� If both the start and end position is needed, prefer strings.findstrings.findstrings.findstrings.find. The instrinstrinstrinstr operator
can also return the start and end position, with or without variable patterns, but
may be slower than strings.findstrings.findstrings.findstrings.find in most situations.

Character classes represent certain sets of tokens, e.g. the class %d represents one
digit, and %a represents one upper-case or lower-case letter. Assume we would like
to determine the position of the hour 00:00:00 in the following date/time string:

> date := '23.05.1949 00:00:00'

We could use the instrinstrinstrinstr operator to determine the start position of the hour,

> instr(date, '%d%d:%d%d:%d%d'):
12

or strings.findstrings.findstrings.findstrings.find to get the start and end position of it.

> strings.find(date, '%d%d:%d%d:%d%d'):
12 19

74 4 Data

8 Different kinds of pattern matching facilities have been introduced in Agena deliberately, for the
kind of search can significantly influence performance when processing a large number of strings. If
you want to parse a large number of files and know where to look, io.skiplinesio.skiplinesio.skiplinesio.skiplines may boost
performance on slow drives, as well.

strings.matchstrings.matchstrings.matchstrings.match extracts the hour.

> strings.match(date, '%d%d:%d%d:%d%d'):
00:00:00

For a complete list of all supported classes, please have a look at the end of this
chapter or Chapter 7.2.3.

Character sets define user-defined classes determined by any character class
and/or single tokens, put in square brackets. For example, [01] may represent a
binary, and [%l -] any lower-case letter, white space or hyphen. A range of
characters is represented by a hyphen, thus[A-Ca-c] represents one of the first
three upper and lower case letters in the alphabet.

> instr('binary: 10', '[01]'):
9

A caret in front of a class indicates that a string should begin with this class, and a
dollar trailing a class denotes that it should end with the given class.

> instr('1 is a number', '^[%l]'):
null

> instr('1 is a number', '%l$'):
13

Patterns also support modifiers for repetition or optional parts. The plus sign indicates
one or more repetitions of a class, the asterisk zero or more repetitions, and the
question mark zero or one occurrence.

> date := '23.05.1949 00:00:00'

> strings.find(date, '%d+.%d+.%d+'): # find the da te 23.05.1949
1 10

> date := '23.05. 00:00:00'

> strings.find(date, '%d+.%d+.%d*'): # find 23.05. , optionally the year
1 6

The single dot represents any occurrence of any character in a string, regardless
whether the character is a cipher, a letter, or special character. If you would like to
search for one of the special characters * , +, ?, . , [,] , etc. in a string, just escape it
with the percentage sign.

> instr(date, '%.'): # find the first dot in the d ate string
3

instrinstrinstrinstr and strings.findstrings.findstrings.findstrings.find also allow to switch off pattern matching by passing truetruetruetrue as the
last argument:

> instr(date, '.', true):
3

agenaagenaagenaagena >> 75

If a pattern is put in parentheses, one or more portions of a string matching this
pattern are extracted from a string, to be optionally assigned to names. This feature
is also called a capture. Two examples:

> strings.match('<id>1234</id>', '<id>(.*)</id>'):
1234

> date := 'May 23, 1949 12:15:00';

> strings.find(date, '(%w+) (%d+), ?(%d+)'):
1 12 May 23 1949

> year, day, month := strings.match(date, '(%w+) (% d+), ?(%d+)'):
May 23 1949

> year, month, day:

May 1949 23

Another useful function is strings.gmatchstrings.gmatchstrings.gmatchstrings.gmatch which returns a function that iterates over
all occurrences of a pattern in a string:

> f := strings.gmatch('1 10', '(%d+)'):
procedure(008E1278)

> f():
1

> f():
10

You may also use the wrapper function strings.gmatchesstrings.gmatchesstrings.gmatchesstrings.gmatches which returns a sequence
of all the substrings matching a given pattern.

> strings.gmatches('1 10', '(%d+)'):
seq(1, 10)

There is a small difference between the * and - modifiers for matching zero or
more occurrences which may influence execution time significantly: while * looks
for the longest match, - does for the shortest:

> strings.match('<p> a</p><p>2</p>', '<p>(.-)</p>'): # - shortest
a

> strings.match('<p> a</p><p>b</p>', '<p>(.*)</p>'): # * longest

a</p><p>b

With captures, and with captures only, strings.findstrings.findstrings.findstrings.find not only returns the start and end
position of the match, but also the match itself as a third return.

> strings.find('<p>a</p><p>b</p>', '<p>(.-)</p>'):
1 8 a

To check whether one of the characters is in a given set, use square brackets. In the
next example, we check whether the first character in a pattern is either '1', '2', or '3',
and the rest of the pattern is 'abc'.

76 4 Data

> strings.match('2abc', '[123]abc'):
2abc

The pattern in the above example, e.g. its second argument, in general matches a
substring in a string. If you would like to make sure that a pattern matches an entire
string, put a caret in front of the pattern and a dollar sign at its end:

> strings.match('2abc', '^[123]abc$'):
2abc

Thus, since the string to be searched is longer,

> strings.match('y2abcy', '^[123]abc$'):

returns:

null

Concerning recognising one or more ligatures and umlauts, along with one or more
Latin letters, also just use square brackets and combine them with a modifier:

> strings.match('Selçuk, Turkey', '([çéöð%a]*)'):
Selçuk

Retrieve a value either residing in a conventional XML tag or its worst-case (though
here invalid) SOAP variant:

> pattern := '<.*Data.*>(%a+)</.*Data>';

> str := strings.match(
> '<soap:Data attr=\'foo\'>value</soap:Data>',
> pattern);

> str:
value

> str := strings.match('<Data>value</Data>', patter n);

> str:
value

agenaagenaagenaagena >> 77

Summary9 of character classes and pattern modifiers:

zero or one occurrences?
zero or more occurrences, returning the smallest match-
zero or more occurrences, returning the largest match*
one or more occurrences+Modifiers

anything not matching an embedded zero%Z
an embedded zero, i.e. \0.%z
anything not matching he class %x%X
hexadecimal digits 0 to 9, A to F, and a to f%x
anything not matching he class %w%W
alphanumeric characters a to z, A to Z, and 0 to 9%w

anything not representing upper and lower-case vowels
including y and Y

%V

upper and lower-case vowels including y and Y%v
anything not representing upper-case letters%U
upper-case letters%u
anything not matching spaces including \t, \n, and \r%S
spaces including \t, \n, and \r%s
anything not representing special characters%P
special characters, e.g. , . : ; - + * ~ ? ! # _ () [] { } " '%p
anything not matching lower-case letters%L
lower-case letters%l
anything not matching upper and lower-case consonants%K
upper and lower-case consonants (y is considered a vowel)%k
anything not matching digits 0 to 9%D
digits 0 to 9%d
anything not matching control characters%C
control characters%c
anything not matching the letters a to z or A to Z%A
letters a to z or A to Z%a
any character.Classes

Table 9: Character classes and modifiers

78 4 Data

9 Based on: `Programming in Lua`, 2nd edition, by Roberto Ierusalimschy, lua.org, pages 180f.

4.8 Boolean4.8 Boolean4.8 Boolean4.8 Boolean E E E Expressionsxpressionsxpressionsxpressions

Agena supports the logical values truetruetruetrue and falsefalsefalsefalse, also called `booleans`. Any
condition, e.g. a < b, results to one of these logical values. They are often used to
tell a programme which statements to execute and thus which statements not to
execute.

Boolean expressions mostly result to the Boolean values truetruetruetrue or falsefalsefalsefalse. Boolean
expressions are created by:

� relational operators (>, <, =, ==, ~=, <=, >=, <>),
� logical names: truetruetruetrue, falsefalsefalsefalse, failfailfailfail, and nullnullnullnull,
� inininin, subsetsubsetsubsetsubset, xsubsetxsubsetxsubsetxsubset, and various functions.

Agena supports the following relational operators:

1 <> 2not equals<>

1 ~= 1
[1] ~= [1]

approximate equality for real and
complex numbers, and structures

~=

[1] == [1]
1 == 1strict equality for structures10==

1 = 1equals=
2 >= 1greater than or equals>=
1 <= 2less than or equals<=
2 > 1greater than>
1 < 2less than<
ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionOperatorOperatorOperatorOperator

Table 10: Relational operators

The logical operators andandandand, orororor, and xorxorxorxor behave a little bit differently: They consider
anything except falsefalsefalsefalse, failfailfailfail, and nullnullnullnull as true, and false otherwise. They return either
the first or second operand, which can be any data - not just truetruetruetrue or falsefalsefalsefalse - subject
to the following rules:

true xor false» true
true xor true » false
false xor true » true
1 xor null » 1
1 xor 2 » 2

With Booleans: Returns the first operand if
the second one evaluates or is falsefalsefalsefalse,
failfailfailfail, or nullnullnullnull. It returns the second
operand if the first operand evaluates to
falsefalsefalsefalse, failfailfailfail, or null null null null and if the second
operand is neither falsefalsefalsefalse, failfailfailfail, or nullnullnullnull.

xorxorxorxor

true or true » true
true or false » true
2 or true » 2
null or 2 » 2

Returns its first operand if it is not or does
not evaluate to falsefalsefalsefalse, failfailfailfail, or nullnullnullnull,
otherwise it returns its second operand.

orororor

true and 1 » 1
false and 1 » false
true and false » false
false and true » false

Returns its first operand if it is or evaluates
to falsefalsefalsefalse, failfailfailfail or nullnullnullnull, otherwise returns its
second operand.

andandandand

ExampleExampleExampleExamplessssDescriptionDescriptionDescriptionDescriptionOOOOperatorperatorperatorperator

agenaagenaagenaagena >> 79

10 See Chapter 4.9.3.

not true » false
not false » true
not 1 » false
not null » true

Turns a true expression to false false false false and vice
versa.

notnotnotnot

With non-Booleans: returns the first
operand if the second operand
evaluates to nullnullnullnull, otherwise the second
operand is returned

ExampleExampleExampleExamplessssDescriptionDescriptionDescriptionDescriptionOOOOperatorperatorperatorperator

Table 11: Logical operators

As expected, you can assign Boolean expressions to names

> cond := 1 < 2:
true

> cond := 1 < 2 or 1 > 2 and 1 = 1:
true

or use them in ifififif statements, described in Chapter 5.

In many situations, the nullnullnullnull value can be used synonymously for falsefalsefalsefalse.

The additional Boolean constant failfailfailfail can be used to denote an error. With Boolean
operators (andandandand, orororor, notnotnotnot), failfailfailfail behaves like the falsefalsefalsefalse constant, e.g. not(fail) = false,
but remember that failfailfailfail is always unlike falsefalsefalsefalse, i.e. the expression failfailfailfail = falsefalsefalsefalse results to
falsefalsefalsefalse.

truetruetruetrue, falsefalsefalsefalse, and failfailfailfail are of type booleanbooleanbooleanboolean. nullnullnullnull, however, has its own type: the string
''''nullnullnullnull ''''.

The andandandand and orororor operators only evaluate their second argument if necessary, called
short-circuit evaluation. Thus the following statement does not issue an error:

> a := null

> if a :: number and a > 0 then print(ln(a)) fi

They are also handy to define defaults for unassigned names:

> a := null

> a := a or 0

> a:
0

80 4 Data

4.9 4.9 4.9 4.9 TablesTablesTablesTables

Tables are used to represent more complex data structures. Tables consist of zero,
one or more key-value pairs: the key referencing to the position of the value in the
table, and the value the data itself.

Keys and values can be numbers, strings, and any other data type except nullnullnullnull.
Here is a first example: Suppose you want to create a table with the following
meteorological data recorded by Viking Lander 1 which touched down on Mars in
1976:

-82.967.701.10
-81.107.701.06
-78.287.711.02
Temperature in Temperature in Temperature in Temperature in °°°°CCCCPressure in Pressure in Pressure in Pressure in mbmbmbmbSolSolSolSol

> VL1 := [
> 1.02 ~ [7.71, -78.28],
> 1.06 ~ [7.70, -81.10],
> 1.10 ~ [7.70, -82.96]
>];

To get the data of Sol 1.02 (the Martian day #1.2) input:

> VL1[1.02]:
[7.71, -78.28]

Tables may be empty, or include other tables - even nested ones.

You can control how tables are printed at the console in two ways: If the setting
environ.kernel('longtable') is truetruetruetrue (e.g. by entering the statement
environ.kernel(longtable = true) , then each key~value pair is printed at a
separate line. If the setting environ.kernel('longtable') is falsefalsefalsefalse, all key~value
pairs will be printed in one consecutive line, as in the example above. Also, you
can define your own printing function that tells the interpreter how to print a table (or
other structures). See Appendix A5 for further information on how to do this and
other settings.

Stripped down versions of tables are sets and sequences which are described later.
Most operations on tables introduced in this chapter are also applicable to sets and
sequences.

4.9.1 4.9.1 4.9.1 4.9.1 ArraysArraysArraysArrays

Agena features two types of tables, the simplest one being the array. Arrays are
created by putting their values in square brackets:

[[[[[value1 [, value2,···]]]]]]

agenaagenaagenaagena >> 81

> A := [4, 5, 6]:
[4, 5, 6]

The table values are 4, 5, and 6; the numbers 1, 2, and 3 are the corresponding
keys or indices of table A, with key 1 referencing value 4, key 2 referencing value 5,
etc. With arrays, the indices always start with 1 and count upwards sequentially. The
keys are always integral, so A in this example is an array whereas table VL1 in the last
chapter is not.

To determine a table value, enter the name of the table followed by the respective
index in square brackets:

tablename[[[[key]]]]

> A[1]:
4

Instead of using constants to index a table, you may also compute an index both in
table assignments or queries. The following selects the middle element of A:

> l, r := 1, size A:
1 3

> A[(l+r)\2]:
5

If a table contains other tables, you may get their values by passing the respective
keys in consecutive order. The two forms are equivalent:

tablename[[[[key1][][][][key2][][][][···]]]]
tablename[[[[key1,,,, key2,,,,···]]]]

> A := [[3, 4]]:
[[3, 4]]

The following call refers to the complete inner table which is at index 1 of the outer
table:

> A[1]:
[3, 4]

The next call returns the second element of the inner table.

> A[1][2], A[1, 2]:
4 4

Tables may be nested:

> A := [4, [5, [6]]]:
[4, [5, [6]]]

82 4 Data

To get the number 6, enter the position of the inner table [5, [6]] as the first index,
the position of the inner table [6] as the second index, and the position of the
desired entry as the third index:

> A[2, 2, 1]:
6

With tables that contain other tables, you might get an error if you use an index that
does not refer to one of these tables:

> A[1][0]:
Error in stdin, at line 1:
 attempt to index field `?` (a number value)

Here A[1] returns the number 4, so the subsequent indexing attempt with 4[0] is an
invalid expression. You may use the getentrygetentrygetentrygetentry function to avoid error messages:

> getentry(A, 1, 0):
null

Similarly, the operator allows to index tables even if its left-hand side operand
evaluates to nullnullnullnull. In this case, nullnullnullnull is returned, as well, and no error is issued. It is
three times faster than getentrygetentrygetentrygetentry.

> create table A;

> A.b:
null

> A.b.c:
Error in stdin, at line 1:
 attempt to index field `b` (a null value)

> A..b..c:
null

> create table A;

> A[1]:
null

> A[1][2]:
Error in stdin, at line 1:
 attempt to index field `?` (a null value)

> A..[1]..[2]:
null

Sublists of table arrays can be determined with the following syntax:

tablename[[[[m to to to to n]]]]

Agena returns all values from and including index position m to n, with m and n
negative or positive integers or 0. If there are no values between m and n, an
empty list is returned. Table values with non-integer keys are ignored.

agenaagenaagenaagena >> 83

> A := [10, 20, 30, 40]

> A[2 to 3]:
[2 ~ 20, 3 ~ 30]

Tables can contain no values at all. In this case they are called empty tables with
values to be inserted later in a session. There are two forms to create empty tables.

createcreatecreatecreate table table table table name1 [, tabletabletabletable name2,···]

name1 := [[[[]]]]

> create table B;

creates the empty table B,

> B := [];

does exactly the same.

You may add a value to a table by assigning the value to an indexed table name:

> B[1] := 'a';

> B:
[a]

Alternatively, the insertinsertinsertinsert statement always appends values to the end of a table11:

insert insert insert insert value1 [, value2, ···] into into into into name

> insert 'b' into B;

> B:
[a, b]

To delete a specific key~value pair, assign nullnullnullnull to the indexed table name:

> B[1] := null;

> B:
[2 ~ b]

84 4 Data

11 The insertinsertinsertinsert statement cannot be applied on weak tables. See Chapter 6 for further information on
this variant.

The deletedeletedeletedelete 12statement works a little bit differently and removes all occurrences of a
value from a table.

delete delete delete delete value1 [, value2, ···] from from from from name

> insert 'b' into B;

> delete 'b' from B;

> B:
[]

In both cases, deletion of values leaves `holes` in a table, which are nullnullnullnull values
between other non-nullnullnullnull values:

> B := [1, 2, 2, 3]

> delete 2 from B

> B:
[1 ~ 1, 4 ~ 3]

There exists a special sizing option with the createcreatecreatecreate tabletabletabletable statement which besides
creating an empty table also sets the default number of entries. Thus you may gain
some speed if you perform a large number of subsequent table insertions, since
with each insertion, Agena checks whether the maximum number of entries has
been reached. If so, each time it automatically enlarges the table which creates
some overhead. The sizing option reserves memory for the given number of
elements in advance, so there is no need for Agena to subsequently enlarge the
table until the given default size will be exceeded.

Arrays with a predefined number of entries are created according to the following
syntax:

create tablecreate tablecreate tablecreate table name1((((size1)))) [, tabletabletabletable name2((((size2)))),···]

When assigning entries to the table, you will save at least 1/3 of computation time if
you know the size of the table in advance and initialise the table accordingly. If you
want to insert more values later, then this will be no problem. Agena automatically
enlarges the table beyond its initial size if needed.

> create table a(5);

> create table a, table b(5);

agenaagenaagenaagena >> 85

12 dito.

4.9.2 4.9.2 4.9.2 4.9.2 DictionariesDictionariesDictionariesDictionaries

Another form of a table is the dictionary with any kind of data - not only positive
integers - as indices:

Dictionaries are created by explicitly passing key-value pairs with the respective keys
and values separated by tildes, which is the difference to arrays:

[[[[[key1 ~ value1 [, key2 ~ value2,···]]]]]]

> A := [1 ~ 4, 2 ~ 5, 3 ~ 6]:
[1 ~ 4, 2 ~ 5, 3 ~ 6]

> B := [abs('þ') ~ 'th']:
[231 ~ th]

Here is another example with strings as keys:

> dic := ['donald' ~ 'duck', 'mickey' ~ 'mouse'];

> dic:
[mickey ~ mouse, donald ~ duck]

As you see in this example, Agena internally stores the key-value pairs of a
dictionary in an arbitrary order.

As with arrays, indexed names are used to access the corresponding values stored
to dictionaries.

> dic['donald']:
duck

If you use strings as keys, a short form is:

> dic.donald:
duck

Further entries can be added with assignments such as:

> dic['minney'] := 'mouse';

which is the equivalent to

> dic.minney := 'mouse';

Dictionaries with an initial number of entries are declared like this:

create create create create dictdictdictdict name1((((size1)))) [, dictdictdictdict name2((((size2)))),···]

86 4 Data

You may mix declarations for arrays and dictionaries, so the general syntax is:

create create create create {tabletabletabletable | dictdictdictdict} name1[((((size1))))] [, {tabletabletabletable | dictdictdictdict} name2[((((size2))))],···]

4.9.3 4.9.3 4.9.3 4.9.3 Table, SetTable, SetTable, SetTable, Set and and and and Sequence OperatorsSequence OperatorsSequence OperatorsSequence Operators

Agena features some built-in table, set and sequence operators which are
described below. A `structure` in this context is a table, set, or sequence.

Returns all values in two tables, two sets, or two
sequences A, B that are included both in A and in B as
a new structure.

table,
set, seq

A intersectintersectintersectintersect B

Concatenates two tables, or two sets, or two
sequences A, B simply by copying all its elements -
even if they occur multiple times - to a new structure.
With sets, all items in the resulting set will be unique, i.e.
they will not appear multiple times.

table,
set, seq

A unionunionunionunion B

Checks whether the values in structure A are also
values in B. Contrary to subsetsubsetsubsetsubset, the operator returns
falsefalsefalsefalse if A = B.

BooleanA xsubsetxsubsetxsubsetxsubset B

Checks whether the values in structure A are also
values in B regardless of the number of their
occurrence. The operator also returns truetruetruetrue if A = B.

BooleanA subsetsubsetsubsetsubset B

The negation of A ~= B.Booleannotnotnotnot(A ~= B)

Like ========, but checks the respective elements for
approximate equality. Use environ.kernel/epsenviron.kernel/epsenviron.kernel/epsenviron.kernel/eps to
change the setting for the accurarcy threshold.

BooleanA ~= B

The negation of A == B.Booleannotnotnotnot(A == B)

Checks whether two tables A, B, or two sets A, B, or two
sequences A, B contain the same number of elements
and whether all key~value pairs in the tables or entries
in the sets or sequences are the same; if B is a
reference to A, then the result is also truetruetruetrue.

BooleanA == B

Checks whether two sets/tables/sequences A, B do not
contain the same values regardless of the number of
their occurrence; if B is a reference to A, then the result
is falsefalsefalsefalse.

BooleanA <> B

Checks whether two tables A, B, or two sets A, B, or two
sequences A, B contain the same values regardless of
the number of their occurrence; if B is a reference to
A, then the result is also truetruetruetrue.

BooleanA = B

Determines whether a structure contains at least one
value. If so, it returns truetruetruetrue, else falsefalsefalsefalse.

Booleanfilledfilledfilledfilled A

Checks whether the structure A contains the given
value c.

Booleanc inininin A

FunctionFunctionFunctionFunctionReturnReturnReturnReturnNameNameNameName

agenaagenaagenaagena >> 87

Selects all elements of a structure A that satisfy a
condition evaluated by function f.

table,
set, seq

f $ A

Maps a function f on all elements of a structure A.
table,
seq, set

f @ A

Raises each value in a table or sequence to the
power of 2 and sums up these powers. If the table or
sequence is empty or contains no numeric values, nullnullnullnull
is returned. Sets are not supported.

numberqqqqssssaddaddaddadd A

Sums up all numeric table or sequence values. If the
table or sequence is empty or contains no numeric
values, nullnullnullnull is returned. Sets are not supported.

numberssssaddaddaddadd A

Removes multiple occurrences of the same value and
returns the result in a new structure. With tables, also
removes all holes (`missing keys`) by reshuffling its
elements. This operator is not applicable to sets, since
they are already unique.

table,
seq

uniqueuniqueuniqueunique A

This function sorts table or sequence A in ascending
order. It directly operates on A, so it is destructive. With
tables, the function has no effect on values that have
non-integer keys. Note that sortsortsortsort is not an operator, so
you must put the argument in brackets. Please also
see Chapter 7 for its derivatives: sortedsortedsortedsorted,
skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted , stats.issortedstats.issortedstats.issortedstats.issorted , and stats.sortedstats.sortedstats.sortedstats.sorted.

table,
seq

sortsortsortsort((((A))))

Returns the size of a table A, i.e. the actual number of
key~value pairs in A. With sets and sequences, the
number of items is returned.

numbersizesizesizesize A

Concatenates all strings in the table or sequence A.stringjoinjoinjoinjoin A

Creates a deep copy of the structure A, i.e. if A
includes other tables, sets, pairs, or sequences, copies
of these structures are built, too.

table,
set, seq

copycopycopycopy A

Returns all the values in A that are not in B as a new
structure.

table,
set, seq

A minusminusminusminus B

FunctionFunctionFunctionFunctionReturnReturnReturnReturnNameNameNameName

Table 12: Table, set, and sequence operators

Here are some examples - try them with sets and sequences as well:

The unionunionunionunion operator concatenates two tables simply by copying all its elements -
even if they occur multiple times.

> ['a', 'b', 'c'] union ['a', 'd']:
[a, b, c, a, d]

intersectintersectintersectintersect returns all values that are part of both tables as a new table.

> ['a', 'b', 'c'] intersect ['a', 'd']:
[a]

88 4 Data

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times to the resulting table.

minusminusminusminus returns all the elements that appear in the table on the left hand side of this
operator that are not members of the right side table.

> ['a', 'b', 'c'] minus ['a', 'd']:
[b, c]

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times to the resulting table.
The uniqueuniqueuniqueunique operator

• removes all holes (`missing keys`) in a table,
• removes multiple occurrences of the same value.

and returns the result in a new table. The original table is not overwritten. In the
following example, there is a hole at index 2 and the value 'a' appears twice.

> unique [1 ~ 'a', 3 ~ 'a', 4 ~ 'b']:
[b, a]

You can search a table for a specific value with the inininin operator. It returns truetruetruetrue if the
value has been found, or falsefalsefalsefalse, if the element is not part of the table. Examples:

> 'a' in ['a', 'b', 'c']:

returns truetruetruetrue.

> 1 in ['a', 'b', 'c']:

returns falsefalsefalsefalse. Remember that inininin only checks the values of a table, not its keys.

4.9.4 Table4.9.4 Table4.9.4 Table4.9.4 Table Functions Functions Functions Functions

Agena has a number of functions that work on tables (and sequences), e.g.:

The original element at
position key and all other
elements are shifted up one
place.

Inserts a key ~ value pair into
structure o.

putputputput(o, key, value)

All elements to the right are
shifted down, so that no holes
are created.

Removes index key and its
corresponding value from o.

purgepurgepurgepurge(o, key)

f may be an anonymous
function, as well. See also zipzipzipzip
in Chapter 7.1.

Maps a function f onto all
elements of structure o.

mapmapmapmap(f, o)

Further detailFurther detailFurther detailFurther detailDescriptionDescriptionDescriptionDescriptionFunctionFunctionFunctionFunction

agenaagenaagenaagena >> 89

Substitutes all occurrences of
value x in o with value v.

ssssubsubsubsubs(o, x:v)

f may be also an anonymous
function. The removeremoveremoveremove
function conducts the
opposite operation.

Returns all the elements that
satisfy the Boolean condition
given by function f.

selectselectselectselect(f, o)

Further detailFurther detailFurther detailFurther detailDescriptionDescriptionDescriptionDescriptionFunctionFunctionFunctionFunction

Table 13: Basic table procedures

The mapmapmapmap function is quite handy to apply a function with one, or more arguments
to all elements of a table by one stroke:

> map(<< x -> x^2 >>, [1, 2, 3]):
[1, 4, 9]

The @@@@ operator also maps a function on all elements of a table, sequence, set, or
pair. Contrary to mapmapmapmap, it accepts univariate functions only, but is faster:

> << x -> x^2 >> @ [1, 2, 3]:
[1, 4, 9]

Likewise, the faster $ operator selects those elements of a table, set, or sequence
that satisfy a condition determined by a univariate function.

> << x -> x > 1 >> $ [1, 2, 3]:
[2, 3]

Suppose we want to add a new entry 10 at position 3 of table C13:

> C := [1, 2, 3, 4]

> put(C, 3, 10)

> C:
[1, 2, 10, 3, 4]

Now we remove this new entry 10 at position 3 again:

> purge(C, 3)

> C:
[1, 2, 3, 4]

Determine all elements in C that are even:

> select(<< x -> even(x) >>, C):

[2 ~ 2, 4 ~ 4]

Or return all elements not even:

90 4 Data

13 putputputput and purgepurgepurgepurge have to shift elements up or down, drawing performance. You may use the llist
package to conduct these kinds of operations much faster in case of a large number of insertions
or deletions.

> remove(<< x -> even(x) >>, C):

[1 ~ 1, 3 ~ 3]

Note that removeremoveremoveremove and selectselectselectselect do not alter the original structure passed as the
second argument.

zipzipzipzip zips together two tables by applying a function to each of its respective
elements.

> C:
[1, 2, 3, 4]

> zip(<< (x, y) -> x + y >>, C, [10, 20, 30, 40]):

[11, 22, 33, 44]

For other functions, have a look at Chapter 7 of this manual and the Agena Quick
Reference Excel sheet.

4.9.5 Table4.9.5 Table4.9.5 Table4.9.5 Table ReferencesReferencesReferencesReferences

If you assign a table to a variable, only a reference to the table is stored in the
variable. This means that if we have a table

> A := [1, 2];

assigning

> B := A;

does not copy the contents of A to B, but only the address of the same memory
area which holds table [1, 2] , hence:

> insert 3 into A;

> A:
[1, 2, 3]

also yields:

> B:
[1, 2, 3]

Use copycopycopycopy to create a true copy of the contents of a table. If the table contains
other tables, sets, sequences, or pairs, copies of these structures are also made
(so-called `deep copies`). Thus copycopycopycopy returns a new table without any reference to
the original one.

> B := copy(A);

> insert 4 into A;

> B:
[1, 2, 3]

agenaagenaagenaagena >> 91

With structures such as tables, sets, pairs, or sequences, all names to the left of an
-> token will point to the very same structure to its right. This behaviour may be
changed in a future version of Agena.

> A, B -> []

> A[1] := 1

> B:
[1]

Tables can also directly or indirectly contain themselves, in which case they are also
called `cycles`. Just some few examples:

> A := []

> A := [A, A]

> A:
[[], []]

> A.A := A

> A:
[1 ~ [], 2 ~ [], A ~ circum_table(0236A460)]

4444....10101010 SetsSetsSetsSets

Sets are collections of unique items: numbers, strings, and any other data except
nullnullnullnull. Their syntax is:

{{{{ [item1 [, item2,···]] }}}}

Thus, they are equivalent to Cantor sets: An item is stored only once.

> A := {1, 1, 2, 2}:
{1, 2}

Besides being commonly used in mathematical applications, they are also useful
to hold word lists where it only matters to see whether an element is part of a list or
not:

> colours := {'red', 'green', 'blue'};

If you want to check whether the colour red is part of the set colours, just index it as
follows:

setname[[[[itemitemitemitem]]]]

92 4 Data

If an element is stored to a set, Agena returns truetruetruetrue:

> colours['red']:
true

If an item is not in the given set, the return is falsefalsefalsefalse. Note that we can use the same
short form for indexing values (without quotes) as can be done with tables.

> colours.yellow:
false

If you want to add or delete items to or from a set, use the insertinsertinsertinsert and deletedeletedeletedelete
statements. The standard assignment statement setname[key] := value is not
supported with sets.

insert insert insert insert item1 [, item2, ···] into into into into name

delete delete delete delete item1 [, item2, ···] from from from from name

> insert 'yellow' into colours;

The inininin operator checks whether an item is part of a set - it is an alternative to the
indexing method explained above, and returns truetruetruetrue or falsefalsefalsefalse, too.

> 'yellow' in colours:
true

The data type of a set is setsetsetset.

> type(colours):
set

You may predefine sets with a given number of entries according to the following
syntax:

create create create create setsetsetset name1 [(size1)] [, setsetsetset name2 [(size2)],···]

When assigning items later, you will save at least 90 % of computation time if you
know the size of the set in advance and initialise it with the maximum number of
future entries as explained above. More items than stated at initialisation can be
entered anytime, since Agena automatically enlarges the respective set
accordingly and will also reserves space for further entries.

Sets are useful in situations where the number of occurrences of a specific item or
its position do not concern. Compared to tables, sets consume around 40 % less
memory, and operations with them are 10 % to 33 % faster than the corresponding
table operations.

agenaagenaagenaagena >> 93

Specifically, the more items you want to store, the faster operations will be
compared to tables.

Note that if you assign a set to a variable, only a reference to the set is stored in the
variable. Thus in a statement like A := {}; B := A , A and B point to the same set.
Use the copycopycopycopy operator if you want to create `independent` sets.

Sets can also include themselves, just an example:

> A := {}

> A := {A, A}:
{{}}

If you want to know the number of occurrences of a unique element in a
distribution, the bagsbagsbagsbags package might be of interest, see Chapter 7.8.

The following operators work on sets:

Returns the size of a set A, i.e. the actual number of
elements in A.

numbersizesizesizesize A

Creates a deep copy of the set A, i.e. if A includes
other tables, sets, pairs, or sequences, copies of these
structures are built, too.

setcopycopycopycopy A

Returns all the values in A that are not in B as a new
set.

setA minusminusminusminus B

Returns all values in two sets A, B that are included
both in A and in B as a new set.

setA intersectintersectintersectintersect B

Concatenates two sets A, B simply by copying all its
elements to a new set. All items in the resulting set will
be unique, i.e. they will not appear multiple times.

setA unionunionunionunion B

Checks whether the values in set A are also values in B.
Contrary to subsetsubsetsubsetsubset, the operator returns falsefalsefalsefalse if A = B.

BooleanA xsubsetxsubsetxsubsetxsubset B

Checks whether the values in set A are also values in B.
The operator also returns truetruetruetrue if A = B.

BooleanA subsetsubsetsubsetsubset B

Same as =.BooleanA == B

Checks whether two sets A, B do not contain the same
values regardless of the number of their occurrence; if
B is a reference to A, then the result is falsefalsefalsefalse.

BooleanA <> B

Checks whether two sets A, B contain the same values
regardless of the number of their occurrence; if B is a
reference to A, then the result is also truetruetruetrue.

BooleanA = B

Determines whether a set contains at least one value.
If so, it returns truetruetruetrue, else falsefalsefalsefalse.

Booleanfilledfilledfilledfilled A

Checks whether the set A contains the given value c.Booleanc inininin A
FunctionFunctionFunctionFunctionReturnReturnReturnReturnNameNameNameName

94 4 Data

Selects all elements of A that satisfy a given condition
checked by function f.

setf $ A

Maps a function f on all elements of a set A.setf @ A
FunctionFunctionFunctionFunctionReturnReturnReturnReturnNameNameNameName

Table 14: Set operators

4.11 4.11 4.11 4.11 SequencesSequencesSequencesSequences

Besides storing values in tables or sets, Agena also features the sequence, an
object which can hold any number of items except nullnullnullnull. You may sequentially add
items and delete items from it. Compared to tables, insertion and deletion are
twice as fast with sequences.

Sequences store items in sequential order. Like in tables, an item may be included
multiple times. Sequences are usually indexed with positive integers in the same
fashion as table arrays are, starting at index 1. If you pass a negative index n, then
the |n|-th value from the right end, i.e. the top of the sequence is determined.
Other types of indexes are not allowed. As with tables, you can compute the index
in assignments or queries.

Suppose we want to define a sequence of two values. You may create it using the
seqseqseqseq operator.

seq(seq(seq(seq([item1 [, item2,···]]))))

> a := seq(0, 1, 2, 3);

> a:
seq(0, 1, 2, 3)

You can access the items the usual way:

seqname[[[[indexindexindexindex]]]]

> a[1]:
0

> a[2]:
1

If the index is larger than the current size of the sequence, an error is returned14.

> a[5]:
Error, line 1: index out of range

agenaagenaagenaagena >> 95

14 The error message can be avoided by defining an appropriate metamethod.

Sublists of sequences can be determined with the following syntax:

seqname[[[[m to to to to n]]]]

Agena returns all values from and including index position m to n, with m and n
positive or negative integers. In case of a non-existing key, an error is issued.

> a[2 to 3]:
seq(1, 2)

The way Agena outputs sequences can be changed by using the settypesettypesettypesettype function.

In general, the settypesettypesettypesettype function allows you to set a user-defined subtype for a
sequence, set, table, or pair.

> a := seq(0, 1);

> settype(a, 'duo');

> a:
duo(0, 1)

The gettypegettypegettypegettype function returns the new type you defined above as a string:

> gettype(a):
duo

If no user-defined type has been set, gettypegettypegettypegettype returns nullnullnullnull.

Once the type of a sequence has been set, the typeoftypeoftypeoftypeof operator also returns this
user-defined sequence type and will not return 'sequence' .

> typeof(a), gettype(a):
duo duo

This allows you to programme special operations only applicable to certain types of
sequences.

The :::::::: and :-:-:-:- operators can check user-defined types. Just pass the name of your
type as a string:

> a :: 'duo':
true

> a :- 'duo':

false

Note that if a user defined-type has been given, the check for a basic type with the
:::::::: and :-:-:-:- operators will return falsefalsefalsefalse or truetruetruetrue, respectively.

96 4 Data

> a :: sequence:
false

> a :- sequence:
true

A user-defined type can be deleted by passing nullnullnullnull as a second argument to
settypesettypesettypesettype.

> settype(a, null);

> typeof(a):
sequence

The create seqcreate seqcreate seqcreate sequenceuenceuenceuence statement creates an empty sequence and optionally allows
to allocate enough memory in advance to hold a given number of elements
(which can be inserted later). Agena automatically will extend the sequence, if the
predetermined number of items is exceeded.

create seqcreate seqcreate seqcreate sequenceuenceuenceuence name1 [, seqseqseqseq name2,···]
create create create create seqseqseqsequenceuenceuenceuence name1((((size1)))) [, seqseqseqseq name2((((size2)))),···]

Items can be added only sequentially. You may use the insertinsertinsertinsert statement for this or
the conventional indexing method.

> create sequence a(4);

> insert 1 into a;

> a[2] := 2;

> a:
seq(1, 2)

Note that if the index is larger than the number of items stored to it plus 1, Agena
returns an error in assignment statements, since `holes` in a sequence are not
allowed. The next free position in a is at index 3, however a larger index is chosen in
the next example.

> a[4] := 4
Error, line 1: index out of range

> a[3] := 3

Items can be deleted by setting their index position to nullnullnullnull, or by applying deletedeletedeletedelete,
i.e. stating which items - not index positions - shall be removed. Note that all items
to the right of the value deleted are shifted to the left, thus their indices will change.

> a[1] := null

> a:
seq(2, 3)

agenaagenaagenaagena >> 97

> delete 2, 3 from a

> a:
seq()

Thus concerning the insertinsertinsertinsert and deletedeletedeletedelete statements, we have the following familiar
syntax:

insert insert insert insert item1 [, item2, ···] into into into into name

delete delete delete delete item1 [, item2, ···] from from from from name

If you assign a sequence to a variable, only a reference to the sequence is stored
in the variable. Thus sequences behave the same way as tables and sets do, i.e. in
a statement like A := seq(); B := A , A and B point to the same sequence in
memory. Use the copycopycopycopy operator if you want to create `independent` sequences.

> A := seq()

> B := A

> A[1] := 10

> B:
seq(10)

As with tables and sets, sequences can also reference to themselves:

> A := seq()

> A[1] := A

> A[2] := A

> A:
seq(circum_sequence(01E647D8), circum_sequence(01E6 47D8))

The following operators, functions, and statements work on sequences:

f $ a
Selects all elements of A that satisfy a given
condition.

$

f @ a
Maps a function on all elements of a
sequence.

@

a :- sequence
a :- 'usertype'Negation of type check operation:-

a :: sequence
a :: 'usertype'Type check operator::

a <> bInequality check the Cantor way<>

a ~= bapproximate equality check~=

a == bStrict equality check==

a = bEquality check the Cantor way=
ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionNameNameNameName

98 4 Data

seq(1)
subset seq(1, 2)

Checks whether all values in a sequence are
included in another sequence.

subsetsubsetsubsetsubset

seq(1, 2)
minus seq(2, 3)

Searches all values in one sequence that are
not values in another sequence and returns
them as a new sequence.

minusminusminusminus

seq(1, 2)
intersect
seq(2, 3)

Searches all values in one sequence that are
also values in another sequence and returns
them in a new sequence.

intersectintersectintersectintersect

zip(<< x, y ->
 x + y >>,
 seq(1, 2),
 seq(3, 4))

Zips together two sequences by applying a
function to each of its respective elements.

zipzipzipzip

map(<< x -> x^2
>>, seq(1, 2, 3))

Maps a function on all elements of a
sequence.

mapmapmapmap

unpack(a)
Unpacks a sequence. See unpackunpackunpackunpack in Chapter
7.1.

unpackunpackunpackunpack

unique a
Reduces multiple occurrences of an item in a
sequence to just one.

uniqueuniqueuniqueunique

typeof a
Returns the user-defined type of a sequence,
or the basic type if no special type has been
defined.

typeoftypeoftypeoftypeof

type a
Returns the general type of a sequence, i.e.
sequencesequencesequencesequence.

typetypetypetype

sort(a)

Sorts a sequence in place. Please also see
Chapter 7 for its derivatives: sortedsortedsortedsorted,
skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted, stats.issortedstats.issortedstats.issortedstats.issorted, and
stats.sortedstats.sortedstats.sortedstats.sorted.

sortsortsortsort

size aReturns the current number of items.sizesizesizesize

pop bottom from a
pop top from a

Pops the first or the last element from a
sequence.

poppoppoppop

join(a)
Concatenates all strings in a sequence in
sequential order.

joinjoinjoinjoin

0 in seq(1, 0)
Checks whether an element is stored in the
sequence, returns truetruetruetrue or falsefalsefalsefalse.

inininin

getentry(a, 1, 3)
Returns entries without issuing an error if a
given index does not exist.

getentrygetentrygetentrygetentry

filled a
Checks whether a sequence has at least one
item.

filledfilledfilledfilled

copy a
Creates an exact copy of a sequence; deep
copying is supported so that structures inside
sequences are properly treated.

copycopycopycopy

pop a
as an operator works like top but also removes
the item from the sequence

poppoppoppop

top aReturns the item with the largest key.toptoptoptop

bottom aReturns the item with key 1.bottombottombottombottom

delete 0, 1
 from aDeletes one or more elements.deletedeletedeletedelete

insert 1 into aInserts one or more elements.insertinsertinsertinsert
ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionNameNameNameName

agenaagenaagenaagena >> 99

getmetatable(a)Returns the metatable stored to a sequence.
getmetagetmetagetmetagetmeta----
tabletabletabletable

setmetatable
 (a, mtbl)Assigns a metatable to a sequence.

setmetasetmetasetmetasetmeta----
tabletabletabletable

gettype(a)Returns a user-defined type for a sequence.gettypegettypegettypegettype

settype(a, 'duo')Sets a user-defined type for a sequence.settypesettypesettypesettype

seq(1, 2)
union seq(2, 3)

Concatenates two sequences simply by
copying all its elements.

unionunionunionunion

ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionNameNameNameName

Table 15: Basic sequence operators and functions

For more functions, consult the Agena Quick reference Excel sheet. Also, you may
have a look at the llistllistllistllist linked list package presented in Chapter 6.25, if you have to
conduct a lot of insertions and/or deletions in a data structure.

4.12 Stack Programming4.12 Stack Programming4.12 Stack Programming4.12 Stack Programming

Sequences and sometimes table arrays can be used to implement stacks, and
besides the insertinsertinsertinsert/intointointointo statement to put an element to the top, an efficient
statement is available to remove an item from the bottom of the stack or from the
top of the stack:

pop bottom from pop bottom from pop bottom from pop bottom from name

pop top from pop top from pop top from pop top from name

Both variants work on tables even if their integer keys are not distributed
consecutively.

The bottombottombottombottom and toptoptoptop operators return the element at the bottom of the stack and
the top of the stack, respectively. They both do not change the stack, i.e. the
sequence or table, as they do not delete the element returned.

> stack := seq();

> insert 10, 11, 12 into stack;

> bottom(stack):
10

> top(stack):
12

> pop bottom from stack;

> pop top from stack;

> stack:
seq(11)

100 4 Data

The rotaterotaterotaterotate statement moves each element in a sequence or the array part of a
table one position to the bottom (downwards) or to the top (upwards):

rotate bottom rotate bottom rotate bottom rotate bottom name

rotate top rotate top rotate top rotate top name

The element at the bottom or the top is moved to the top or the bottom,
respectively.

> s := seq(1, 2, 3);

> rotate bottom s;

> s:
seq(2, 3, 1)

> s := seq(1, 2, 3):
seq(1, 2, 3)

> rotate top s;

> s:
seq(3, 1, 2)

The poppoppoppop operator both returns the top element of a sequence and then removes it
from this sequence. With tables, it returns the value indexed by the largest integer
key and then also removes it from the table.

> pop(s):
2

> s:
seq(3, 1)

There are two other statements that work on sequences only: The exchangeexchangeexchangeexchange
statement swaps the two topmost elements, and the duplicateduplicateduplicateduplicate statement inserts a
copy of the topmost element at the end of this sequence.

> exchange s

> s:
seq(1, 3)

> duplicate s

> s:
seq(1, 3, 3)

4.14.14.14.13333 More on the More on the More on the More on the create Statementcreate Statementcreate Statementcreate Statement

You cannot only initialise any table arrays with the createcreatecreatecreate statement, but also
dictionaries, sets, and sequences with only one call and in random order, so the
following statement is valid:

agenaagenaagenaagena >> 101

> create table a, dict b(10), set c, sequence d(100), table e(10);

> a, b, c, d, e:
[] [] {} seq() []

4.14.14.14.14444 PairsPairsPairsPairs

The structure which holds exactly two values of any type (including nullnullnullnull and other
pairs) is the pair. A pair cannot hold less or more values, but its values can be
changed. Conceived originally to allow passing options in a more flexible way to
functions, it is defined with the colon operator:

item1 :::: item2

> p := 1:2

> p:
1:2

The leftleftleftleft and rightrightrightright operators provide read access to its left and right operands; the
standard indexing method using indexed names is supported, as well:

left left left left [((((] pair [))))]
right right right right [((((] pair [))))]

> left(p), p[1]:
1 1

> right p, p[2]:
2 2

An operand of an already existing pair can be changed by assigning a new value
to an indexed name, where the left operand is indexed with number 1, and the
right operand with number 2:

> p[1] := 2;

> p[2] := 3;

You can compute the index as long as the result evaluates to the integers 1 or 2, as
well.

As with sequences, you may define user-defined types for pairs with the settypesettypesettypesettype
function which also changes the way pairs are output.

> typeof(p):

pair

> settype(p, 'duo');

102 4 Data

> p:
duo(2, 3)

> typeof(p):
duo

> gettype(p):
duo

> p :: pair:
false

> p :: 'duo':
true

The only other operators besides leftleftleftleft and rightrightrightright that work on pairs are equality (=, ==,
~=), inequality (<>), ::, , , , :-, , , , typetypetypetype, typeoftypeoftypeoftypeof, and inininin.

> p = 3:2:
false

With pairs consisting of numbers, the inininin operator checks whether a left-hand
argument number is part of a closed numeric interval given by the given right-hand
argument pair.

> 2 in 0:10:
true

> 's' in 0:10:
fail

As with all other structures, if you assign a pair to a variable, only a reference to the
pair is stored in the variable. Thus in a statement like A := a:b; B := A , A and B
point to the same pair. Use the copycopycopycopy operator if you want to create `independent`
pairs.

Summary:

copy a
Creates an exact copy of a pair; deep
copying is supported so that structures
inside pairs are properly treated.

copycopycopycopy

f @ aMaps a function on each operand.@

a :- pair
a :- 'udeftype'Negation of type check operation:-

a :: pair
a :: 'udeftype'Type check operator::

a <> bInequality check<>

a = bEquality checks (mostly same functionality)=, ==, ~=
ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionNameNameNameName

agenaagenaagenaagena >> 103

getmetatable(p)Returns the metatable stored to a pair.getmetagetmetagetmetagetmetatabletabletabletable

setmeta t abl e(p,
 mtbl)Sets a metatable to a pair.setmetasetmetasetmetasetmetatabletabletabletable

gettype(a)Returns the user-defined type of a pair.gettypegettypegettypegettype

settype(a, 'duo')Sets a user-defined type for a pair.settypesettypesettypesettype

typeof(a)
Returns either the user-defined type of the
pair, or the basic type ('pair') if no
special type was defined for the pair.

typeoftypeoftypeoftypeof

type(a)With pairs, always returns 'pair' .typetypetypetype

right(a)Returns the right operand of a pair.rightrightrightright

left(a)Returns the left operand of a pair.leftleftleftleft

1.5 in 1:2

If the left operand x is a number and if the
left and right hand side of the pair a:b are
numbers, then the operator checks
whether x lies in the closed interval [a, b]
and returns truetruetruetrue or falsefalsefalsefalse. If at least one
value x, a, b is not a number, the operator
returns failfailfailfail.

inininin

ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionNameNameNameName

Table 16: Operators and functions applicable to pairs

4.15 Registers4.15 Registers4.15 Registers4.15 Registers

Registers are memory-efficient, fixed-size Agena `sequences` that also store nullnullnullnull's.
They are not automatically extended if more values have to be added, but can be
manually resized.

Registers allow to hide data: by changing the pointer to the top of a register using
registers.settopregisters.settopregisters.settopregisters.settop, any values stored above (the position of) this pointer can neither be
read nor changed by any of Agena's functions and operators. Registers are
supported by most of the existing statements, operators and functions. Please also
refer to Chapter 6.15 `Sandboxes`.

The concept of the fixed size and the top pointer is key to understanding and
working with registers.

By default, the top pointer always refers to the very last element in a register - it is
automatically changed only if an element is removed with the pop toppop toppop toppop top or poppoppoppop
bottombottombottombottom statements, the poppoppoppop operator, or the purgepurgepurgepurge function.

In general, registers can save memory if you know the precise number of values to
be stored, or to be added or removed later, in advance. As such, they behave like
C arrays storing any value without provoking faults. With respect to sequences, there
usually are no performance gains with most operations - but since registers do not
automatically shift elements, they are eight times faster with the respective deletion
operations.

104 4 Data

Let us first create a register with eight items:

> a := reg(1, 2, 3, 4, 5, 6, 7, 8):
reg(1, 2, 3, 4, 5, 6, 7, 8)

Read the first element:

> a[1]:
1

Set the first entry to nullnullnullnull - contrary to other data structures, the size of register is not
reduced, and no values are shifted.

> a[1] := null;

> a:
reg(null, 2, 3, 4, 5, 6, 7, 8)

Now reset the pointer to the top of the register to the fourth element:

> registers.settop(a, 4);

> registers.gettop(a):
4

The total size of the register, however, is still eight,

> size(a):
8

but we cannot access all values beyond the pointer:

> a:
reg(null, 2, 3, 4)

> a[5]:
In stdin at line 1:
 Error: register index 5 out of current range.

Stack traceback:
 stdin, at line 1 in main chunk

By changing the position of the top pointer beyond 4, we can read and change
the values again:

> registers.settop(a, 8);

reg(null, 2, 3, 4, 5, 6, 7, 8)

When passing no elements to the regregregreg operator, by default a register with sixteen
slots is created.

> reg():
reg(null, null, null, null, null, null, null, null, null, null, null, null,
null, null, null, null)

agenaagenaagenaagena >> 105

But you can change this default to another value:

> environ.kernel(regsize = 8);

> reg():
reg(null, null, null, null, null, null, null, null)

Registers containing null's may issue errors with some functions or operators.

Changing the sizesizesizesize of a register at runtime is easy:

> b := reg('a', 'b', 'c'):
reg(a, b, c)

register.extendregister.extendregister.extendregister.extend enlarges a register to the given number of elements.

> registers.extend(b, 8);

> b:
reg(a, b, c, null, null, null, null, null)

register.register.register.register. reducereducereducereduce shrinks a register to the given number of elements.

> registers.reduce(b, 4);

> b:
reg(a, b, c, null)

Registers support metamethods, but not user-defined types. To hide the actual size
of the register as defined above, we could assign:

> size a:
8

> mt := [
> '__size' ~ proc(x) is
> return registers.gettop(x)
> end
>]

> setmetatable(a, mt);

> size a:
4

f $ a
Selects all elements of a that satisfy a given
condition.

$

f @ aMaps a function on all elements of a register.@

a :- registerNegation of type check operation:-

a :: registerType check operator::

a <> bInequality check the Cantor way<>

a ~= bapproximate equality check~=

a == bStrict equality check==

a = bEquality check the Cantor way=
ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionNameNameNameName

106 4 Data

reg(1, 2)
minus reg(2, 3)

Searches all values in one register that are not
values in another register and returns them as
a new register.

minusminusminusminus

reg(1, 2)
intersect
reg(2, 3)

Searches all values in one register that are
also values in another register and returns
them in a new register.

intersectintersectintersectintersect

zip(<< x, y ->
 x + y >>,
 reg(1, 2),
 reg(3, 4))

Zips together two register by applying a
function to each of its respective elements.

zipzipzipzip

Removes the value at the given position and
shifts all elements to close the space. Also
reduces the size of the register by one.

purgepurgepurgepurge

map(<< x -> x^2
>>, reg(1, 2, 3))Maps a function on all elements of a register.mapmapmapmap

duplicates(a)Finds duplicate elements.duplicatesduplicatesduplicatesduplicates

unpack(a)
Unpacks a register. See unpackunpackunpackunpack in Chapter
7.1.

unpackunpackunpackunpack

unique a
Reduces multiple occurrences of an item in a
register to just one.

uniqueuniqueuniqueunique

type a
Returns the general type of a register, i.e.
register.

typetypetypetype

sort(a)
Sorts a register in place. Please also see
sortedsortedsortedsorted.

sortsortsortsort

size a
Returns the current number of items,
regardless of whether the top pointer has
been reset.

sizesizesizesize

pop bottom from a
pop top from a

Pops the first or the last element from a
register, shifting other elements to close the
space, if necessary. Reduces the size of the
register by one.

poppoppoppop
bottombottombottombottom/
toptoptoptop

0 in reg(1, 0)
Checks whether an element is stored in the
sequence, returns truetruetruetrue or falsefalsefalsefalse.

inininin

getentry(a, 1, 3)
Returns entries without issuing an error if a
given index does not exist.

getentrygetentrygetentrygetentry

filled a
Checks whether a register has at least one
item.

filledfilledfilledfilled

copy a
Creates an exact copy of a register; deep
copying is supported so that structures inside
register are properly treated.

copycopycopycopy

pop a
as an operator works like top but also removes
the item from the sequence

poppoppoppop

top aReturns the item with the largest key.toptoptoptop

bottom aReturns the item with key 1.bottombottombottombottom

delete 0, 1
 from a

Deletes one or more elements and replaces
them with nullnullnullnull.

deletedeletedeletedelete

insert 0, 1
 into a

Inserts an element at the first position that
holds a nullnullnullnull value.

insertinsertinsertinsert

ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionNameNameNameName

agenaagenaagenaagena >> 107

Sets the default size of newly created registers
the given value, a non-posint.

environ.environ.environ.environ.
kernel/kernel/kernel/kernel/
regsizeregsizeregsizeregsize

Enlarges the size of a register to the given
value.

registers.registers.registers.registers.
extendextendextendextend

Shrinks the size of a register to the given value.
registers.registers.registers.registers.
reducereducereducereduce

Resets the top pointer to the given position, an
integer.

registers.registers.registers.registers.
ssssettopettopettopettop

Returns the current top pointer, an integer.
registers.registers.registers.registers.
gettopgettopgettopgettop

getmetatable(a)Returns the metatable stored to a register.
getmetagetmetagetmetagetmeta----
tabletabletabletable

setmetatable
 (a, mtbl)Assigns a metatable to a register.

setmetasetmetasetmetasetmeta----
tabletabletabletable

reg(1, 2)
union reg(2, 3)

Concatenates two registers simply by copying
all its elements.

unionunionunionunion

reg(1)
xsubset reg(1, 2)

Checks whether all values in a register are
included in another register.

xsubsetxsubsetxsubsetxsubset

reg(1)
subset reg(1, 2)

Checks whether all values in a register are
included in another register.

subsetsubsetsubsetsubset

ExampleExampleExampleExampleDescriptionDescriptionDescriptionDescriptionNameNameNameName

Table 17: Some operators and functions applicable to registers

108 4 Data

4.14.14.14.16666 Exp Exp Exp Explllloring the Internals of Structuresoring the Internals of Structuresoring the Internals of Structuresoring the Internals of Structures

If you would like to know how a table, set, sequence, or pair is represented
internally, please have a look at the environ.attribenviron.attribenviron.attribenviron.attrib function explained in Chapter
7.21. It might help when debugging code.

The function returns the estimated number of bytes used by a structure, how many
slots have been pre-allocated and how many are actually occupied, whether a
user-defined type has been set, how many elements have been allocated to the
array and hash parts of a table, etc.

4.14.14.14.17777 Other Other Other Other typestypestypestypes

For threads, userdata, and lightuserdata please refer to the Lua 5.1 documentation.

Agena supports the following metamethods with userdata: ====, ========, ~=~=~=~=, sizesizesizesize, inininin,
unionunionunionunion, intersectintersectintersectintersect, minusminusminusminus, saddsaddsaddsadd, and qsaddqsaddqsaddqsadd. '__index' , '__writeindex' , '__gc' , and
'__tostring' are supported, as well.

agenaagenaagenaagena >> 109

110 4 Data

Chapter Chapter Chapter Chapter FiveFiveFiveFive

ControlControlControlControl

agenaagenaagenaagena >> 111

112 5 Control

5 Control5 Control5 Control5 Control

5.1 Conditions5.1 Conditions5.1 Conditions5.1 Conditions

Depending on a given condition, Agena can alternatively execute certain
statements with either the ifififif or casecasecasecase statement.

5555.1.1.1.1.1.1.1.1 if Sif Sif Sif Statementtatementtatementtatement

The ifififif statement checks a condition and selects one statement from many listed. Its
syntax is as follows:

 ifififif condition1 thenthenthenthen
 statements1

 [elifelifelifelif condition2 thenthenthenthen
 statements2]
 [onsuccessonsuccessonsuccessonsuccess
 statements3]
 [elseelseelseelse
 statements4]
 fifififi

The condition may always evaluate to one of the Boolean values truetruetruetrue, falsefalsefalsefalse, or failfailfailfail,
or to any other valueor to any other valueor to any other valueor to any other value .

The elifelifelifelif, elseelseelseelse, and onsuccessonsuccessonsuccessonsuccess
clauses are optional. While
more than one elifelifelifelif clause
can be given, only one elseelseelseelse
and one onsuccessonsuccessonsuccessonsuccess clause is
accepted. An ifififif statement
may include one or more elifelifelifelif
clauses, and optionally an
onsuccessonsuccessonsuccessonsuccess clause, and no
elseelseelseelse clause.

If an ifififif or elifelifelifelif condition results
to truetruetruetrue or any other value
except falsefalsefalsefalse, failfailfailfail, or nullnullnullnull, its
corresponding thenthenthenthen clause is
executed. If all conditions
result to falsefalsefalsefalse, failfailfailfail, or nullnullnullnull, the
elseelseelseelse clause is executed if

present - otherwise Agena proceeds with the next statement following the fifififi
keyword.

agenaagenaagenaagena >> 113

Condition1Condition1Condition1Condition1 B lock1B lock1B lock1B lock1

Condition2Condition2Condition2Condition2 B lock2B lock2B lock2B lock2

i fi fi fi f

el ifel ifel ifel if

els eels eels eels e

thenthenthenthen

thenthenthenthen

fifififi

B lock3B lock3B lock3B lock3

B lock4B lock4B lock4B lock4

ons ucces sons ucces sons ucces sons ucces s

true

false

true

false

If an onsuccessonsuccessonsuccessonsuccess clause is given, and in case one ifififif or elifelifelifelif condition results to truetruetruetrue,
the statements in this onsuccessonsuccessonsuccessonsuccess branch are executed. This allows to move code
common to all thenthenthenthen clauses into one single branch, reducing the code size.

Examples:

The condition truetruetruetrue is always true, so the string 'yes' is printed.

> if true then
> print('yes')
> fi;
yes

The next example demonstrates the behaviour if the condition is neither a Boolean
nor nullnullnullnull:

> if 1 then
> print('One')
> fi;
One

In the following statement, the condition evaluates to falsefalsefalsefalse, so nothing is printed:

> if 1 <> 1 then
> print('this will never be printed')
> fi;

An ifififif statement with an elseelseelseelse clause:

> if false then
> print('this will never be printed')
> else
> print('this will always be printed')
> fi;
this will always be printed

An ifififif statement with an elifelifelifelif clause:

> if 1 = 2 then
> print('this will never be printed')
> elif 1 < 2 then
> print('this will always be printed')
> fi;
this will always be printed

An ifififif statement with elifelifelifelif and elseelseelseelse clauses:

> if 1 = 2 then
> print('this will never be printed')
> elif 1 < 2 then
> print('this will always be printed')
> else
> print('neither will this be printed')
> fi;

this will always be printed

114 5 Control

One last example, this time demonstrating the optional onsuccessonsuccessonsuccessonsuccess clause. As
shown, both thenthenthenthen statements include the same flag := true statement.

> if 1 = 2 then
> print('this will never be printed');
> flag := true
> elif 1 = 1 then
> print('this will always be printed');
> flag := true
> else
> flag := false
> fi;
this will always be printed

> flag:

true

So the two assignment statements may be moved into one onsuccessonsuccessonsuccessonsuccess clause.

> if 1 = 2 then
> print('this will never be printed');
> elif 1 = 1 then
> print('this will always be printed');
> onsuccess
> flag := true
> else
> flag := false
> fi;
this will always be printed

> flag:
true

5555.1.2.1.2.1.2.1.2 iiiiffff OperatorOperatorOperatorOperator

The iiiif operator checks a condition and returns the respective expression.

iiiiffff condition thenthenthenthen expression1 elseelseelseelse expression2 ffffiiii

This means that the result is expression1 if condition is truetruetruetrue or any other value except
falsefalsefalsefalse, failfailfailfail, or nullnullnullnull; and expression2 otherwise.

Example:

> x := if 1 = 1 then true else false fi:

true

which is the same as:

> if 1 = 1 then
> x := true
> else
> x := false
> fi;

agenaagenaagenaagena >> 115

The iiiif operator only evaluates the expression that it will return. Thus the other
expression which will not be returned will never be checked for semantic
correctness, e.g. out-of-range string indices, etc. You may nest isisisis operators.

The ifififif operator cannot return multiple values, only one.

5555.1..1..1..1.3 3 3 3 ccccase Statementase Statementase Statementase Statement

The casecasecasecase statement facilitates comparing values and executing corresponding
statements.

casecasecasecase name
 ofofofof value11 [, value12,,,, ···] thenthenthenthen statements1
 [ofofofof value21 [, value22,,,, ···]]]] thenthenthenthen statements2]
 [ofofofof ···]
 [onsuccessonsuccessonsuccessonsuccess ···]
 [elseelseelseelse statementsk]
esacesacesacesac

> a := 'k';

> case a
> of 'a', 'e', 'i', 'o', 'u', 'y' then result := 'vowel'
> else result := 'consonant'
> esac;

> result:
consonant

You can add as many of/f/f/f/thenthenthenthen statements as you like. Fall through is not supported.
This means that if one thenthenthenthen clause is executed, Agena will not evaluate the
following ofofofof clauses and will proceed with the statement right after the closing esacesacesacesac
keyword.

As with the ifififif statement, if an onsuccessonsuccessonsuccessonsuccess clause is given, and in case one of the
conditions results to truetruetruetrue, the statements in the onsuccessonsuccessonsuccessonsuccess branch are executed.
This allows to move code common to all thenthenthenthen clauses into one single branch,
reducing the code size.

If none of the ofofofof conditions is satisfied, and if an elseelseelseelse clause is given, then the
respective elseelseelseelse statements are processed, otherwise Agena executes the code
following the esacesacesacesac token.

116 5 Control

5555.2.2.2.2 LoopsLoopsLoopsLoops

Agena has three basic forms of control-flow statements that perform looping: whilewhilewhilewhile
and forforforfor, each with different variations.

5555.2.1.2.1.2.1.2.1 while while while while LoopsLoopsLoopsLoops

A whilewhilewhilewhile loop first checks a condition and if this condition is truetruetruetrue or any other value
except falsefalsefalsefalse, failfailfailfail, or nullnullnullnull, it iterates the loop body again and again as long as the
condition remains true.

If the condition is falsefalsefalsefalse, failfailfailfail or nullnullnullnull, no further iteration is done and control returns to
the statement following right after the loop body.

If the condition is falsefalsefalsefalse, failfailfailfail, or nullnullnullnull from the start, the loop is not executed at all.

 whilewhilewhilewhile condition dodododo
 statements
 odododod

Thus the programme flow is as shown in the diagram.

The following statements calculate the largest Fibonacci number less than 1000.

agenaagenaagenaagena >> 117

Value1Value1Value1Value1 B lock 1B lock 1B lock 1B lock 1

Value2Value2Value2Value2 B lock 2B lock 2B lock 2B lock 2

B lock3B lock3B lock3B lock3

ofofofof

els eels eels eels e

thenthenthenthen

thenthenthenthen

Check V alueCheck V alueCheck V alueCheck V alue

esacesacesacesac

ofofofof

cas ecas ecas ecas e

B lock 4B lock 4B lock 4B lock 4

ons ucces sons ucces sons ucces sons ucces s

yes

no

yes

no

> a := 0; b := 1;

> while b < 1000 do
> c := b;
> b := a + b;
> a := c
> od;

> c:

987

The following loop will never be
executed since the condition is falsefalsefalsefalse:

> while false do
> print('never printed')
> od;

Variations of whilewhilewhilewhile are the dodododo////asasasas and
dodododo/untiluntiluntiluntil loops which check a
condition at the end of the iteration,
and thus will always be executed at

least once.

In the dodododo/asasasas variant, as long as the condition
evaluates to truetruetruetrue, the loop is not left.

 dodododo
 statements
 asasasas condition

> c := 0;

> do
> inc c
> as c < 10;

> c:
10

dodododo/untiluntiluntiluntil loops are iterated until the given
condition is met.

> c := 0;

> do
> inc c
> until c > 10;

118 5 Control

Loop HeaderLoop HeaderLoop HeaderLoop Header

Loop EndLoop EndLoop EndLoop End

BlockBlockBlockBlock

ConditionConditionConditionCondition

whilewhilewhilewhile

quit
loop

iteration

odododod

next
iteration

true

false

L oop H eaderL oop H eaderL oop H eaderL oop H eader

L oop E ndL oop E ndL oop E ndL oop E nd

B lockB lockB lockB lock

dodododo

quit loop
iteration

asasasas
unti lunti lunti lunti lConditionConditionConditionCondition

next
iteration

as: false
until: true

as: true
until: false

 do do do do
 statements
 until until until until condition

> c:
11

Another flavour of the whilewhilewhilewhile loop is the infinite dodododo/odododod loop which executes
statements infinitely and can be interrupted with the breakbreakbreakbreak or returnreturnreturnreturn statements. See
Chapter 5.2.10 for further information on the breakbreakbreakbreak statement. It is syntactic sugar
for the while true while true while true while true dodododo/odododod construct.

 do do do do
 statements
 odododod

> i := 0;

> do
> inc i;
> if i > 3 then break fi;
> print(i)
> od;
1
2
3

forforforfor loops are used if the number of iterations is known in advance. There are forforforfor/totototo
loops for numeric progressions, and forforforfor/inininin loops for table and string iterations.

5555.2..2..2..2.2 for/to 2 for/to 2 for/to 2 for/to LLLLoopsoopsoopsoops

Let us first consider numeric forforforfor/totototo
loops which use numeric values for
control:

forforforfor name [fromfromfromfrom start] [totototo stop]
 [bybybyby step] dodododo
 statements
odododod

name, start, stop, and step are all
numeric values or must evaluate to
numeric values.

The statement at first sets the
variable name to the numeric
value of start. name is called the
control or loop variable. If start is
not given, the start value is +1.

agenaagenaagenaagena >> 119

Lo op HeaderLo op HeaderLo op HeaderLo op Header

Loop EndLoop EndLoop EndLoop End

BlockBlockBlockBlock

name > stopname > stopname > stopname > stop

numeric fornumeric fornumeric fornumeric for

quit
loop

iteration

odododod

name := sta rtname := sta rtname := sta rtname := sta rt

name := name := name := name :=
name + stepname + stepname + stepname + step

next
iteration

false

true

When leaving out the totototo clause, the loop iterates until the largest number
representable on your platform has been reached.

It then checks whether start stop. If so, it executes statements and returns to the[

top of the loop, increments name by step and then checks whether the new value
is less or equal stop. If so, statements are executed again. If step is not given, the
control variable is always incremented by +1.

> for i from 1 to 3 by 1 do
> print(i, i^2, i^3)
> od;
1 1 1
2 4 8
3 9 27

> for i to 3 do
> print(i, i^2, i^3)
> od;
1 1 1
2 4 8
3 9 27

The control variable of a loop is always accessible to its surrounding block, so you
may use its value in subsequent statements. This rule applies only to
forforforfor/fromfromfromfrom/totototo-loops with or without a whilewhilewhilewhile, asasasas, or untiluntiluntiluntil extension. Note that within
procedures, the loop control variable is automatically declared local, while on the
interactive level, it is global.

> for i while fact(i) < 1k do od

> i:

7

The following rules apply to the value of the control variable after leaving the loop:

1. If the loop terminates normally, i.e. if it iterates until its stop value, then the value
of the control variable is its stop value plus the step size.

2. If the loop is left prematurely by executing a breakbreakbreakbreak statement15 within the loop,
or if a forforforfor/whilewhilewhilewhile loop is terminated because the whilewhilewhilewhile condition evaluated to
falsefalsefalsefalse (see Chapter 5.2.8), then the control variable is set to the loop's last
iteration value before quitting the loop. There will be no increment with the loop's
step size. The same applies to forforforfor/asasasas and forforforfor/untiluntiluntiluntil loops (see Chapter 5.2.9).

Loops can also count backwards if the step size is negative (see also the next
chapter):

> for i from 2 to 1 by -1 do
> print(i)
> od
2
1

120 5 Control

15 See Chapter 5.2.8 for more information in the breakbreakbreakbreak statement.

A special form is the totototo////dodododo loop which does not feature a control variable and
iterates exactly n times.

> to 2 do
> print('iterating')
> od
iterating
iterating

Agena automatically uses an advanced precision algorithm based on Kahan
summation if the step size is non-integral, e.g. 0.1, -0.01. This mostly prevents
round-off errors and thus avoids that the loop stops before the last iteration value
(the limit) has been reached and that iteration values with round-off errors are
returned.

If the step size is an integer, e.g. 1000, -1., then Agena does not use advanced
precision to ensure maximum speed.

5555.2.3.2.3.2.3.2.3 for/downtofor/downtofor/downtofor/downto L L L Loopsoopsoopsoops

count from a startstartstartstart value down to a stopstopstopstop value, with a default countdown stepstepstepstep size
of (implicit minus) one. To count down, the optional stepstepstepstep size should be positive.

forforforfor name fromfromfromfrom start downtodowntodowntodownto stop [bybybyby step] dodododo
 statements
odododod

5555.2.4.2.4.2.4.2.4 for/in for/in for/in for/in LLLLoopsoopsoopsoops overoveroverover TablesTablesTablesTables

are used to traverse tables, strings, sets, and sequences, and also iterate functions.

If nullnullnullnull is passed after the inininin keyword, or if the value evaluates to nullnullnullnull, then Agena
does not execute the loop and continues with the statement following it.

Let us first concentrate on table iteration.

 forforforfor key, value inininin tbl dodododo
 statements
 odododod

The loop iterates over all key~value pairs in table tbl and with each iteration assigns
the respective key to key, and its value to value.

> a := [4, 5, 6]

> for i, j in a do
> print(i, j)
> od

agenaagenaagenaagena >> 121

1 4
2 5
3 6

There are two variations: When putting the keyword keyskeyskeyskeys in front of the control
variable, the loop iterates only on the keys of a table:

 forforforfor keyskeyskeyskeys key inininin tbl dodododo
 statements
 odododod

Example:

> for keys i in a do
> print(i)
> od
1
2
3

The other variation iterates on the values of a table only:

 forforforfor value inininin tbl dodododo
 statements
 odododod

> for i in a do
> print(i)
> od
4
5
6

The control variables in forforforfor/inininin loops are always local to the body of the loop (as
opposed to numeric forforforfor loops). You may assign their values to other variables if you
need them later.

You should never change the value of the control variables in the body of a loop -
the result would be undefined. Use the copycopycopycopy operator to safely traverse any
structure if you want to change, add, or delete its entries.

Because of the implementation of tables, please note that the keys in a table are
not necessarily traversed in ascending order. You may want to iterate sequences or
implement and linked list (see Chapter 6.25).

5.2.5.2.5.2.5.2.5 for/in Loops 5 for/in Loops 5 for/in Loops 5 for/in Loops overoveroverover SequencesSequencesSequencesSequences

All of the features explained in the last subchapter are applicable to sequences, as
well.

122 5 Control

5555.2.6.2.6.2.6.2.6 for/in for/in for/in for/in LLLLoops oops oops oops overoveroverover SSSStringstringstringstrings

If you want to iterate over a string character by character from its left to its right, you
may use a forforforfor/inininin loop as well. All of the variations are supported.

forforforfor key, value inininin string dodododo statements odododod

for for for for value in in in in string do do do do statements odododod

forforforfor keyskeyskeyskeys value inininin string dodododo statements odododod

The following code converts a word to a sequence of abstract vowel, ligature, and
consonant place holders and also counts their respective occurrence:

> str := 'æfter';

> result := '';

> c, v, l -> 0;

> for i in str do
> case i
> of 'a', 'e', 'i', 'o', 'u' then
> result := result & 'V';
> inc v
> of 'å', 'æ', 'ø', 'ö' then
> result := result & 'L';
> inc l
> else
> result := result & 'C'
> inc c
> esac
> od;

> print(result, v & ' vowels', l & ' ligatures', c & ' consonants');
LCCVC 1 vowels 1 ligatures 3 consonan ts

5555.2.7.2.7.2.7.2.7 for/in Loops for/in Loops for/in Loops for/in Loops overoveroverover SetsSetsSetsSets

All forforforfor loop variations are supported with sets, as well. The only useful one, however,
is the following:

> sister := {'swistar', 'sweastor', 'svasar', 'sist er'}

> for i in sister do print(i) od;
svasar
swistar
sweastor
sister

You may try the other loop alternatives to see what happens.

agenaagenaagenaagena >> 123

5.2.5.2.5.2.5.2.8 for/in Loops8 for/in Loops8 for/in Loops8 for/in Loops overoveroverover ProceduresProceduresProceduresProcedures

The following procedure, called an iterator, returns a sequence of values multiplied
by two. If state = n, then the procedure returns nullnullnullnull which quits the forforforfor/inininin iteration.
See Chapter 6 which describes procedures in detail.

> double := proc(state, n) is
> if n < state then
> inc n;
> return n, 2*n
> else
> return null
> fi
> end;

> for i, j in double, 5, 0 do
> print(i, j)
> od
1 2
2 4
3 6
4 8
5 10

5.2.5.2.5.2.5.2.9999 for/while Loopfor/while Loopfor/while Loopfor/while Loop ssss

All flavours of forforforfor loops can be
combined with a whilewhilewhilewhile condition. As
long as the whilewhilewhilewhile condition is
satisfied, the forforforfor loop iterates. To be
more precise, before Agena starts
the first iteration of a loop or
continues with the next iteration, it
checks the while condition to be
truetruetruetrue or any other value except falsefalsefalsefalse,
failfailfailfail, or nullnullnullnull.

An example:

> for x to 10
> while ln(x) <= 1 do
> print(x, ln(x))
> od
1 0
2 0.69314718055995

Regardless of the value of the whilewhilewhilewhile
condition, the loop control variables
are always initiated with the start
values: with forforforfor/totototo loops, a is
assigned to i (or 1 if the from from from from clause
is not given); key and/or value are
assigned with the first item in the
table, set, or sequence struct or the

124 5 Control

Loop HeaderLoop HeaderLoop HeaderLoop Header

Loop EndLoop EndLoop EndLoop End

BlockBlockBlockBlock

name > stopname > stopname > stopname > stop

numericnume ricnume ricnume ric
for/wh ilefor/wh ilefor/wh ilefor/wh ile

quit
loop

iteration

odododod

name := sta rtname := sta rtname := sta rtname := sta rt

name := name := name := name :=
name + stepname + stepname + stepname + step

ConditionConditionConditionCondition

next
iteration

true

false

true

false

first character in string string.

forforforfor i [from from from from a] to to to to b [by by by by step] while while while while condition do do do do statements odododod
forforforfor [key,,,,] value inininin struct whilewhilewhilewhile condition dodododo statements odododod

forforforfor keyskeyskeyskeys key inininin struct whilewhilewhilewhile condition dodododo statements odododod
forforforfor [key,,,,] value inininin string whilewhilewhilewhile condition dodododo statements odododod

forforforfor keyskeyskeyskeys key inininin string whilewhilewhilewhile condition dodododo statements odododod

5.2.10 5.2.10 5.2.10 5.2.10 for/as & for/as & for/as & for/as & for/until Loopfor/until Loopfor/until Loopfor/until Loop ssss

As with the optional whilewhilewhilewhile
clause, all flavours of forforforfor loops
can be combined with an asasasas or
an untiluntiluntiluntil condition.

In these cases, a loop is always
iterated at least once, and after
the first iteration is completed,
Agena checks the given
condition and decides whether
to start the next iteration or to
leave the loop.

In the following example, the
forforforfor/asasasas loop starts with i=0 and
since the first check to the asasasas
condition results to truetruetruetrue, the next
iteration with i=1 is conducted.
The next check to the asasasas
condition results to falsefalsefalsefalse, thus
the loop quits.

> for x from 0 do
> print(x, 10^x)
> as 10^x < 10
0 1
1 10

The next loop iterates three
times, until i=2, since only then the untiluntiluntiluntil condition becomes truetruetruetrue.

> for x from 0 do
> print(x, 10^x)
> until 10^x > 10
0 1
1 10
2 100

agenaagenaagenaagena >> 125

L oop HeaderL oop HeaderL oop HeaderL oop Header

L oop E ndL oop E ndL oop E ndL oop E nd

B lockB lockB lockB lock

name > s topname > s topname > s topname > s top

numer icnumer icnumer icnumer ic
for /as /unti lfor /as /unti lfor /as /unti lfor /as /unti l

quit
loop

iteration

odododod

name := s tar tname := s tar tname := s tar tname := s tar t

name := name := name := name :=
name + s tepname + s tepname + s tepname + s tep

Condi t ionCondi t ionCondi t ionCondi t ion

next
iteration

false

true

as: false
until: true

5555.2.11.2.11.2.11.2.11 Loop Loop Loop Loop JJJJump Controlump Controlump Controlump Control

Agena features statements to manipulate loop execution. skipskipskipskip and breakbreakbreakbreak are
applicable to all loop types, whereas redoredoredoredo and relaunchrelaunchrelaunchrelaunch work in forforforfor loops only.

The skipskipskipskip statement causes another iteration of the loop to begin at once, thus
skipping all of the loop statements following it.

The breakbreakbreakbreak statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop.

> for i to 5 do
> if i = 3 then skip fi;
> print(i)
> if i = 4 then break fi;
> od;
1
2
4

This is equivalent to the following
statement:

> for i to 5 while i < 5 do
> if i = 3 then skip fi;
> print(i)
> od;
1
2
4

> a := 0;

> while true do
> inc a;
> if a > 5 then break fi;
> if a < 3 then skip fi;
> print(a)
> od;
3
4
5

There exists syntactical sugar for both the skipskipskipskip and the breakbreakbreakbreak statements: instead of
putting these statements into ifififif clauses, just add the whenwhenwhenwhen token along with a
condition to the respective keyword.

> a := 0;

> while true do
> inc a;
> break when a > 5;
> skip when a < 3;
> print(a)
> od;

126 5 Control

Loop HeaderLoop HeaderLoop HeaderLoop Header

Loop EndLoop EndLoop EndLoop End

s kips kips kips kip

breakbreakbreakbreak

next
iteration

initiate
next

iteration

quit
loop

immediately

3
4
5

In forforforfor/totototo and forforforfor/inininin loops, the
redoredoredoredo statement is similar to
skipskipskipskip: it jumps back to the
beginning of the loop but does
not change the loop control
variable in forforforfor/totototo loops or the
index/value control variables in
forforforfor/inininin loops. Thus, it restarts the
current iteration from the
beginning, At restart, it does,
however, check an optional
whilewhilewhilewhile condition, if present.

> flag := true;

> for j in [10, 11, 12] do
> print(j, flag);
> if flag and j = 11 then
> clear flag;
> print(j, flag,
 'jump back')
> redo
> fi;
> until j > 12;

10 true
11 true
11 false jump back
11 false
12 false

The relaunchrelaunchrelaunchrelaunch statement completely restarts a for/tofor/tofor/tofor/to and for/infor/infor/infor/in loop from its very
beginning, i.e. resets the current control variable to its start value (fromfromfromfrom clause or first
element, respectively).

> flag := true;

> for j in [10, 11, 12] do
> print(j, flag);
> if flag and j = 11 then
> clear flag;
> print(j, flag,
> 'restart')
> relaunch
> fi;
> until j > 12;
10 true
11 true
11 null restart
10 null
11 null
12 null

agenaagenaagenaagena >> 127

for H eaderfor H eaderfor H eaderfor H eader

for E ndfor E ndfor E ndfor E nd

s kips kips kips kip

breakbreakbreakbreak

redoredoredoredo

relaunchrelaunchrelaunchrelaunch

next
iteration

initiate
next

iteration

quit
loop

immediately

restart
current
iteration

restart loop

128 5 Control

Chapter Chapter Chapter Chapter SixSixSixSix

ProgrammingProgrammingProgrammingProgramming

agenaagenaagenaagena >> 129

130 6 Programming

6 Programming6 Programming6 Programming6 Programming

Writing effective code in a minimum amount of time is one of the key features of
Agena. Programmes are usually represented by procedures. The words
`procedure` and `function` are used synonymously in this text.

6666....1 1 1 1 Procedures Procedures Procedures Procedures

In general, procedures cluster a sequence of statements into abstract units which
then can be repeatedly invoked.

Writing procedures in Agena is quite simple:

 procname := procprocprocproc([par1 [::::::::type1] [, par2 [::::::::type2], ···]]) [:::::::: returntype] isisisis
 [locallocallocallocal name1 [, name2,···]];
 statements
 end end end end

All the values that a procedure shall process are given as parameters par1, etc. A
function may have no, one, or more parameters. A parameter may be succeeded
by the name of a type (see Chapter 6.8.2), or a set of up to four types, that an
argument must satisfy when the procedure is called.

If a type is given right after the parameter list, Agena checks whether the return of
the procedure is of the given return type, which may also be a user-defined type.
The isisisis keyword is obligatory.

A procedure usually uses local variables which are private to the procedure and
cannot be used by other procedures or on the Agena interactive level.

Global variables are supported in Agena, as well. All values assigned on the
interactive level are global, and you can also create global variables within a
procedure. The values of global variables can be accessed on the interactive level
and within any procedure.

A procedure may call other functions or itself. A procedure may even include
definitions of further local or global procedures.

The result of a procedure is returned using the returnreturnreturnreturn keyword which may be put
anywhere in the procedure body, and which also immediately terminates further
execution of the procedure.

returnreturnreturnreturn [[[[value [, value2,···]]

As you can see, you may not only return a single result, but also multiple ones, or
none at all.

agenaagenaagenaagena >> 131

Furthermore, a procedure does not return anything - not even the nullnullnullnull value -

� if no returnreturnreturnreturn statement is given at all,
� if no values are passed to the returnreturnreturnreturn statement.

The following procedure computes the factorial of an integer16:

> restart;

> fact := proc(n) is
> # computes the factorial of an integer n
> if n < 0 then return fail
> elif n = 0 then return 1
> else return fact(n-1)*n
> fi
> end;

It is called using the syntax:

funcname(((([arg1 [, arg2,···]]))))

> fact(4):
24

where the first parameter is replaced by the first argument arg1, the second
parameter is substituted with arg2, etc.

A whenwhenwhenwhen clause can be added to a returnreturnreturnreturn statement that does not pass any values
including nullnullnullnull. In this case, the execution of a function is being finished if the
Boolean when when when when condition has been satisfied, e.g. return when x <> 0 .

6666....2 2 2 2 Local VariablesLocal VariablesLocal VariablesLocal Variables

The function above does not need local variables as it calls itself recursively.
However, with large values for n, the large number of unevaluated recursive
function calls will ultimately cause stack overflows. So we should use an iterative
algorithm to compute the factorial and store intermediate results in a local variable.

A local variable is known only to the respective procedure and the block where it
has been declared. It cannot be used in other procedures, the interactive Agena
level, or outside the block where it has been declared.

A local variable can be declared explicitly anywhere in the procedure body, but at
least before its first usage. If you do not declare a variable as local and assign
values later to this variable, then it is global. Note that control variables in forforforfor loops
are always implicitly declared local to either their surrounding (forforforfor/totototo loops) or inner
block (forforforfor/inininin loops), so we do not need to explicitly declare them.

132 6 Programming

16The library function factfactfactfact is much faster.

Local declarations come in different flavours:

locallocallocallocal name1 [, name2, ···]
locallocallocallocal name1 [, name2, ···] :=:=:=:= value1 [, value2, ···]

locallocallocallocal name1 [, name2, ···] ->->->-> value

locallocallocallocal enumenumenumenum name1 [, name2, ···] [fromfromfromfrom value]

In the first form, name1, etc. are declared local.

In the second and third form, name1, etc. are declared local and, as opposed to
the first form, followed by initial assignments of values to these names.

In the last form, name1, etc. are declared local with a subsequent enumeration of
those names, i.e. assignment of ascending positive integers to these names.

Let us write a procedure to compute the factorial using a forforforfor loop. To avoid
unnecessary loop iterations when the intermediate result has become so large that
it cannot be represented as a finite number, we also add a clause to quit loop
iteration in such cases.

> fact := proc(n) is
> if n < 0 then return fail fi;
> local result := 1;
> for i from 1 to n do
> result := result * i
> if not finite(result) then break fi
> od;
> return result
> end;

> fact(10):
3628800

Since result has been declared local so it has no value at the interactive level.

> result:
null

There is a shortcut to create local structures - tables, sets, and sequences:

create localcreate localcreate localcreate local <structure> name1 [, <structure> name2, ···]

where <structure> might be the keyword tabletabletabletable, setsetsetset, or sequencesequencesequencesequence. You can declare
different local structures with one create localcreate localcreate localcreate local statement.

A useful function is environenvironenvironenviron....globalsglobalsglobalsglobals which determines global variable assignments
inside procedures and helps to find those positions where a local declaration has
been forgotten.

agenaagenaagenaagena >> 133

6666....3 3 3 3 Global VariablesGlobal VariablesGlobal VariablesGlobal Variables

Global variables are visible to all procedures and the interactive level, such that
their values can be queried and altered everywhere in your code.

Using global variables is not recommended. However, they are quite useful in order
to have more control on the behaviour of procedures. For example, you may want
to define a global variable _EnvMoreInfo that is checked in your procedures in
order to print or not to print information to the user.

Global variables can be indicated with the globalglobalglobalglobal keyword. This is optional,
however, and only serves documentary purposes.

> fact := proc(n) is
> global _EnvMoreInfo;
> if n < 0 then return fail fi;
> local result := 1;
> for i from 1 to n do
> result := result * i
> if result = infinity then
> if _EnvMoreInfo then print('Overflow !') fi;
> break
> fi
> od;
> return result
> end;

We must assign _EnvMoreInfo any value different from nullnullnullnull, failfailfailfail, or falsefalsefalsefalse in order to
get a warning message at runtime.

> _EnvMoreInfo := true;

> fact(10000):
Overflow !
infinity

6.4 Changing 6.4 Changing 6.4 Changing 6.4 Changing Parameter ValuesParameter ValuesParameter ValuesParameter Values

You can assign new values to procedure parameters within a procedure. Thus, an
alternative to the absabsabsabs operator might be:

> myAbs := proc(x) is
> if x < 0 then
> x := -x
> fi;
> return x
> end;

> myAbs(-1):
1

6666.5.5.5.5 Optional ArgumentsOptional ArgumentsOptional ArgumentsOptional Arguments

A function does not have to be called with exactly the number of parameters given
at procedure definition. You may also pass less or more values. If no value is
passed for a parameter, then it is automatically set to nullnullnullnull at function invocation. If

134 6 Programming

you pass more arguments than there are actual parameters, excess arguments are
ignored.

For example, we can avoid using a global variable to get a warning message by
passing an optional argument instead.

> fact := proc(n, warning) is
> if n < 0 then return fail fi;
> local result := 1;
> for i from 1 to n do
> result := result * i
> if result = infinity then
> if warning then print('Overflow !') fi;
> break
> fi
> od;
> return result
> end;

> fact(10000):
infinity

The option should be any value other than nullnullnullnull, falsefalsefalsefalse, or failfailfailfail to get the effect.

> fact(10000, true):
Overflow !
infinity

A variable number of arguments can be passed by indicating them with a question
mark in the parameter list and then querying them with the varargsvarargsvarargsvarargs system table in
the procedure body.

> varadd := proc(?) is
> local result := 0;
> for i to size varargs do
> inc result, varargs[i]
> od;
> return result
> end;

> varadd(1, 2, 3, 4, 5):
15

You may determine the number of arguments actually passed in a procedure call
by querying the system variable nargsnargsnargsnargs inside the respective procedure. A variant of
the above procedure might thus be:

> varadd := proc(?) is
> local result := 0;
> for i to nargs do
> inc result, varargs[i]
> od;
> return result
> end;

> varadd(1, 2, 3, 4, 5):
15

agenaagenaagenaagena >> 135

Let us build an extended square root function that either computes in the real or
complex domain. By default, i.e. if only one argument is given, the real domain is
taken, otherwise you may explicitly set the domain using a pair as a second
argument.

> xsqrt := proc(x, mode) is
> if nargs = 1 or mode = 'domain':'real' then
> return sqrt(x)
> elif mode = 'domain':'complex' then
> return sqrt(x + 0*I)
> else
> return fail
> fi
> end;

> xsqrt(-2):
undefined

> xsqrt(-2, 'domain':'real'):
undefined

If the left-hand value of the pair in a function call shall denote a string, you can
spare the single quotes around the string by using the = token which converts the
left-hand name to a string17.

> xsqrt(-2, domain = 'complex'):

1.4142135623731*I

6666....6666 Passing OptionsPassing OptionsPassing OptionsPassing Options in any Order in any Order in any Order in any Order

We can combine the varargs facility with the usage of pairs in order to pass one or
more optional arguments in any order.

> f := proc(?) is
> local bailout, iterations := 2, 128; # default values
> for i to nargs do
> case left(varargs[i])
> of 'bailout' then
> bailout := right(varargs[i]);
> of 'iterations' then
> iterations := right(varargs[i]);
> else
> print 'unknown option'
> esac
> od;
> print('bailout = ' & bailout, 'iterations = ' & iterations)
> end;

> f();
bailout = 2 iterations = 128

> f('bailout':10);
bailout = 10 iterations = 128

> f('iterations':32, 'bailout':10);

bailout = 10 iterations = 32

136 6 Programming

17 If you need to conduct a Boolean equality operation in a function call, such like f(a=b) , use the
isisisiseeeequalqualqualqual function, like f(isequal(a, b)) .

Again, the single quotes around the name of the option (left-hand side of the pair)
can be spared by using the = token which converts the given name to a string.

> f(bailout = 10, iterations = 32);

bailout = 10 iterations = 32

Sometimes, implementing checks on options may take a substantial amount of
programming time, so please have a look at the checkoptionscheckoptionscheckoptionscheckoptions function which may
save up to 20 % of code. You might see Chapter 7.1 for further details.

6666.7.7.7.7 Type CheckingType CheckingType CheckingType Checking

Although Agena is untyped, in many situations you may want to check the type of a
certain value passed to a function. Agena has four facilities for this:

1. the typetypetypetype operator determines the basic type of its argument;
2. the typeoftypeoftypeoftypeof operator checks for a basic or user-defined type;
3. the :::::::: operator evaluates a value for a given type or user-defined type;
4. the ::::- operator checks whether a value is not of a given type or user-defined

type;
5. basic or user-defined types can be optionally specified in the parameter list of a

procedure by means of the preceding :: token so that they will be checked at
procedure invocation, see Chapter 6.8.2;

6. the type of return of a procedure may be given right after the parameter list, see
Chapter 6.8.3.

The following standard types are available in Agena:

 boolean, complex, lightuserdata, null, number, p air, procedure,
 sequence, set, string, table, thread, userdata.

These names are reserved keywords, but with the exception of the nullnullnullnull constant
evaluate to strings so that they can be compared with the result of the typetypetypetype
operator that returns the type of a value as a string:

typetypetypetype((((value))))

> type(1):

number

> type(1) = number:
true

The only exception to the above is when checking for the type of anything
evaluating to nullnullnullnull. In this case, put the nullnullnullnull constant into quotes:

> a := null;

agenaagenaagenaagena >> 137

> type(a) = 'null':
true

The :::::::: and :-:-:-:- operators check whether their arguments are or are not of a specific
type - or user-defined type - and return truetruetruetrue or falsefalsefalsefalse. They are speed-optimised and
around 20 % faster than comparing the return of the type operator with a type
name, as shown in the example above.

value :: :: :: :: typename
value :- :- :- :- typename

Examples:

> 1 :: number:
true

> '1' :- number:
true

In case of user-defined types, the type name must always be a string put into
quotes. See Chapter 6.12 for more information.

6.86.86.86.8 Error Handling Error Handling Error Handling Error Handling

6.8.1 The error Function6.8.1 The error Function6.8.1 The error Function6.8.1 The error Function

The errorerrorerrorerror function immediately terminates execution of the procedure, and prints
an error message if given.

errorerrorerrorerror(((('error string'))))

> fact := proc(n) is
> if n :- number then
> error('number expected')
> fi;
> if n < 0 then return null
> elif n = 0 then return 1
> else return fact(n-1)*n
> fi
> end;

> fact('10'):
Error: number expected

Stack traceback:
 stdin, at line 3, at line 1

138 6 Programming

6.8.2 Type Checks in Procedure Parameter Lists6.8.2 Type Checks in Procedure Parameter Lists6.8.2 Type Checks in Procedure Parameter Lists6.8.2 Type Checks in Procedure Parameter Lists

You may optionally specify permitted types in the parameter list of a procedure by
using double colons:

> fact := proc(n :: number) is
> if n < 0 then return null
> elif n = 0 then return 1
> else return fact(n-1)*n
> fi
> end;

> fact('10'):
Error in stdin:
 invalid type for argument #1: expected number, g ot string.

This form of type checking is more than twice as fast as the ifififif/typetypetypetype/errorerrorerrorerror
combination. If the argument is of the correct type, Agena executes the
procedure, otherwise it issues an error. Agena will also return an error if the argument
is not given:

> fact()
Error in stdin:
 missing argument #1 (type number expected).

Finally, argerrorargerrorargerrorargerror is a little bit smarter than errorerrorerrorerror for it automatically indicates the type
of an argument actually passed to a procedure in its error message.

> a := 1;

> if a :- string then
> argerror(a, 'myproc', 'expected a string')
> fi
Error in `myproc`: expected a string, got number.

Furthermore, you may specify a set of one to four allowed basic types for any
parameter with the set notation:

sec := proc(x :: {number, complex}) is
 return 1/cos(x)
end;

6.8.3 Checking the Type of Return of Procedures6.8.3 Checking the Type of Return of Procedures6.8.3 Checking the Type of Return of Procedures6.8.3 Checking the Type of Return of Procedures

Agena can check whether all returns of a procedure are of a given single type by
specifying this return type right after its parameter list.

> fact := proc(n::number) :: number is
> if n < 0 then return undefined
> elif n = 0 then return 1
> else return fact(n-1)*n
> fi
> end;

> fact(10):
3628800

agenaagenaagenaagena >> 139

If one of the returns is not of the return type, the procedure issues an error.

> fact := proc(n::number) :: number is
> if n < 0 then return undefined
> elif n = 0 then return 1
> else return 'don\'t know'
> fi
> end;

> fact(10):
Error in stdin, at line 5:
 `return` value must be of type number, got strin g.

Stack traceback:
 stdin, at line 5, at line 1

There are other functions for error handling:

6.8.4 The assume Function6.8.4 The assume Function6.8.4 The assume Function6.8.4 The assume Function

assumeassumeassumeassume checks a Boolean relation. In case the relation is valid, it returns truetruetruetrue and all
other arguments given. In case of an invalid relation, it terminates execution of the
procedure and prints an error message. The second argument to assumeassumeassumeassume is
optional; if not given, the text `assumption failed` is returned with invalid relations.

assumeassumeassumeassume((((relation [, 'error string']))))

> assume(1 = 1, '1 is not 1'):
true 1 is not 1

> assume(1 <> 1, '1 is 1'):
Error in `assume`: 1 is 1.

Stack traceback: in `assume`
 stdin, at line 1 in main chunk

6.8.5 Trapping Errors with 6.8.5 Trapping Errors with 6.8.5 Trapping Errors with 6.8.5 Trapping Errors with protect/lasterrorprotect/lasterrorprotect/lasterrorprotect/lasterror

protectprotectprotectprotect traps any error, but does not terminate a function call. In case of no errors, it
returns all results of the call. In case of an error, it returns the error message as a
string and also sets the global variable lasterrorlasterrorlasterrorlasterror to this error message. In case of a
successful call, lasterrorlasterrorlasterrorlasterror is always nullnullnullnull.

protectprotectprotectprotect accepts the name of the function f to be executed as its first argument,
and all arguments a, b, ··· of f as optional arguments:

protect(protect(protect(protect(f [, a [, b,···]]))))

Thus, if a function has no arguments, simply pass the expression protect(f) .

140 6 Programming

> iszero := proc(x) is
> if x <> 0 then
> error('argument must be zero')
> else
> return true
> fi
> end;

To call iszero in protected mode, enter:

> protect(iszero, 0):
true

> lasterror:
null

> protect(iszero, 1):
argument must be zero

> lasterror:
argument must be zero

To conveniently check whether an error occurred, you might enter:

> protect(iszero, 0) = lasterror:
false

> protect(iszero, 1) = lasterror:
true

Note that protectprotectprotectprotect does not directly work with operators, instead you may include a
call to an operator in a new function:

> mycopy := proc(x) is
> return copy(x)
> end;

> protect(mycopy, 1:1) = lasterror:
true

6.8.6 Trapping Errors with the try/catch Statement6.8.6 Trapping Errors with the try/catch Statement6.8.6 Trapping Errors with the try/catch Statement6.8.6 Trapping Errors with the try/catch Statement

Instead of intercepting errors with protectprotectprotectprotect and lasterrorlasterrorlasterrorlasterror, you may use the trytrytrytry/catchcatchcatchcatch
statement:

trytrytrytry
 statements1

[catch[catch[catch[catch [errvar thenthenthenthen]
 statements2]
yrtyrtyrtyrt

Any statements statements1 may be put right after the trytrytrytry keyword. If an error occurs
in one of these statements, Agena immediately jumps to the catchcatchcatchcatch clause if
present, ignoring any subsequent statements in statements1. If there is no catchcatchcatchcatch

agenaagenaagenaagena >> 141

clause, execution immediately continues with the statement after the yrtyrtyrtyrt keyword,
regardless of whether an error occurred or not, also ignoring all subsequent
commands in statements1.

If a catchcatchcatchcatch clause is given, then in case of an error the error message is stored to the
local variable errvar, and after that the statements statements2 after the thenthenthenthen
keyword are processed. errvar does not need to be declared, it is implicitly local to
the catch catch catch catch clause only. You may also leave out specification of an error variable - in
this case the error message is automatically stored to the local lasterrorlasterrorlasterrorlasterror variable,
and the thenthenthenthen keyword must be left out.

Examples:

> try
> error('Oops !');
> print('Invalid index !')
> yrt;

As shown above, due to the immediate jump out of the trytrytrytry body, the printprintprintprint function
is not called. In the next example, the error message is stored to the variable
message , and in the catchcatchcatchcatch clause it is then printed at the console.

> try
> error('Oops !');
> print('Invalid index !')
> catch message then
> print('The error was: ' & message);
> yrt;
The error was: Oops !

> message:
null

Now we do not specify an error variable in the catchcatchcatchcatch clause:

> try
> error('Oops !');
> print('Invalid index !')
> catch
> print('The error was: ' & lasterror);
> yrt;
The error was: Oops !

6.6.6.6.9999 Multiple ReturnsMultiple ReturnsMultiple ReturnsMultiple Returns

As stated before, a procedure can return no, one, or more values. Just specify the
values to be returned:

> f := proc() is
> a := 2;
> return 1, a
> end;

> f():
1 2

142 6 Programming

There are two ways to refer to these multiple returns in subsequent statements. If you
assign the return to only one variable, e.g.

> m := f():
1

the second return is lost, so enter:

> m, n := f();

> m:
1

> n:
2

A function may return a variable number of values, so it might be useful to put them
in a sequence or table:

> seq(f()):
seq(1, 2)

Sometimes a procedure shall only return the first result of a computation only. In this
case, put the call that results into multiple returns into brackets. math.fractionmath.fractionmath.fractionmath.fraction returns
three values: the numerator, the denominator, and the accuracy, in this order. Let
us write a numerator function that only returns the first result of math.fractionmath.fractionmath.fractionmath.fraction .

> numerator := proc(x::number) is
> return (math.fraction(x))
> end;

> numerator(0.1):
1

The opsopsopsops function returns all its arguments after argument number index, an integer.

opsopsopsops((((index, arg1 [, arg2,···]))))

The following statement determines the denominator and the accuracy.

> ops(2, math.fraction(0.1)):
10 0

To return only the first result, the denominator, put the call to opsopsopsops in brackets.

> denominator := proc(x::number) is
> return (ops(2, math.fraction(x)))
> end;

> denominator(0.1):
10

unpackunpackunpackunpack returns all elements in a table or sequence:

agenaagenaagenaagena >> 143

> squared := proc(t::table) is
> local result := << x -> x^2 >> @ t;
> return unpack(result)
> end;

> squared([1, 2, 3, 4]):
1 4 9 16

Optionally, unpackunpackunpackunpack accepts the positions of the first to the last element to be
returned as its second and third argument. If only the second argument is given, all
elements in a structure from the given position are determined.

unpackunpackunpackunpack((((structure [, beginning [, end]]))))

> squared := proc(t::table, ?) is
> local result := << x -> x^2 >> @ t;
> return unpack(result, unpack(varargs))
> end;

> squared([1, 2, 3, 4], 2):
4 9 16

> squared([1, 2, 3, 4], 2, 3):
4 9

6.10 6.10 6.10 6.10 Procedures that Return ProceduresProcedures that Return ProceduresProcedures that Return ProceduresProcedures that Return Procedures

Besides returning numbers, strings, tables, etc., procedures can also return new
procedures. As an example, the function polygen

> polygen := proc(?) is
> local s := seq(unpack(varargs));
> return proc(x) is
> local r := bottom(s);
> for i from 2 to size s do
> r := r*x + s[i]
> od;
> return r
> end
> end;

returns a procedure to evaluate a polynomial of degree n from the given
coefficients c n, c n-1 , ··· , c 2, c 1:

<< (x) -> c n*xn-1 + c n-1 *xn-2 + ··· + c 2*x + c 1 >>

In the following example, polygen creates the polynomial as a procedure.3x2 − 4x+1

> f := polygen(3, -4, 1)

> f(2):
5

144 6 Programming

6.6.6.6.11111111 SSSShortcut hortcut hortcut hortcut ProcedureProcedureProcedureProcedure D D D Definitionefinitionefinitionefinition

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as ifififif/thenthenthenthen, forforforfor, insertinsertinsertinsert, etc.

<<<<<<<< [((((] [par1 [:::::::: type1] [, par2 [:::::::: type2], ···]] [))))] ->->->-> expr >>>>>>>>

As you see, optional basic and user-defined types can be specified in the
parameter section.

Let us define a simple factorial function.

> fact := << (x::number) -> exp(lngamma(x+1)) >>;

> fact(4):
24

Brackets around parameters are optional, even if you specify types.

> isInteger := << x -> int(x) = x >>;

> isInteger(1):
true

> isInteger(1.5):
false

Passing optional arguments using the ? notation is supported. In this case, use the
varargsvarargsvarargsvarargs table as described above.

6.6.6.6.11112222 User-DefinedUser-DefinedUser-DefinedUser-Defined Procedure Types Procedure Types Procedure Types Procedure Types

The settypesettypesettypesettype function allows to group procedures proc1, proc2, ··· , by giving them a
specific type (passed as a string) just as it does with sequences, tables, sets, and
pairs.

settype(settype(settype(settype(proc1 [, proc2, ···], ''''your_proctype')')')')

User-defined procedures can be queried with the ttttypeofypeofypeofypeof operator which returns a
string.

> f := << x -> 1 >>;

> settype(f, 'constant');

> typeof(f):
constant

> type(f): # only returns the basic type
procedure

agenaagenaagenaagena >> 145

The :: and :- operators can also validate a user-defined procedure type. Pass the
name of the user- defined type as a string:

proc1 :: :: :: :: ''''your_proctype''''
proc1 :- ''''your_proctype''''

> f :: 'constant':
true

> f :- 'constant':
false

Note that the typetypetypetype operator only checks for basic types.

An alternative to typeof is the gettype function. If a user-defined has been set, then
it returns its name as a string, otherwise, it returns nullnullnullnull.

If you want to check whether user-defined types have been passed to a
procedure, you may use the double colon notation in its parameter list.

Suppose you have defined a type called triple :

> t := [1, 2, 3]

> settype(t, 'triple')

> sum := proc(x::triple) is
> return sadd(x)
> end

> sum(t):
6

6666....11113333 ScopingScopingScopingScoping Rules Rules Rules Rules

In Agena, variables live in blocks or `scopes`. A block may contain one or more
other blocks. A local variable is visible only to the block in which it has been
declared and to all blocks that are part of this block. Thus, variables declared local
in inner blocks are not accessible to the outer blocks.

Procedures, ifififif- and casecasecasecase-statements, whilewhilewhilewhile-, dodododo- and forforforfor-loops create blocks, or
more precisely, a block resides between:

1. thenthenthenthen and elifelifelifelif, elseelseelseelse, or fifififi keywords - in ifififif statements;
2. thenthenthenthen and ofofofof, elseelseelseelse, or esacesacesacesac keywords - in casecasecasecase statements;
3. dodododo and asasasas - in dodododo/asasasas loops;
4. dodododo and odododod - in forforforfor and whilewhilewhilewhile loops;
5. isisisis and endendendend - in procedures;
6. scopescopescopescope and epocsepocsepocsepocs - in scopescopescopescope blocks (see below).

146 6 Programming

As an example, variables declared as local within procedures are only visible to the
block in which they have been defined. Especially, they cannot be accessed from
outside the procedure in which they are hosted.

Variables declared as local in the thenthenthenthen clauses of an ifififif-statement live only in the
respective thenthenthenthen part. The same applies to variables declared locally in elseelseelseelse clauses.

> f := proc(x) is
> if x > 0 then
> local i := 1; print('inner', i)
> else
> local i := 0; print('inner', i)
> fi;
> print('outer', i) # i is not visible
> end;

> f(1);
inner 1
outer null

Variables declared as local in forforforfor- or whilewhilewhilewhile-loops are only accessible in the bodies
of these loops. The loop control variables of forforforfor/totototo-loops are automatically declared
local to their surrounding block, while control variables of forforforfor/inininin-loops are implicitly
declared local to the respective loop bodies.

> f := proc(x) is
> while x < 2 do
> local i := x
> inc x
> print('inner', i)
> od;
> print('outer', i) # i is not visible
> end;

> f(1);
inner 1
outer null

A special scope can be declared with the scopescopescopescope and epocsepocsepocsepocs statements:

 scopescopescopescope
 declarations & statements
 epocsepocsepocsepocs

The next example demonstrates how it works:

> f := proc() is
> local a := 1;
> scope
> local a := 2;
> writeline('inner a: ', a);
> epocs;
> writeline('outer a: ', a);
> end;

agenaagenaagenaagena >> 147

> f()
inner a: 2
outer a: 1

The scopescopescopescope statement can also be used on the interactive level to execute a
sequence of statements as one unit. Compare

> print(1);
1

> print(2);
2

> print(3);
3

with

> scope
> print(1);
> print(2);
> print(3)
> epocs;
1
2
3

6.16.16.16.14444 Access to Access to Access to Access to LoopLoopLoopLoop Control Variables Control Variables Control Variables Control Variables withwithwithwithin in in in ProceduresProceduresProceduresProcedures

As already mentioned, the control variable of a forforforfor/totototo loop is always local to the
body surrounding the loop.

> mandelbrot := proc(x, y, iter, radius) is
> local i, c, z;
> z := x!y;
> c := z;
> for i from 0 to iter while abs(z) < radius do
> z := z^2 + c
> od;
> return i # return the last iteration value
> end;

The procedure counts and returns the number of iterations a complex value z takes
to escape a given radius by applying it to the formula z = z^2+c.

> mandelbrot(0, 0, 128, 2):
129

The following example demonstrates that local variables are bound to the block in
which they have been declared.

> f := proc() is
> local i;
> for i to 3 do
> local j;
> for j to 3 do od;
> print(i, j)
> od;

148 6 Programming

> print(i, j)
> end;

> f()
1 4
2 4
3 4
4 null

6.15 6.15 6.15 6.15 SandboxesSandboxesSandboxesSandboxes

By default, every procedure has access to the full Agena environment, i.e. to all of
Agena's functions, packages, and all other values. You might want to limit this
access, for example if one of your procedures offers services on the Internet, or
want a procedure maintain its own environment.

Here, the environ.setfenvenviron.setfenvenviron.setfenvenviron.setfenv function comes into play. It initialises the environment a
function can use.

Example 1: Give access to all functions except the osososos package

First copy Agena's environment represented by the system table _G_G_G_G to a new table
so that altering this new table will not effect Agena's normal environment:

> _newG := copy(_G); # copy can also duplicate cyc les like _G

Delete the osososos package from this new environment:

> delete os from _newG;

Define a function that tries to determine the current working directory:

> curdir := proc() is
> return os.chdir()
> end;

Set the environment not featuring the osososos package:

> environ.setfenv(curdir, _newG);

> curdir():
Error in stdin, at line 2:
 attempt to index global `os` (a null value)

Stack traceback:
 stdin, at line 2, at line 1

Example 2: Give access only the specific functions

> curdir := proc() is
> print(os.chdir())
> end;

agenaagenaagenaagena >> 149

> environ.setfenv(curdir,
> ['print' ~ << x -> print('cwd is ' & x) >>, 'o s' ~ os])

> curdir():
cwd is C:/agena/src

To determine the current environment used by a function, use environenvironenvironenviron.getfenv.getfenv.getfenv.getfenv:

> environ.getfenv(curdir):

[os ~ (···), print ~ procedure(01D4BA18)]

Please see Chapter 7.21 (environ.getfenvenviron.getfenvenviron.getfenvenviron.getfenv, environ.setfenvenviron.setfenvenviron.setfenvenviron.setfenv, environ.isselfrefenviron.isselfrefenviron.isselfrefenviron.isselfref) for
further features.

To hide data in a sandbox, please have a look at registers - explained in Chapter
4.15.

6.16 Altering the Environment at 6.16 Altering the Environment at 6.16 Altering the Environment at 6.16 Altering the Environment at Run-TimeRun-TimeRun-TimeRun-Time

Besides using a special environment (see the subchapter above), a procedure can
also create new variables and put them into Agena's standard environment.

Why should one do so ? Consider the utils.utils.utils.utils.decodedecodedecodedecodexmlxmlxmlxml function. It converts an XML
string into a table consisting of key-value pairs, the keys being the XML tags, and the
values the corresponding data. XML allows to use name spaces, so that tags might
look like <soap:body> , etc.

So, XML data like

> str := '<soap:body>
> <orderid>123</orderid>
> </soap:body>'

is converted to

> order := utils.decodexml(str):
[soap_body ~ [orderid ~ 123]]

To read the order number, one might just enter:

> order.soap_body.orderid:
123

Unfortunately, especially the SOAP standard allows one to define her/his own name
space, so that the following is also equivalent and valid XML data:

> str := '<s:body>
> <orderid>123</orderid>
> </s:body>'

> order := utils.decodexml(str):
[s_body ~ [orderid ~ 123]]

150 6 Programming

In this case you would have to write a new statement to get the order ID since
fetching it with

> order.soap_body.orderid:
Error in stdin, at line 1:
 attempt to index field `soap_body` (a null value)

will not work. Fortunately, Agena stores all values in the _G_G_G_G system table, with its keys
being strings representing the variable names, and the entries the values of the
these variables. So flexible code to read data from XML code featuring different
name spaces might look like this:

> str := '<s:body>
> <orderid>123</orderid>
> </s:body>'

> order := utils.decodexml(str):
[s_body ~ [orderid ~ 123]]

> tag := tables.indices(order)[1]:
s_body

> prefix := tag[1 to ('_' in tag) - 1]:
s

> _G['order'][prefix & '_body'].orderid:
123

Likewise, defining new variables within code can be done like this:

> _G['jpl'] := ['Jet Propulsion Laboratory']

> jpl:
[Jet Propulsion Laboratory]

6666....11117777 Packages Packages Packages Packages

6666....11117777.1 Writing a New Package.1 Writing a New Package.1 Writing a New Package.1 Writing a New Package

Let us write a small utilities package called helpers including only one main and
one auxiliary function. The main function shall return the number of digits of an
integer.

Package procedures are usually stored to a table, so we first create a table called
helpers . After that, we assign the procedure ndigits and the auxiliary
aux.isInteger function to this table.

> create table helpers, helpers.aux;

> helpers.aux.isInteger := << x -> int(x) = x >>; # aux function

> helpers.ndigits := proc(n::number) is
> if not helpers.aux.isInteger(n) then
> error('Error, argument is not an integer')
> fi;

agenaagenaagenaagena >> 151

> if n = 0 then
> return 1
> else
> return entier(ln(abs(n))/ln(10) + 1);
> fi;
> end;

Now we can use our new package.

> helpers.ndigits(0):
1

> helpers.ndigits(-10):
2

> helpers.ndigits(.1):
Error, argument is not an integer

Stack traceback: in `error`
 stdin, at line 3, at line 1

To save us a lot of typing, we can assign a short name to this table procedure.

> ndigits := helpers.ndigits;

> ndigits(999):
3

Save the code listed above to a file called helpers.agn in a subfolder called
helpers in the Agena main directory. In order to use the package again after you
have restarted Agena, use the runrunrunrun function and specify the full path.

> restart;

> run 'd:/agena/helpers/helpers.agn'

> helpers.ndigits(10):
2

You may print the contents of the package table at any time:

> helpers:
[aux ~ [isInteger ~ procedure(0044A6E0)], ndigits ~ procedure(0044A850)]

6666....11117777.2 The .2 The .2 The .2 The with Functionwith Functionwith Functionwith Function

The withwithwithwith function, besides loading the package in a convenient way, automatically
assigns short names to all package procedures so that you may use the shortcuts
instead of the fully written function names.

In order to do this, you must first prepend or append the location of the directory
containing your new package to libnamelibnamelibnamelibname, or execute Agena in the directory
containing your package. You may do this by adding the following line to your
personal Agena initialisation file (see Chapter A6), assuming that the helpers.agn

file has been stored to the folder d:/agena/helpers .

152 6 Programming

libname := libname & ';d:/agena/helpers';

Alternatively, you may save the helpers.agn file into the lib folder of your Agena
distribution if you do not want to modify libnamelibnamelibnamelibname.

Now in the interactive level, type:

> restart;

libnamelibnamelibnamelibname and some few other system variables are not reset by the restartrestartrestartrestart statement
because restartrestartrestartrestart deliberately does not touch the contents of these specific system
variables.

> with 'helpers'
ndigits

> ndigits(1); # same as helpers.ndigits(1)

You may also want withwithwithwith to print a start-up notice at every package invocation by
assigning a string to the table field `packagename.initstringinitstringinitstringinitstring`. Put the following line
into the helpers.agn file after the create tablecreate tablecreate tablecreate table statement, save the file and restart
Agena:

> helpers.initstring := 'helpers v1.0 as of June 11 , 2013\n\n';

> restart;

> with 'helpers'
helpers v1.0 as of June 11, 2013

ndigits

Since you may not want that short names are set for certain, especially auxiliary
functions, their procedure names should be defined as follows:
`packagename.auxauxauxaux.procedurename`, e.g. helpers.aux.isInteger .

The contents of the helpers.agn file should finally look like this:

create table helpers, table helpers.aux;

helpers.initstring := 'helpers v1.0 as of June 11, 2013\n\n';

helpers.aux.isInteger := << x -> int(x) = x >>; # aux function

helpers.ndigits := proc(n::number) is
 if not helpers.aux.isInteger(n) then
 error('argument is not an integer')
 fi;
 if n = 0 then
 return 1
 else
 return entier(ln(abs(n))/ln(10) + 1);
 fi;
end;

agenaagenaagenaagena >> 153

Save the file again and restart Agena.

> restart;

> with 'helpers'
helpers v1.0 as of June 11, 2013

ndigits

You can also define a package initialisation routine. It will automatically be run by
the withwithwithwith statement after the package has been found and initialised successfully.
The name of the initialisation routine must be of the form `packagename.aux.aux.aux.aux.initinitinitinit`,
e.g.:

> helpers.aux.init := proc() is
> writeline('I am run')
> end;

Of course, you must create a `packagename.aux.aux.aux.aux` table before defining the
initialisation function.

Instead of using withwithwithwith to initialise a package, you may use the importimportimportimport/aliasaliasaliasalias
statement - see Chapter 3.18 - so

> with 'helpers';

is equivalent to

> import helpers alias;

6666....11118888 Remember Remember Remember Remember TTTTablesablesablesables

Agena features remember tables which if present hold the results of previous calls
to Agena or API C procedures or contain a list of predefined results, or both. If a
function is called again with the same argument or the same arguments, then the
corresponding result is returned from the table, and the procedure body is not
executed. Remember tables are called rtables or rotables for short.

All functions to create, modify, query, and delete remember tables are available in
the rtablertablertablertable package.

There are two types of remember tables:

� Standard Remember Tables, called `rtables`, that can be automatically
updated by a call to the respective function; they may be initialised with a list of
precomputed results (but do not need to).

� Read-only Remember Tables, called `rotables`, that cannot be updated by a
call to the respective function. Rotables should be initialised with a list of
precomputed results.

154 6 Programming

6.18.1 6.18.1 6.18.1 6.18.1 Standard Remember TablesStandard Remember TablesStandard Remember TablesStandard Remember Tables

A standard remember table is suited especially for recursively defined functions. It
may slow down functions, however, if they have remember tables but do not rely
much on previously computed results.

By default, no procedure contains a remember table, they must explicitly be
created with the rtable.rtable.rtable.rtable.rinitrinitrinitrinit function and optionally filled with default values with the
rtable.rtable.rtable.rtable.rsetrsetrsetrset function. Since those functions are very basic, a more convenient facility
is the rtable.rtable.rtable.rtable.rememberrememberrememberremember function which will exclusively be used in this chapter.

In order for an rtable to be automatically updated, the respective function must
return its result with the return return return return statement (which may sound profane). If a function is
called with arguments that are not already known to the remember table, then the
returnreturnreturnreturn statement adds these arguments and the corresponding result or results to
the rtable.

Two examples: We want to define a function f(x) = x with f(0) = undefined.

First the function is defined:

> f := << x -> x >>;

Only after the function has been created, the rtable (short for remember table) can
be set up. The rtable.rtable.rtable.rtable.rememberrememberrememberremember function can be used to initialise rtables, explicitly
set predefined values to them, and add further values later in a session.

> with('rtable');
defaults, rdelete, remember, rget, rinit, rmode, ro init, rset

> remember(f, [0 ~ undefined]);

The rtable has now been created and a default entry included in it so that calling f
with argument 0 returns undefinedundefinedundefinedundefined and not 0.

> f(1):
1

> f(0):
undefined

If the function is redefined, its rtable is destroyed, so you may have to initialise it
again.

Fibonacci numbers can be implemented recursively and run with astonishing
speed using rtables.

> fib := proc(n) is
> assume(n >= 0);
> return fib(n-2) + fib(n-1)
> end;

agenaagenaagenaagena >> 155

The call to assumeassumeassumeassume assures that n is always non-negative and serves as an
`emergency brake` in case the remember table has not been set up properly.

The rtable is being created with two default values:

> remember(fib, [0~1, 1~1]);

If we now call the function,

> fib(50):
20365011074

the contents of the rtable will be:

> remember(fib):
[[22] ~ [28657], [39] ~ [102334155], [17] ~ [2584], [5] ~ [8], [27] ~
[317811], [50] ~ [20365011074], [3] ~ [3], [0] ~ [1], [46] ~ [2971215073],
[41] ~ [267914296], [1] ~ [1], etc.]

If a function has more than one parameter or has more than one return, rememberrememberrememberremember
requires a different syntax: The arguments and the returns are still passed as
key~value pairs. However, the arguments are passed in one table, and the returns
are passed in another table.

> f := proc(x, y) is
> return x, y
> end;

> remember(f, [[1, 2] ~ [0, 0]]);

> a, b := f(1, 2);

> a:
0

> b:
0

Please check Chapter 7.23 for more details on their use.

6.18.2 6.18.2 6.18.2 6.18.2 Read-OnlyRead-OnlyRead-OnlyRead-Only Remember Tables Remember Tables Remember Tables Remember Tables

If you do not want that a function updates its remember table each time it is called
with new arguments and results, you may use a read-only remember table, called
`rotable` for short. Rotables are initialised with a list of precomputed results.

The function itself cannot implicitly enter new entries to its remember table via the
returnreturnreturnreturn statement; it can only do so via a call to the rtable.rtable.rtable.rtable.rsetrsetrsetrset function or a utility
that is based on rtable.rtable.rtable.rtable.rsetrsetrsetrset, called rtable.defaultsrtable.defaultsrtable.defaultsrtable.defaults. This gives you full control on the
contents and the amount of data stored in a remember table - and thus on the
speed of your procedure.

156 6 Programming

Assume you want to define a procedure that computes factorials n!, and that does
not compute the results for n < 11, but retrieves the results from an rotable instead.

A function might look like this:

> fact := proc(x::number) is
> if int(x) = x then # is x an integer (and non -negative) ?
> return exp(lngamma(x+1))
> else
> return undefined
> fi
> end;

The defaultsdefaultsdefaultsdefaults function can set up the rotable and enter precomputed values into it.

> # set precompiled results for 0! to 10! to fact

> defaults(fact, [
> 0~1, 1, 2, 6, 24, 120, 720, 5040, 40320, 36288 0, 3628800
>]);

The factorial function is significantly faster when called with arguments that are in
the rotable than if there would be no such value cache, because it would have to
re-compute the results instead of just reading them.

Let us look into the remember table:

> defaults(fact):
[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880], [10] ~ [3628800],
[0] ~ [1], [4] ~ [24], [5] ~ [120], [6] ~ [720], [3] ~ [6], [7] ~ [5040]]

You can also easily add further argument ~ result pairs with the rtable.defaultsrtable.defaultsrtable.defaultsrtable.defaults
function:

> defaults(fact, [11 ~ 39916800]);

> defaults(fact):
[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880], [10] ~ [3628800], [0]
~ [1], [11] ~ [39916800], [4] ~ [24], [7] ~ [5040], [6] ~ [720], [3] ~ [6],
[5] ~ [120]]

A read-only remember table can be deleted by passing nullnullnullnull as a second
argument to defaultsdefaultsdefaultsdefaults.

agenaagenaagenaagena >> 157

6.18.3 Functions for Administering Remember Tables6.18.3 Functions for Administering Remember Tables6.18.3 Functions for Administering Remember Tables6.18.3 Functions for Administering Remember Tables

For completeness, all basic functions that work on remember tables are the
following:

Returns the string 'rtable' if a function f has a standard
remember table, 'rotable' if it has a read-only
remember table, and 'none' if it has no remember
table at all.

rtable.rtable.rtable.rtable.rmodermodermodermode(f)

Deletes the remember table of function f entirely. If
you want to use a new remember table with the
function, you have to initialise it with rtable.rtable.rtable.rtable.rinitrinitrinitrinit or
rtable.rtable.rtable.rtable.rointrointrointroint again.

rtable.rtable.rtable.rtable.rdeleterdeleterdeleterdelete(f)

Adds function argument(s) and the corresponding
return(s) to the remember table of procedure f .

rtable.rtable.rtable.rtable.rsetrsetrsetrset(
 f, [[[[arguments]]]], [[[[returns]]]]))))

Initialises a read-only remember table for the function
f .

rtable.rtable.rtable.rtable.rrrroinitoinitoinitoinit(f)

Initialises a standard remember table for the function
f .

rtable.rtable.rtable.rtable.rinitrinitrinitrinit(f)
Returns the remember table of function f .rtable.rtable.rtable.rtable.rgetrgetrgetrget(f)
DetailsDetailsDetailsDetailsProcedureProcedureProcedureProcedure

Table 18: Functions for administering remember tables

6666....11119999 Overloading Operators with Overloading Operators with Overloading Operators with Overloading Operators with MetamethodsMetamethodsMetamethodsMetamethods

One of the many useful functions inherited from Lua 5.1 are metamethods which
provide a means to use existing operators to tables, sets, sequences, and pairs.

For example, complex arithmetic could be entirely implemented with
metamethods so that you can use already existing symbols and keywords such as
+ or absabsabsabs with complex values and do not have to learn names of new functions18.

This method of defining additional functionality to existing operators is also known as
`overloading`.

Adding such functionality to existing operators is very easy. As an example, we will
define a constructor to produce complex values and three metamethods for
adding complex values with the + token, determining their absolute value with the
standard absabsabsabs operator, and pretty printing them at the console.

At first, lets store a complex value z = x + yi to a sequence of size 2. The real part is
saved as the first value, the imaginary part at the second.

> cmplx := proc(a::number, b::number) is
> create local sequence r(2);
> insert a, b into r;
> return r
> end;

158 6 Programming

18 For performance reasons, complex arithmetic has been built directly into the Agena kernel.

To define a complex value, say z = 0 + i, just call the constructor:

> cmplx(0, 1):
seq(0, 1)

The output is not that nice, so we would like Agena to print cmplx(0, 1) instead of
seq(0, 1) . This can be easily done with the settypesettypesettypesettype function:

> cmplx := proc(a::number, b::number) is
> create local sequence r(2);
> insert a, b into r;
> settype(r, 'cmplx');
> return r
> end;

> cmplx(0, 1):
cmplx(0, 1)

Adding two complex values does not work yet, for we have not yet defined a
proper metamethod.

> cmplx(0, 1) + cmplx(1, 0):
Error in stdin, at line 1:
 attempt to perform arithmetic on a sequence valu e

Metamethods are defined using dictionaries, called `metatables`. Their keys, which
are always strings, denote the operators to be overloaded, the corresponding
values are the procedures to be called when the operators are applied to tables,
sets, sequences (which are used in this example), or pairs. See Appendix A2 for a list
of all available method names. To overload the plus operator use the '__add'

string.

Assign this metamethod to any name, cmplx_mt in this example.

> cmplx_mt := [
> '__add' ~ proc(a, b) is
> return cmplx(a[1]+b[1], a[2]+b[2])
> end
>]

Next, we must attach this metatable cmplx_mt to the sequence storing the real and
imaginary parts with the setmetatablesetmetatablesetmetatablesetmetatable function. We have to extend the constructor
by one line, the call to setmetatablesetmetatablesetmetatablesetmetatable :

> cmplx := proc(a::number, b::number) is
> create local sequence r(2);
> insert a, b into r;
> settype(r, 'cmplx');
> setmetatable(r, cmplx_mt);
> return r
> end;

Try it:

agenaagenaagenaagena >> 159

> cmplx(0, 1) + cmplx(0, 1):
cmplx(0, 2)

Add a new method to calculate the absolute value of complex numbers by
overloading the absabsabsabs operator.

> cmplx_mt.__abs := << (a) -> hypot(a[1], a[2]) >>;

The metatable now contains two methods.

> cmplx_mt:
[__add ~ procedure(004A64D0), __abs ~ procedure(004 D2D30)]

> z := cmplx(1, 1);

> abs(z):

1.4142135623731

It would be quite fine if complex values would be output the usual way using the
standard x + yi notation. This can be done with the '__tostring' method which
must return a string.

> cmplx_mt.__tostring := proc(z) is
> return if z[2]<0 then z[1]&z[2]&'i' else z[1]& '+'&z[2]&'i' fi
> end;
> z:
1+1i

To avoid using the cmplxcmplxcmplxcmplx constructor in calculations, we want to define the
imaginary unit I = 0+i and use it in subsequent operations. Before assigning the
imaginary unit, we have to add a metamethod for multiplying a number by a
complex number.

> cmplx_mt.__mul := proc(a, b) is
> if typeof(a) = 'cmplx' and typeof(b) = 'cmplx' then
> return cmplx(a[1]*b[1]-a[2]*b[2], a[1]*b[2] +a[2]*b[1])
> elif type(a) = number and typeof(b) = 'cmplx' then
> return cmplx(a*b[1], a*b[2])
> fi
> end;

and also extend the metamethod for complex addition.

> cmplx_mt.__add := proc(a, b) is
> if typeof(a) = 'cmplx' and typeof(b) = 'cmplx' then
> return cmplx(a[1]+b[1], a[2]+b[2])
> elif type(a) = number and typeof(b) = 'cmplx' then
> return cmplx(a+b[1], b[2])
> fi;
> end;

> i := cmplx(0, 1);

> a := 1+2*i:
1+2i

160 6 Programming

Until now, the real and imaginary parts can only be accessed using indexed
names, say z[1] for the real part and z[2] for the imaginary part. A more
convenient - albeit not that performant - way to use a notation like z.re and z.im in
both read and write operations is provided by the '__index' and '__writeindex'

metamethods, respectively.

The __index metamethod for reading values from a structure works as follows:

� If the structure is a table, then the metamethod is called if the call to an indexed
name results to nullnullnullnull.

� If the structure is a set, then the metamethod is called if the call to an indexed
name results to falsefalsefalsefalse.

� If the structure is a sequence, then the metamethod is called if the call to an
indexed name would result to an index-out-of-range error.

The __writeindex metamethod for writing values to a structure works as follows:

� If the structure is a table, sequence or pair, then the metamethod is always
called.

� The metamethod is also supported by the insertinsertinsertinsert statement.

The respective procedures assigned to the __index and __writeindex keys of a
metatable should not include calls to indexed names, for in some cases this would
lead to stack overflows due to recursion (the respective metamethod is called
again and again). Instead, use the rawgetrawgetrawgetrawget function to directly read values from a
structure, and the rawsetrawsetrawsetrawset function to enter values into a structure.

Let us first define a global mapping table for symbolic names to integer keys:

> cmplx_indexing := ['re'~1, 'im'~2];

Now let us define the two new metamethods. Both will be capable to accept
expressions like a.re and a[1] . In the following read procedure the argument x

represents the complex value, and the argument y is assigned either the string 're'

or 'im' . Thus, cmplx_indexing['re'] will evaluate to the index 1, and
cmplx_indexing['im'] to index 2.

> cmplx_mt.__index := proc(x, y) is # read operati on
> if type(y) = string then # for calls like `a. re` or `a.im`
> return rawget(x, cmplx_indexing[y])
> else
> return rawget(x, y) # for calls like `a[1]` or `a[2]`
> fi
> end;

In the write procedure, argument x will hold the complex value, y will be either 're'

or 'im' , and z is assigned the component - a rational number -, i.e. x.re := z or
x.im := z .

agenaagenaagenaagena >> 161

> cmplx_mt.__writeindex := proc(x, y, z) is # writ e operation
> if type(y) = string then
> rawset(x, cmplx_indexing[y], z)
> else
> rawset(x, y, z) # for assignments like `a[1] := value`
> fi
> end;

You can now use the new methods.

> a:
1+2i

> a.re:
1

> a.im := 3;

> a:
1+3i

Please note that while arithmetic metamethods can be applied on mixed types, for
example the above defined complex number and a simple Agena number,
relational operators cannot compare values of different types. Instead, Agena in
this case just returns falsefalsefalsefalse with the equality operators ====, ========, and ~=~=~=~=; and issues an
error with relational operators that compare for order.

Using the __writeindex__writeindex__writeindex__writeindex metamethod, it is quite easy to write-protect structures.

> readonly_mt := [
> '__writeindex' ~
> proc(t, k, v) is error('Error, structure is read-only.') end
>]

A constructor simplifies creating read-only structures:

> readonly := proc(t::table) is
> setmetatable(t, readonly_mt);
> return t
> end;

> moons := readonly(['Phobos', 'Deimos']);

Adding further values to the table, or changing an existing one, now will not work.

> insert 'Mars' into moons;
Error, structure is read-only.

Stack traceback: in `error`

> moons:

[Phobos, Deimos]

Using one and the same global table to define metamethods for various variables
may be appropriate to save memory, but modification of the metatable may have
unwanted effects.

162 6 Programming

> readonly_mt.__writeindex := proc(t, k, v) is raws et(t, k, v) end;

> insert 'Mars' into moons;

> moons:
[1 ~ Phobos, 2 ~ Deimos, Mars ~ Mars]

To protect metatables from tampering, use the __metatable__metatable__metatable__metatable method and set it to
any value except nullnullnullnull.

> readonly_mt := [
> '__writeindex' ~
> proc(t, k, v) is error('Error, table is rea d-only') end,
> '__metatable' ~ false
>];

> readonly := proc(t::table) is
> setmetatable(t, readonly_mt);
> return t
> end;

> moons := readonly(['Phobos', 'Deimos']);

> setmetatable(moons, [
> '__writeindex' ~
> proc(t, k, v) is error('Error, table is read-only') end
>]
>);
Error in `setmetatable`: cannot change a protected metatable.

Stack traceback: in `setmetatable`
 stdin, at line 1 in main chunk

A structure with a __call__call__call__call key in its metatable can also be called like a function.

> readonly := proc(t::table) is
> setmetatable(t, [
> '__call' ~ proc(t) is
> for i, j in t do print(i, j) od
> end]);
> return t
> end;

> moons := readonly(['Phobos', 'Deimos']);

> moons();
1 Phobos
2 Deimos

6.6.6.6.20202020 Memory Management, Garbage Collection, and Weak StructuresMemory Management, Garbage Collection, and Weak StructuresMemory Management, Garbage Collection, and Weak StructuresMemory Management, Garbage Collection, and Weak Structures

Agena includes a garbage collector that sweeps all structures, procedures,
userdata, and threads (called `objects` in this subchapter) that no longer have
valid references in your programme - i.e. are inaccessible. Agena can then use the
space for new objects. Numbers, complex numbers, strings, and Booleans, are
never collected.

Consider the following code: Let us assign a table to a name.

agenaagenaagenaagena >> 163

> s := []

Now s refers to a memory address so that Agena can access the table.

> environ.pointer(s):
008F0F38

If we reassign s, a different empty table is assigned to it.

> s := []

This newly created table is situated at another part of the memory.

> environ.pointer(s):
008A4188

Since the first table at memory position 008F0F38 can no longer be accessed, it
unnecessarily occupies space. The garbage collector regularly looks for
unreferenced objects and removes them.

Besides automatic garbage collection, the user can also invoke it manually, if
deemed necessary, or even stop and restart it by calling environ.gcenviron.gcenviron.gcenviron.gc.

Sometimes it may be necessary to immediately clear values occupying a large
amount of space. In this case assign nullnullnullnull to it, so that the next automatic collection
cycle can free it. If necessary call environ.gcenviron.gcenviron.gcenviron.gc for immediate collection. As a
shortcut, you could also use the clearclearclearclear statement which conducts both nullnullnullnulling a
value and collecting it.

If a table, set, sequence, or procedure, userdata, or thread is included in another
table or sequence, the garbage collector does not collect it if its reference should
have become invalid.

> restart

> t := []

> v := [1]; insert v into t

> v := [2]; insert v into t

> environ.gc()

[1] is still part of the table.

> t:
[[1], [2]]

If you do not want this to happen, declare the table or sequence `weak` by using
the __weak__weak__weak__weak metamethod. With tables, you can either declare its keys weak by
passing the string 'k' , or its values weak with the string 'v' , or both with 'kv' . With
sequences, simply use use the string 'v' .

164 6 Programming

If the collector meets a weak key that has become inaccessible, it removes the
key-value pair. If the collector meets a weak value that has become inaccessible, it
removes the key-value pair.

> t := []

> setmetatable(t, ['__weak' ~ 'v'])

> v := [1]; insert v into t

> v := [2]; insert v into t

> environ.gc()

> t:
[2 ~ [2]]

Do not change the __weak__weak__weak__weak field after it has been assigned to an object, as the
behaviour would be undefined. The insertinsertinsertinsert and deletedeletedeletedelete statements will reject
manipulation of weak tables and sequences.

6.26.26.26.21111 Extending Extending Extending Extending BBBBuilt-in Functionsuilt-in Functionsuilt-in Functionsuilt-in Functions

You may redefine existing built-in functions if you want to change their behaviour or
extend its features. You can either write a completely new replacement from
scratch or use the original function in your modified version. Your new procedure
can then be called with the same name as the original one.

Note that only Agena functions written in C or in the language itself can be
redefined, and that operators cannot.

In Agena, each mathematical function f works as follows: if a number x, which by
definition represents a value in the real domain, is passed to them, then the result
f(x) will also be in the real domain. If x is a complex value, then the result will be in
the complex domain.

Suppose that you want to automatically switch to the complex domain if a function
value in the real domain could not be determined, i.e. if f(x) = undefinedundefinedundefinedundefined. An
example is:

> root(-2, 2):
undefined

On the interactive level enclose the new procedure definition with the scopescopescopescope and
epocsepocsepocsepocs keywords. This is necessary because on the interactive level, each statement
entered at the prompt has its own scope and thus local variables cannot be
accessed in the statements thereafter.

The new function definition might be:

agenaagenaagenaagena >> 165

> scope
>
> # save the original function in a `hidden` var iable
> local oldroot := root;
>
> # define the substitute
> root := proc(x, n) is # new definition
> local result := oldroot(x, n);
> if result = undefined then # switch to com plex domain
> result := oldroot(x+0*I, n)
> fi;
> return result
> end;
>
> epocs;

The original function rootrootrootroot is stored to the local oldroot variable so that the user can
no longer directly access it.

> root(-2, 2):
8.6592745707194e-017+1.4142135623731*I

If you wish to permanently use your redefined functions, just put them into the
initialisation file, located either in the lib folder of your Agena installation, or your
home directory. See Appendix 6 for further information.

Since files have their own `scope`, the scopescopescopescope and epocsepocsepocsepocs keywords are no longer
needed (but can be left in the file).

6.22 6.22 6.22 6.22 Closures: Procedures that Remember their StateClosures: Procedures that Remember their StateClosures: Procedures that Remember their StateClosures: Procedures that Remember their State

A procedure can remember its state. This state is represented by the function's
internal variables which can survive and keep their values even after the call to the
procedure completed.

So with a successive call to the same procedure, it can access these values and
use them in the current call again.

Let us define an iterator function that successively returns an element of a table:

> traverse := proc(o::table) is
> local count := 0;
> return proc() is
> inc count;
> return o[count]
> end
> end;

The traverse procedure is called a factory for it returns the closure as a function
which we assign to the name iterator . The iterator function remembers its state
and can be called like `normal` functions:

> iterator := traverse(['a', 'b', 'c']);

166 6 Programming

> iterator():
a

What happened ? The call to traverse with the table ['a', 'b', 'c'] as its only
argument initialised the variable count and assigned it to 0. The table you passed is
also stored to the closure's internal state. With the first call to iterate , count was
incremented from 0 to 1, followed by the return of the first element in the table.

> iterator():
b

> iterator():
c

Since the table has no more elements left (count = 4), it now returns nullnullnullnull.

> iterator():

null

You can define more than one closure with a factory at the same time, each being
completely independent from the others:

> iterator2 := traverse(['a', 'b', 'c']);

> iterator2():
a
> iterator2():
b

> iterator3 := traverse(['a', 'b', 'c']);

> iterator3():
a

agenaagenaagenaagena >> 167

6.23 Summary on Procedures6.23 Summary on Procedures6.23 Summary on Procedures6.23 Summary on Procedures

The following diagram tries to summarise all features of a procedure.

6.6.6.6.24242424 I/O I/O I/O I/O

Agena features various functions to deal with files, to read lines and write values to
them. Keyboard interaction is supported, too, as is interaction with other
applications. Most of the functions have been taken from Lua. All the functions for
input/output are included in the ioioioio (and the biniobiniobiniobinio) packages.

Read and write access to files usually is conducted through file handles. At first, a
file is opened for read or write operations with the io.openio.openio.openio.open function. Then you apply
the respective read or write functions and finally close the file again using io.closeio.closeio.closeio.close.

6.6.6.6.24242424.1 Reading .1 Reading .1 Reading .1 Reading Text FilesText FilesText FilesText Files

Open a file and store the file handle to the name fh :

> fh := io.open('d:/agena/src/change.log'):
file(7803A6F0)

Read the first ten characters:

> io.read(fh, 10):

Change Log

Read the next 10 characters:

> io.read(fh, 10):
 for Agena

168 6 Programming

InputInputInputInput

No Parameters
Parameters
Variable Parameters

Procedure TypesProcedure TypesProcedure TypesProcedure Types

Standard Agena Type
User-Defined Type

Remember TableRemember TableRemember TableRemember Table

Read/Write Table
Read-Only Table

DomainsDomainsDomainsDomains

State (Closure)
Scope
Environment

Type ChecksType ChecksType ChecksType Checks

Arguments
Return

ProcedureProcedureProcedureProcedure

proc(v::type, ?) :: type is
 local r;
 global _Eps;
 r := v;
 for i in varargs do
 inc r, i + _Eps
 od;
 return r
end

FormsFormsFormsForms

Multi-Line Procedures
One-Line Functions

OutputOutputOutputOutput

No Return
One Return
Multiple Returns

Close the file:

> io.close(fh):
true

Besides file handles, many IO functions also accept file names. For example, the
io.linesio.linesio.linesio.lines procedure reads in a text file line by line. It is usually used in forforforfor loops. The
respective line read is stored to the loop key, the loop value is always nullnullnullnull. The
function opens and closes the file automatically.

> for i, j in io.lines('d:/agena/lib/agena.ini') do
> print(i, j)
> od
execute := os.execute; null
getmeta := getmetatable; null
setmeta := setmetatable; null

6.6.6.6.24242424.2 Wr.2 Wr.2 Wr.2 Wriiiiting Text Filesting Text Filesting Text Filesting Text Files

To write numbers or strings into a file, we must first create the file with the io.openio.openio.openio.open
function. The second argument 'w' tells Agena to open it in `write` mode.

> fh := io.open('d:/file.txt', 'w');

As mentioned above, io.io.io.io.openopenopenopen returns a file handle to be used in subsequent io
operations.

> io.write(fh, 'I am a text.');

If you would like to include a newline, pass the '\n' string,

> io.write(fh, 'Me ', 'too.', '\n');

or use the io.writelineio.writelineio.writelineio.writeline function which automatically adds a newline to the end of the
input. The next statement writes the number to the file.✜

> io.writeline(fh, Pi);

After all values have been written, the file must be closed with io.closeio.closeio.closeio.close.

> io.close(fh);

The above statements produce the file contents:

I am a text.Me too.
3.1415926535898

In the next example we append text to the file we have already created. In order to
append - and not to overwrite existing - text, use the 'a' switch in the call to

agenaagenaagenaagena >> 169

io.openio.openio.openio.open19. Using the 'w' switch would replace the text already existing with the new
one. See Chapter 7.14 for further options accepted by io.openio.openio.openio.open.

The file looks like this:

I am a text.Me too.
3.1415926535898
20

Tables, sets, or sequences cannot be written directly to files, they must be iterated
using loops so that their keys and values - which must be numbers or strings - can
be stored separately to the file thereafter. The same applies to pairs: use the leftleftleftleft
and rightrightrightright operators to write their components.

The following statements write all keys and values of a table to a file. The keys and
values are separated by a pipe '|' , and a newline is inserted right after each
key~value pair. Note that you can mix numbers and strings.

> a := [10, 20, 30];

> file := io.open('d:/table.text', 'w');

> for i, j in a do
> io.write(file, i, '|', j, '\n')
> od;

> io.close(file);

Hint: To create UNIX text files on DOS-like systems, such as DOS, Windows, or
eComStation - OS/2, just open the text file in binary mode. This avoids carriage
return control codes to be added to the file with each line break.

See Chapter 7.14 for a description of all ioioioio package functions.

6.24.3 Keyboard6.24.3 Keyboard6.24.3 Keyboard6.24.3 Keyboard Interaction Interaction Interaction Interaction

The io.readio.readio.readio.read function allows to enter values interactively via the keyboard when
called with no arguments. Use the RETURN key to complete the input. The value
returned by io.readio.readio.readio.read is a string. If you would like to enter and process numbers
thereafter, use the tonumbertonumbertonumbertonumber function to transform the string into a number.

> a := io.read();
10

> a:
10

> type(a):
string

> tonumber(a)^2:
100

170 6 Programming

19 See Chapter 7.14 for further options accepted by io.openio.openio.openio.open.

All available keyboard functions are:

If called with no arguments, reads one or more characters from the
keyboard until the RETURN key is being pressed. The return is a string.

io.readio.readio.readio.read

Waits until a key is pressed and returns its ASCII number. This function
is not available on all platforms.

io.getkeyio.getkeyio.getkeyio.getkey
Checks whether a key has been pressed and returns truetruetruetrue or falsefalsefalsefalse.io.anykeyio.anykeyio.anykeyio.anykey
DetailsDetailsDetailsDetailsProcedureProcedureProcedureProcedure

Table 19: Functions to read the keyboard

6.24.4 6.24.4 6.24.4 6.24.4 Default Input, Output, and Error StreamsDefault Input, Output, and Error StreamsDefault Input, Output, and Error StreamsDefault Input, Output, and Error Streams

Agena, enherited from Lua, provides aliases to the standard input, output, and error
channels known from C:

� io.stdinio.stdinio.stdinio.stdin, the standard input stream, used to input data, usually the keyboard,
� io.stdoutio.stdoutio.stdoutio.stdout, the standard output stream, used to output data, usually the console,
� io.stderrio.stderrio.stderrio.stderr, the standard error stream, used for error messages and diagnostics,

usually the console.

Examples:

> io.writeline(io.stdout, 'Okay');
Okay

> io.writeline(io.stderr, 'Not okay');
not okay

6.24.6.24.6.24.6.24.5555 Locking FilesLocking FilesLocking FilesLocking Files

Agena allows files to be locked so that only the current process can read or write
data to them. This feature prevents corruption to files during write operations or
reading invalid data when other programmes also try to access them. See io.lockio.lockio.lockio.lock
and io.unlockio.unlockio.unlockio.unlock in Chapter 7.14 for further information.

6.24.6.24.6.24.6.24.6666 Interaction with ApplicationsInteraction with ApplicationsInteraction with ApplicationsInteraction with Applications

You can call another application, pass data to it and receive data from the
application with the io.popenio.popenio.popenio.popen function. The function returns a file handle, so that
you can receive the information returned (from the stdout channel of the called
programme) for further processing.

To get a listing of all files in the current directory, enter:

> p := io.popen('ls'):
file(77602960)

> io.readlines(p):
[ads.c, agena.c, etc.]

agenaagenaagenaagena >> 171

Finally, close the connection.

> io.close(p)

If you pass the 'w' option to io.popenio.popenio.popenio.popen as a second argument, you can send further
data to the external programme:

> p := io.popen('cat', 'w')

> io.write(p, 'Hello ')

> io.write(p, 'World\n')

> io.close(p)
Hello World

If you want to receive data from the stderr channel, or suppress output at the
Agena console, include the respective redirection instruction, which may vary
among operating systems, in the first argument to io.popenio.popenio.popenio.popen.

6.24.6.24.6.24.6.24.7777 CSVCSVCSVCSV Files Files Files Files

Comma-separated value files can be read conveniently by utils.readcsvutils.readcsvutils.readcsvutils.readcsv. This
function provides various options to further process the data being read. See
Chapter 7.26 for further details.

6.24.6.24.6.24.6.24.8888 XML FilesXML FilesXML FilesXML Files

XML files are imported and converted to Agena data structures with utils.readxmlutils.readxmlutils.readxmlutils.readxml or
xml.readxmlxml.readxmlxml.readxmlxml.readxml. XML files can be created with utils.encodexmlutils.encodexmlutils.encodexmlutils.encodexml and io.writeio.writeio.writeio.write. Chapter
7.17 and 7.26 offers further information on how to do this.

6.24.9 6.24.9 6.24.9 6.24.9 dBASEdBASEdBASEdBASE III Files III Files III Files III Files

The xbase package can read and write dBASE III-compatible files. See Chapter
7.16 for details.

6.24.10 6.24.10 6.24.10 6.24.10 INIINIINIINI Files Files Files Files

The utils.readiniutils.readiniutils.readiniutils.readini and utils.writeiniutils.writeiniutils.writeiniutils.writeini functions deal with traditional INI initialisation files.

172 6 Programming

6.26.26.26.25555 Linked ListsLinked ListsLinked ListsLinked Lists

With large tables, sometimes it may be very costly to insert or delete an element
with the put put put put and purgepurgepurgepurge functions because all elements after the insert or deletion
position must either be shifted up- or downwards. This is also true with sequences.

Also iterating a table with the forforforfor/inininin statement does not ensure that the keys are
traversed in ascending order20.

In these cases you may use the llistllistllistllist package implementing linked lists which store
elements in a sequential order and where each value also links to its successor. Just
take a look at the examples at the end of this subchapter.

The benefit of using linked list in these situations is at least 600 %, but may be very
much larger.

To see how a linked list works, let us create one manually. First, establish a root
which indicates the end of the list.

> list := null;

Now we insert the numbers -2, -1 and 0 into this list, so that the list contains the
elements 0, -1, -2, in this order.

> list := ['data' ~ -2, 'next' ~ list];

> list := ['data' ~ -1, 'next' ~ list];

> list := ['data' ~ 0, 'next' ~ list];

To traverse the list, we use a new reference so that the original list is not changed:

> l := list;

> while l do
> print(l.data)
> l := l.next
> od;
0
-1
-2

To insert an element somewhere in the list, we use:

> l := list;

> while l do
> if l.data = -1 then
> l.next := ['data' ~ -1.5, 'next' ~ l.next];
> break
> fi;
> l := l.next
> od;

agenaagenaagenaagena >> 173

20 See skycrane.iterateskycrane.iterateskycrane.iterateskycrane.iterate .

> l := list;

> while l do
> print(l.data)
> l := l.next
> od;
0
-1
-1.5
-2

It may often be useful to add further information to a linked list to save unnecessary
traversal, e.g. the position of the element or the predecessor.

Using the llistllistllistllist package is easy. First initialise it,

> import llist

and create an empty list.

> L := llist.list():
llist()

Now add 0 to it

> llist.append(L, 0);

and also put -2 to its beginning.

> llist.prepend(L, -2);

> L:
llist(-2, 0)

Insert -1 at position 2. As you see, the original element at this position is not deleted
but `shifted` to open space.

> llist.put(L, 2, -1):

> L:
llist(-2, -1, 0)

To delete an element at a position, enter:

> llist.purge(L, 2):

> L:
llist(-2, 0)

The sizesizesizesize operator determines the number of all elements in a linked list.

> size L:
2

174 6 Programming

To determine a specific element, index it as usual:

> L[1]
-2

Passing an index that does not exist, simply results to nullnullnullnull.

Finally, to replace an element, use a usual assignment statement.

> L[2] := -1

> L:
llist(-2, -1)

agenaagenaagenaagena >> 175

176 6 Programming

Chapter Chapter Chapter Chapter SevenSevenSevenSeven

Standard LibrariesStandard LibrariesStandard LibrariesStandard Libraries

agenaagenaagenaagena >> 177

178 7 Standard Libraries

7 7 7 7 Standard LibrariesStandard LibrariesStandard LibrariesStandard Libraries

The standard libraries taken from the Lua 5.1distribution provide useful functions that
are implemented directly through the C API. Some of these functions provide
essential services to the language (e.g., nextnextnextnext and getmetatablgetmetatablgetmetatablgetmetatableeee; others provide
access to `outside` services (e.g., I/O); and others could be implemented in
Agena itself, but are quite useful or have critical performance requirements that
deserve an implementation in C (e.g., sortsortsortsort) .

The following text is based on Chapter 5 of the Lua 5.1 manual and includes all the
new operators, functions, and packages provided by Agena.

Lua functions which were deleted from the code are not described. References to
Lua were not deleted from the original text. If an explanation mentions Lua, then the
description also applies to Agena.

All libraries are implemented through the official C API and are provided as
separate C modules. Currently, Agena has the following standard libraries:

• the basic library,
• package library,
• string library,
• table library,
• mathematical library,
• two input and output libraries,
• operating system library,
• debug facilities.

Except for the basic and the package libraries, each library provides all its functions
as fields of a global table or as methods of its objects. Agena operators have been
built into the kernel (the Virtual Machine), so they are not part of any library.

7777....1 1 1 1 Basic FunctionsBasic FunctionsBasic FunctionsBasic Functions

The basic library provides some core functions to Agena. If you do not include this
library in your application, you should check carefully whether you need to provide
implementations for some of its facilities.

Summary of functions:

Checks

absabsabsabs, assignedassignedassignedassigned, assumeassumeassumeassume, filledfilledfilledfilled, hashashashas, isequalisequalisequalisequal, rawequalrawequalrawequalrawequal, whereiswhereiswhereiswhereis.

agenaagenaagenaagena >> 179

Extraction

bottombottombottombottom, columnscolumnscolumnscolumns, duplicatesduplicatesduplicatesduplicates, getentrygetentrygetentrygetentry, leftleftleftleft, maxmaxmaxmax, minminminmin, nextnextnextnext, opsopsopsops, rawgetrawgetrawgetrawget,
rightrightrightright, toptoptoptop, uniqueuniqueuniqueunique, unpackunpackunpackunpack, valuesvaluesvaluesvalues.

Types

checkoptionscheckoptionscheckoptionscheckoptions , checktypechecktypechecktypechecktype, floatfloatfloatfloat, gettypegettypegettypegettype, isbooleanisbooleanisbooleanisboolean, iscomplexiscomplexiscomplexiscomplex, isintisintisintisint,
isnegativeisnegativeisnegativeisnegative, iiiisnegintsnegintsnegintsnegint, isnonnegintisnonnegintisnonnegintisnonnegint , isnonposisnonposisnonposisnonpos intintintint, isnumberisnumberisnumberisnumber, isnumericisnumericisnumericisnumeric, ispairispairispairispair,
isposintisposintisposintisposint, ispositiveispositiveispositiveispositive, isseqisseqisseqisseq, isstringisstringisstringisstring, isstructureisstructureisstructureisstructure , istableistableistableistable, nannannannan, nonnegnonnegnonnegnonneg, settypesettypesettypesettype,
typetypetypetype, typeoftypeoftypeoftypeof.

Counting

countitemscountitemscountitemscountitems, sizesizesizesize.

Data Manipulation

alternatealternatealternatealternate, augmentaugmentaugmentaugment, getbit,getbit,getbit,getbit, mapmapmapmap, purgepurgepurgepurge, putputputput, rawsetrawsetrawsetrawset, removeremoveremoveremove, selectselectselectselect,
selectremoveselectremoveselectremoveselectremove , setbitsetbitsetbitsetbit, sortsortsortsort, sortedsortedsortedsorted, subssubssubssubs, toseqtoseqtoseqtoseq, tosettosettosettoset, totabletotabletotabletotable, zipzipzipzip.

Data Generation

dimensiondimensiondimensiondimension, nseqnseqnseqnseq.

Error Handling

argerrorargerrorargerrorargerror, errorerrorerrorerror, protectprotectprotectprotect, xpcallxpcallxpcallxpcall.

Libraries

readlibreadlibreadlibreadlib, withwithwithwith.

Files

readreadreadread, savesavesavesave.

Output

printprintprintprint, printfprintfprintfprintf, writewritewritewrite, writelinewritelinewritelinewriteline.

Parsing

loadloadloadload, loadfileloadfileloadfileloadfile, loadstringloadstringloadstringloadstring.

Cantor Operations

bintersectbintersectbintersectbintersect , bisequalbisequalbisequalbisequal, bminusbminusbminusbminus.

180 7 Standard Libraries

Metatables

getmetatablegetmetatablegetmetatablegetmetatable , setmetatablesetmetatablesetmetatablesetmetatable .

Miscellaneous

byebyebyebye, clearclearclearclear, restartrestartrestartrestart, timetimetimetime.

abs (x)

If x is a number, the absabsabsabs operator will return the absolute value of x . Complex
numbers are supported.

If x is a Boolean, it will return 1 for truetruetruetrue, 0 for falsefalsefalsefalse, and -1 for failfailfailfail.

If x is null, absabsabsabs will return -2.

If x is a string of only one character, absabsabsabs will return the ASCII value of the character
as a number. If x is the empty string or longer than length 1, the function returns fail.

alternate (x, y)

Returns x if y evaluates to nullnullnullnull, else returns y .

argerror (x, procname, message)

Receives any value x , the name of procedure procname (a string) where x did not
satisfy anything, the error message text message , and appends the user-defined
type or if not defined the basic type of x . Thus it returns the error message: 'Error in
procname : message , got <type of x>.'.

The function is written in the Agena language and included in the library.agn file.

See also: errorerrorerrorerror.

assigned (obj)

This Boolean operator checks whether any value different from nullnullnullnull is assigned to
the expression obj . If obj is already a constant, i.e. a number, boolean including
failfailfailfail, or a string, the operator always returns truetruetruetrue. If obj evaluates to a constant, the
operator also returns truetruetruetrue.

See also: unassignedunassignedunassignedunassigned.

assume (obj [, message])

Issues an error when the value of its argument obj is falsefalsefalsefalse (i.e., nullnullnullnull or falsefalsefalsefalse);
otherwise, returns all its arguments. message is an error message; when absent, it
defaults to 'assumption failed'.

agenaagenaagenaagena >> 181

augment (obj1, obj2 [, ···])

Joins two or more tables or sequences obj1 , obj2 together horizontally. The
arguments must either be tables or sequences only. The tables or sequences all
must have the same size. The type of return is determined my the type of the
arguments.

The function is written in the Agena language and included in the library.agn file.

See also: columnscolumnscolumnscolumns, linalg.augmentlinalg.augmentlinalg.augmentlinalg.augment .

beta (x, y)

Computes the Beta function. x and y are numbers or complex values. The return
may be a number or complex value, even if x and y are numbers. The Beta

function is defined as: Beta(x , y) = , with special treatment if x and y are
✄x&✄y
✄(x+y)

integers.

bintersect (obj1, obj2 [, option])

Returns all values of table or sequence obj1 that are also values in table or
sequence obj2 . obj1 and obj2 must be of the same type. The function performs a
binary search in obj2 for each value in obj1 . If no option is given, obj2 is sorted
before starting the search. If you pass an option of any value then obj2 should
already have been sorted, for no correct results would be returned otherwise.

With larger tables or sequences, this function is much faster than the intersectintersectintersectintersect
operator.

The function is written in the Agena language and included in the library.agn file.

See also: bisequalbisequalbisequalbisequal, bminusbminusbminusbminus.

bisequal (obj1, obj2 [, option])

Determines whether the tables obj1 and obj2 or sequences obj1 and obj2 contain
the same values. The function performs a binary search in obj2 for each value in
obj1 . If no option is given (any value), obj2 is sorted before starting the search. If
you pass an option of any type then obj2 should already have been sorted, for no
correct results would be returned otherwise.

With larger tables or sequences, this function is much faster than the ==== operator.

The function is written in the Agena language and included in the library.agn file.

See also: bintersectbintersectbintersectbintersect , bbbbminusminusminusminus.

182 7 Standard Libraries

bminus (obj1, obj2 [, option])

Returns all values of table or sequence obj1 that are not values in table or
sequence obj2 . obj1 and obj2 must be of the same type. The function performs a
binary search in obj2 for each value in obj1 . If no option is given, obj2 is sorted
before starting the search. If you pass the option then obj2 should already have
been sorted, for no correct results would be returned otherwise.

With larger tables or sequences, this function is much faster than the minusminusminusminus
operator.

The function is written in the Agena language and included in the library.agn file.

See also: bintersectbintersectbintersectbintersect , bisequalbisequalbisequalbisequal.

bottom (obj)

With the table array, register, or sequence obj , the operator returns the element at
index 1. If obj is empty, it returns nullnullnullnull.

See also: toptoptoptop.

bye

Quits the Agena session. No arguments or brackets are needed.

checkoptions (procname, obj, option [, ···] [, true])

Checks options passed to a given procedure, saving many lines of code in
procedures.

Since an option such like delimiter=';' is actually passed as the pair
'delimiter':';' you have to make sure that `real` pairs containing data (but not
options) are not included in the call to checkoptionscheckoptionscheckoptionscheckoptions . See Chapter 6.6.

Its first argument procname - a string, not the function reference - is the name of the
procedure which will have to check its arguments obj .

Its second argument obj - a table - represents the arguments to be checked
passed to procname .

The third to last arguments are pairs. The respective left operand (a string) will be
checked whether one of the right operands of the pairs in obj is of the type passed
as the right operand (a string or a basic type). See examples below.

The evaluation of obj works as follows: If an entry in obj is not a pair, it is not
evaluated, ignored and not returned in the resulting table. But if the entry is a pair, it
checks whether the left-hand side is a string, i.e. an option name. It then checks
whether its right hand side is of the given type in anything passed to option or

agenaagenaagenaagena >> 183

further options of type pair. By default, If an option in obj cannot be found in option

or further options of type pair, an error is issued. But if the very last argument is the
Boolean value truetruetruetrue, no error is issued and the `unknown` option is part of the
resulting table.

If successful, the return is a table where the respective left-hand side in obj is the
key and the respective right-hand side in obj is the respective entry. Please play
around with this new function, or have a look at the lib/skycrane.agn file in your
local Agena installation, function skycrane.scribeskycrane.scribeskycrane.scribeskycrane.scribe. User-defined types are properly
handled.

Thus:

> checkoptions('myproc', [1, 'neil':'armstrong'], n eil=string):
> # 'neil' must be a string, number 1 will be skipp ed not being a pair
[neil ~ armstrong]

> checkoptions('myproc', ['neil':'armstrong'], neil =boolean):
Error in `myproc`: boolean expected for neil option , got string.

> checkoptions('myproc', ['neil':'armstrong', 'jame s':'lovell'],
> neil=string, true):
[james ~ lovell, neil ~ armstrong]

checktype (obj, main, sub)

Checks whether the structure obj is a table, set, pair, or sequence, and whether it is
of the type given by main (a string), and whether all its elements are of type sub (a
string). It returns truetruetruetrue or falsefalsefalsefalse. User-defined types are supported.

The function is written in the Agena language and included in the library.agn file.

See also: typetypetypetype.

clear v1 [, v2, ···]

Deletes the values in variables v1 , v2 , ··· , and performs a garbage collection
thereafter in order to clear the memory occupied by these values.

columns (obj, p [, ···] [, 'structure'])

Extracts the given columns p (etc.) from the two-dimensional table or sequence
obj . The type of return is determined by the type of obj and is either a
table/sequence of tables/sequences if the option 'structure' is given, or a
multiple return of tables or sequences.

The function is written in the Agena language and included in the library.agn file.

See also: linalg.columnlinalg.columnlinalg.columnlinalg.column , utils.readscvutils.readscvutils.readscvutils.readscv .

184 7 Standard Libraries

copy (obj)

The operator copies the entire contents of a table, set, pair, or sequence obj into a
new structure. If obj contains structures itself, those structures are also copied (by a
`deep copying` method). Structures included more than once are properly
aggregated to one single reference to save memory space. Metatables and
user-defined types are copied, too.

The type of return is determined by the type of obj .

The operator also treats cycles (structures that directly or indirectly reference to
themselves), correctly.

countitems (item, obj)

countitems (f, obj [, ···])

In the first form, counts the number of occurrences of an item in the structure (table,
set, register, or sequence) obj .

In the second form, by passing a function f with a Boolean relation as the first
argument, all elements in the structure obj that satisfy the given relation are
counted. If the function has more than one argument, then all arguments except
the first are passed right after the name of the object obj .

The return is a number. The function may invoke metamethods.

See also: selectselectselectselect, bagsbagsbagsbags package.

dimension (a:b [, c:d] [, init])

Creates a 1-dimensional sparse table or a 2-dimensional sparse table with arbitrary
index ranges (of type pair) a:b and c:d. If the last argument is not a pair, it is used as
an initialiser for all elements, otherwise all elements default to nullnullnullnull.

If the initialiser is a structure, i.e. table, set, sequence or pair, then individual copies
of the initialiser are created to avoid referencing to the same structure.

duplicates (obj [, option])

Returns all the values that are stored more than once to the given table, register, or
sequence obj , and returns them in a new table, register, or sequence. Each
duplicate is returned only once. If option is not given, the structure is sorted before
evaluation since this is needed to determine all duplicates. The original structure is
left untouched, however. If a value of any type is given for option , the function
assumes that the structure has been already sorted. The values in obj should either
be strings or numbers if no option is given, otherwise the function will fail.

The function is written in the Agena language and included in the library.agn file.

agenaagenaagenaagena >> 185

error (message [, level])

Terminates the last protected function called and returns message as the error
message. errorerrorerrorerror never returns.

Usually, errorerrorerrorerror adds some information about the error position at the beginning of the
message. The level argument specifies how to get the error position. With level 1
(the default), the error position is where the errorerrorerrorerror function was called. Level 2 points
the error to where the function that called errorerrorerrorerror was called; and so on. Passing a
level 0 avoids the addition of error position information to the message.

See also: argerrorargerrorargerrorargerror.

_G

A global variable (not a function) that holds the global environment (that is, _G._G =

_G) . Agena itself does not use this variable; changing its value does not affect any
environment, nor vice-versa. (Use setsetsetsetffffenvenvenvenv to change environments.)

filled (obj)

This Boolean operator checks whether a table, set, register, or sequence obj

contains at least one item and returns truetruetruetrue if so; otherwise it returns falsefalsefalsefalse.

getbit (x, pos)

Checks for the bit at position pos [1, 31] in the integer x , and either returns truetruetruetrue orc

falsefalsefalsefalse.

See also: setbitsetbitsetbitsetbit.

getentry (obj [, k 1, ···, k n])

Returns the entry obj[k 1, ··· , k n] from the table, register, or sequence obj without
issuing an error if one of the given indices k i (second to last argument) does not
exist. It conducts a raw access and thus does not invoke any metamethods.

If obj[k 1, ··· , k n] does not exist, nullnullnullnull is returned. If only obj is given, it is simply
returned.

getmetatable (obj)

If obj does not have a metatable, returns nullnullnullnull. Otherwise, if the obj 's metatable has
a '__metatable' field, returns the associated value. Otherwise, returns the
metatable of the given obj .

See also: setmetatablesetmetatablesetmetatablesetmetatable .

186 7 Standard Libraries

gettype (obj)

Returns the type - set with settypesettypesettypesettype - of a function, sequence, set, pair, or userdata
obj as a string. If no user-defined type has been set, or any other data type has
been passed, nullnullnullnull is returned.

See also: ssssettypeettypeettypeettype, typeoftypeoftypeoftypeof.

has (obj, x)

Checks whether the structure obj (a table, set, sequence, register, or pair) contains
element x .

With tables, all the entries are scanned. If x is not a number then the indices of the
table are searched, too.

With sequences and registers, only the entries (not the keys) are scanned. With pairs,
both the left and the right item is scanned. The function performs a deep scan so
that it can find elements in deeply nested structures.

The function return truetruetruetrue if x could be found in obj , and falsefalsefalsefalse otherwise. If obj <> x
and if obj is a number, boolean, complex number, string, procedure, thread,
userdata, or lightuserdata, hashashashas returns failfailfailfail.

See also: inininin, recurserecurserecurserecurse.

isboolean (···)

Checks whether the given arguments are all of type booleanbooleanbooleanboolean and returns truetruetruetrue or
falsefalsefalsefalse.

iscomplex (···)

Checks whether the given arguments are all of type complexcomplexcomplexcomplex and returns truetruetruetrue or
falsefalsefalsefalse.

isequal (obj1, obj2)

Equivalent to obj1 = obj2 and returns truetruetruetrue or falsefalsefalsefalse.

The function is written in the Agena language and included in the library.agn file.

isint (···)

Checks whether all of the given arguments are integers and returns truetruetruetrue or falsefalsefalsefalse. If
at least one of its arguments is not a number, the function returns failfailfailfail.

agenaagenaagenaagena >> 187

isnegative (···)

Checks whether all of its arguments are negative numbers and returns truetruetruetrue or falsefalsefalsefalse.
If at least one of its arguments is not a number, the function returns failfailfailfail.

See also: isisisisnegnegnegnegintintintint, isposintisposintisposintisposint, innonneginnonneginnonneginnonneg, ispositiveispositiveispositiveispositive.

isnegint (···)

Checks whether all of the given arguments are negative integers and returns truetruetruetrue or
falsefalsefalsefalse. If at least one of its arguments is not a number, the function returns failfailfailfail.

isnonneg (···)

Checks whether all of its arguments are zero or positive numbers and returns truetruetruetrue or
falsefalsefalsefalse. If at least one of its arguments is not a number, the function returns failfailfailfail.

See also: isisisisnegnegnegnegintintintint, isisisisposposposposintintintint, isnegativeisnegativeisnegativeisnegative, ispositiveispositiveispositiveispositive.

isnonnegint (···)

Checks whether all of the given arguments are zeros or positive integers and returns
truetruetruetrue or falsefalsefalsefalse. If at least one of its arguments is not a number, the function returns failfailfailfail.

isnonposint (···)

Checks whether all of the given arguments are zeros or negative integers and
returns truetruetruetrue or falsefalsefalsefalse. If at least one of its arguments is not a number, the function
returns failfailfailfail.

isnumber (···)

Checks whether the given arguments are all of type numbernumbernumbernumber and returns truetruetruetrue or
falsefalsefalsefalse.

isnumeric (···)

Checks whether the given arguments are all of type numbernumbernumbernumber or of type complexcomplexcomplexcomplex
and returns truetruetruetrue or falsefalsefalsefalse.

ispair (···)

Checks whether the given arguments are all type pairpairpairpair and returns truetruetruetrue or falsefalsefalsefalse.

isposint (···)

Checks whether all of its arguments are positive integers and returns truetruetruetrue or falsefalsefalsefalse. If
at least one of its arguments is not a number, the function returns failfailfailfail.

188 7 Standard Libraries

See also: isisisisnonnonnonnonposintposintposintposint.

ispositive (···)

Checks whether all of its arguments are positive numbers and returns truetruetruetrue or falsefalsefalsefalse. If
at least one of its arguments is not a number, the function returns failfailfailfail.

See also: isnonposintsnonposintsnonposintsnonposint , isposintisposintisposintisposint, isnegativeisnegativeisnegativeisnegative, isnonnegisnonnegisnonnegisnonneg.

isreg (···)

Checks whether all of its arguments are of type registerregisterregisterregister and returns truetruetruetrue or falsefalsefalsefalse.

isseq (···)

Checks whether all of its arguments are of type sequencesequencesequencesequence and returns truetruetruetrue or falsefalsefalsefalse.

isstring (···)

Checks whether all of its arguments are of type stringstringstringstring and returns truetruetruetrue or falsefalsefalsefalse.

isstructure (···)

Checks whether all of its arguments are of type table, set, sequence, or pairtable, set, sequence, or pairtable, set, sequence, or pairtable, set, sequence, or pair and
returns truetruetruetrue or falsefalsefalsefalse.

istable (···)

Checks whether all of its arguments are of type tabletabletabletable and returns truetruetruetrue or falsefalsefalsefalse.

left (obj)

With the pair obj , the operator returns its left operand. This is equals to obj[1] .

See also: rightrightrightright.

load (f [, chunkname])

Loads a chunk using function f to get its pieces. Each call to f must return a string
that concatenates with previous results. A return of nullnullnullnull (or no value) signals the end
of the chunk.

If there are no errors, returns the compiled chunk as a function; otherwise, returns
nullnullnullnull plus the error message. The environment of the returned function is the global
environment.

chunkname is used as the chunk name for error messages and debug information.

agenaagenaagenaagena >> 189

loadfile ([filename])

Similar to loadloadloadload, but gets the chunk from file filename or from standard input, if no file
name is given.

loadstring (s [, chunkname])

Similar to loadloadloadload, but gets the chunk from the given string s . To load and run a given
string, use the idiom

 assume(loadstring(s))()

See also: strings.dumpstrings.dumpstrings.dumpstrings.dump.

map (f, obj [, ···])

This operator maps a function f to all the values in table, set, sequence, register,
string, or pair obj . f must return only one value. The type of return is the same as of
obj . If obj has metamethods or user-defined types, the return will also have them.

If obj is a string, f is applied on all of its characters from the left to right. The return is
a sequence of function values.

If function f has only one argument, then only the function and the structure obj

must be passed to mapmapmapmap. If the function has more than one argument, then all
arguments except the first are passed right after the name of the table or set.

Examples:

> map(<< x -> x^2 >>, [1, 2, 3]):
[1, 4, 9]

> map(<< (x, y) -> x > y >>, [-1, 0, 1], 0): # 0 for y
[false, false, true]

See also: @@@@ operator, nregnregnregnreg, nseqnseqnseqnseq, removeremoveremoveremove, selectselectselectselect, subssubssubssubs, zipzipzipzip.

max (obj [, 'sorted'])

Returns the maximum of all numeric values in table or sequence obj . If the option
'sorted' is passed than the function assumes that all values in obj are sorted in
ascending order and returns the last entry. The function in general returns nullnullnullnull if it
receives an empty table or sequence.

See also: minminminmin, math.maxmath.maxmath.maxmath.max, stats.minmaxstats.minmaxstats.minmaxstats.minmax.

min (obj [, 'sorted'])

Returns the minimum of all numeric values in table or sequence obj . If the option
'sorted' is passed than the function assumes that all values in obj are sorted in

190 7 Standard Libraries

ascending order and returns the first entry. The function in general returns nullnullnullnull if it
receives an empty table or sequence.

See also: maxmaxmaxmax, math.minmath.minmath.minmath.min, stats.minmaxstats.minmaxstats.minmaxstats.minmax.

next (obj [, index])

Allows a programme to traverse all fields of a table or all items of a set, register, or
sequence obj . With strings, it iterates all its characters. Its first argument is a table,
set, string, or sequence and its second argument is an index in the structure.

With tables, registers, or sequences, nextnextnextnext returns the next index of the structure and
its associated value. When called with nullnullnullnull as its second argument, nextnextnextnext returns an
initial index and its associated value. When called with the last index, or with nullnullnullnull in
an empty structure, nextnextnextnext returns nullnullnullnull.

With sets, nextnextnextnext returns the next item of the set twice. When called with nullnullnullnull as its
second argument, nextnextnextnext returns the initial item twice. When called with the last index,
or with nullnullnullnull in an empty set, nextnextnextnext returns nullnullnullnull.

With strings, nextnextnextnext returns the position of the respective character (a positive integer)
and the character. When called with nullnullnullnull as its second argument, nextnextnextnext returns the
first character. When called with the last index, nextnextnextnext returns nullnullnullnull.

If the second argument is absent, then it is interpreted as nullnullnullnull. In particular, you can
use next(t) to check whether a table or set is empty. However, it is recommended
to use the filledfilledfilledfilled operator for this purpose.

With tables, the order in which the indices are enumerated is not specified, even for
numeric indices. The same applies to set items.

The behaviour of nextnextnextnext is undefined if, during the traversal, you assign any value to a
non-existent field in the structure. With tables, you may however modify existing
fields. In particular, you may clear existing table fields.

See also: skycrane.iterateskycrane.iterateskycrane.iterateskycrane.iterate .

nreg (a, b [, step])

nreg (f, a, b [, step [, ···]])

In the first form, creates a register regregregreg((((a, a+step , ··· , b-step , b)))), with a, b, and step

being numbers. The step size is 1 if step - a number - is not given.

In the second form, the function returns a register seq(seq(seq(seq(1~f (a), 2~f (a+step), ··· ,
((b -a)* 1/step +1)~f (b))))), with f a function, a and b numbers. Thus, the function f is
applied to all numbers between and including a and b. If f requires two or more
arguments, the second, third, etc. argument must be passed after step .

agenaagenaagenaagena >> 191

The function uses the Kahan summation algorithm to prevent round-off errors in
case the step size is non-integral.

Examples:

> nreg(<< x, y -> x:x^2 + y >>, 1, 5, 1, 10):
reg(1:11, 2:14, 3:19, 4:26, 5:35)

> p := reg(0.1, 0.2, 0.1, 0.3, 1)

> nreg(<< x -> x:p[x] >>, 1, size p):
reg(1:0.1, 2:0.2, 3:0.1, 4:0.3, 5:1)

See also: mapmapmapmap, nseqnseqnseqnseq.

nseq (a, b [, step])

nseq (f, a, b [, step [, ···]])

In the first form, creates a sequence seqseqseqseq((((a, a+step , ··· , b-step , b)))), with a, b, and
step being numbers. The step size is 1 if step - a number - is not given.

In the second form, the function returns a sequence seq(seq(seq(seq(1~f (a), 2~f (a+step), ··· ,
((b -a)* 1/step +1)~f (b))))), with f a function, a and b numbers. Thus, the function f is
applied to all numbers between and including a and b. If f requires two or more
arguments, the second, third, etc. argument must be passed after step .

The function uses the Kahan summation algorithm to prevent round-off errors in
case the step size is non-integral.

Examples:

> nseq(<< x, y -> x:x^2 + y >>, 1, 5, 1, 10):
seq(1:11, 2:14, 3:19, 4:26, 5:35)

> p := seq(0.1, 0.2, 0.1, 0.3, 1)

> nseq(<< x -> x:p[x] >>, 1, size p):
seq(1:0.1, 2:0.2, 3:0.1, 4:0.3, 5:1)

See also: mapmapmapmap, nregnregnregnreg.

ops (index, ···)

ops (s, ···)

In the first form, if index is a number, returns all arguments after argument number
index . Otherwise, index must be the string '#' , and opsopsopsops returns the total number of
extra arguments it received. The function is useful for accessing multiple returns (e.g.
ops(n, ?)).

192 7 Standard Libraries

In the second form, the index positions (integers) in sequence s specify the values
to be returned after the first argument to opsopsopsops.

Example:

> f := << () -> 10, 20, 30, 40 >>

> ops(2, f()):
20 30 40

If you want to obtain only the element at index , put the call to opsopsopsops in brackets.

> (ops(2, f())):
20

> ops(seq(2, 4), f()):
20 40

See also: valuesvaluesvaluesvalues.

print (··· [, option])

Receives any number of arguments, and prints their values to the console, using
the totototosssstringtringtringtring function to convert them to strings. printprintprintprint is not intended for formatted
output, but only as a quick way to show a value, typically for debugging. For
formatted output, use strings.formatstrings.formatstrings.formatstrings.format .

In Agena, printprintprintprint also prints the contents of tables and nested tables to stdout if no
__tostring metamethods are assigned to them. The same applies to sets and
sequences.

If the option 'delim': <any string> is given as the last argument, then printprintprintprint
separates multiple values with the given <string>, otherwise '\t' is used. If the
option 'nonewline':true is passed, then Agena does not print a final newline when
finishing output. Note that these two options cannot be used together.

If the kernel setting environ.kernel('longtable') is set to truetruetruetrue, then each
key~value pair is printed on a separate line, and Agena halts after environ.environ.environ.environ.mmmmoreoreoreore
number of lines for the user to press any key for further output. Press 'q', 'Q', or the
Escape key to quit. The default for environenvironenvironenviron....mmmmoreoreoreore is 40 lines, but you may change
this value in the Agena session or in the Agena initialisation file.

You may change the way printprintprintprint formats objects by changing the respective
environ.environ.environ.environ.pppprintrintrintrint* functions in the library.agn file. See Appendix A5 for further details.

See also: printfprintfprintfprintf, io.writeio.writeio.writeio.write, io.writelineio.writelineio.writelineio.writeline , skycrane.scribeskycrane.scribeskycrane.scribeskycrane.scribe , skycrane.teeskycrane.teeskycrane.teeskycrane.tee .

printf ([fh,] template, ···)

If the first argument fh is not given, prints the optional arguments under the control
of the template string template to stdout, else it writes to the open file denoted by its

agenaagenaagenaagena >> 193

file handle fh . See strings.formatstrings.formatstrings.formatstrings.format for information on how to create the template
string.

Example:

> printf('%-10s %3d %10.2f\n', 'Carbon', 6, 12.0107);
Carbon 6 12.01

> fh := io.open('file.txt', 'w');

> printf(fh, '%-10s %3d %10.2f\n', 'Carbon', 6, 12. 0107);

> close(fh);

See also: printprintprintprint, io.writeio.writeio.writeio.write, io.writelineio.writelineio.writelineio.writeline , skycrane.scribeskycrane.scribeskycrane.scribeskycrane.scribe , skycrane.teeskycrane.teeskycrane.teeskycrane.tee .

protect (f, arg1, ···)

Calls function f with the given arguments in protected mode. This means that any
error inside f is not propagated; instead, protectprotectprotectprotect simply catches the error. Note that
protectprotectprotectprotect does not work with operators.

The function either returns all results from the call in case there have been no errors,
or returns the error message as a string as the only return. In case of an error, the
error message is set to the global variable lasterrorlasterrorlasterrorlasterror , otherwise lasterrorlasterrorlasterrorlasterror is set to nullnullnullnull.

lasterrorlasterrorlasterrorlasterror is useful for checking the results of a call to protectprotectprotectprotect as in the following:

 if protect(···) = lasterror then ··· fi

See also: xpcallxpcallxpcallxpcall, trytrytrytry/catchcatchcatchcatch statement.

purge (obj [, pos])

Removes from table, register, or sequence obj the element at position pos , shifting
down other elements to close the space, if necessary. Returns the value of the
removed element. The default value for pos is n, where n is the length of the table
or sequence, so that a call purge(obj) removes the last element of obj .

Use the deletedeletedeletedelete element fromfromfromfrom table statement if you want to remove any
occurrence of the table value element from a table or sequence.

Note that with tables, the function only works if the table is an array, i.e. if it has
positive integral and consecutive keys only. With registers, the top pointer is reduced
by one.

See also: putputputput.

194 7 Standard Libraries

put (obj, [pos,] value)

Inserts element value at position pos in table or sequence obj , shifting up other
elements to open space, if necessary. The default value for pos is n+1, where n is
the current length of the table or sequence, so that a call put(obj, value) inserts
value at the end of obj .

Use the insertinsertinsertinsert element intointointointo table statement if you want to add an element at the
current end of a table, for it is much faster.

The function returns nothing.

See also: purgepurgepurgepurge.

qsadd (obj)

Raises all numeric values in table or sequence obj to the power of 2 and sums up
these powers. The return is a number. If obj is empty or consists entirely of
non-numbers, nullnullnullnull is returned. If the table or sequence contains numbers and other
objects, only the powers of the numbers are added. Entries with non-numeric keys
are processes, as well.

See also: saddsaddsaddsadd.

rawequal (obj1, obj2)

Checks whether obj1 is equal to obj2 , without invoking any metamethod. Returns a
Boolean.

rawget (obj, index)

Gets the real value of obj[index] , without invoking any metamethod. obj must be
a table, set, sequence, or pair; index may be any value.

See also: getentrygetentrygetentrygetentry, rawsetrawsetrawsetrawset.

rawset (obj, index, value)

rawset (obj, value)

In the first form, sets the real value of obj[index] to value , without invoking any
metamethod. obj must be a table, sequence, or pair, index any value different
from nullnullnullnull, and value any value.

In the second form, the function inserts value into the next free position in the given
structure obj . obj can be a table, set, or sequence.

This function returns obj .

agenaagenaagenaagena >> 195

See also: rawrawrawrawggggetetetet.

read (filename)

Reads an object stored in the binary file denoted by file name filename and returns
it.

The function is written in the Agena language and included in the library.agn file.

See also: savesavesavesave.

readlib (packagename [, packagename2, ···] [, true])

Loads and runs packages stored to agn text files (with filename packagename .agn) or
binary C libraries (packagename .so in UNIX, packagename .dll in Windows), or to both.

If truetruetruetrue is given as the last argument, the function prints the search path(s), and also
quits and prints some diagnostics if a corrupt C library has been found.

The function first tries to find the libraries in the current working directory, and
thereafter in the path in mainlibnamemainlibnamemainlibnamemainlibname. If it fails, it traverses all paths in libname until it
finds them. If it finds a library and the current user has at least read permissions for it,
it is initialised. On successful initialisation, the name of the package is entered into
the package.readlibbedpackage.readlibbedpackage.readlibbedpackage.readlibbed set.

Note that if a package consists both of a C DLL and an Agena text file, they should
both be located in the very same folder as readlibreadlibreadlibreadlib does not search for them across
multiple paths and may thus initialise a package only partially.

Make sure that on the operating system level the environment variable AGENAPATH
has been set, that the individual paths are separated by semicolons and that they
do not end with slashes. In UNIX, if AGENAPATH has not been set, readlibreadlibreadlibreadlib by default
searches in /usr/agena/lib .

In eComStation - OS/2 and Windows, the Agena installation programme
automatically sets AGENAPATH. If it failed, or you want to modify its contents, you
may manually set the variable like in the following examples, assuming that the
Agena libraries are located in the d:\agena\lib folder and optionally in the
d:\agena\mypackage folder.

 SET AGENAPATH=d:/agena/lib or
 SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

In UNIX, you may execute one of the following statements in your shell, assuming
that the Agena libraries are located in the /home/usr/agena/lib folder and
optionally in the /home/usr/agena/mypackage folder.

 SET AGENAPATH=/home/usr/agena/lib or
 SET AGENAPATH=/home/usr/agena/lib;/home/usr/agen a/mypackage

196 7 Standard Libraries

In DOS, you have to set AGENAPATH in the autoexec.bat file:

 SET AGENAPATH=d:/agena/lib or
 SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

Of course, packages may reside in other directories as well. Just enter further paths
to libnamelibnamelibnamelibname as you need them.

The function returns truetruetruetrue if all the packages have been successfully loaded and
executed, or failfailfailfail if an error occurred.

Hint: the importimportimportimport statement is an interface to readlibreadlibreadlibreadlib (and withwithwithwith), but does not require
to put the package names into quotes. For example,

> readlib('stats');

is equivalent to

> import stats;

See also: runrunrunrun, withwithwithwith, importimportimportimport statement.

recurse (obj, f)

Checks each element of the structure obj (a table, set, pair, register, or sequence)
by applying a function f on each of its elements. f must be a function of one
argument and return either truetruetruetrue or falsefalsefalsefalse.

With tables, all the entries and keys are scanned.

With sequences and registers, only the entries (not the keys) are scanned.

The function performs a recursive descent if it detects tables, sets, pairs, registers, or
sequences in obj so that it can find elements in deeply nested structures.

The function immediately returns truetruetruetrue if the function call to any element in obj

evaluates to truetruetruetrue, and falsefalsefalsefalse otherwise. If obj is a number, boolean, complex
number, string, nullnullnullnull, procedure, thread, userdata, or lightuserdata, recurserecurserecurserecurse returns
failfailfailfail. It issues an error if obj is unassigned.

See also: hashashashas.

_RELEASE

A global variable that holds a string containing the language name, the current
interpreter main version, the subversion, and the patch level. The format of this
variable is: 'AGENA >> <version>.<subversion>.<patchlevel>' .

agenaagenaagenaagena >> 197

See also: global environment variable environ.environ.environ.environ. rrrreleaseeleaseeleaseelease.

remove (f, obj [, ··· [, newarray=true]])

Returns all values in table, set, register, or sequence obj that do not satisfy a
condition determined by function f , as a new table, set, register, or sequence. The
type of return is determined by the type of second argument, depending on the
type of obj .

If the function has only one argument, then only the function and the
table/set/register/sequence are passed to removeremoveremoveremove.

> remove(<< x -> x > 1 >>, [1, 2, 3]):
[1]

If the function has more than one argument, then all arguments except the first are
passed right after the name of the table or set.

> remove(<< x, y -> x > y >>, [1, 2, 3], 1): # 1 for y
[1]

If present, the function also copies the metatable and user-defined type of obj to
the new structure.

Please note that if obj is a table, the return might include holes. If you pass the
newarray=truetruetruetrue option as the last argument, however, the result is returned in a table
array with consecutive positive integral keys, not preserving the original keys of the
respective values determined, and not having holes; for example:

> remove(<< x -> x < 2 >>, [1, 2, 3]):
[2 ~ 2, 3 ~ 3]

> remove(<< x -> x < 2 >>, [1, 2, 3], newarray=true):
[2, 3]

With a register, all values up to the current top pointer are evaluated, and the size of
the returned register is equal to the number of the elements in the return.

See also: countitemscountitemscountitemscountitems, mapmapmapmap, selectselectselectselect, selectremoveselectremoveselectremoveselectremove , subssubssubssubs, uniqueuniqueuniqueunique, zipzipzipzip.

restart

Restarts an Agena session. No argument is needed.

During start-up, Agena stores all initial values, e.g. package tables assigned, in a
global variable called _origG_origG_origG_origG. Tables are copied, too, so their contents cannot be
altered in a session.

If the Agena session is restarted with restartrestartrestartrestart, all values in the Agena environment are
unassigned including the environment variable _G_G_G_G, but except of _origG_origG_origG_origG,

198 7 Standard Libraries

mainlibname,,,, and libnamelibnamelibnamelibname (mainlibnamemainlibnamemainlibnamemainlibname and libnamelibnamelibnamelibname are reset to their original
values if the kernel setting environ.kernel('libnamereset') results to truetruetruetrue,
however.) Then all entries in _origG_origG_origG_origG are read and assigned to the new environment.

After this, the library base file agena.lib and thereafter the initialisation file agena.ini

- if present - are read and executed. Finally, restart runs a garbage collection.

The return of the function is falsefalsefalsefalse if evaluation of _origG_origG_origG_origG failed because it is no
longer a table (which should never happen). Otherwise, the return is truetruetruetrue.

right (obj)

With the pair obj , the operator returns its right operand. This is equals to obj[2] .

See also: leftleftleftleft.

run (filename)

Opens the named file and executes its contents as a chunk. When called without
arguments, runrunrunrun executes the contents of the standard input (stdin). Returns all
values returned by the chunk. In case of errors, runrunrunrun propagates the error to its caller
(that is, runrunrunrun does not run in protected mode).

See also: readlibreadlibreadlibreadlib, withwithwithwith.

sadd (obj)

Sums up all numeric values in table or sequence obj . The return is a number. If obj

is empty or consists entirely of non-numbers, nullnullnullnull is returned. If the object contains
numbers and other objects, only the numbers are added. Entries with non-numeric
keys are processed, as well.

See also: qsaddqsaddqsaddqsadd, smsmsmsmulululul, calc.fsumcalc.fsumcalc.fsumcalc.fsum, stats.sumstats.sumstats.sumstats.sum.

agenaagenaagenaagena >> 199

save (obj, filename)

Saves an object obj of any type into a binary file denoted by file name filename .

savesavesavesave returns an error if an object that cannot be stored to a file has been passed:
threads, userdata, for example. It also returns an error if the object to be written is
self-referencing (e.g. _G_G_G_G). If obj contains one and the same structure multiple times,
e.g. n times, then savesavesavesave stores it n times.

The function locks the file when writing, avoiding file corruption if another application
tries to gain access to it.

Note that savesavesavesave overwrites existing files without warning. Whereas numbers, strings,
and Booleans are stored in a portable fashion so that the data can be read both
on Big Endian (e.g SPARCs, PPCs) and Little Endian systems, procedures cannot.

The function is written in the Agena language and included in the library.agn file.

See also: readreadreadread, io.writefileio.writefileio.writefileio.writefile .

select (f, obj [, ··· [, newarray=true]])

Returns all values in table, set, register, or sequence obj that satisfy a condition
determined by function f . The type of return is determined by the type of the
second argument.

If f has only one argument, then only the function and the object are passed to
selectselectselectselect.

> select(<< x -> x > 1 >>, [1, 2, 3]):
[2, 3]

If the function has more than one argument, then all arguments except the first are
passed right after the name of the object.

> select(<< x, y -> x > y >>, {1, 2, 3}, 1): # 1 for y
{3, 2}

If present, the function also copies the metatable and user-defined type of obj to
the new structure.

Please note that if obj is a table, the return might include holes. If you pass the
newarray=truetruetruetrue option as the last argument, however, the result is returned in a table
array with consecutive positive integral keys, not preserving the original keys of the
respective values determined, and not having holes. Thus,

> select(<< x -> x :: number >>, ['a', 10, 20, 30, 'z'], newarray=true);

returns

200 7 Standard Libraries

[10, 20, 30]

instead of

[2 ~ 10, 3 ~ 20, 4 ~ 30]

With a register, all values up to the current top pointer are evaluated, and the size of
the returned register is equal to the number of the elements in the return.

See also: countitemscountitemscountitemscountitems, mapmapmapmap, removeremoveremoveremove, selectremove,selectremove,selectremove,selectremove, subssubssubssubs, uniqueuniqueuniqueunique, valuesvaluesvaluesvalues, zipzipzipzip....

selectremove (f, obj [, ··· [, newarray=true]])

Combines the functionality of selectselectselectselect with the one of removeremoveremoveremove: The first result contains
all the elements of a structure obj (a table, set, register, or sequence) that satisfy a
given condition, the second result contains the elements of a structure not satisfying
the condition. This may speed up computations where you need both results,
maybe for post-processing, by around 33 %.

If obj is a table, the return might include holes. If you pass the newarray=truetruetruetrue option
as the last argument, however, the result is returned in table arrays with consecutive
positive integral keys, not preserving the original keys of the respective values
determined, and not having holes. Examples,

> a := ['a', 10, 20, 30, 'z'];

> selectremove(<< x -> x :: number >>, a):
[2 ~ 10, 3 ~ 20, 4 ~ 30] [1 ~ a, 5 ~ z];

> selectremove(<< x -> x :: number >>, a, newarray= true):
[10, 20, 30] [a, z]

See also: See also: See also: See also: remove, , , , select....

setbit (x, pos, bit)

Sets or unsets a bit in an integer x at the given bit position pos .

Internally, x is first converted into its binary representation. Then bit is set to the
pos -th position from the right of this binary representation of x . bit may be either
truetruetruetrue or falsefalsefalsefalse, or the numbers 0 or 1. E.g. if x is 2 = 0b0010, pos is 1, and bit is truetruetruetrue,
then the result is 3 = 0b0011.

pos should be an integer in the range |pos | [1 .. 31].c

Please note that if x is negative, then the result is signsignsignsign(x) * setbitsetbitsetbitsetbit(absabsabsabs(x), pos , bit),
thus abstracting from the internal hardware representation of x .

The function is written in the Agena language and included in the library.agn file.

agenaagenaagenaagena >> 201

See also getbitgetbitgetbitgetbit.

setmetatable (obj, metatable)

Sets the metatable for the given table, set, sequence, or pair obj . (You cannot
change the metatable of other types from Agena, only from C.) If metatable is nullnullnullnull,
removes the metatable of the given table. If the original metatable has a
'__metatable' field, raises an error.

This function returns obj .

See also: getgetgetgetmetatablemetatablemetatablemetatable.

settype (obj [, ···], str)

settype (obj [, ···], null)

In the first form the function sets the type of one or more procedures, sequences,
tables, sets, pairs, or userdata obj to the name denoted by string str . gettypegettypegettypegettype and
typeoftypeoftypeoftypeof will then return this string when called with obj .

In the second form, by passing the nullnullnullnull constant, the user-defined type is deleted,
and gettypegettypegettypegettype thus will return nullnullnullnull whereas typeoftypeoftypeoftypeof will return the basic type of obj .

If obj has no __tostring metamethod, then Agena's pretty printer outputs the
object in the form str & '(' & <elements> & ')' instead of the standard 'seq(' &

<elements> & ')' or '<element>:<element>' string.

See also: gettypegettypegettypegettype.

size (obj)

With tables, the operator returns the number of key~value pairs in table obj .

With sets, pairs, and sequences, the operator returns the number of items in obj .

With strings, the operator returns the number of characters in string obj , i.e. the
length of obj .

See also: environ.attribenviron.attribenviron.attribenviron.attrib , strings.utf8strings.utf8strings.utf8strings.utf8 sizesizesizesize, tables.getsizetables.getsizetables.getsizetables.getsize .

smul (obj)

Multiplies all numeric values in table or sequence obj . The return is a number. If obj

is empty or consists entirely of non-numbers, nullnullnullnull is returned. If the object contains
numbers and other objects, only the numbers are multiplied. Entries with
non-numeric keys are ignored.

See also: ssssadd, calc.fcalc.fcalc.fcalc.fprod.

202 7 Standard Libraries

sort (obj [, f])

Sorts table, register, or sequence elements in a given order, in-place, from obj[1]

to obj[n] , where n is the length of the structure. If f is given, then it must be a
function that receives two structure elements, and returns truetruetruetrue when the first is less
than the second (so that not f(obj[i+1], obj[i]) will be truetruetruetrue after the sort). If f is
not given, then the standard operator < (less than) is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given
order may have their relative positions changed by the sort. Also, the function
cannot sort structures featuring values of different types (see skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted for an
alternative).

See also: sortedsortedsortedsorted, stats.issortedstats.issortedstats.issortedstats.issorted , skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted , stats.sortedstats.sortedstats.sortedstats.sorted.

Example:

> s := [1, 2, 3]

> sort(s, << x, y -> x > y >>)

> s:
[3, 2, 1]

> s := seq(1:'a', 1.1:'b', 1.2:'c');

> sort(s, << x, y -> left(x) > left(y) >>)

> s:
seq(1.2:c, 1.1:b, 1:a)

sorted (obj [, f])

Sorts table, register, or sequence elements in obj in a given order, but - unlike sort -
not in-place, and non-destructively. Depending on the type of obj , the return is a
new table or sequence.

If f is given, then it must be a function that receives two structure elements to
determine the sorting order. See sortsortsortsort for further information.

The function cannot sort structures featuring values of different types (see
skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted for an alternative).

See also: sortsortsortsort, skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted , stats.issortedstats.issortedstats.issortedstats.issorted , stats.sortedstats.sortedstats.sortedstats.sorted.

subs (x:v [, ···], obj)

Substitutes all occurrences of the value x in the table, set, register, or sequence obj

with the value v . More than one substitution pair can be given. The substitutions are
performed sequentially and simultaneously starting with the first pair. The type of
return is determined by the type of obj .

agenaagenaagenaagena >> 203

> subs(1:3, 2:4, [1, 2, -1]):
[3, 4, -1]

If present, the function also copies the metatable and user-defined type of obj to
the new structure.

See also: countitemscountitemscountitemscountitems, mapmapmapmap, removeremoveremoveremove, select select select select, zipzipzipzip.

time ()

Returns the time till start-up in seconds as a number.

Calling timetimetimetime only once does not necessarily return a real amount of time; instead
conduct a subtraction by calling timetimetimetime again to get correct results.

See also: os.difftimeos.difftimeos.difftimeos.difftime, os.timeos.timeos.timeos.time.

top (obj)

With the table array, register, or sequence obj , the operator returns the element with
the largest index. If obj is empty, it returns nullnullnullnull.

See also: bottombottombottombottom.

toreg (obj)

If obj is a string, the function will split it into its characters and return them in a
register with each character in obj as a register value, and in the same order as the
characters in obj .

If obj is a table, the function puts all its values - but not its keys - into a register.

If obj is a set, the function puts all its items into a register. The same applies to
sequences.

If obj contains structures, then only their references are copied. Map copycopycopycopy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toseqtoseqtoseqtoseq, totototossssetetetet, totototottttableableableable....

toseq (obj)

If obj is a string, the function will split it into its characters and return them in a
sequence with each character in obj as a sequence value, and in the same order
as the characters in obj .

204 7 Standard Libraries

If obj is a table, the function puts all its values - but not its keys - into a sequence.

If obj is a set, the function puts all its items into a sequence. The same applies to
registers.

If obj contains structures, then only their references are copied. Map copycopycopycopy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toregtoregtoregtoreg, totototossssetetetet, totototottttableableableable....

toset (obj)

If obj is a string, the function will split it into its characters and returns them in a set.
Note that there is no order in the resulting set.

If obj is a table, register, or sequence, the function puts all its values - but not its keys
- into a new set.

If obj contains structures, then only their references are copied. Map copycopycopycopy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toregtoregtoregtoreg, totototosssseeeeqqqq, totototottttableableableable.

totable (obj)

If obj is a string, the function splits it into its characters, and returns them in a table
with each character in obj as a table value in the same order as the characters in
obj .

If obj is a sequence, register, or set, the function converts it into a table.

If obj contains structures, then only their references are copied. Map copycopycopycopy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toregtoregtoregtoreg, totototosssseqeqeqeq, totototossssetetetet.

agenaagenaagenaagena >> 205

type (obj)

This operator returns the basic type of its only argument obj , coded as a string. The
possible results of this function are 'null' (the string, not the value nullnullnullnull), 'number' ,
'string' , 'boolean' , 'table' , 'set' , 'sequence' , 'register', 'pair' ,
'complex' , 'procedure' , 'thread' , 'lightuserdata' , and 'userdata' .

If obj is a table, set, sequence, pair, or procedure with a user-defined type, then
typetypetypetype always returns the basic type, e.g. 'sequence' or 'procedure' .

See also: checktypechecktypechecktypechecktype, gettypegettypegettypegettype, typeoftypeoftypeoftypeof.

typeof (obj)

This operator returns the user-defined type - if it exists - of its only argument obj ,
coded as a string.

A self-declared type can be defined for procedures, tables, pairs, sets, and
sequences with the settypesettypesettypesettype function. If there is no user-defined type for obj , then
the basic type is returned, i.e. 'null' (the string, not the value nullnullnullnull), 'number' ,
'string' , 'boolean' , 'table' , 'set' , 'register' , 'sequence' , 'pair' ,
'complex' , 'procedure' , 'thread' , and 'userdata' .

See also: typetypetypetype, gettypegettypegettypegettype.

unassigned (obj)

This Boolean operator checks whether an expression obj evaluates to nullnullnullnull. If obj is a
constant, i.e. a number, boolean including failfailfailfail, or a string, the operator always
returns falsefalsefalsefalse.

See also: assignedassignedassignedassigned.

unique (obj)

With a table obj , the uniqueuniqueuniqueunique operator removes all holes (`missing keys`) and
removes multiple occurrences of the same value, if present. The return is a new
table with the original table unchanged.

With a register or sequence obj , the uniqueuniqueuniqueunique operator removes multiple occurrences
of the same value, if present. The return is a new sequence with the original
sequence unchanged.

See also: tables.entriestables.entriestables.entriestables.entries .

206 7 Standard Libraries

unpack (obj, [, i [, j]])

Returns the elements from the given table, register, or sequence obj . This function is
equivalent to

 return obj[i], obj[i+1], ···, obj[j]

except that the above code can be written only for a fixed number of elements. By
default, i is 1 and j is the length of the object, as defined by the sizesizesizesize operator.

Please note that if you put a call to unpackunpackunpackunpack into the argument list of a call to a
function or operator, in most cases only the first return of unpackunpackunpackunpack is propagated to
the function or operator. However, the behaviour is not arbitrary.

See also: opsopsopsops, valuesvaluesvaluesvalues.

values (obj, i 1 [, i 2, ···]])

Returns the elements i k from the given table, register, or sequence obj . This
operator is equivalent to

 return [i 1 ~ obj[i 1], i 2 ~ obj[i 2], ···] or
 return seq(obj[i 1], obj[i 2], ···)

The type of return is determined by the first argument obj .

See also: opsopsopsops, selectselectselectselect, unpackunpackunpackunpack.

whereis (obj, x)

Returns the indices for a given value x in table, register, or sequence obj as a new
table, register, or sequence, respectively.

See also: tables.indicestables.indicestables.indicestables.indices .

with (packagename [, false])

with (packagename , key1, key2, ··· [, false])

Assigns short names to package procedures such that:

 name := packagename.name

The function works as follows:

• In both forms, withwithwithwith first tries to load and run the respective Agena package.
The package may reside in a text file with file suffix .agn , or in a C dynamic
link library with file suffix .so in UNIX and .dll in Windows, or both in a text file
and in a dynamic link library. The function first tries to find the package in the
current working directory and if it failed, in the path pointed to by

agenaagenaagenaagena >> 207

mainlibname; if this fails, too, it traverses all paths in libnamelibnamelibnamelibname from left to right
until it finds at least the C DLL or the Agena text file, or both. If a package
consists of both the C DLL and an Agena text file, then they both must reside
in the same folder.

• If the function does not find the package, an error is returned.

• Next, withwithwithwith tries to find a package initialisation procedure. If a procedure
named `packagename .init` is present in your package then it is executed if the
package has been found successfully.

• In the first form, if only the string packagename is given, short names to all
functions residing in the global table packagename are created.

If you do not want with to assign short names for certain functions, their
names should be in the format packagename .aux.procedurename , e.g.
math.aux.errormessage.

Note that if packagename.name is not of type procedure, a short name is not
created for this object.

• If you would like to display a welcome message, put it into the string
packagename .initstring. It is displayed with an empty line before and after the
text. An example:

agenapackage.initstring := 'agenapackage v0.1 for A gena as of \

May 23, 1949\n';

• In the second form, you may specify which short names are to be assigned
by passing them as further arguments in the form of strings. Contrary to the
first form, short names are also created for tables stored to table
packagename .

As opposed to the first version, withwithwithwith does not print any short names or
welcome messages on screen.

• Further information regarding both forms:

The function returns a table of all short names assigned.

If the global environment variable environ.environ.environ.environ.wwwwithithithithvvvverboseerboseerboseerbose is set to falsefalsefalsefalse, no
messages are displayed on screen except in case of errors. If it is set to any
other value or nullnullnullnull, a list of all the short names loaded and a welcome
message is printed.

If a short name has already been assigned, a warning message is printed. If
a short name is protected (see table environ.environ.environ.environ.wwwwithithithithpppprotectedrotectedrotectedrotected), it cannot be
overwritten by withwithwithwith and a proper message is displayed on screen. You can

208 7 Standard Libraries

control which names are protected by modifying the contents of
environ.environ.environ.environ.wwwwithithithithpppprotectedrotectedrotectedrotected.

For information on which folders are checked and how to add new
directories to be searched by withwithwithwith, see readlibreadlibreadlibreadlib.

Note that withwithwithwith executes any statements (and thus also any assignment)
included in the file packagename .agn.

The function is written in the Agena language and included in the library.agn file.

If the last argument is the Boolean falsefalsefalsefalse, withwithwithwith does not print the assigned shortcuts
at the console.

Note: the importimportimportimport/aliasaliasaliasalias statement is an interface to the withwithwithwith function but does not
require package names to be put into quotes. For example,

> with 'stats';

is equivalent to

> import stats alias;

See also: readlibreadlibreadlibreadlib, runrunrunrun, registerregisterregisterregister, and importimportimportimport/aliasaliasaliasalias statement.

write ([fh,] v 1 [, v 2, ···] [, delim = <str>])

This function prints one or more numbers or strings v k to the file denoted by the
handle fh , or to stdout (i.e. the console) if fh is not given.

By default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':<str> (e.g. 'delim':'|' or delim='|') as
the last argument to the function with <str> being a string of any length.
Remember that in the function call, a shortcut to 'delim':<str> is delim = <str> .

The function is an interface to io.writeio.writeio.writeio.write.

See also: printf, skycrane.scribeskycrane.scribeskycrane.scribeskycrane.scribe , skycrane.teeskycrane.teeskycrane.teeskycrane.tee .

writeline ([fh,] v 1 [, v 2, ···] [, delim = <str>])

This function prints one or more numbers or strings v k followed by a newline to the
file denoted by the handle fh , or to stdout (i.e. the console) if fh is not given.

By default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':<str> (i.e. a pair, e.g. 'delim':'|') as the
last argument to the function with <str> being a string of any length. Remember
that in the function call, a shortcut to 'delim':<str> is delim = <str> .

agenaagenaagenaagena >> 209

The function is an interface to io.writelineio.writelineio.writelineio.writeline .

See also: printfprintfprintfprintf, skycrane.scribeskycrane.scribeskycrane.scribeskycrane.scribe , skycrane.teeskycrane.teeskycrane.teeskycrane.tee .

xpcall (f, err)

This function is similar to protectprotectprotectprotect, except that you can set a new error handler.

xpcallxpcallxpcallxpcall calls function f in protected mode, using err as the error handler. Any error
inside f is not propagated; instead, xpcallxpcallxpcallxpcall catches the error, calls the err function
with the original error object, and returns a status code. Its first result is the status
code (a Boolean), which is truetruetruetrue if the call succeeds without errors. In this case,
xpcallxpcallxpcallxpcall also returns all results from the call, after this first result. In case of any error,
xpcallxpcallxpcallxpcall returns falsefalsefalsefalse plus the result from err .

See also: protectprotectprotectprotect.

zip (f, obj1, obj2 [, ···])

This function zips together either two sequences, two registers, or two tables obj1 ,
obj2 by applying the function f to each of its respective elements. Depending on
the type of obj1 , obj2 , the result is a new sequence, register, or table s where each
element s [k] is determined by s [k] := f(obj1 [k], obj2 [k]).

obj1 and obj2 must have the same number of elements. If you pass tables, they
must have the same keys.

If f has more than two arguments, then its third to last argument must be given right
after B.

If obj1 or obj2 have user-defined types or metatables, they are copied to the
resulting structure, as well. If obj1 has a metatable, then this metatable is copied,
else the metatable of obj2 is used if the latter exists. The same applies to
user-defined types.

See also: mapmapmapmap, removeremoveremoveremove, selectselectselectselect, subssubssubssubs.

210 7 Standard Libraries

7777....2 2 2 2 StringStringStringStringssss

Summary of Functions:

Search

atendofatendofatendofatendof, inininin, instrinstrinstrinstr, strings.findstrings.findstrings.findstrings.find , strings.globstrings.globstrings.globstrings.glob , strings.matchstrings.matchstrings.matchstrings.match , strings.mfindstrings.mfindstrings.mfindstrings.mfind .

Insertion, Substitution, and Deletion

replacereplacereplacereplace, strings.gsubstrings.gsubstrings.gsubstrings.gsub , strings.includestrings.includestrings.includestrings.include , strings.removestrings.removestrings.removestrings.remove .

Extraction

splitsplitsplitsplit, strings.fieldsstrings.fieldsstrings.fieldsstrings.fields , strings.gmatchstrings.gmatchstrings.gmatchstrings.gmatch , strings.gmatchesstrings.gmatchesstrings.gmatchesstrings.gmatches , strings.separatestrings.separatestrings.separatestrings.separate .

Queries

absabsabsabs, strings.dlevenstrings.dlevenstrings.dlevenstrings.dleven , strings.isabbrevstrings.isabbrevstrings.isabbrevstrings.isabbrev , strings.isalphastrings.isalphastrings.isalphastrings.isalpha , strings.isalphanumericstrings.isalphanumericstrings.isalphanumericstrings.isalphanumeric ,
string.isalphaspacestring.isalphaspacestring.isalphaspacestring.isalphaspace , string.isalphaspstring.isalphaspstring.isalphaspstring.isalphasp eeeecccc, strings.isblankstrings.isblankstrings.isblankstrings.isblank , strings.isstrings.isstrings.isstrings.iscecececennnnumericumericumericumeric,
strings.isendingstrings.isendingstrings.isendingstrings.isending , strings.isfloatstrings.isfloatstrings.isfloatstrings.isfloat , strings.islatinstrings.islatinstrings.islatinstrings.islatin , strings.isisoalphastrings.isisoalphastrings.isisoalphastrings.isisoalpha ,
strings.isisostrings.isisostrings.isisostrings.isiso lowerlowerlowerlower, sssstrings.isisoprinttrings.isisoprinttrings.isisoprinttrings.isisoprint , strings.isisospacestrings.isisospacestrings.isisospacestrings.isisospace , strings.isisstrings.isisstrings.isisstrings.isis oupperoupperoupperoupper,
strings.islatinnumericstrings.islatinnumericstrings.islatinnumericstrings.islatinnumeric , strings.isloweralphastrings.isloweralphastrings.isloweralphastrings.isloweralpha , strings.islowerlatinstrings.islowerlatinstrings.islowerlatinstrings.islowerlatin , strings.ismagicstrings.ismagicstrings.ismagicstrings.ismagic ,
sssstrings.isnumbertrings.isnumbertrings.isnumbertrings.isnumber , strings.isnumericstrings.isnumericstrings.isnumericstrings.isnumeric , strings.isnumberspacestrings.isnumberspacestrings.isnumberspacestrings.isnumberspace , strings.isspacestrings.isspacestrings.isspacestrings.isspace ,
strings.isspecstrings.isspecstrings.isspecstrings.isspec , strings.isupperalphastrings.isupperalphastrings.isupperalphastrings.isupperalpha , strings.isupperlatinstrings.isupperlatinstrings.isupperlatinstrings.isupperlatin , strings.isutf8strings.isutf8strings.isutf8strings.isutf8 .

Counting

sizesizesizesize, strings.hitsstrings.hitsstrings.hitsstrings.hits , strings.utf8sizestrings.utf8sizestrings.utf8sizestrings.utf8size , strings.wordsstrings.wordsstrings.wordsstrings.words .

Formatting

lowerlowerlowerlower, trimtrimtrimtrim, upperupperupperupper, strings.alignstrings.alignstrings.alignstrings.align , strings.capitalisestrings.capitalisestrings.capitalisestrings.capitalise , strings.formatstrings.formatstrings.formatstrings.format ,
strings.isolowerstrings.isolowerstrings.isolowerstrings.isolower , strings.isostrings.isostrings.isostrings.isoupperupperupperupper, strings.ljustifystrings.ljustifystrings.ljustifystrings.ljustify , sssstrings.ltrimtrings.ltrimtrings.ltrimtrings.ltrim, strings.lrtrimstrings.lrtrimstrings.lrtrimstrings.lrtrim ,
strings.rjustifystrings.rjustifystrings.rjustifystrings.rjustify , strings.rtrimstrings.rtrimstrings.rtrimstrings.rtrim .

Conversion

&&&&, joinjoinjoinjoin, tonumbertonumbertonumbertonumber, tostringtostringtostringtostring, strings.diamapstrings.diamapstrings.diamapstrings.diamap , strings.reversestrings.reversestrings.reversestrings.reverse , strings.tolatinstrings.tolatinstrings.tolatinstrings.tolatin ,
strings.toutf8strings.toutf8strings.toutf8strings.toutf8 , strings.transformstrings.transformstrings.transformstrings.transform .

Manipulation

mapmapmapmap, strings.repeatstrings.repeatstrings.repeatstrings.repeat , strings.tobytesstrings.tobytesstrings.tobytesstrings.tobytes , strings.tocharsstrings.tocharsstrings.tocharsstrings.tochars .

agenaagenaagenaagena >> 211

A note in advance: All operators and stringsstringsstringsstrings package functions know how to handle
many diacritics properly. Thus, the lowerlowerlowerlower and upperupperupperupper operators know how to convert
these diacritics, and various isisisis* functions recognise diacritics as alphabetic
characters.

Diacritics in this context are the letters:

â Â ä Ä à À á Á å Å æ Æ ã Ã
ê Ê ë è È é É Ë
ï Ï î Î ì Ì í Í ý Ý ÿ
ô Ô ö Ö ò Ò ø Ø ó Ó õ Õ
û Û ù Ù ü Ü ú Ú
ç Ç ñ Ñ ð Ð þ Þ ß

7777.2.2.2.2.1 Kernel Operators and B.1 Kernel Operators and B.1 Kernel Operators and B.1 Kernel Operators and B asic Lasic Lasic Lasic Library Fibrary Fibrary Fibrary Functionsunctionsunctionsunctions

s1 & s2

This binary operator concatenates two strings s1 , s2 and returns a new string. s1 or
s2 may also be a number. In this case the number is converted to a string and then
concatenated with the other operand.

See also: joinjoinjoinjoin.

s1 atendof s2

This binary operator checks whether a string s2 ends in a substring s1 . If true, the
position of the position of s1 in s2 is returned; otherwise nullnullnullnull is returned. The operator
also returns nullnullnullnull if the strings have the same length or at least one of them is the
empty string.

See also: inininin, instrinstrinstrinstr, strings.isabbrevstrings.isabbrevstrings.isabbrevstrings.isabbrev , strings.isendingstrings.isendingstrings.isendingstrings.isending .

s1 in s2

This binary operator checks whether the string s2 includes s1 and returns its position
as a number, or nullnullnullnull if s1 cannot be found. The operator also returns nullnullnullnull if at least
one of the strings is the empty string.

See also: atendofatendofatendofatendof, instrinstrinstrinstr, strings.isabbrevstrings.isabbrevstrings.isabbrevstrings.isabbrev , strings.isendingstrings.isendingstrings.isendingstrings.isending .

s1 split s2

Splits the string s1 into words. The delimiter is given by string s2 , which may consist of
one or more characters. The return of the operator is a sequence. If s1= s2 , or if s2

is the empty string, then an empty sequence is returned.

See also: strings.fieldsstrings.fieldsstrings.fieldsstrings.fields , strings.separatestrings.separatestrings.separatestrings.separate .

212 7 Standard Libraries

abs (s)

With strings, the operator returns the numeric ASCII value of the given character s (a
string of length 1).

instr (s, pattern [, init] [, plain] [, 'reverse'] [, 'borders'])

Looks for the first match of pattern in the string s . If it finds a match, then instrinstrinstrinstr returns
the index of s where this occurrence starts; otherwise, it returns nullnullnullnull.

If the option 'reverse' is given, then the search starts from the right end and always
runs to its left beginning and the first occurrence of pattern with respect to the
beginning of s is returned. In the reverse search, pattern matching is not supported.

An optional numerical argument init passed anywhere after the second argument
specifies where to start the search; its default value is 1 and may be negative. In
the latter case, the search is started from the |init| 's position from the right end of
s .

The function by default supports pattern matching, almost similar to regular
expressions, see Chapter 7.2.3. instrinstrinstrinstr is 45 % faster than strings.findstrings.findstrings.findstrings.find. If the optional
Boolean argument plain is set to the Boolean truetruetruetrue, pattern matching is switched off
and a much faster plain search is conducted instead (speed bonus around 40 %).

The optional argument 'borders' returns the start and the end position of a match
in a pair. However, this mode is slow, use string.findstring.findstring.findstring.find instead which is twice as fast.

See also: atendofatendofatendofatendof, inininin, strings.isabbrevstrings.isabbrevstrings.isabbrevstrings.isabbrev , strings.isendingstrings.isendingstrings.isendingstrings.isending , strings findstrings findstrings findstrings find .

join (obj [, sep [, i [, j]]])

Concatenates all string values in the table or sequence obj in sequential order and
returns a string: obj[i] & sep & obj[i+1] ··· & sep & obj[j] . The default value for sep

is the empty string, the default for i is 1, and the default for j is the length of the
sequence. The function issues an error if obj contains non-strings.

See also: &&&& operator.

lower (s)

Receives a string and returns a copy of this string with all uppercase letters ('A' to 'Z'
plus the above mentioned diacritics) changed to lowercase ('a' to 'z' and the above
mentioned diacritics). The operator leaves all other characters unchanged.

See also: strings.isostrings.isostrings.isostrings.iso lowerlowerlowerlower, upperupperupperupper.

agenaagenaagenaagena >> 213

map (f, s [, ···])

This operator maps a function f to all characters of string s from the left to right. The
return is a sequence of function values.

If function f has only one argument, then only the function and the string s must be
passed to mapmapmapmap. If the function has more than one argument, then all arguments
except the first are passed right after argument s .

replace (s1, s2, s3)

replace (s1, obj)

replace (s1, pos, s2)

In the first form, the operator replaces all occurrences of string s2 in string s1 by
string s3 .

In the second form, the operator receives a string s1 and a table or sequence obj

of one or more string pairs of the form s2 :s3 and replaces all occurrences of s2 in
string s1 with the corresponding string s3 . Thus you can replace multiple patterns
simultaneously with only one call to replacereplacereplacereplace.

In the third form, the operator inserts a new string s2 into the string s1 at the given
position pos , substituting the respective character in s1 with the new string s2 which
may consist of zero, one or more characters. The return is a new string. If s2 is the
empty string, the character in s1 is deleted.

The return is always a new string.

The operator does not support pattern matching, use strings.gsubstrings.gsubstrings.gsubstrings.gsub instead.

size (s)

With a string s , the operator returns its length, i.e. the number of characters in s .

tonumber (e [, base])

Tries to convert its argument to a number or complex value. If the argument is
already a number, complex value, or a string convertible to a number or complex
value, then totototonnnnumberumberumberumber returns this value; otherwise, it returns e if e is a string, and failfailfailfail
otherwise. The function recognises the strings 'undefined' and 'infinity' properly,
i.e. it converts them to the corresponding numeric values undefinedundefinedundefinedundefined and infinityinfinityinfinityinfinity,
respectively.

An optional argument specifies the base to interpret the numeral. The base may be
any integer between 2 and 36, inclusive. In bases above 10, the letter 'A' (in either
upper or lower case) represents 10, 'B' represents 11, and so forth, with 'Z'
representing 35. In base 10 (the default), the number may have a decimal part, as
well as an optional exponent part. In other bases, only unsigned integers are

214 7 Standard Libraries

accepted. If an option is passed, 'undefined' and 'infinity' are not converted
to numbers; and if e could not be converted, failfailfailfail is returned.

tostring (e)

Receives an argument e of any type and converts it to a string in a reasonable
format. For complete control of how numbers are converted, use strings.formatstrings.formatstrings.formatstrings.format .

If the metatable of e has a '__tostring' field, then the totototosssstringtringtringtring function calls the
corresponding value with e as argument, and uses the result of the call as its result.

With numbers, the number of digits in the resulting string is dependent on the
kernel/digitskernel/digitskernel/digitskernel/digits setting. See environ.kernelenviron.kernelenviron.kernelenviron.kernel for further information.

trim (s)

Returns a new string with all leading, trailing and excess embedded white spaces
removed. trimtrimtrimtrim is an operator. See also: strings.ltrimstrings.ltrimstrings.ltrimstrings.ltrim, strings.rtrimstrings.rtrimstrings.rtrimstrings.rtrim .

upper (s)

Receives a string and returns a copy of this string with all lowercase letters ('a' to 'z'
plus the above mentioned diacritics) changed to uppercase ('A' to 'Z' and the
above mentioned diacritics). The operator leaves all other characters unchanged.

See also: lowerlowerlowerlower, strings.capitalisestrings.capitalisestrings.capitalisestrings.capitalise , strings.isoupperstrings.isoupperstrings.isoupperstrings.isoupper .

7777....2.2 2.2 2.2 2.2 The strings LThe strings LThe strings LThe strings L ibraryibraryibraryibrary

The stringsstringsstringsstrings library provides generic functions for string manipulation, such as finding
and extracting substrings, and pattern matching. When indexing a string in Agena,
the first character is at position 1 (not at 0, as in C). Indices are allowed to be
negative and are interpreted as indexing backwards, from the end of the string.
Thus, the last character is at position -1, and so on.

The strings library provides all its functions inside the table strings .

strings.align (s [, n])

Inserts newlines into a string s after each n character. By default n is 79, so a newline
is inserted at position 80, 160, and so forth. The return is a string. The function helps
with correctly outputting formatted text at the console.

strings.capitalise (s)

Converts the first character in string s to upper case - if possible - and returns the
capitalised string. If s is the empty string, it is simply returned. It also converts
ligatures if the Western European character set is being used.

agenaagenaagenaagena >> 215

See also: upperupperupperupper.

strings.dleven (s, t)

Returns the Damerau-Levenshtein distance between two strings s and t . It is a count
of the minimum number of insertions, deletions, substitutions of a single character,
or transpositions of two neighbouring characters to convert s into t . The return is a
number.

strings.diamap (s [, option])

The function corrects problems in the Solaris, Linux, eComStation - OS/2, Windows,
and DOS consoles running codepage 850 with diacritics and ligatures read in from
the keyboard or a text file by mapping them to codepage 1252. It takes a strings s ,
applies the mapping, and returns a new string. All other characters are returned
unchanged.

If any option is given, the function transforms a string from codepage 1252 to 850.

Example:

> strings.diamap('AEIOU-Í_ã+Ï'):

AEIOUÄÖÜÆÅØ

Note that the function does not convert all existing special tokens.

Agena is shipped with substitution tables for codepage 1252. If you want to use
another codepage, edit the _c2f and _f2c tables in the library.agn file
accordingly.

strings.dump (f)

Returns a string containing a binary representation of the given function f , so that a
later loadstringloadstringloadstringloadstring on this string returns a copy of the function. f must be an Agena
function without upvalues.

strings.fields (s, i 1 [, i 2, ···] [, delim])

strings.fields (s, o [, delim])

Extracts the given fields (columns) in string s . In the first form, the field positions i 1, i 2,
etc. are non-zero integers. The field positions may be negative, denoting fields
counted from the right end of s . In the second form, the field positions are given in
the sequence o.

An optional string delim may be passed as the last argument to denote the
character or character sequence that separates the individual fields. The default for
delim is the white space.

216 7 Standard Libraries

The return is a sequence of the fields (strings).

See also: splitsplitsplitsplit, especially if you want to retrieve all fields in a string.

strings.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s . If it finds a match, then findfindfindfind returns
the indices of s where this occurrence starts and ends; otherwise, it returns nullnullnullnull. The
function does support pattern matching facilities (which you can turn off, see
below).

A third, optional numerical argument init specifies where to start the search; its
default value is 1 and may be negative. A value of truetruetruetrue as a fourth, optional
argument plain turns off the pattern matching facilities (see Chapter 7.2.3), so the
function does a plain `find substring` operation, with no characters in pattern being
considered `magic`. Note that if plain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also
returned, after the two indices.

See also: inininin, atendofatendofatendofatendof, and instrinstrinstrinstr operator, strings.strings.strings.strings.mmmmfindfindfindfind.

strings.format (formatstring, ···)

Returns a formatted version of its variable number of arguments following the
description given in its first argument (which must be a string). The format string
follows the same rules as the printf family of standard C functions. The only
differences are that the options/modifiers *, l, L, n, p, and h are not supported and
that there is an extra option, q. The q option formats a string in a form suitable to be
safely read back by the Agena interpreter: the string is written between double
quotes, and all double quotes, newlines, embedded zeros, and backslashes in the
string are correctly escaped when written. For instance, the call

 strings.format('%q', 'a string with "quotes" and \ n new line')

will produce the string:

 'a string with \"quotes\" and \
 new line'

The options c, d, E, e, f, g, G, i, o, u, X, and x all expect a number as argument,
whereas q and s expect a string.

This function does not accept string values containing embedded zeros.

strings.glob (s, pattern)

Compares a string s with a string pattern , the latter optionally including the
wildcards ? and * , where ? represents exactly one unknown character, and *

agenaagenaagenaagena >> 217

represents zero or more unknown characters. Other pattern matching facilities are
not supported.

The return is truetruetruetrue if the pattern could be found, and falsefalsefalsefalse otherwise.

See also: strings.findstrings.findstrings.findstrings.find .

strings.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures
from pattern over string s . The function supports pattern matching facilities
described in Chapter 7.2.3.

If pattern specifies no captures, then the whole match is produced in each call.

As an example, the following loop

 s := 'hello world from Lua'

 for w in strings.gmatch(s, '%a+') do
 print(w)
 od

will iterate over all the words from string s , printing one per line. The next example
collects all pairs key~value from the given string into a table:

 create table t;

 s := 'from=world, to=Lua'

 for k, v in strings.gmatch(s, '(%w+)=(%w+)') do
 t[k] := v
 od

See also: strings.strings.strings.strings.matchmatchmatchmatch, strings.gmatchesstrings.gmatchesstrings.gmatchesstrings.gmatches .

strings.gmatches (s, pattern)

Wrapper around strings.gmatchstrings.gmatchstrings.gmatchstrings.gmatch which returns all occurrences of a substring pattern

in string s a in a new sequence.

The function is written in the Agena language and included in the library.agn file.

strings.gsub (s, pattern, repl [, n])

Returns a copy of s in which all occurrences of the pattern have been replaced
by a replacement string specified by repl , which may be a string, a table, or a
function. gsubgsubgsubgsub also returns, as its second value, the total number of substitutions
made.

If repl is a string, then its value is used for replacement. The character % works as
an escape character: any sequence in repl of the form %n, with n between 1 and

218 7 Standard Libraries

9, stands for the value of the n-th captured substring (see below). The sequence %0
stands for the whole match. The sequence %% stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture as
the key; if the pattern specifies no captures, then the whole match is used as the
key.

If repl is a function, then this function is called every time a match occurs, with all
captured substrings passed as arguments, in order; if the pattern specifies no
captures, then the whole match is passed as a sole argument.

If the value returned by the table query or by the function call is a string or a
number, then it is used as the replacement string; otherwise, if it is falsefalsefalsefalse or nullnullnullnull, then
there is no replacement (that is, the original match is kept in the string).

The optional last parameter n limits the maximum number of substitutions to occur.
For instance, when n is 1 only the first occurrence of pattern is replaced.

Here are some examples:

 x := strings.gsub('hello world', '(%w+)', '%1 %1')
 --> x = 'hello hello world world'

 x := strings.gsub('hello world', '%w+', '%0 %0', 1)
 --> x = 'hello hello world'

 x := strings.gsub('hello world from Lua', '(%w+)%s *(%w+)', '%2 %1')
 --> x = 'world hello Lua from'

 x := strings.gsub('home = $HOME, user = $USER', '% $(%w+)', os.getenv)
 --> x = 'home = /home/roberto, user = roberto'

 x := strings.gsub('4+5 = $return 4+5$', '%$(.-)%$' , proc (s)
 return loadstring(s)()
 end)
 --> x = '4+5 = 9'

 local t := [name~'lua', version~'5.1']
 x = strings.gsub('$name%-$version.tar.gz', '%$(%w+)', t)
 --> x = 'lua-5.1.tar.gz'

See also: replacereplacereplacereplace.

strings.hits (s, pattern [, true])

Returns the number of occurrences of substring pattern in string s .

If only two arguments are passed, pattern matching facilities (see Chapter 7.2.3)
are supported. If the Boolean constant truetruetruetrue is passed as a third argument, pattern
matching is switched off for faster execution.

See also: strings.wordsstrings.wordsstrings.wordsstrings.words .

agenaagenaagenaagena >> 219

strings.include (s, pos, p)

Inserts the string p into the string s at position pos .

If pos sizesizesizesize s , the character at position pos is moved size p places to the right. [

If pos = size size size size s + 1, p is just appended to s , equal to the Agena expression s &&&& p.

The function returns the new string and issues an error, if the index pos is invalid. p
may be the empty string, in this case, p is returned.

See also: strings.strings.strings.strings. removeremoveremoveremove.

strings.isabbrev (s, pattern [, true])

Determines whether a string s is beginning with the substring pattern , i.e. whether
pattern fits entirely to the beginning of the string s in case the length of pattern is
less than that of s . The function returns truetruetruetrue or false.false.false.false.

If only two arguments are passed, pattern matching facilities (see Chapter 7.2.3)
are supported. If the Boolean constant truetruetruetrue is passed as a third argument, pattern
matching is switched off for faster execution.

If s or pattern are empty strings, the function returns falsefalsefalsefalse.

The function can be useful in linguistics if you want to check whether a word has a
given prefix.

See also: strings.isstrings.isstrings.isstrings.isendingendingendingending, atendofatendofatendofatendof.

strings.isalpha (s)

Checks whether the string s consists entirely of alphabetic letters (including
diacritics) and returns truetruetruetrue or falsefalsefalsefalse.

See also: strings.isisoalphastrings.isisoalphastrings.isisoalphastrings.isisoalpha , strings.isstrings.isstrings.isstrings.is llllatinatinatinatin.

strings.isalphanumeric (s)

Checks whether the string s consists entirely of numbers or alphabetic letters
(including diacritics) and returns truetruetruetrue or falsefalsefalsefalse.

See also: strings.isstrings.isstrings.isstrings.is llllatinatinatinatinnnnnumericumericumericumeric.

strings.isalphaspace (s)

Checks whether the string s consists entirely of alphabetic letters (including
diacritics) and/or a white space and returns truetruetruetrue or falsefalsefalsefalse.

220 7 Standard Libraries

strings.isalphaspec (s)

Checks whether the string s consists entirely of the Latin letters a to z, A to Z, or the
following special characters:

white space ¿ ? ¡ ! " # $ @ § % & ' ` * / + - . , ; () [] { } | ¦ \ ^ _
~ = < >

and returns truetruetruetrue or falsefalsefalsefalse.

See also: strings.isspecstrings.isspecstrings.isspecstrings.isspec , strings.isalphaspacestrings.isalphaspacestrings.isalphaspacestrings.isalphaspace .

strings.isblank (s)

Checks whether the string s consists entirely white spaces or tabulators (\t) and
returns truetruetruetrue or falsefalsefalsefalse.

See also: strings.isisospacestrings.isisospacestrings.isisospacestrings.isisospace , strings.isspacestrings.isspacestrings.isspacestrings.isspace .

strings.iscenumeric (s)

Checks whether the string s consists entirely of the digits 0 to 9 or digits and
optionally exactly one decimal comma at any position, and returns truetruetruetrue or falsefalsefalsefalse.

See also: strings.isstrings.isstrings.isstrings.is floatfloatfloatfloat, strings.isstrings.isstrings.isstrings.isnnnnumberumberumberumber, strings.isstrings.isstrings.isstrings.isnumnumnumnumericericericeric, os.setlocaleos.setlocaleos.setlocaleos.setlocale .

strings.isending (s, pattern [, true])

Determines whether a string s is ending in the substring pattern , i.e. whether
pattern fits entirely to the end of the string s in case the length of pattern is less
than that of s . The function returns truetruetruetrue or false.false.false.false.

If only two arguments are passed, pattern matching facilities (see Chapter 7.2.3)
are supported. If the Boolean constant truetruetruetrue is passed as a third argument, pattern
matching is switched off for faster execution.

If s or pattern are empty strings, the function returns falsefalsefalsefalse.

The function can be useful in linguistics if you want to check whether a word has a
given inflectional ending.

See also: strings.isstrings.isstrings.isstrings.isaaaabbrevbbrevbbrevbbrev, atendofatendofatendofatendof.

strings.isfloat (s)

Checks whether the string s consists entirely of the digits 0 to 9 and exactly one
decimal point (or the decimal-point separator at your locale) at any position, and
returns truetruetruetrue or falsefalsefalsefalse.

agenaagenaagenaagena >> 221

See also: strings.isstrings.isstrings.isstrings.isnnnnumberumberumberumber, strings.isnumericstrings.isnumericstrings.isnumericstrings.isnumeric , os.setlocaleos.setlocaleos.setlocaleos.setlocale .

strings.isisoalpha (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic lower
and upper-case characters (including diacritics) and returns truetruetruetrue or falsefalsefalsefalse. The
function only correctly recognises strings read from a file. Mostly, it cannot process
ligatures input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isstrings.isstrings.isstrings.isalphaalphaalphaalpha.

strings.isisolower (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic
lower-case characters (including diacritics) and returns truetruetruetrue or falsefalsefalsefalse. The function
only correctly recognises strings read from a file. Mostly, it cannot process ligatures
input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isstrings.isstrings.isstrings.isalphaalphaalphaalpha, strings.isloweralphastrings.isloweralphastrings.isloweralphastrings.isloweralpha .

strings.isisoprint (s)

Checks whether the string s consists entirely of printable ISO 8859/1 Latin-1 letters
and returns truetruetruetrue or falsefalsefalsefalse.

strings.isisospace (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 white spaces and
returns truetruetruetrue or falsefalsefalsefalse.

See also: strings.isstrings.isstrings.isstrings.is spacespacespacespace.

strings.isisoupper (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic
upper-case characters (including diacritics) and returns truetruetruetrue or falsefalsefalsefalse. The function
only correctly recognises strings read from a file. Mostly, it cannot process ligatures
input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isstrings.isstrings.isstrings.isalphaalphaalphaalpha, strings.isstrings.isstrings.isstrings.isupperupperupperupperalphaalphaalphaalpha.

strings.islatin (s)

Checks whether the string s entirely consists of the characters 'a' to 'z', and A' to 'Z'. It
returns truetruetruetrue or falsefalsefalsefalse. If s is the empty string, the result is always falsefalsefalsefalse.

See also: strings.isstrings.isstrings.isstrings.isaaaalphalphalphalpha.

222 7 Standard Libraries

strings.islatinnumeric (s)

Checks whether the string s consists entirely of numbers or Latin letters 'a' to 'z' and 'A'
to 'Z', and returns truetruetruetrue or falsefalsefalsefalse.

See also: strings.isstrings.isstrings.isstrings.isaaaalphalphalphalphannnnumericumericumericumeric.

strings.isloweralpha (s)

Checks whether the string s consists entirely of the characters a to z and lower-case
diacritics, and returns truetruetruetrue or falsefalsefalsefalse. If s is the empty string, the result is always falsefalsefalsefalse.

See also: strings.isisolowerstrings.isisolowerstrings.isisolowerstrings.isisolower , strings.isstrings.isstrings.isstrings.isuuuupperpperpperpperaaaalphalphalphalpha.

strings.islowerlatin (s)

Checks whether the string s consists entirely of the characters 'a' to 'z', and returns
truetruetruetrue or falsefalsefalsefalse. If s is the empty string, the result is always falsefalsefalsefalse.

See also: strings.isstrings.isstrings.isstrings.isuuuupperpperpperpperllllatinatinatinatin.

strings.ismagic (s)

Checks whether the string s contains one or more magic characters and returns
truetruetruetrue or falsefalsefalsefalse. In this function, magic characters are anything unlike the letters 'A' to
'Z', 'a' to 'z', and the diacritics listed at the top of this chapter.

strings.isnumber (s)

Checks whether the string s consists entirely of the digits 0 to 9 and returns truetruetruetrue or
falsefalsefalsefalse.

See also: strings.isstrings.isstrings.isstrings.is ffffloatloatloatloat, strings.isnumericstrings.isnumericstrings.isnumericstrings.isnumeric .

strings.isnumberspace (s)

Checks whether the string s consists entirely of the digits 0 to 9 or white spaces and
returns truetruetruetrue or falsefalsefalsefalse.

strings.isnumeric (s)

Checks whether the string s consists entirely of the digits 0 to 9 or digits and
optionally exactly one decimal point (or the decimal-point separator at your locale)
at any position, and returns truetruetruetrue or falsefalsefalsefalse.

See also: strings.isstrings.isstrings.isstrings.iscenumcenumcenumcenumericericericeric, strings.isstrings.isstrings.isstrings.is floatfloatfloatfloat, strings.isstrings.isstrings.isstrings.isnnnnumberumberumberumber, os.setlocaleos.setlocaleos.setlocaleos.setlocale .

agenaagenaagenaagena >> 223

strings.isolower (s)

Receives an ISO 8859/1 Latin-1 string and returns a copy of this string with all
upper-case letters changed to lower-case. The operator leaves all other characters
unchanged.

See also: lowerlowerlowerlower, strings.isoupperstrings.isoupperstrings.isoupperstrings.isoupper .

strings.isoupper (s)

Receives an ISO 8859/1 Latin-1 string and returns a copy of this string with all
lower-case letters changed to upper-case. The operator leaves all other characters
unchanged.

See also: lowerlowerlowerlower, strings.isoupperstrings.isoupperstrings.isoupperstrings.isoupper .

strings.isspace (s)

Checks whether the string s consists entirely white spaces and returns truetruetruetrue or falsefalsefalsefalse.

See also: strings.isblankstrings.isblankstrings.isblankstrings.isblank , strings.isisospacestrings.isisospacestrings.isisospacestrings.isisospace .

strings.isspec (s)

Checks whether the string s consists entirely of the following special characters:

white space ¿ ? ¡ ! " # $ @ § % & ' ` * / + - . , ; () [] { } | ¦ \ ^ _
~ = < >

and returns truetruetruetrue or falsefalsefalsefalse.

See also: strings.isalphaspecstrings.isalphaspecstrings.isalphaspecstrings.isalphaspec , strings.isspacestrings.isspacestrings.isspacestrings.isspace , strings.isstrings.isstrings.isstrings.ismagicmagicmagicmagic.

strings.isupperalpha (s)

Checks whether the string s consists entirely of the capital letters 'A' to 'Z' and
upper-case diacritics, and returns truetruetruetrue or falsefalsefalsefalse. If s is the empty string, the result is
always falsefalsefalsefalse.

See also: strings.isisoupperstrings.isisoupperstrings.isisoupperstrings.isisoupper , strings.isstrings.isstrings.isstrings.is lllloweroweroweroweraaaalphalphalphalpha.

strings.isupperlatin (s)

Checks whether the string s consists entirely of the capital letters 'A' to 'Z', and returns
truetruetruetrue or falsefalsefalsefalse. If s is the empty string, the result is always falsefalsefalsefalse.

See also: strings.isstrings.isstrings.isstrings.is llllowerowerowerowerllllatinatinatinatin.

224 7 Standard Libraries

strings.isutf8 (s)

Detects that the given string s is in UTF-8 encoding and returns two Booleans (truetruetruetrue or
falsefalsefalsefalse): The first Boolean indicates that s is compliant to the UTF-8 standard.
Remember that a string in ASCII or ISO 8859 encoding is also a valid UTF-8 string.
The second Boolean indicates that s contains at least one multi-byte UTF-8
character, i.e. that at least one character is part of the UTF-8 but not of the ASCII or
ISO 8859 standard.

Please note that the function may not produce correct results with text input in a
console. The function can only return correct results if the string to be checked has
been read from a file.

See also: strings.isisoalphastrings.isisoalphastrings.isisoalphastrings.isisoalpha .

strings.ljustify (s, width [, filler])

Adds filling characters to the right end of string s , as necessary to return a new string
of the given width . If s is a number, it is automatically converted to a string before
padding starts. The filling characters may be denoted by the third optional
argument filler , otherwise filler is a white space by default. If the resulting string
is longer than the given width , it is truncated to the first width characters.

See also: strings.rjustifystrings.rjustifystrings.rjustifystrings.rjustify .

strings.lrtrim (s [, c])

Returns a new string with all leading and trailing white spaces removed from s . If a
single character is passed for c as an optional second argument, then all leading
and trailing characters given by c are removed.

It does not remove spaces or the given character within the `actual` part of the
string.

See also: trimtrimtrimtrim operator, strings.ltrimstrings.ltrimstrings.ltrimstrings.ltrim, strings.strings.strings.strings. rrrrtrimtrimtrimtrim.

strings.ltrim (s [, c])

Returns a new string with all leading white spaces removed from s . If a single
character is passed for c as an optional second argument, then all leading
characters given by c are removed.

See also: trimtrimtrimtrim operator, strings.lrtrimstrings.lrtrimstrings.lrtrimstrings.lrtrim , strings.strings.strings.strings. rrrrtrimtrimtrimtrim.

strings.match (s, pattern [, init])

Looks for the first match of pattern in the string s . If it finds one, then match returns
the captures from the pattern; otherwise it returns nullnullnullnull. If pattern specifies no

agenaagenaagenaagena >> 225

captures, then the whole match is returned. A third, optional numerical argument
init specifies where to start the search; its default value is 1 and may be negative.
The function supports pattern matching facilities. For examples, see Chapter 4.7.8.

See also: strings.strings.strings.strings.ggggmatchmatchmatchmatch.

strings.mfind (s, pattern [, init [, plain]])

Like strings.findstrings.findstrings.findstrings.find, but looks for all the matches of pattern in the string s . If it finds at
least one match, it returns a sequence with at least one pair indicating where the
respective match starts and ends, otherwise, it returns nullnullnullnull.

A third, optional numerical argument init specifies where to start the search; its
default value is 1 and may be negative. A value of truetruetruetrue as a fourth, optional
argument plain turns off the pattern matching facilities (see Chapter 7.2.3), so the
function does a plain `find substring` operation, with no characters in pattern

being considered `magic`. Note that if plain is given, then init must be given as
well.

Contrary to strings.findstrings.findstrings.findstrings.find, if the pattern has captures, then in a successful match the
captured values are not returned.

See also: inininin, atendofatendofatendofatendof, and instrinstrinstrinstr operator, strings.findstrings.findstrings.findstrings.find , strings.strings.strings.strings.mmmmfindfindfindfind.

strings.remove (s, pos [, len])

Starting from string position pos , the function removes len characters from string s .
The return is a new string. If len is not given, it defaults to one character to be
deleted.

It is not an error if len is greater than the actual length of s . In this case all
characters starting at position pos are deleted.

See also: replacereplacereplacereplace, strings.includestrings.includestrings.includestrings.include .

strings.repeat (s, n)

Returns a string that is the concatenation of n copies of the string s .

strings.reverse (s)

Returns a string that is the string s reversed.

strings.rjustify (s, width [, filler])

Adds filling characters to the beginning of string s , as necessary to return a new
string of the given width . If s is a number, it is automatically converted to a string
before padding begins. The filling characters may be denoted by the third optional

226 7 Standard Libraries

argument filler , otherwise filler is a white space by default. If the resulting string
is longer than the given width , it is truncated to the last width characters.

See also: strings.strings.strings.strings. lllljustifyjustifyjustifyjustify.

strings.rtrim (s [, c])

Returns a new string with all trailing white spaces removed from s . If a single
character is passed for c as an optional second argument, then all trailing
characters given by c are removed.

See also: trimtrimtrimtrim operator, strings.lrtrimstrings.lrtrimstrings.lrtrimstrings.lrtrim , strings.ltrimstrings.ltrimstrings.ltrimstrings.ltrim.

strings.separate (s, d)

Splits a string s into its tokens. d is a string that specifies a set of delimiters that may
surround the token to be extracted. Thus, the delimiter in front of a token may be
different from the delimiter at its end. All the tokens or returned in a sequence in
sequential order. If s only includes one or more characters given in d, or if s or d are
empty strings, the function returns failfailfailfail.

> a := strings.separate('a word, another word.', ' .,'):
seq(a, word, another, word)

See also: split split split split operator.

strings.tobytes (s)

Converts a string s into a sequence of its numeric ASCII codes. If the string is empty,
an empty sequence is returned.

Note that numerical codes are not necessarily portable across platforms.

strings.tochars (···)

Receives zero or more integers and returns a string with length equal to the number
of arguments, in which each character has the internal numerical code equal to its
corresponding argument.

Note that numerical codes are not necessarily portable across platforms.

strings.tolatin (s)

Creates a dynamically allocated copy of string s , changing the encoding from
UTF-8 to ISO-8859-15. Unsupported code points are ignored. The return is a string.
ISO-8859-15 is ISO-8859-1 plus the Euro symbol.

See also: strings.tostrings.tostrings.tostrings.toutf8utf8utf8utf8.

agenaagenaagenaagena >> 227

strings.toutf8 (s)

Creates a dynamically allocated copy of string s , changing the encoding from
ISO-8859-15 to UTF-8. The return is a string. ISO-8859-15 is ISO-8859-1 plus the Euro
symbol.

See also: strings.isutf8strings.isutf8strings.isutf8strings.isutf8 , strings.tolatinstrings.tolatinstrings.tolatinstrings.tolatin , strings.utf8sizestrings.utf8sizestrings.utf8sizestrings.utf8size .

strings.transform (f, s)

Applies a function f to the ASCII value of each character in string s and returns a
new string. f must return an integer in the range [0, 255], otherwise an error is issued.

Note that numerical codes are not necessarily portable across platforms.

strings.utf8size (s)

Determines the size of the string s in UTF-8 encoding and returns a non-negative
integer. The return is not the number of bytes used to represent a UTF-8 string, but
the number of single- and multi-byte `UTF-8 characters`. Thus, for example, while
size strings.toutf8('à') returns 2, strings.utf8size(strings.toutf8('à'))

returns 1.

Please note that the function may not produce correct results with text input in a
console. The function can only return correct results if the string to be checked has
been read from a file.

See also: sizesizesizesize, strings.isutf8strings.isutf8strings.isutf8strings.isutf8 .

strings.words (s [, delim [, true]])

Counts the number of words in a string s . A word is any sequence of characters
surrounded by white spaces or its left and/or right borders. The user can define any
other delimiter by passing an optional character delim (of type string) as a second
argument. If the third argument is truetruetruetrue, then succeeding delimiters are ignored. The
return is a number.

See also: strings.strings.strings.strings.hitshitshitshits.

228 7 Standard Libraries

7777....2.3 2.3 2.3 2.3 PatternsPatternsPatternsPatterns

Character Class:Character Class:Character Class:Character Class:

A character class is used to represent a set of characters. The following
combinations are allowed in describing a character class:

� xxxx:::: (where x is not one of the magic characters ^$()%.[]*+-?) represents the
character x itself.

�:::: (a dot) represents all characters.
� %a:::: represents all letters.
� %c:::: represents all control characters.
� %d:::: represents all digits.
� %l :::: represents all lowercase letters.
� %k: represents all upper and lower-case consonants, y and Y are not

considered consonants.
� %p:::: represents all punctuation characters.
� %s:::: represents all space characters, e.g. white spaces, newlines, tabulators,

and carriage returns,
� %u:::: represents all uppercase letters.
� %v: represents all upper and lower-case vowels including the letters y and Y.
� %w:::: represents all alphanumeric characters.
� %x:::: represents all hexadecimal digits.
� %z:::: represents the character with representation 0.
� %<<<<yyyy>>>>:::: (where <y> is any non-alphanumeric character) represents the

character y. This is the standard way to escape the magic characters. Any
punctuation character (even the non magic) can be preceded by a '%'
when used to represent itself in a pattern.

� [[[[set]]]]:::: represents the class which is the union of all characters in set. A range
of characters may be specified by separating the end characters of the
range with a '-'. All classes %y described above may also be used as
components in set. All other characters in set represent themselves. For
example, [%w_] (or [_%w]) represents all alphanumeric characters plus the
underscore, [0-7] represents the octal digits, and [0-7%l%-] represents the
octal digits plus the lowercase letters plus the '- ' character.

� The interaction between ranges and classes is not defined. Therefore,
patterns like [%a-z] or [a-%%] have no meaning.

� [^ set] :::: represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, %v etc.), the corresponding
uppercase letter represents the complement of the class. For instance, %S

represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current
locale. In particular, the class [a-z] may not be equivalent to %l.

agenaagenaagenaagena >> 229

Pattern Item:

A pattern item may be

• a single character class, which matches any single character in the class;
• a single character class followed by '* ', which matches 0 or more repetitions

of characters in the class. These repetition items will always match the
longest possible sequence;

• a single character class followed by '+', which matches 1 or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

• a single character class followed by '- ', which also matches 0 or more
repetitions of characters in the class. Unlike '* ', these repetition items will
always match the shortest possible sequence;

• a single character class followed by '?', which matches 0 or 1 occurrence of
a character in the class;

• %n, for n between 1 and 9; such item matches a substring equal to the n-th
captured string (see below);

• %bxy, where x and y are two distinct characters; such item matches strings
that start with x, end with y, and where the x and y are balanced. This means
that, if one reads the string from left to right, counting +1 for an x and -1 for a
y, the ending y is the first y where the count reaches 0. For instance, the item
%b() matches expressions with balanced parentheses.

Pattern:Pattern:Pattern:Pattern:

A pattern is a sequence of pattern items. A '^ ' at the beginning of a pattern anchors
the match at the beginning of the subject string. A '$' at the end of a pattern
anchors the match at the end of the subject string. At other positions, '^ ' and '$'
have no special meaning and represent themselves.

Captures:Captures:Captures:Captures:

A pattern may contain sub-patterns enclosed in parentheses; they describe
captures. When a match succeeds, the substrings of the subject string that match
captures are stored (captured) for future use. Captures are numbered according to
their left parentheses. For instance, in the pattern '(a*(.)%w(%s*)) ', the part of the
string matching 'a*(.)%w(%s*) ' is stored as the first capture (and therefore has
number 1); the character matching '.' is captured with number 2, and the part
matching '%s*' has number 3.

As a special case, the empty capture () captures the current string position (a
number). For instance, if we apply the pattern '()aa()' on the string 'flaaap', there will
be two captures: 3 and 5.

A pattern cannot contain embedded zeros. Use %z instead.

230 7 Standard Libraries

7777.3.3.3.3 TableTableTableTablessss

Summary of Functions:

Queries

countitemscountitemscountitemscountitems, filledfilledfilledfilled, inininin, sizesizesizesize, tables.getsizetables.getsizetables.getsizetables.getsize , tables.maxntables.maxntables.maxntables.maxn, typetypetypetype, typeoftypeoftypeoftypeof.

Retrieving Values

getentrygetentrygetentrygetentry, uniqueuniqueuniqueunique, unpackunpackunpackunpack, valuesvaluesvaluesvalues, tables.entriestables.entriestables.entriestables.entries , tables.indicestables.indicestables.indicestables.indices .

Operations

copycopycopycopy, mapmapmapmap, qsaddqsaddqsaddqsadd, saddsaddsaddsadd, removeremoveremoveremove, selectselectselectselect, selectremoveselectremoveselectremoveselectremove , sortsortsortsort, sortedsortedsortedsorted, subssubssubssubs,
zipzipzipzip.

Relational Operators

====, ========, ~=~=~=~=, <><><><>.

Cantor Operations

intersectintersectintersectintersect, minusminusminusminus, subsetsubsetsubsetsubset, unionunionunionunion, xsubsetxsubsetxsubsetxsubset.

Assignment

dimensiondimensiondimensiondimension, tables.allocatetables.allocatetables.allocatetables.allocate .

7777.3.3.3.3.1 Kernel O.1 Kernel O.1 Kernel O.1 Kernel Operatorsperatorsperatorsperators

Most of the following functions have been built into the kernel as unary operators,
with the exception of mapmapmapmap and zipzipzipzip.

copy (t)

The operator copies the entire contents of a table t into a new table. See Chapter
7.1 for more information.

countitems (item, t)

countitems (f, t [, ···])

In the first form, counts the number of occurrences of an item in the table t .

In the second form, by passing a function f with a Boolean relation as the first
argument, all elements in the structure t that satisfy the given relation are counted.

agenaagenaagenaagena >> 231

If the function has more than one argument, then all arguments except the first are
passed right after the name of table t .

The return is a number. The function may invoke metamethods.

See also: selectselectselectselect.

dimension (a:b [, c:d] [, init])

Creates a table of dimension 1 or 2 with arbitrary index ranges and an optional
default for all its elements. See Chapter 7.1 for more information.

filled (t)

Checks whether table t contains at least one element. The return is truetruetruetrue or falsefalsefalsefalse.
The operator works with dictionaries, as well.

getentry (t [, k 1, ···, k n])

Returns the entry t[k 1, ··· , k n] from the table t without issuing an error if one of
the given indices k i (second to last argument) does not exist. See also rawgetrawgetrawgetrawget.

join (t [, sep [, i [, j]]])

Concatenates all string values in the table t in sequential order and returns a string:
t[i] & sep & t[i+1] ··· & sep & t[j] . The default value for sep is the empty string,
the default for i is 1, and the default for j is the length of the table. The function
issues an error if t contains non-strings.

Use the tostringtostringtostringtostring function if you want to concatenate other values than strings, e.g.:

> join(map(tostring, [1, 2, 3])):
123

map (f, t [, ···])

Maps the function f on all elements of a table t . See mapmapmapmap in Chapter 7.1 for more
information. See also: countitemscountitemscountitemscountitems, removeremoveremoveremove, selectselectselectselect, selectremove,,,, subssubssubssubs, and zipzipzipzip.

qsadd (t)

Raises all numeric values in table t to the power of 2 and sums up these powers.
See qsaddqsaddqsaddqsadd in Chapter 7.1 for more information. See also: saddsaddsaddsadd.

remove (f, t [, ··· [, newarray=true]])

Returns all values in table t that do not satisfy a condition determined by function
f . See removeremoveremoveremove in Chapter 7.1 for more information. See also: mapmapmapmap, selectselectselectselect,
selectremoveselectremoveselectremoveselectremove , subssubssubssubs, zipzipzipzip.

232 7 Standard Libraries

sadd (t)

Sums up all numeric values in table t . See saddsaddsaddsadd in Chapter 7.1 for more
information. See also: qsaddqsaddqsaddqsadd.

select (f, t [, ··· [, newarray=true]])

Returns all values in table t that satisfy a condition determined by function f . See
selectselectselectselect in Chapter 7.1 for more information. See also: mapmapmapmap, removeremoveremoveremove, selectremoveselectremoveselectremoveselectremove,
subssubssubssubs, zipzipzipzip.

selectremove (f, t [, ··· [, newarray=true]])

Returns all values in table t that satisfy and do not satisfy a condition determined
by function f , in two tables. See selectremoveselectremoveselectremoveselectremove in Chapter 7.1 for more information.

See also: mapmapmapmap, removeremoveremoveremove, selectselectselectselect, subssubssubssubs, zipzipzipzip.

size (t)

Returns the number of actual entries in the array and hash parts of table t . The
operator returns a number and conducts a linear traversal.

See also: environ.attribenviron.attribenviron.attribenviron.attrib , tables.getsizetables.getsizetables.getsizetables.getsize .

sort (t [, comp])

Sorts table t in a given order, and in-place. See sortsortsortsort in Chapter 7.1 for more
information.

See also: sortedsortedsortedsorted, skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted , stats.issortedstats.issortedstats.issortedstats.issorted , stats.sortedstats.sortedstats.sortedstats.sorted.

sorted (t [, comp])

Sorts table elements in t in a given order, but - unlike sort - not in-place, and
non-destructively. See sortedsortedsortedsorted in Chapter 7.1 for more information.

See also: sortsortsortsort, skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted , stats.issortedstats.issortedstats.issortedstats.issorted , stats.sortedstats.sortedstats.sortedstats.sorted.

subs (x:v [, ···], t)

Substitutes all occurrences of value x in table t with value v . See subssubssubssubs in Chapter
7.1 for more information.

See also: mapmapmapmap, removeremoveremoveremove, selectselectselectselect, zipzipzipzip.

agenaagenaagenaagena >> 233

unique (t)

The uniqueuniqueuniqueunique operator removes all holes (`missing keys`) in a table t and removes
multiple occurrences of the same value, if present. See uniqueuniqueuniqueunique in Chapter 7.1 for
more information.

values (t, i 1 [, i 2, ···]])

Returns the elements from the given table t in a new table. This operator is
equivalent to

 return [i 1 ~ t[i 1], i 2 ~ t[i 2], ···]

See also: opsopsopsops, selectselectselectselect, unpackunpackunpackunpack.

zip (f, t1, t2)

This function zips together two tables t1 , t2 by applying the function f to each of its
respective elements. See Chapter 7.1 for more information. See also: mapmapmapmap,
removeremoveremoveremove, selectselectselectselect, subssubssubssubs, zipzipzipzip.

The following functions have been built into the kernel as binary operators.

Please note that the operators returning a Boolean work in the Cantor way, i.e. {1,

1} = {1} true, {1, 2} xsubset {1, 1, 2, 2, 3, 3 } true.d d

t1 = t2

This equality check of two tables t1 , t2 first tests whether t1 and t2 point to the
same table reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether t1 and t2 contain the same values without
regard to their keys, and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is quadratic.

t1 == t2

This strict equality check of two tables t1 , t2 first tests whether t1 and t2 point to the
same table reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether t1 and t2 contain the same number of
elements and whether all key~value pairs in the tables are the same. In this case,
the search is linear.

t1 ~= t2

This approximate equality check of two tables t1 , t2 first tests whether t1 and t2

point to the same table reference in memory. If so, it returns truetruetruetrue and quits.

234 7 Standard Libraries

If not, the operator then checks whether t1 and t2 contain the same number of
elements and whether all key~value pairs in the tables are approximately equal
(please see approxapproxapproxapprox for further details). In this case, the search is linear.

t1 <> t2

This inequality check of two tables t1 , t2 first tests whether t1 and t2 do not point to
the same table reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether t1 and t2 do not contain the same values,
and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is quadratic.

c in t

Checks whether the table t contains the value c and returns truetruetruetrue or falsefalsefalsefalse. The
search is linear.

t1 intersect t2

Searches all values in t1 that are also values in t2 and returns them in a new table.
The search is quadratic, so you may use bintersectbintersectbintersectbintersect instead if you want to compare
large tables since bintersectbintersectbintersectbintersect performs a binary search.

t1 minus t2

Searches all values in table t1 that are not values in table t2 and returns them as a
new table. The search is quadratic, so you may use bminusbminusbminusbminus instead if you want to
compare large tables since bminusbminusbminusbminus performs a binary search.

t1 subset t2

Checks whether all values in table t1 are included in table t2 and returns truetruetruetrue or
falsefalsefalsefalse. The operator also returns truetruetruetrue if t1 = t2 . The search is quadratic.

t1 union t2

Concatenates two tables t1 and t2 simply by copying all its elements - even if they
occur multiple times - to a new table.

t1 x subset t2

Checks whether all values in table t1 are included in table t2 and whether t2

contains at least one further element, so that the result is always falsefalsefalsefalse if t1 = t2 . The
search is quadratic.

See also: bintersectbintersectbintersectbintersect , bisbisbisbiseeeequalqualqualqual, bminusbminusbminusbminus, purgepurgepurgepurge, put put put put in Chapter 7.1 Basic Functions.

agenaagenaagenaagena >> 235

7777.3.3.3.3.2 .2 .2 .2 tables Ltables Ltables Ltables L ibraryibraryibraryibrary

This library provides generic functions for table manipulation. It provides all its
functions inside the table tables .

Most functions in the table library assume that the table represents an array or a list.
For these functions, when we talk about the 'length' of a table we mean the result of
the length operator.

tables.allocate (t, key 1, value 1 [, key 2, value 2, ···, key n, value n])

Sets the specified keys and values to table t , i.e. t[key k] := value k. Note that if a
key is given multiple times, then only the first occurrence of the key in the argument
sequence is processed. The function returns nothing.

tables.entries (t)

Returns all entries of table t (not its keys) in a new table array.

See also: tables.indicestables.indicestables.indicestables.indices , uniqueuniqueuniqueunique, whereiswhereiswhereiswhereis.

tables.getsize (t [, option])

Returns a guess on the number of elements in a table t . If any option is given, the
function additionally returns a Boolean indicator on whether a table contains an
allocated hash part, and a Boolean indicator on whether null has been assigned to
a table. The latter return is not foolproof, especially if a table value has been
deleted with a raw assignment, e.g. t[2] := null;

The function is useful to determine the size of a table much more quickly than the
sizesizesizesize operator does, using a logarithmic instead of linear method, but may return
incorrect results if the array part of a table has holes. It also does not count the
number of elements in the hash part of a table.

See also: sizesizesizesize.

tables.indices (t)

Returns all keys of table t in an unsorted new table.

See also: tables.entriestables.entriestables.entriestables.entries , whereiswhereiswhereiswhereis.

tables.maxn (t)

Returns the largest positive numerical index of the given table t , or zero if the table
has no positive numerical indices. (To do its job this function does a linear traversal
of the whole table.)

236 7 Standard Libraries

7.4 Sets7.4 Sets7.4 Sets7.4 Sets

Summary of Functions:

Queries

filledfilledfilledfilled, inininin, sizesizesizesize, typetypetypetype, typeoftypeoftypeoftypeof.

Retrieving Values

unpackunpackunpackunpack.

Operations

copycopycopycopy, mapmapmapmap, removeremoveremoveremove, selectselectselectselect, selectremoveselectremoveselectremoveselectremove .

Relational Operators

====, ========, ~=~=~=~=, <><><><>.

Cantor Operations

intersectintersectintersectintersect, minusminusminusminus, subsetsubsetsubsetsubset, unionunionunionunion, xsubsetxsubsetxsubsetxsubset.

The following functions have been built into the kernel as unary operators.

copy (s)

The operator copies the entire contents of a set s into a new set. See Chapter 7.1
for more information.

filled (s)

The operator checks whether a set s contains at least one element. The return is
truetruetruetrue or falsefalsefalsefalse.

map (f, s [, ···])

Maps the function f on all elements of a set s . See mapmapmapmap in Chapter 7.1 for more
information. See also: countitemscountitemscountitemscountitems, removeremoveremoveremove, selectselectselectselect, selectremove,,,, subssubssubssubs, and zipzipzipzip.

remove (f, s [, ···])

Returns all values in set s that do not satisfy a condition determined by function f .
See removeremoveremoveremove in Chapter 7.1 for more information. See also: mapmapmapmap, selectselectselectselect,
selectremoveselectremoveselectremoveselectremove , subssubssubssubs, zipzipzipzip.

agenaagenaagenaagena >> 237

select (f, s [, ···])

Returns all values in set s that satisfy a condition determined by function f . See
selectselectselectselect in Chapter 7.1 for more information. See also: mapmapmapmap, removeremoveremoveremove, selectremoveselectremoveselectremoveselectremove,
subssubssubssubs, zipzipzipzip.

selectremove (f, s [, ···])

Returns all values in set s that satisfy and do not satisfy a condition determined by
function f , in two sets. See selectremoveselectremoveselectremoveselectremove in Chapter 7.1 for more information. See
also: mapmapmapmap, removeremoveremoveremove, selectselectselectselect, subssubssubssubs, zipzipzipzip.

size (s)

Returns the number of items in a set s .

typeof (s)

Returns the user-defined type assigned to set s .

The following functions have been built into the kernel as binary operators.

The following functions have been built into the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. {1, 1}

= {1} true, {1, 2} xsubset {1, 1, 2, 2, 3, 3 } true.d d

s1 = s2

This equality check of two sets s1 , s2 first tests whether s1 and s2 point to the same
set reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether s1 and s2 contain the same items, and
returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is linear.

s1 == s2

With sets, the == operator acts exactly as the = operator.

s1 ~= s2

With sets, the ~= operator compares each element in s1 and s2 for approximate
equality. See approxapproxapproxapprox for further details. The return is either truetruetruetrue or falsefalsefalsefalse.

238 7 Standard Libraries

s1 <> s2

This inequality check of two sets s1 , s2 first tests whether s1 and s2 do not point to
the same set reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether s1 and s2 do not contain the same items,
and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is linear.

c in s

Checks whether the set s contains the item c and returns truetruetruetrue or falsefalsefalsefalse. The search is
constant.

s1 intersect s2

Searches all items in set s1 that are also items in set s2 and returns them in a set.
The search is linear.

s1 minus s2

Searches all items in set s1 that are not items in set s2 and returns them as a set.
The search is linear.

s1 subset s2

Checks whether all items in set s1 are included in set s2 and returns truetruetruetrue or falsefalsefalsefalse.
The operator also returns truetruetruetrue if s1 = s2 . The search is linear.

s1 union s2

Concatenates two sets s1 and s2 simply by copying all its items to a new set.

s1 x subset s2

Checks whether all items in set s1 are included in set s2 and whether s2 contains at
least one further item, so that the result is always falsefalsefalsefalse if s1 = s2 . The search is linear.

agenaagenaagenaagena >> 239

7.7.7.7.5555 SequenceSequenceSequenceSequencessss

Summary of Functions:

Queries

countitemscountitemscountitemscountitems, filledfilledfilledfilled, inininin, sizesizesizesize, typeoftypeoftypeoftypeof.

Retrieving Values

getentrygetentrygetentrygetentry, uniqueuniqueuniqueunique, unpackunpackunpackunpack, valuesvaluesvaluesvalues.

Operations

copycopycopycopy, mapmapmapmap, qsaddqsaddqsaddqsadd, removeremoveremoveremove, selectselectselectselect, selectremoveselectremoveselectremoveselectremove , saddsaddsaddsadd, sortsortsortsort, sortedsortedsortedsorted, subssubssubssubs,
zipzipzipzip.

Relational Operators

====, ========, ~=~=~=~=, <><><><>.

Cantor Operations

intersectintersectintersectintersect, minusminusminusminus, subsetsubsetsubsetsubset, unionunionunionunion, xsubsetxsubsetxsubsetxsubset.

With the exception of getentry,,,, mapmapmapmap and zipzipzipzip, the following functions have been
built into the kernel as unary operators.

copy (s)

The operator copies the entire contents of a sequence s into a new sequence. See
Chapter 7.1 for more information.

countitems (item, s)

countitems (f, s [, ···])

Counts the number of occurrences of an item in the sequence s . For further
information, see Chapter 7.1.

filled (s)

The operator checks whether the sequence s contains at least one element. The
return is truetruetruetrue or falsefalsefalsefalse.

240 7 Standard Libraries

getentry (s [, k 1, ···, k n])

Returns the entry s[k 1, ··· , k n] from the sequence s without issuing an error if one
of the given indices k i (second to last argument) does not exist.

join (s [, sep [, i [, j]]])

Concatenates all string values in sequence s in sequential order and returns a
string: s[i] & sep & s[i+1] ··· & sep & s[j] . The default value for sep is the empty
string, the default for i is 1, and the default for j is the length of the sequence. The
function issues an error if s contains non-strings.

Use the tostringtostringtostringtostring function if you want to concatenate other values than strings, e.g.:

> join(map(tostring, seq(1, 2, 3))):
123

map (f, s [, ···])

Maps the function f on all elements of a sequence s . See mapmapmapmap in Chapter 7.1 for
more information. See also: removeremoveremoveremove, selectselectselectselect, subssubssubssubs, zipzipzipzip.

qsadd (s)

Raises all numeric values in sequence s to the power of 2 and sums up these
powers. See qsaddqsaddqsaddqsadd in Chapter 7.1 for more information. See also: saddsaddsaddsadd.

remove (f, s [, ···])

Returns all values in sequence s that do not satisfy a condition determined by
function f . See removeremoveremoveremove in Chapter 7.1 for more information. See also: mapmapmapmap, selectselectselectselect,
subssubssubssubs, zipzipzipzip.

sadd (s)

Sums up all numeric values in sequence s . See saddsaddsaddsadd in Chapter 7.1 for more
information. See also: qsaddqsaddqsaddqsadd.

select (f, s [, ···])

Returns all values in sequence s that satisfy a condition determined by function f .
See selectselectselectselect in Chapter 7.1 for more information. See also: mapmapmapmap, removeremoveremoveremove, subssubssubssubs, zipzipzipzip.

selectremove (f, s [, ···])

Returns all values in sequence s that satisfy and do not satisfy a condition
determined by function f , in two resquences. See selectremoveselectremoveselectremoveselectremove in Chapter 7.1 for
more information. See also: mapmapmapmap, removeremoveremoveremove, selectselectselectselect, subssubssubssubs, zipzipzipzip.

agenaagenaagenaagena >> 241

size (s)

Returns the number of items in a sequence s .

sort (s [, comp])

Sorts sequence s in a given order, and in-place. See sortsortsortsort in Chapter 7.1 for more
information. See also: sortedsortedsortedsorted, skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted , stats.issortedstats.issortedstats.issortedstats.issorted , stats.sortedstats.sortedstats.sortedstats.sorted.

sorted (s [, comp])

Sorts sequence elements in s in a given order, but - unlike sort - not in-place, and
non-destructively. See sortedsortedsortedsorted in Chapter 7.1 for more information. See also: sortsortsortsort,
skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted , stats.issortedstats.issortedstats.issortedstats.issorted , stats.sortedstats.sortedstats.sortedstats.sorted.

subs (x:v [, ···], s)

Substitutes all occurrences of the value x in sequence s with the value v . See subssubssubssubs
in Chapter 7.1 for more information. See also: mapmapmapmap, removeremoveremoveremove, selectselectselectselect, zipzipzipzip.

typeof (s)

Returns the user-defined type assigned to sequence s .

unique (s)

With a sequence s , the uniqueuniqueuniqueunique operator removes multiple occurrences of the same
item, if present in s . See uniqueuniqueuniqueunique in Chapter 7.1 for more information.

values (s, i 1 [, i 2, ···]])

Returns the elements from the given sequence s in a new sequence. This operator
is equivalent to

 return seq(s[i 1], s[i 2], ···)

See also: opsopsopsops, selectselectselectselect, unpackunpackunpackunpack.

zip (f, s1, s2)

This function zips together two sequences s1 , s2 by applying the function f to each
of its respective elements. See Chapter 7.1 for more information. See also: mapmapmapmap,
removeremoveremoveremove, selectselectselectselect, subssubssubssubs.

See also: bintersectbintersectbintersectbintersect , bisbisbisbiseeeequalqualqualqual, bminusbminusbminusbminus, purgepurgepurgepurge, putputputput in Chapter 7.1 Basic Functions.

The following functions have been built into the kernel as binary operators.

242 7 Standard Libraries

Please note that the operators returning a Boolean work in a Cantor way, i.e. seq(1,

1) = seq(1) true, seq(1, 2) xsubset seq(1, 1, 2, 2, 3, 3) true.d d

s1 = s2

This equality check of two sequences s1 , s2 first tests whether s1 and s2 point to the
same sequence reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether s1 and s2 contain the same values without
regard to their keys, and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is quadratic.

s1 == s2

This strict equality check of two sequences s1 , s2 first tests whether s1 and s2 point
to the same sequence reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether s1 and s2 contain the same number of
elements and whether all entries in the sequences are the same and are in the
same order, and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is linear.

s1 ~= s2

This approximate equality check of two sequences s1 , s2 first tests whether s1 and
s2 point to the same sequence reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether s1 and s2 contain the same number of
elements and whether all entries in the sequences are approximately equal and
are in the same order, and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is linear. See
approxapproxapproxapprox for further information on the approximation check.

s1 <> s2

This inequality check of two sequences s1 , s2 first tests whether s1 and s2 do not
point to the same sequence reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether s1 and s2 do not contain the same values,
and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is quadratic.

c in s

Checks whether the sequence s contains the value c and returns truetruetruetrue or falsefalsefalsefalse. The
search is linear.

s1 intersect s2

Searches all values in sequence s1 that are also values in sequence s2 and returns
them in a sequence. The search is quadratic.

agenaagenaagenaagena >> 243

s1 minus s2

Searches all values in sequence s1 that are not values in sequence s2 and returns
them as a sequence. The search is quadratic.

s1 subset s2

Checks whether all values in sequence s1 are included in sequence s2 and returns
truetruetruetrue or falsefalsefalsefalse. The operator also returns truetruetruetrue if s1 = s2 . The search is quadratic.

s1 union s2

Concatenates two sequences s1 and s2 simply by copying all its elements - even if
they occur multiple times - to a new sequence.

s1 x subset s2

Checks whether all values in sequence s1 are included in sequence s2 and
whether s2 contains at least one further element, so that the result is always falsefalsefalsefalse if
s1 = s2 . The search is quadratic.

The following functions in the base library base library base library base library also support sequences:

Returns all the values that are stored more than once in the
given sequence.

duplicatesduplicatesduplicatesduplicates

Same as the minusminusminusminus operator but much faster with very large
sequences.

bminusbminusbminusbminus

Same as the ==== operator but much faster with very large
sequences.

bisequalbisequalbisequalbisequal

Same as the intersectintersectintersectintersect operator but much faster with very
large sequences.

bintersectbintersectbintersectbintersect

MeaningMeaningMeaningMeaningFunctionFunctionFunctionFunction

244 7 Standard Libraries

7.6 Pairs7.6 Pairs7.6 Pairs7.6 Pairs

Summary of Functions:

Queries

inininin, leftleftleftleft, rightrightrightright, sizesizesizesize, typetypetypetype, typeoftypeoftypeoftypeof.

Operations

copycopycopycopy, mapmapmapmap.

Relational Operators

====, ========, ~=~=~=~=, <><><><>.

The following functionalities have been built into the kernel as unary operators.

copy (p)

The operator deep-copies the entire contents of a pair p into a nerw pair.

map (f, p [, ···])

Maps the function f on both elements of a pair p and returns a new pair. See mapmapmapmap
in Chapter 7.1 for more information.

size (p)

Returns the number of items in a pair p, i.e. always returns 2.

type (p)

Returns the type of a pair p, i.e. the string 'pair'.

typeof (p)

Returns either the user-defined type of the pair p, or the basic type 'pair'.

The following functionalities have been built into the kernel as binary operators.

p1 = p2

This equality check of two pairs p1, p2 first tests whether p1 and p2 point to the same
pair reference in memory. If so, it returns truetruetruetrue and quits.

agenaagenaagenaagena >> 245

If not, the operator then checks whether the left-hand side of p1 and the left-hand
side of p2 are equal, and the same with both right-hand sides, and returns truetruetruetrue or
falsefalsefalsefalse.

p1 == p2

With pairs, the == operator acts exactly as the = operator.

p1 ~= p2

With pairs, the ~= operator compares the left-hand side of p1 and the left-hand
side of p2 for approximate equality, and the same with both right-hand sides. The
return is either truetruetruetrue or falsefalsefalsefalse. See approxapproxapproxapprox for further details.

p1 <> p2

This inequality check of two pairs p1, p2 first tests whether p1 and p2 do not point to
the same set reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether p1 and p2 do not contain the same items,
and returns truetruetruetrue or falsefalsefalsefalse.

c in p

Checks whether the number c fits into the closed interval with borders denoted by
the numeric elements of pair p.

246 7 Standard Libraries

7.7 7.7 7.7 7.7 llistllistllistllist - - - - Linked ListsLinked ListsLinked ListsLinked Lists

As a plus package, the llistllistllistllist package is not part of the standard distribution and
must be activated with the importimportimportimport statement, e.g. import llist .

7.7.1 Introduction and an Example7.7.1 Introduction and an Example7.7.1 Introduction and an Example7.7.1 Introduction and an Example

Tables and sequences are quite slow if you have to insert or delete a lot of
elements during an operation, for with each insertion or deletion, objects have to
be shifted upward or downward physically.

To avoid these costly operations, data can also be represented in containers, or
`nodes`, where "[e]ach node contains two fields: a "data" field to store whatever
element [...], and a "next" field which is a pointer used to link one node to the next
node.21" For example, if you would like to insert a new element at position n, the
address of the `next entry` of node n - 1 is changed to the address of the new
node containing the element to be inserted, and the `next entry` in the new node
is assigned the address of the node containing the original value at position n.

This speeds up write operations by dimensions; read operations, however, are
slower, for the linked list has to be traversed linearly. However, linked lists as
implemented in this package are around fifteen times faster even when
conducting a read operation with each write operation.

Metamethods exist to support printing, indexing, and indexed assignments; the sizesizesizesize,
inininin, ====, and ~=~=~=~= operators are also supported.

Linked lists can contain nullnullnullnulls, i.e. putting nullnullnullnull into the data field of a node does not
delete this node from the chain.

For an example of how to use linked lists, see Chapter 6.25.

7.7.2 Functions7.7.2 Functions7.7.2 Functions7.7.2 Functions

llist.append (l, obj [, ···])

Appends one or more elements obj which may be of any type, to the linked list l , in
sequential order. There is no return.

See also: llist.llist.llist.llist.prependprependprependprepend, llist.pllist.pllist.pllist.putututut.

agenaagenaagenaagena >> 247

21 For an excellent introduction on implementing linked lists, see "Linked List Basics", Copyright ©
1998-2001, Nick Parlante. This quote has been taken from his manual, page 4.

llist.iterate (l [, n])

Returns an iterator function that when called returns the next value in the linked list l ,
which might also be nullnullnullnull if one or more nullnullnullnulls are included in the linked list, or nullnullnullnull if
there are no more entries in the list. Also returns nullnullnullnull if the linked list is empty.

If an index n is passed, the first call to the iterator function returns the n-th element in
the list and with subsequent calls, the respective elements after index n.

You may also pass a nonYou may also pass a nonYou may also pass a nonYou may also pass a non-negative integer p to the -negative integer p to the -negative integer p to the -negative integer p to the iteratoriteratoriteratoriterator function: In this case, function: In this case, function: In this case, function: In this case,
the next p elements in the list are skipped before determining and returning athe next p elements in the list are skipped before determining and returning athe next p elements in the list are skipped before determining and returning athe next p elements in the list are skipped before determining and returning a
value.value.value.value.

Example: Since the iterator can return nullnullnullnull even if the end of the list has not yet
been reached, we use a counter:

> L := llist.list(1); llist.append(L, null); llist. append(L, 2);

> f := llist.iterate(L);

> c := 0;

> while c < size L do
> inc c;
> print(f())
> od;
1
null
2

llist.list ([···])

The function creates a new linked list and optionally stores all of the given elements
in it. The return is a userdata of user-type 'llist' .

llist.listtotable (l)

The function creates a new table and copies all elements in the linked list l into it, in
sequential order. The return is the table. If there are no elements in l , an empty
table is returned. If the list includes nullnullnullnulls, the resulting table will contain holes.

The function is written in the Agena language and included in the llist.agn file.

llist.prepend (l, obj [, ···])

Prepends an element obj , and optionally further elements, which may be of any
type, to the linked list l . There is no return.

See also: llist.appendllist.appendllist.appendllist.append, llist.llist.llist.llist.putputputput.

248 7 Standard Libraries

llist.purge (l, n)

The function removes the element at position n from the linked list l . All the
successors of the element to be deleted are `shifted` downwards. The function
returns nothing, but issues an error if there is no element (i.e. node) at index n.

llist.put (l, n, obj)

The function inserts the given element obj at position n into linked list l . The original
element at position n is not deleted - it and all of its successors are `shifted` to
open space. The function returns nothing, or issues an error if the index is
out-of-range.

See also: llist.appendllist.appendllist.appendllist.append, llist.prependllist.prependllist.prependllist.prepend .

llist.replicate (l)

The function creates a copy of the linked list l and returns a new linked list. If an
element in l is a structure, however, it is not deep-copied.

agenaagenaagenaagena >> 249

7.8 7.8 7.8 7.8 bags bags bags bags - - - - MulitsetsMulitsetsMulitsetsMulitsets

As a plus package, the bagsbagsbagsbags package is not part of the standard distribution and
must be activated with the importimportimportimport statement, e.g. import bags .

7.8.1 Introduction and Examples7.8.1 Introduction and Examples7.8.1 Introduction and Examples7.8.1 Introduction and Examples

A bag, also called a multiset, is a kind of Cantor set that also stores the number of
occurrence of each unique element.

Consider a bulk of orders of books where each order is reported individually. You
may only want to know how many times a book has been sold, instead of storing
each individual order (and maybe all its data) to finally count them. You may want
to save space and perform the count immediately as soon as the order has been
committed.

The package uses tables of the user-defined type 'bag' to implement multisets.

A sequence of orders might look like this:

> import bags;

> orders := seq(
> 'Programming in Lua', 'Moon Lander', 'Lost Moon ',
> 'Programming in Lua', 'Moon Lander', 'Lost Moon ',
> 'C von A bis Z');

> books := bags.bag(unpack(orders));

> books['Lost Moon']:
2

For a further order, just enter

> bags.include(books, 'Agena');

> books:
bag(Agena ~ 1, C von A bis Z ~ 1, Lost Moon ~ 2, Mo on Lander ~ 2,
Programming in Lua ~ 2)

A customer has cancelled his previous orders:

> bags.remove(books, 'Agena'):

> books:
bag(C von A bis Z ~ 1, Lost Moon ~ 2, Moon Lander ~ 2, Programming in Lua ~
2)

250 7 Standard Libraries

7.8.2 Functions7.8.2 Functions7.8.2 Functions7.8.2 Functions

bags.attrib (b)

Returns the number of occurrence of all unique elements in the bag b and also the
accumulated number of all occurrences of these elements in it. For example, the
multiset bag('Curiosity' ~ 2, 'Skycrane' ~ 1) results to 2, 3.

bags.bag ([···])

The function creates a new bag and optionally stores all of the given elements in it.

See also: sykcrane.bagtablesykcrane.bagtablesykcrane.bagtablesykcrane.bagtable .

bags.bagtoset (b)

The function returns all of the unique elements in b as a set.

bags.include (b, obj [, ···])

The function inserts all of the given elements obj , etc. into bag b.

The function returns nothing.

See also: bags.mincludebags.mincludebags.mincludebags.minclude .

bags.minclude (b, obj)

The function inserts all of the given elements in the sequence obj into bag b. The
function should be used instead of bags.includebags.includebags.includebags.include if the number of elements to be
inserted exceeds Agena's argument stack.

The function returns nothing.

See also: bags.includebags.includebags.includebags.include .

bags.remove (b, obj [, ···])

The function removes all of the given elements obj , etc. from bag b. If the number
of counts of the removed element reaches 0, the element will be deleted from the
bag.

The function returns nothing.

agenaagenaagenaagena >> 251

There are metamethods for conducting some sort of arbitrary Cantor set operations
on bags. Try out the binary operators unionunionunionunion (for union), minusminusminusminus for difference set,
intersectintersectintersectintersect for intersection, and inininin for searching an object.

If you would like to iterate a bag, you can use conventional forforforfor/inininin loops, for
example, using the bag in the previous chapter:

> for i, j in books do print(i, j) od
Programming in Lua 2
C von A bis Z 1
Lost Moon 2
Moon Lander 2

252 7 Standard Libraries

7.9 7.9 7.9 7.9 Mathematical FunctionsMathematical FunctionsMathematical FunctionsMathematical Functions

The mathematical operators and functions explained in this chapter work on both
real numbers as well as complex numbers, except if indicated otherwise.

For the sake of speed, basic arithmetic functions have been implemented as
operators, whereas all other mathematical functions are implemented as Agena
library functions (implemented either in C or in the Agena language). While
functions can be overwritten with self-defined versions, operators cannot be
overwritten.

Summary of Operators and Functions:

Basic Arithmetic Operators

++++, ----, ****, ////, /*, fmafmafmafma.

Integer Division

\\\\, %%%%, dremdremdremdrem, iremiremiremirem, iqriqriqriqr, modfmodfmodfmodf.

Exponentiation

^̂̂̂, ********, expexpexpexp, expx2expx2expx2expx2, frexpfrexpfrexpfrexp, ldexpldexpldexpldexp, math.expminusonemath.expminusonemath.expminusonemath.expminusone , math.tworaisedmath.tworaisedmath.tworaisedmath.tworaised .

Roots

cbrtcbrtcbrtcbrt, hypothypothypothypot, prootprootprootproot, rootrootrootroot, sqrtsqrtsqrtsqrt.

Logarithms

ilog2ilog2ilog2ilog2, lnlnlnln, loglogloglog, log2log2log2log2, log10log10log10log10, math.ceillog2math.ceillog2math.ceillog2math.ceillog2 , math.lnplusonemath.lnplusonemath.lnplusonemath.lnplusone , math.log2expmath.log2expmath.log2expmath.log2exp.

Trigonometric Functions

coscoscoscos, cotcotcotcot, csccsccsccsc, secsecsecsec, sinsinsinsin, tantantantan.

Inverse Trigonometric Functions

arccosarccosarccosarccos, arccscarccscarccscarccsc, arccotarccotarccotarccot, arcsecarcsecarcsecarcsec, arcsinarcsinarcsinarcsin, arctanarctanarctanarctan, arctan2arctan2arctan2arctan2, math.arccoshmath.arccoshmath.arccoshmath.arccosh .

Hyperbolic Functions

coshcoshcoshcosh, cothcothcothcoth, cschcschcschcsch, sechsechsechsech, sinhsinhsinhsinh, tanhtanhtanhtanh.

agenaagenaagenaagena >> 253

Inverse Hyperbolic Functions

arccosharccosharccosharccosh, arccscharccscharccscharccsch, arccotharccotharccotharccoth, arcsecharcsecharcsecharcsech, arcsinharcsinharcsinharcsinh, arctanharctanharctanharctanh.

Miscellaneous

absabsabsabs, erferferferf, erfcerfcerfcerfc, eveneveneveneven, heavisideheavisideheavisideheaviside, signsignsignsign, math.copysignmath.copysignmath.copysignmath.copysign , math.fpbtointmath.fpbtointmath.fpbtointmath.fpbtoint ,
math.gcdmath.gcdmath.gcdmath.gcd, math.inttofpbmath.inttofpbmath.inttofpbmath.inttofpb, math.lcmmath.lcmmath.lcmmath.lcm, math.maxmath.maxmath.maxmath.max, math.minmath.minmath.minmath.min.

Miscellaneous Complex Functions

argumentargumentargumentargument, beabeabeabea, conjugateconjugateconjugateconjugate, cosxxcosxxcosxxcosxx, flipflipflipflip, polarpolarpolarpolar.

Gamma, etc.

betabetabetabeta, binomial binomial binomial binomial, factfactfactfact, gammagammagammagamma, lngammalngammalngammalngamma.

Bessel Functions

besseljbesseljbesseljbesselj, besselybesselybesselybessely.

Rounding Functions

ceilceilceilceil, entierentierentierentier, intintintint, mdfmdfmdfmdf, roundfroundfroundfroundf, xdfxdfxdfxdf.

Relational Operators

====, ========, <<<<, >>>>, <=<=<=<=, >>>>====, <><><><>, approxapproxapproxapprox, math.isorderedmath.isorderedmath.isorderedmath.isordered .

Numbers

finitefinitefinitefinite, floatfloatfloatfloat, fracfracfracfrac, gethighgethighgethighgethigh, getlowgetlowgetlowgetlow, isintisintisintisint, isnegativeisnegativeisnegativeisnegative, isnegintisnegintisnegintisnegint, isnonnegisnonnegisnonnegisnonneg,
isnonnegintisnonnegintisnonnegintisnonnegint , isnonposintisnonposintisnonposintisnonposint , isnumberisnumberisnumberisnumber, isnumericisnumericisnumericisnumeric, isposintisposintisposintisposint, ispositiveispositiveispositiveispositive, sethighsethighsethighsethigh,
setlowsetlowsetlowsetlow, math.fractionmath.fractionmath.fractionmath.fraction , math.ndigitsmath.ndigitsmath.ndigitsmath.ndigits , math.nthdigitmath.nthdigitmath.nthdigitmath.nthdigit , math.nextaftermath.nextaftermath.nextaftermath.nextafter , nannannannan.

Random Numbers

math.randommath.randommath.randommath.random, math.randomseedmath.randomseedmath.randomseedmath.randomseed .

Bases and Conversion

math.convertbasemath.convertbasemath.convertbasemath.convertbase , math.normmath.normmath.normmath.norm, math.todecimalmath.todecimalmath.todecimalmath.todecimal , math.toradiansmath.toradiansmath.toradiansmath.toradians ,
math.tosgesimmath.tosgesimmath.tosgesimmath.tosgesim .

Primes

math.isprimemath.isprimemath.isprimemath.isprime, math.nextprimemath.nextprimemath.nextprimemath.nextprime , math.prevprimemath.prevprimemath.prevprimemath.prevprime .

254 7 Standard Libraries

Bitwise Operators

&&&&&&&&, ~~~~~~~~, ||||||||, ^^^^^^^^, <<<<<<<<<<<<, >>>>>>>>>>>>, getbitgetbitgetbitgetbit, setbitsetbitsetbitsetbit, shiftshiftshiftshift.

7777.9.9.9.9.1 .1 .1 .1 OOOOperatorsperatorsperatorsperators and Basic Functions and Basic Functions and Basic Functions and Basic Functions

x + y

The operator adds two numbers; returns a number. Complex numbers are
supported.

x - y

The operator subtracts two numbers; returns a number. Complex numbers are
supported.

x * y

The operator multiplies two numbers; returns a number. Complex numbers are
supported.

x / y

The operator divides two numbers; returns a number. Complex numbers are
supported.

See also: reciprecipreciprecip.

x *% y

The operator multiplies two numbers and divides the result by 100; returns a
number, the percentage.

x /% y

The operator divides two numbers and multiplies the result by 100; returns a
number, the ratio.

x +% y

The operator adds the given percentage y to x .

x -% y

The operator subtracts the given percentage y from x .

x \ y

The operator performs an integer division of two numbers, and returns a number.

The integer division is defined as: x \ y = sign(x) * sign(y) * entier(| |).
x
y

agenaagenaagenaagena >> 255

x % y

The modulus operator conducts the operation x % y = x - entier()*y.
x
y

x ^ y

The operator performs an exponentiation of real or complex x with a rational power
y . With numbers, if x is negative and y non-integral, it returns undefinedundefinedundefinedundefined.

See also prootprootprootproot, rootrootrootroot.

x ** y

The operator exponentiates the real or complex number x with the integer power y .
This operator is at least 50 % faster than the ^̂̂̂ operator.

x && y

Bitwise `and` operation on two numbers x and y . By default, the operator internally
calculates with signed integers. You can change this to unsigned integers by using
the kernelkernelkernelkernel function with the signedbitssignedbitssignedbitssignedbits option. See also: environ.kernelenviron.kernelenviron.kernelenviron.kernel in Chapter
7.21.

~~ x

Bitwise complementary operation on the number x . By default, the operator
internally calculates with signed integers. You can change this to unsigned integers
by using the environ.kernelenviron.kernelenviron.kernelenviron.kernel function with the signedbitssignedbitssignedbitssignedbits option. See also:
environ.kernelenviron.kernelenviron.kernelenviron.kernel in Chapter 7.21.

x || y

Bitwise `or` operation on two numbers x and y . By default, the operator internally
calculates with signed integers. You can change this to unsigned integers by using
the environ.kernelenviron.kernelenviron.kernelenviron.kernel function with the signedbitssignedbitssignedbitssignedbits option. See also: environ.kernelenviron.kernelenviron.kernelenviron.kernel in
Chapter 7.21.

x ^^ y

Bitwise `exclusive-or` operation on two numbers x and y . By default, the operator
internally calculates with signed integers. You can change this to unsigned integers
by using the environ.kernelenviron.kernelenviron.kernelenviron.kernel function with the signedbitssignedbitssignedbitssignedbits option. See also:
environ.kernelenviron.kernelenviron.kernelenviron.kernel in Chapter 7.21.

256 7 Standard Libraries

x <<< y

Bitwise left-shift operation (multiplication with 2). By default, the operator internally
calculates with signed integers. You can change this to unsigned integers by using
the environ.kernelenviron.kernelenviron.kernelenviron.kernel function with the signedbitssignedbitssignedbitssignedbits option. See also: environ.kernelenviron.kernelenviron.kernelenviron.kernel , shiftshiftshiftshift.

x >>> y

Bitwise right-shift operation (division by 2). By default, the operator internally
calculates with signed integers. You can change this to unsigned integers by using
the environ.kernelenviron.kernelenviron.kernelenviron.kernel function with the signedbitssignedbitssignedbitssignedbits option. See also: environ.kernelenviron.kernelenviron.kernelenviron.kernel , shiftshiftshiftshift.

x shift y

Bitwise shift operation. If the right-hand side y is a positive integer, the bits in x are
shifted to the left (multiplication with 2), else they are shifted to the right (division by
2). By default, the operator internally calculates with signed integers. You can
change this to unsigned integers by using the environ.kernelenviron.kernelenviron.kernelenviron.kernel function with the
signedbitssignedbitssignedbitssignedbits option. See also: environ.kernelenviron.kernelenviron.kernelenviron.kernel , <<<<<<<<<<<<, >>>>>>>>>>>>.

abs (z)

If z is a number, the absabsabsabs operator returns the absolute value of z . With a complex
number z = x + I*y, it returns the distance between it and the origin as a number,

i.e. .x2 + y2

See also: argumentargumentargumentargument, cabscabscabscabs, polarpolarpolarpolar.

approx (x, y [, eps])

Compares the two numbers or complex values x and y and checks whether they
are approximately equal. If eps is omitted, EpsEpsEpsEps is used.

The algorithm uses a combination of simple distance measurement (|x-y| eps)[

suited for values `near` 0 and a simplified relative approximation algorithm
developed by Donald H. Knuth suited for larger values (|x-y| eps * max(|x|,[

| y|)), that checks whether the relative error is bound to a given tolerance eps .

The function returns truetruetruetrue if x and y are considered equal or falsefalsefalsefalse otherwise.

arccos (x)

Returns the inverse cosine operator (x in radians). Complex numbers are supported.

arccosh (x)

Returns the inverse hyperbolic cosine of x (in radians). The function is implemented
in the Agena language and included in the library.agn file. The function works on
both numbers and complex values.

agenaagenaagenaagena >> 257

arccsc (x)

Returns the inverse cosecant of x (in radians). The function works on both numbers
and complex values. The function is implemented in the Agena language and
included in the library.agn file.

arccsch (x)

Returns the inverse hyperbolic cosecant of x (in radians). The function works on
both numbers and complex values. The function is implemented in the Agena
language and included in the library.agn file.

arccot (x)

Returns the inverse cotangent of x (in radians). The function works on both numbers
and complex values. The function is implemented in the Agena language and
included in the library.agn file.

arccoth (x)

Returns the inverse hyperbolic cotangent of x (in radians). The function works on
both numbers and complex values.

arcsec (x)

Returns the inverse secant of x (in radians). The operator works on both numbers
and complex values.

arcsech (x)

Returns the inverse hyperbolic secant of x (in radians). The function works on both
numbers and complex values. The function is implemented in the Agena language
and included in the library.agn file.

arcsin (x)

Computes the inverse sine operator (in radians). Complex numbers are supported.

arcsinh (x)

Returns the inverse hyperbolic sine of x (in radians). The function is implemented in
the Agena language and included in the library.agn file. The function works on
both numbers and complex values.

arctan (x)

Computes the inverse tangent operator (in radians). Complex numbers are
supported.

See also: arctan2arctan2arctan2arctan2.

258 7 Standard Libraries

arctan2 (y, x)

Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to
find the quadrant of the result. (It also handles correctly the case of y being zero.) x
and y must be numbers or complex numbers.

See also: arctanarctanarctanarctan.

arctanh (x)

Returns the inverse hyperbolic tangent of x (in radians). The function works on both
numbers and complex values. The function is implemented in the Agena
language and included in the library.agn file.

argument (z)

Returns the argument (the phase angle) of the complex value z in radians as a
number. If z is a number, the function returns 0 if z 0, and otherwise.m ✜

See also: absabsabsabs, cabscabscabscabs, polarpolarpolarpolar.

bea (z)

The operator takes the complex number z = x!y and returns the complex number
sinsinsinsin(x)*sinhsinhsinhsinh(y) + I*coscoscoscos(x)*coshcoshcoshcosh(y). This function may be mathematically meaningless,
but it creates beautiful fractals. With numbers, it returns undefinedundefinedundefinedundefined.

See also: cosxxcosxxcosxxcosxx, flipflipflipflip.

beta (x, y)

Computes the Beta function. x and y are numbers or complex values. The return
may be a number or complex value. The Beta function is defined as: Beta(x , y) =

, with special treatment if x and y are integers.
✄x&✄y
✄(x+y)

binomial (n, k)

Returns the binomial coefficient as a number. The function returns undefinedundefinedundefinedundefined, if
n
k

n or k are negative, or if at least one of its arguments is not an integer.

besselj (n, x)

Returns the Bessel function of the first kind. The order is n given as the first argument,
the argument x as the second argument. The return is a number. The function works
on both numbers and complex values.

bessely (n, x)

Returns the Bessel function of the second kind. The order n is given as the first
argument, the argument x as the second argument. The return is a number. The

agenaagenaagenaagena >> 259

function works on both numbers and complex values.

cabs (z)

If z is a number, the cabscabscabscabs function returns the absolute value of z . If z is a complex
number z = x + I*y, contrary to the absabsabsabs operator, it returns the real and imaginary
absolute value, i.e. .x + I & y

See also: absabsabsabs, argumentargumentargumentargument, polar.polar.polar.polar.

cbrt (x)

Returns the cubic root of the number or complex number x . With complex x , it is
equal to x^(1/3), but not to root(x , 3).

See also: ^̂̂̂ operator, rootrootrootroot.

ceil (x)

Rounds upwards to the nearest integer larger than or equal to the number or
complex number x . See the entierentierentierentier operator for a function that rounds downwards to
the nearest integer. The function is implemented in the Agena language and
included in the library.agn file.

See also: entierentierentierentier, intintintint, roundfroundfroundfroundf.

conjugate (z)

The operator returns the conjugate x-I*y of the complex value z=x+I*y. If z is of
type number, it is simply returned.

See also: flipflipflipflip.

cos (x)

The operator returns the cosine of x (in radians). Complex numbers are supported.

cosh (x)

The operator returns the hyperbolic cosine of x (in radians). Complex numbers are
supported.

cosxx (z)

The operator takes the complex number z = x!y and returns the complex number
coscoscoscos(x)*coshcoshcoshcosh(y)+I*sinsinsinsin(x)*sinhsinhsinhsinh(y), i.e. the imaginary part of the result had the wrong
sign. It represents FRACTINT's buggy cos function till v16. This function may be
mathematically meaningless, but it creates beautiful fractals. With the number z , it
returns cos(z).

See also: coscoscoscos, beabeabeabea, flipflipflipflip.

260 7 Standard Libraries

cot (x)

Returns the cotangent -tan as a number (in radians). The function is(✜
2 + x)

implemented in the Agena language and included in the library.agn file. The
function works on both numbers and complex values.

coth (x)

Returns the hyperbolic cotangent as a number (in radians). The function is
1

tanh(x)
implemented in the Agena language and included in the library.agn file. The
function works on both numbers and complex values.

csc (x)

Returns the cosecant as a number (in radians). The function is implemented in
1

sin(x)
the Agena language and included in the library.agn file. The function works on
both numbers and complex values.

csch (x)

Returns the hyperbolic cosecant as a number (in radians). The function is
implemented in the Agena language and included in the library.agn file. The
function works on both numbers and complex values.

drem (x, y)

Evaluates the remainder of an integer division x /y (with x , y two Agena numbers),
but contrary to iremiremiremirem, rounds the internal quotient x /y to the nearest integer instead
of towards zero.

See also: \\\\,%%%%, iiiiremremremrem.

entier (x)

The operator rounds x downwards to the nearest integer. Complex numbers are
supported.

See also: ceilceilceilceil, intintintint, mdfmdfmdfmdf, roundfroundfroundfroundf.

erf (x)

Returns the error function of x . It is defined by erf(x) = . The function
2
✜
¶

t=0

x

e−t^2

works on both numbers and complex values.

See also: erfcerfcerfcerfc.

agenaagenaagenaagena >> 261

erfc (x)

Returns the complementary error function of x , a number or complex value. It is
defined by erfc(x) = 1 - erf(x). The return is a number or complex value.

See also: erferferferf.

even (x)

Checks whether x is even. The operator returns truetruetruetrue if x is even, and falsefalsefalsefalse otherwise.
With the complex value x , the operator returns failfailfailfail.

exp (x)

Exponential function; the operator returns the value ex. Complex numbers are
supported.

expx2 (x, sign)

Computes either if sign 0, or if sign < 0 while suppressing errorex^2 m e -x^2

amplification that would occur from the in-exactness of the exponential argument
. x may be a number or complex number, while sign must be a number.x2

fact (n)

Returns the factorial of n, i.e. the product of the values from 1 to n. If n is not an
integer or if n is negative, the function returns undefinedundefinedundefinedundefined. The function is
implemented in the Agena language and included in the library.agn file. It
features a defaults remember table (rotable) which you may extend by adding new
defaults to your agena.ini file (see rtable.defaultsrtable.defaultsrtable.defaultsrtable.defaults and Appendix A6).

finite (x)

Checks whether the number or complex number x is neither infinityinfinityinfinityinfinity nor undefinedundefinedundefinedundefined!

(NaN). The operator returns truetruetruetrue or falsefalsefalsefalse.

See also: floatfloatfloatfloat, nannannannan.

flip (z)

The operator takes the complex number z and returns the new complex number
imagimagimagimag(z)!realrealrealreal(z), i.e. the real and imaginary parts are swapped. With numbers, it
always returns 0.

See also: beabeabeabea, conjugateconjugateconjugateconjugate, cosxxcosxxcosxxcosxx.

262 7 Standard Libraries

float (x)

Checks whether the number x is a float, i.e. not an integer, and returns truetruetruetrue or falsefalsefalsefalse.
If x is not a number, the operator returns failfailfailfail.

See also: ffffiniteiniteiniteinite, isintisintisintisint.

fma (x, y, z)

Performs the fused multiply-add operation (x * y) + z , with the intermediate result
not rounded to the destination type, to improve the precision of a calculation. x , y ,
and z must be numbers.

frac (x)

Returns the fractional part of the number x , i.e. x - int(x) . The function is
implemented in the Agena language and included in the library.agn file.

See also: modfmodfmodfmodf.

frexp (x)

Returns m and e such that x = m2e, e is an integer and the absolute value of m is in
the range [0.5, 1) (or zero when x is zero).

See also: ldexpldexpldexpldexp.

gamma (x)

The gamma function ✄ x . x may be a number or complex value.

See also: lngammalngammalngammalngamma.

gethigh (x)

Returns the higher bytes of a number x as an integer. This operator does not support
complex numbers. See also: getlowgetlowgetlowgetlow, sethighsethighsethighsethigh.

getlow (x)

Returns the lower bytes of a number x as an integer. This operator does not support
complex numbers. See also: getgetgetgethighhighhighhigh, setlowsetlowsetlowsetlow.

heaviside (x)

The Heaviside function. Returns 0 if x < 0, undefinedundefinedundefinedundefined if x = 0, and 1 if x > 0. The
function is implemented in the Agena language and included in the library.agn

file.

agenaagenaagenaagena >> 263

hypot (x, y)

Returns with x , y numbers. This is the length of the hypotenuse of a rightx 2 + y 2

triangle with sides of length x and y , or the distance of the point (x , y) from the
origin. The function is slower but more precise than using sqrtsqrtsqrtsqrt. The return is a
number.

See also: rootrootrootroot, sqrtsqrtsqrtsqrt.

ilog2 (x)

Returns the integer part of the base-2 logarithm of the positive number x .

See also: lnlnlnln, loglogloglog, log2log2log2log2, loglogloglog10101010, mathmathmathmath.ceillog2.ceillog2.ceillog2.ceillog2.

int (x)

Rounds x to the nearest integer towards zero. The operator also supports complex
numbers.

See also: ceilceilceilceil, entierentierentierentier, floatfloatfloatfloat, mdfmdfmdfmdf, roundfroundfroundfroundf.

iqr (x, y)

Computes both the integer quotient and the integer remainder of the number x

divided by the number y and returns them. If x or y are not integers, the function
returns undefinedundefinedundefinedundefined twice.

The function is equivalent to the Agena representation:

iqr := proc(x::number, y::number) is
 if float(x) or float(y) then
 return undefined, undefined
 else
 return x \ y, irem(x, y)
 fi
end;

See also: modfmodfmodfmodf.

irem (x, y)

Evaluates the remainder of an integer division x /y (with x , y two Agena numbers).
The return is a number. The remainder r has the same sign as the numerator. If x

and y are integers and q the integer quotient of x and y , then the function returns
the remainder such that x = y*q + r, |r| < |y| and x*r 0.m

See also: \\\\,%%%%, dremdremdremdrem.

264 7 Standard Libraries

iscomplex (···)

Checks whether the given arguments are all of type complexcomplexcomplexcomplex and returns truetruetruetrue or
falsefalsefalsefalse.

isint (···)

Checks whether all of the given arguments are integers and returns truetruetruetrue or falsefalsefalsefalse. If
at least one of its arguments is not a number, the function returns failfailfailfail.

See also: floatfloatfloatfloat.

isnegative (···)

Checks whether all of its arguments are negative numbers and returns truetruetruetrue or falsefalsefalsefalse.
If at least one of its arguments is not a number, the function returns failfailfailfail.

See also: isisisisnegnegnegnegintintintint, isnegativeisnegativeisnegativeisnegative, innonneginnonneginnonneginnonneg, ispositiveispositiveispositiveispositive.

isnegint (···)

Checks whether all of the given arguments are negative integers and returns truetruetruetrue or
falsefalsefalsefalse. If at least one of its arguments is not a number, the function returns failfailfailfail.

See also: isisisisnonnonnonnonnegnegnegnegintintintint, isisisisposposposposintintintint, isnegativeisnegativeisnegativeisnegative, ispositiveispositiveispositiveispositive.

isnonneg (···)

Checks whether all of its arguments are zero or positive numbers and returns truetruetruetrue or
falsefalsefalsefalse. If at least one of its arguments is not a number, the function returns failfailfailfail.

See also: isisisisnegnegnegnegintintintint, isisisisposposposposintintintint, isnegativeisnegativeisnegativeisnegative, ispositiveispositiveispositiveispositive.

isnonnegint (···)

Checks whether all of the given arguments are zeros or positive integers and returns
truetruetruetrue or falsefalsefalsefalse. If at least one of its arguments is not a number, the function returns failfailfailfail.

isnonposint (···)

Checks whether all of the given arguments are zeros or negative integers and
returns truetruetruetrue or falsefalsefalsefalse. If at least one of its arguments is not a number, the function
returns failfailfailfail.

isnumber (···)

Checks whether the given arguments are all of type numbernumbernumbernumber and returns truetruetruetrue or
falsefalsefalsefalse.

agenaagenaagenaagena >> 265

isnumeric (···)

Checks whether the given arguments are all of type numbernumbernumbernumber or of type complexcomplexcomplexcomplex
and returns truetruetruetrue or falsefalsefalsefalse.

See also: numericnumericnumericnumeric.

isposint (···)

Checks whether all of its arguments are positive integers and returns truetruetruetrue or falsefalsefalsefalse. If
at least one of its arguments is not a number, the function returns failfailfailfail.

See also: isisisisnonnonnonnonposintposintposintposint.

ispositive (···)

Checks whether all of its arguments are positive numbers and returns truetruetruetrue or falsefalsefalsefalse. If
at least one of its arguments is not a number, the function returns failfailfailfail.

See also: isposintisposintisposintisposint, isnegativeisnegativeisnegativeisnegative, isnonnegisnonnegisnonnegisnonneg.

ldexp (m, e)

Returns m2e (e should be an integer, and m must be number).

See also: frexpfrexpfrexpfrexp.

ln (x)

Natural logarithm of x with the base e1. If x is non-positive, the operator returns
undefinedundefinedundefinedundefined. Complex numbers are supported.

See also: loglogloglog, log2log2log2log2, log10log10log10log10.

lngamma (x)

Computes ln ✄ x . If x is a non-positive number, the operator returns undefinedundefinedundefinedundefined.
Complex numbers are supported.

See also: gammagammagammagamma.

log (x, b)

The operator returns the logarithm of the number or complex number x to the base
b, with b a number or a complex number.

See also: lnlnlnln, log2log2log2log2, log10log10log10log10.

266 7 Standard Libraries

log2 (x)

Returns the base-2 logarithm of the number or complex number x .

See also: ilog2ilog2ilog2ilog2, lnlnlnln, loglogloglog, loglogloglog10101010, math.ceillog2math.ceillog2math.ceillog2math.ceillog2 .

log10 (x)

Returns the base-10 logarithm of the number or complex number x .

See also: lnlnlnln, loglogloglog, log2log2log2log2.

mdf (x, n)

Rounds up the number x at its n-th decimal place and returns a number.

See also: entierentierentierentier, intintintint, roundfroundfroundfroundf, xdfxdfxdfxdf.

modf (x)

Returns two numbers, the integral part of the number x and its fractional part. The
integral part is rounded towards zero. Both the integral and fractional part of the
return have the same sign as x . The sum of the two values returned equals x .

See also: \\\\, %%%%, fracfracfracfrac, intintintint.

nan (x)

Checks whether the number or complex number x evaluates to undefinedundefinedundefinedundefined (NaN).
The operator returns truetruetruetrue or falsefalsefalsefalse.

See also: finitefinitefinitefinite, floatfloatfloatfloat.

polar (z)

Transforms the complex number z in Cartesian notation or the number z to polar
form. If z is a number and is zero, or if z is complex and its real and imaginary parts
equal zero, the function returns zero twice.

See also: absabsabsabs, argumentargumentargumentargument, cabscabscabscabs.

proot (x, n)

Returns the principal n-th root of the number or complex value x . n must be a
positive integer. The principal n-th root in the complex domain is the first root found
starting from the positive real axis going counter-clockwise.

See also: cbrtcbrtcbrtcbrt, hypothypothypothypot, rootrootrootroot, sqrtsqrtsqrtsqrt.

agenaagenaagenaagena >> 267

recip (x)

Returns the inverse 1/x of a number or complex number x .

See also: ////.

root (x, n)

Returns the non-principal n-th root of the number or complex value x . n must be an
integer. Note, that since the function computes the non-principal root, with
complex x , rootrootrootroot(x , n) x ^̂̂̂ (1/n). In the complex domain, the function returns the!
n-th root of x whose argument is nearest to the argument of x .

See also: argumentargumentargumentargument, cbrtcbrtcbrtcbrt, hypothypothypothypot, prootprootprootproot, sqrtsqrtsqrtsqrt.

roundf (x [, d])

Rounds the number x to its d-th digit. Return is a number. If d is omitted, the number
is rounded to the nearest integer. The following Agena code explains the algorithm
used:

roundf := proc(x, digs) is
 local d;
 if digs = null then d := 0 else d := digs fi;
 return int((10^d)*x + sign(x)*0.5) * (10^(-d))
end;

See also: ceilceilceilceil, entierentierentierentier, intintintint, mdfmdfmdfmdf, xdfxdfxdfxdf.

sec(x)

Returns the secant as a number (in radians). The function is implemented in
1

cos(x)
the Agena language and included in the library.agn file. The function works on
both numbers and complex values.

sech(x)

Returns the hyperbolic secant as a number (in radians). The function is
implemented in the Agena language and included in the library.agn file. The
function works on both numbers and complex values.

sethigh (x, i)

The operator sets the higher bytes of the number x to the integer i , and returns the
new number. This operator does not support complex numbers. See also: ssssetlowetlowetlowetlow,
gethighgethighgethighgethigh.

268 7 Standard Libraries

setlow (x, i)

The operator sets the lower bytes of the number x to the integer i , and returns the
new number. This operator does not support complex numbers. See also: ssssetetetethighhighhighhigh,
getlowgetlowgetlowgetlow.

sign (x)

Determines the sign of the number or complex value x . If x is a complex value, the
result of the operator is determined as follows:

� 1, if real(x) > 0 or real(x) = 0 and imag(x) > 0
� -1, if real(x) < 0 or real(x) = 0 and imag(x) < 0
� 0 otherwise.

If x is undefinedundefinedundefinedundefined, signsignsignsign returns undefinedundefinedundefinedundefined.

See also: math.copysignmath.copysignmath.copysignmath.copysign .

sin (x)

The operator returns the sine of x (in radians). Complex numbers are supported.

sinh (x)

The operator returns the hyperbolic sine of x (in radians). Complex numbers are
supported.

sqrt (x)

Returns the square root of x .

If x is a number and negative, the operator returns undefinedundefinedundefinedundefined.

With complex numbers, the operator returns the complex square root, in the range
of the right halfplane including the imaginary axis.

See also: hypothypothypothypot, prootprootprootproot, rootrootrootroot.

tan (x)

The operator returns the tangent of x (in radians). Complex numbers are supported.

tanh (x)

The operator returns the hyperbolic tangent of x (in radians). Complex numbers are
supported.

agenaagenaagenaagena >> 269

xdf (x, n)

Rounds down the number x at its n-th decimal place and returns a number.

See also: entierentierentierentier, intintintint, roundfroundfroundfroundf, mmmmdfdfdfdf.

7.7.7.7.9999....2222 math Librarymath Librarymath Librarymath Library

This library is an interface to the standard C math library. It provides all
miscellaneous functions inside the table math .

math.arccosh (x)

Returns the inverse hyperbolic cosine of the number x and returns a number. It
works in the real domain only.

See also: arccosharccosharccosharccosh.

math.ceillog2 (x)

Returns the smallest exponent to 2 equals or greater than x , i.e. ilog2(ilog2(ilog2(ilog2(x - 1) + 1,
where x is a positive integer. If x= 1, the result is 0; if x < 1, undefinedundefinedundefinedundefined is returned.

See also: math.ceilpower2math.ceilpower2math.ceilpower2math.ceilpower2 .

math.ceilpow2 (x)

Rounds x up to the next highest power of 2, where x is a non-negative integer. If x=
0, the result is 1; if x < 0, undefinedundefinedundefinedundefined is returned. Examples: math.ceilpow2(3) 4,e

and math.ceilpow2(8) 8.e

See also: math.ceilmath.ceilmath.ceilmath.ceil loglogloglog2222.

math.convertbase (s, a, b)

Converts a number s or a number represented as a string s from base a to base b.
a and b must be integers in the range 1 to 36. The number in s must be an integer
of any sign. Floats are not allowed. The return is a string. The function is
implemented in the Agena language and included in the library.agn file.

math.copysign (a, b)

Returns a number with the magnitude of a and the sign of b. It is a plain binding to
C's copysign function and does not post-process its result. Especially, contrary to the
signsignsignsign operator, math.copysign(x, 0) = abs(x).

270 7 Standard Libraries

math.dd (x)

Converts a number x representing a sexagesimal number in TI-30 DMS format into
its decimal representation, and returns a number. For example: 10.3045
representing 10°30'45'' returns 10.5125.

The function is implemented in the Agena language and included in the
library.agn file.

See also: math.dmath.dmath.dmath.dmsmsmsms, math.splitdmsmath.splitdmsmath.splitdmsmath.splitdms .

math.dms (x)

Converts a number representing a decimal number x into its TI-30 sexagesimal DMS
representation and returns a number. For example: 10.5125 returns 10.3045,
representing 10°30'45''.

The function is implemented in the Agena language and included in the
library.agn file.

See also: math.ddmath.ddmath.ddmath.dd, math.splitdmsmath.splitdmsmath.splitdmsmath.splitdms .

math.expminusone (x)

Returns a value equivalent to exp(x) - 1, with x a number. It is computed in a way
that is accurate even if x is near 0, since exp(~0) and 1 are nearly equal.

The function can be used, for example, in financial mathematics, to calculate
small daily interest rates, among other things.

See also: math.lnplusonemath.lnplusonemath.lnplusonemath.lnplusone .

math.fraction (x [, err])

Given a number x , this function outputs two integers, the numerator n and the
denominator d, such that x := n / d to an accuracy epsilon := | (x - n/d) / x | err .[

The error err should be a non-negative number, and by default is 0.

The returns are three numbers in the following order: the numerator n, the
denominator d, and the accuracy epsilon.

The function is implemented in the Agena language and included in the
library.agn file.

See also: divdivdivdiv package.

agenaagenaagenaagena >> 271

math.gcd (x, y)

Returns the greatest common divisor of the numbers x and y as a number. If x or y
is not an integral, 1 is returned. The function is implemented in the Agena language
and included in the library.agn file.

See also: math.lcmmath.lcmmath.lcmmath.lcm.

math.fpbtoint (x)

Converts a `floating point byte` generated by mathmathmathmath.inttofpb.inttofpb.inttofpb.inttofpb back. This function is
used to evaluate numbers transported to the Lua/Agena virtual machine. Please
note that math.inttofpb(math.fpbtoint(x)) does not return x .

math.inttofpb (x)

Converts the integer x to a `floating point byte`, represented as (eeeeexxx), where
the real value is (1xxx) * 2^(eeeee - 1) if eeeee <> 0 and (xxx) otherwise. This
function is used to transport numbers to the Lua/Agena virtual machine.

See also: mathmathmathmath.fpbtoint.fpbtoint.fpbtoint.fpbtoint.

math.isordered (x, y)

Returns falsefalsefalsefalse if at least one of its arguments x and y - two numbers - is undefinedundefinedundefinedundefined,
and truetruetruetrue otherwise.

math.isprime (x)

Returns truetruetruetrue, if the integral number x is a prime number, and falsefalsefalsefalse otherwise. Note
that you have to take care yourself that x is an integer and is less than the largest
integer representable on your system.

See also: math.nextmath.nextmath.nextmath.nextpppprimerimerimerime, math.prevmath.prevmath.prevmath.prevpppprimerimerimerime.

math.lcm (x, y)

Returns the least common multiple of to numbers x and y as a number. The
function is implemented in the Agena language and included in the library.agn

file.

See also: math.gcdmath.gcdmath.gcdmath.gcd.

math.lnplusone (x)

Returns a value equivalent to ln(1 + x), with x a number. It is computed in a way
that is accurate even if x is near zero.

272 7 Standard Libraries

It can be used for example in financial calculations, when computing small daily
interest rates.

Example: ln(1.0000000000000001) 0, math.lnplus1(0.0000000000000001) e e

1e-016.

See also: math.expminusonemath.expminusonemath.expminusonemath.expminusone .

math.log2exp (x)

Extracts the exponent of the number or complex number x and returns it as the
number entier(log2(x)).

math.max (x [, ···])

Returns the maximum value among its arguments of type number.

math.min (x [, ···])

Returns the minimum value among its arguments of type number.

math.morton (x, y)

Interleaves the bits of integers x and y , so that all of the bits of x are in the even
positions and y in the odd; the function can be used to linearising 2D integer
co-ordinates, combining x and y into a single integer that can be compared easily
has the property that a number is usually close to another if their x and y values are
close.

math.ndigits (x)

Returns the number of digits in the integral part of the number x .

The function is written in the Agena language and included in the library.agn file.

math.nthdigit (x, n)

Returns the n-th digit of the number x , with n an integer. To evaluate an integer digit,
n should be positive; for a decimal place, n should be negative.

The function is written in the Agena language and included in the library.agn file.

math.nextafter (x, y)

Returns the next machine floating-point number of x in the direction toward y .

agenaagenaagenaagena >> 273

math.nextprime (x)

Returns the smallest prime greater than the given number x .

See also: math.prevmath.prevmath.prevmath.prevpppprimerimerimerime, math.ismath.ismath.ismath.ispppprimerimerimerime.

math.norm (x, a1:a2 [, b1:b2])

Converts the number x in the scale [a1, a2] to one in the scale [b1, b2]. The second
and third arguments must be pairs of numbers. If the third argument is missing, then
x is converted to a number in [0, 1]. The return is a number.

See also: linalg.scalelinalg.scalelinalg.scalelinalg.scale , stats.scalestats.scalestats.scalestats.scale.

math.prevprime (x)

Returns the largest prime less than the given number x .

See also: math.nextmath.nextmath.nextmath.nextpppprimerimerimerime, math.ismath.ismath.ismath.ispppprimerimerimerime.

math.Phi

The golden number, Phi := .
1+ 5

2

math.random ([m [, n]])

This function creates random numbers.

When called without arguments, returns a pseudo-random real number in the
range [0,1). It can generate up to 2 * environenvironenvironenviron....mmmmaxaxaxaxllllongongongong unique random numbers in
this interval.

When called with a number m, math.randommath.randommath.randommath.random returns a pseudo-random integer in
the range [1, m].

When called with two numbers m and n, math.randommath.randommath.randommath.random returns a pseudo-random
integer in the range [m, n].

See also: math.randomseedmath.randomseedmath.randomseedmath.randomseed , skycrane.diceskycrane.diceskycrane.diceskycrane.dice .

math.randomseed (x, y)

Sets x and y as the `seeds` for the pseudo-random generator: equal seeds
produce equal sequences of numbers. x and y must both be positive integers. It
returns two new settings.

See also: math.randommath.randommath.randommath.random.

274 7 Standard Libraries

math.splitdms (x)

Splits the number x representing a sexagesimal number in TI-30 DMS format into its
parts and returns three numbers: the degrees, minutes, and seconds. For example:
-10.3045 represents -10°30'45''.

The function is implemented in the Agena language and included in the
library.agn file.

See also: math.ddmath.ddmath.ddmath.dd, math.dmsmath.dmsmath.dmsmath.dms.

math.todecimal (h [, m [, s]])

Converts a sexagesimal time value given in hours h, minutes m and seconds s into
its decimal representation. The optional arguments m and s default to 0. If a
sexagesimal value is negative, then h should be negative, while m and s should be
non-negative.

See also: clock.todecclock.todecclock.todecclock.todec, math.tosgesimmath.tosgesimmath.tosgesimmath.tosgesim .

math.toradians (d [, m [, s]])

Returns the angle given in degrees d, minutes m and seconds s , in radians. The
optional arguments m and s default to 0.

math.tosgesim (d)

Converts a decimal time value given by the number d into its sexagesimal
representation and returns three numbers: the hours, minutes, and seconds.

The function is written in the Agena language and included in the library.agn file.

See also: math.todecimal.

math.tworaised (x)

returns 2x, with x of type number or complex.

agenaagenaagenaagena >> 275

7.10 7.10 7.10 7.10 mapmmapmmapmmapm - Arbitr - Arbitr - Arbitr - Arbitrarararary Precision Libraryy Precision Libraryy Precision Libraryy Precision Library

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the importimportimportimport statement, e.g.
import mapm .

In eComStation - OS/2, Haiku, and DOS, the package is built into the binary
executable and does not need to be activated with importimportimportimport.

The package provides functions to conduct arbitrary precision mathematics with
real numbers. It uses Mike's Arbitrary Precision Math Library, written by Michael C.
Ring.

Standard operators like +, -, *, /, %, <, =, >, and unary minus are supported.

All function names in this library begin with the letter x.

By default, the precision is set to 17 digits, but you can change this any time with
the mapm.xdigitsmapm.xdigitsmapm.xdigitsmapm.xdigits function, e.g.:

> mapm.xdigits(100);

The mathematical functions are:

hyperbolic tangentmapm.mapm.mapm.mapm.xtanhxtanhxtanhxtanhexponential functionmapm.xexpmapm.xexpmapm.xexpmapm.xexp
tangentmapm.xtanmapm.xtanmapm.xtanmapm.xtandivisionmapm.xdivmapm.xdivmapm.xdivmapm.xdiv
subtractionmapm.xsubmapm.xsubmapm.xsubmapm.xsubhyperbolic cosinemapm.xcoshmapm.xcoshmapm.xcoshmapm.xcosh
square rootmapm.xsqrtmapm.xsqrtmapm.xsqrtmapm.xsqrtcosinemapm.xcosmapm.xcosmapm.xcosmapm.xcos
hyperbolic sinemapm.xsinhmapm.xsinhmapm.xsinhmapm.xsinhcubic rootmapm.xcbrtmapm.xcbrtmapm.xcbrtmapm.xcbrt

sine and cosinemapm.xsincosmapm.xsincosmapm.xsincosmapm.xsincos
hyperbolic inverse
tangent

mapm.mapm.mapm.mapm.
xarctanhxarctanhxarctanhxarctanh

sinemapm.xsinmapm.xsinmapm.xsinmapm.xsin
4 quadrant inverse
tangent

mapm.mapm.mapm.mapm.
xarctan2xarctan2xarctan2xarctan2(x,(x,(x,(x, y) y) y) y)

signmapm.xsignmapm.xsignmapm.xsignmapm.xsigninverse tangentmapm.xarctanmapm.xarctanmapm.xarctanmapm.xarctan

powermapm.xpowmapm.xpowmapm.xpowmapm.xpow
inverse hyperbolic
sine

mapm.xarcsinhmapm.xarcsinhmapm.xarcsinhmapm.xarcsinh

multiplicationmapm.xmulmapm.xmulmapm.xmulmapm.xmulinverse sinemapm.xarcsinmapm.xarcsinmapm.xarcsinmapm.xarcsin
common logarithmmapm.xlog10mapm.xlog10mapm.xlog10mapm.xlog10additionmapm.xaddmapm.xaddmapm.xaddmapm.xadd

natural logarithmmapm.xlnmapm.xlnmapm.xlnmapm.xln
inverse hyperbolic
cosine

mapm.mapm.mapm.mapm.
xarccoshxarccoshxarccoshxarccosh

integer divisionmapm.xidivmapm.xidivmapm.xidivmapm.xidivarc cosinemapm.xarccosmapm.xarccosmapm.xarccosmapm.xarccos
factorialmapm.xfactorialmapm.xfactorialmapm.xfactorialmapm.xfactorialabsolute valuemapm.xabsmapm.xabsmapm.xabsmapm.xabs
MeaningMeaningMeaningMeaningFunctionFunctionFunctionFunctionMeaningMeaningMeaningMeaningFunctionFunctionFunctionFunction

Most of the mapmmapmmapmmapm functions accept a second argument - a non-negative integer -
giving the individual precision.

276 7 Standard Libraries

The package provides the following metamethods:

conversion to a string, e.g. for the pretty printer'__tostring'n/a
garbage collection'__gc'n/a
equals'__eq'=
less-than'__lt'<
unary minus'__unm'-
power'__pow'^
modulus'__mod'%
division'__div'/
multiplication'__mul'*
subtraction'__sub'-
addition'__add'+
DescriptionDescriptionDescriptionDescriptionNameNameNameNameOperatorOperatorOperatorOperator

Other functions are:

converts an arbitrary
precision number to
a string

mapm.xtomapm.xtomapm.xtomapm.xtosssstringtringtringtringsignificant digitsmapm.xdigitsinmapm.xdigitsinmapm.xdigitsinmapm.xdigitsin

converts an arbitrary
precision number to
an Agena number

mapm.mapm.mapm.mapm.
xtoxtoxtoxtonnnnumberumberumberumber

sets the number of
digits used in all sub-
sequent calcula-
tions. With no argu-
ment, returns the
current setting

mapm.xdigitsmapm.xdigitsmapm.xdigitsmapm.xdigits

converts an Agena
number or a string
representing a
number to an
arbitrary precision
number

mapm.xnumbermapm.xnumbermapm.xnumbermapm.xnumber
comparison, returns
-1 if x < y, 0 if x = y,
and 1 if x > y

mapm.mapm.mapm.mapm.
xcompare(x,xcompare(x,xcompare(x,xcompare(x, y) y) y) y)

negates a numbermapm.xnegmapm.xnegmapm.xnegmapm.xneg
rounds downwards to
the nearest integer

mapm.xroundmapm.xroundmapm.xroundmapm.xround

modulusmapm.xmodmapm.xmodmapm.xmodmapm.xmodtest for odd numbermapm.xisoddmapm.xisoddmapm.xisoddmapm.xisodd
check for an integralmapm.xisintmapm.xisintmapm.xisintmapm.xisinttest for even numbermapm.xisevenmapm.xisevenmapm.xisevenmapm.xiseven
reciprocalmapm.xinvmapm.xinvmapm.xinvmapm.xinvfloor functionmapm.xfloormapm.xfloormapm.xfloormapm.xfloor

exponent
mapm.mapm.mapm.mapm.
xexponentxexponentxexponentxexponent

ceil functionmapm.xceilmapm.xceilmapm.xceilmapm.xceil

MeaningMeaningMeaningMeaningFunctionFunctionFunctionFunctionMeaningMeaningMeaningMeaningFunctionFunctionFunctionFunction

agenaagenaagenaagena >> 277

7.11 7.11 7.11 7.11 calccalccalccalc - Calculus - Calculus - Calculus - Calculus Package Package Package Package

This package contains mathematical routines to perform basic calculus
numerically. Since the functions do not work symbolically, please beware of
round-off errors. As a plus package, it is not part of the standard distribution and
must be activated with the importimportimportimport statement, e.g. import calc .

A typical example might look like this:

> import calc;

Define a function :f :=x d sin(x)

> f := << x -> sin(x) >>

Determine all its zeros over [-5, 5]:

> calc.zero(f, -5, 5):
seq(-3.1415926535898, 0, 3.1415926535898)

Differentiate it at point 0 and also return an error estimate:

> calc.diff(f, 0):
0.99999999999963 1.8503717573394e-010

Compare it:

> cos(0):
1

Integrate it over [0,]:✜

> calc.gtrap(f, 0, Pi):
1.9999999938721

Summary of functions:

General Calculus:

calc.sectionscalc.sectionscalc.sectionscalc.sections , calc.zerocalc.zerocalc.zerocalc.zero.

Differentiation:

calccalccalccalc....diffdiffdiffdiff, calc.maximumcalc.maximumcalc.maximumcalc.maximum, calc.mcalc.mcalc.mcalc.mininininimumimumimumimum, calc.xpdiffcalc.xpdiffcalc.xpdiffcalc.xpdiff .

Integration:

calc.gtrapcalc.gtrapcalc.gtrapcalc.gtrap, calc.calc.calc.calc.intdeintdeintdeintde, calc.intdeicalc.intdeicalc.intdeicalc.intdei , calc.intdeocalc.intdeocalc.intdeocalc.intdeo, calc.integralcalc.integralcalc.integralcalc.integral ,
calc.simaptivecalc.simaptivecalc.simaptivecalc.simaptive .

278 7 Standard Libraries

Integrals:

calc.Cicalc.Cicalc.Cicalc.Ci, calc.Chicalc.Chicalc.Chicalc.Chi, calc.dawsoncalc.dawsoncalc.dawsoncalc.dawson, calc.Eicalc.Eicalc.Eicalc.Ei, calc.fresnelccalc.fresnelccalc.fresnelccalc.fresnelc , calc.calc.calc.calc.fresnelsfresnelsfresnelsfresnels,
calc.Shicalc.Shicalc.Shicalc.Shi, calc.Sicalc.Sicalc.Sicalc.Si, calc.Ssicalc.Ssicalc.Ssicalc.Ssi.

Sums & Products:

calc.calc.calc.calc.prodprodprodprod, calc.fsumcalc.fsumcalc.fsumcalc.fsum.

Interpolation:

calc.clampedsplinecalc.clampedsplinecalc.clampedsplinecalc.clampedspline , calc.clampedsplinecoeffscalc.clampedsplinecoeffscalc.clampedsplinecoeffscalc.clampedsplinecoeffs , calc.interpcalc.interpcalc.interpcalc.interp , calc.linterpcalc.linterpcalc.linterpcalc.linterp ,
calc.calc.calc.calc.naksplinenaksplinenaksplinenakspline, calc.naksplinecoeffscalc.naksplinecoeffscalc.naksplinecoeffscalc.naksplinecoeffs , ccccalc.alc.alc.alc.nevillenevillenevilleneville, calc.newtoncoeffscalc.newtoncoeffscalc.newtoncoeffscalc.newtoncoeffs ,
calc.polyfitcalc.polyfitcalc.polyfitcalc.polyfit , calc.polygencalc.polygencalc.polygencalc.polygen .

Miscellaneous:

calc.dilogcalc.dilogcalc.dilogcalc.dilog, calc.Psicalc.Psicalc.Psicalc.Psi.

The functions:

calc.Ci (x)

Computes the cosine integral and returns it as a number. x must be a number.

See also: calc.calc.calc.calc.SSSSiiii, calc.Chicalc.Chicalc.Chicalc.Chi, calc.Shicalc.Shicalc.Shicalc.Shi, calc.Ssicalc.Ssicalc.Ssicalc.Ssi.

calc.Chi (x)

Computes the hyperbolic cosine integral and returns it as a number. x must be a
number.

See also: calc.calc.calc.calc.SSSSiiii, calc.Cicalc.Cicalc.Cicalc.Ci, calc.Shicalc.Shicalc.Shicalc.Shi, calc.Ssicalc.Ssicalc.Ssicalc.Ssi.

calc.clampedspline (obj, da:db)

calc.clampedspline (obj, da:db, a)

calc.clampedspline (obj, da:db, a, coeffs)

Evaluates the clamped cubic spline for a given table or sequence obj of pairs
representing the points x k:y k, at a single value a (a number) of the independent
variable x.

The boundary conditions are passed as a pair of numbers da:db, where da is the
derivative of the function at the left border, and db is the derivative of the function
at the right border.

agenaagenaagenaagena >> 279

In the first form, returns a univariate function which can be called with a number to
obtain the value of the interpolating polynomial. For best performance, use this first
form.

In the second form, the function computes the coefficients of the linear, quadratic,
and cubic terms itself in each call.

In the third form, the function expects the coefficients coeffs of the linear,
quadratic, and cubic terms as a sequence of three sequences, in this order, and
each containing numbers. The fourth argument may be obtained by calling
calc.calc.calc.calc.clampedclampedclampedclampedsplinecoeffssplinecoeffssplinecoeffssplinecoeffs .

In the second and third form, the function returns the value of the interpolating
polynomial, a number, at the specified value a of the independent variable x.

In general, the function returns failfailfailfail if the structure contains less than two pairs.

See also: calc.interpcalc.interpcalc.interpcalc.interp , calc.calc.calc.calc.clampedclampedclampedclampedsplinecoeffssplinecoeffssplinecoeffssplinecoeffs , calc.naksplinecalc.naksplinecalc.naksplinecalc.nakspline , calc.nevillecalc.nevillecalc.nevillecalc.neville .

calc.clampedsplinecoeffs (obj, da:db)

Determines the coefficients for the clamped cubic spline for a given table or
sequence obj of pairs representing the points x k:y k. The return can be used to
speed up execution of calc.calc.calc.calc.clampedclampedclampedclampedsplinesplinesplinespline.

The boundary conditions are passed as a pair of numbers da:db, where da is the
derivative of the function at the left border, and db is the derivative of the function
at the right border.

The function returns failfailfailfail if the structure less than two pairs.

See also: calc.calc.calc.calc.clampedclampedclampedclampedsplinesplinesplinespline.

calc.dawson (x)

Computes Dawson's integral for a number x . The return is a number.

See also: expx2expx2expx2expx2.

calc.dilog (x)

Computes the dilogarithm function for a number x . The return is a number.

calc.diff (f, x [, eps])

Computes the value of the first differentiation of a function f at a point x . If eps is
not passed, the function uses an accuracy of the value stored to EpsEpsEpsEps. You may
pass another numeric value for eps if necessary.

280 7 Standard Libraries

The algorithm is based on Conte and de Boor's `Coefficients of Newton form of
polynomial of degree 3`.

See also: calc.xpdiffcalc.xpdiffcalc.xpdiffcalc.xpdiff .

calc.Ei (x)

Computes the exponential integral

Ei(x) = - dt¶
−x

∞
e−t

t

for a number x . The return is a number22, and undefinedundefinedundefinedundefined if x = 0.

calc.fprod (f, a, b)

Computes the product of f (a), ··· , f (b), with f a function, a and b numbers. If a > b,
then the result is 1.

See also: calc.fsumcalc.fsumcalc.fsumcalc.fsum.

calc.fresnelc (x)

Computes the Fresnel integral C(x) = and returns it as a number.¶
0

x

cos(✜2 t2) dt

calc.fresnels (x)

Computes the Fresnel integral S(x) = and returns it as a number.¶
0

x

sin(✜2 t2) dt

calc.fsum (f, a, b [, ···])

Computes the sum of f (a), ··· , f (b), with f a function, a and b numbers. If f requires
two or more arguments, the second, third, etc. argument must be passed after b. If
a > b, then the result is 0. The function uses Kahan-Ozawa round-off error
prevention.

See also: calc.fprodcalc.fprodcalc.fprodcalc.fprod.

calc.gtrap (f, a, b [, eps])

Integrates the function f on the interval [a, b] using a bisection method based on
the trapezoid rule and returns a number. By default the function quits after an
accuracy of eps = EpsEpsEpsEps has been reached. You may pass another numeric value
for eps if necessary.

agenaagenaagenaagena >> 281

22 Please note that for -5 x < 0, the result is an approximation.ñ

See also: calc.calc.calc.calc.intdeintdeintdeintde, calc.intdeicalc.intdeicalc.intdeicalc.intdei , calc.intdeocalc.intdeocalc.intdeocalc.intdeo, calc.integralcalc.integralcalc.integralcalc.integral , calc.simaptivecalc.simaptivecalc.simaptivecalc.simaptive .

calc.intde (f, a, b [, eps])

Integrates the function f on the interval [a, b], with a and b numbers, using Double
Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

f needs to be analytic over [a, b]. eps is the relative error requested excluding
cancellation of significant digits, and by default is equal to 1e-15. Specifically, eps

means: (absolute error) / ().¶
a

b

f(x) dx

The return is 1) the approximation to the integral, or failfailfailfail if evaluation failed, and 2)
an estimate err of the absolute error, where

� err 0: normal termination,m

� err < 0: abnormal termination, i.e. an convergent error has been detected: 1)
f(x) or f(x) has discontinuous points or sharp peaks over [a, b] (you must divided

dx

n

the interval [a, b] at these points). 2) The relative error of f(x) is greater than eps . 3)
f(x) has an oscillatory factor and the frequency of the oscillation is very high.

This function is four times faster than calc.gtrapcalc.gtrapcalc.gtrapcalc.gtrap and also much more accurate. It
can be applied on any polynomial, exponential or trigonometric function,
logarithm, power function, and most special functions.

See also: calc.calc.calc.calc.gtrapgtrapgtrapgtrap, calc.intdeicalc.intdeicalc.intdeicalc.intdei , calc.intdeocalc.intdeocalc.intdeocalc.intdeo, calc.integralcalc.integralcalc.integralcalc.integral , calc.simaptivecalc.simaptivecalc.simaptivecalc.simaptive .

calc.intdei (f, a, [, eps])

Integrates the non-oscillatory function f on the interval [a,], with a a number, using∞

Double Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

f needs to be analytic over [a,]. eps is the relative error requested excluding∞

cancellation of significant digits, and by default is equal to 1e-15. Specifically, eps

means: (absolute error) / ().¶
a

b

f(x) dx

The return is either the approximation to the integral, or failfailfailfail if evaluation failed, and
an estimate err of the absolute error. For further information see calc.intde.

See also: calc.calc.calc.calc.gtrapgtrapgtrapgtrap, calc.intdecalc.intdecalc.intdecalc.intde, calc.integralcalc.integralcalc.integralcalc.integral , calc.simaptivecalc.simaptivecalc.simaptivecalc.simaptive .

calc.intdeo (f, a, [, omega [, eps])

Integrates the oscillatory function f on the interval [a,], with a a number, using∞

Double Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

282 7 Standard Libraries

f needs to be analytic over [a,]. omega is the oscillatory factor of f and by default∞

is 1. eps is the relative error requested excluding cancellation of significant digits,

and by default is equal to 1e-15. Specifically, eps means: (absolute error)/().¶
a

b

f(x) dx

The return is either the approximation to the integral, or failfailfailfail if evaluation failed, and
an estimate err of the absolute error. For further information see calc.intde.

See also: calc.calc.calc.calc.gtrapgtrapgtrapgtrap, calc.intdecalc.intdecalc.intdecalc.intde, calc.intdecalc.intdecalc.intdecalc.intde iiii, calc.integralcalc.integralcalc.integralcalc.integral , calc.simaptivecalc.simaptivecalc.simaptivecalc.simaptive .

calc.integral (f, a, b [, omega [, eps])

This function is a wrapper around calc.intdecalc.intdecalc.intdecalc.intde, calc.intdeicalc.intdeicalc.intdeicalc.intdei, and calc.intdeocalc.intdeocalc.intdeocalc.intdeo. If eps is
not given, it is 1e-15 by default. If omega is not given, it is 1. The return is the integral
value and the error margin, both are numbers.

If b is not infinityinfinityinfinityinfinity, the function calls calc.intdecalc.intdecalc.intdecalc.intde and returns its results.

If b is infinity, the function first calls calc.intdeicalc.intdeicalc.intdeicalc.intdei and returns its results, if intdeiintdeiintdeiintdei does not
evaluate to failfailfailfail. Otherwise, calc.intdeocalc.intdeocalc.intdeocalc.intdeo is called.

See also: calc.calc.calc.calc.gtrapgtrapgtrapgtrap, calc.intdecalc.intdecalc.intdecalc.intde, calc.intdeicalc.intdeicalc.intdeicalc.intdei , calc.calc.calc.calc.intdeointdeointdeointdeo, calc.simaptivecalc.simaptivecalc.simaptivecalc.simaptive .

calc.interp (obj)

calc.interp (obj, a)

calc.interp (obj, a, coeffs)

In the first form, computes a Newton interpolating polynomial and returns it as a
univariate function. The interpolation points are passed in a table obj , with each
point being represented by the pair x k:y k.

Example:

> f := calc.interp([0:0, 1:3, 2:1, 3:3]);

Call f at point 10:

> f(10):
885

In the second and third form, evaluates the Newton form of the polynomial which
interpolates a given table or sequence obj of pairs representing the points x k:y k, at
a single value a (a number) of the independent variable.

In the second form, the function computes the coefficients itself in each call.

agenaagenaagenaagena >> 283

In the third form, by passing a sequence coeffs of coefficients (numbers), the
function uses the coefficients passed, avoiding their (re-)computation. The third
argument may be obtained by calling calc.calc.calc.calc.newtonnewtonnewtonnewtoncoeffscoeffscoeffscoeffs.

Both in second and third form, the function returns the value of the interpolating
polynomial, a number, at the specified value a of the independent variable. It is
advised to use the first form to benefit from maximum speed.

Example:

> calc.interp([0:0, 1:3, 2:1, 3:3], 10):
885

See also: calc.ccalc.ccalc.ccalc.clampedlampedlampedlampedsplinesplinesplinespline, calc.naksplinecalc.naksplinecalc.naksplinecalc.nakspline, calc.nevillecalc.nevillecalc.nevillecalc.neville, calc.newtoncoeffcalc.newtoncoeffcalc.newtoncoeffcalc.newtoncoeffssss,
calc.polyfitcalc.polyfitcalc.polyfitcalc.polyfit , calc.linterpcalc.linterpcalc.linterpcalc.linterp .

calc.linterp (obj)

Returns a function that conducts a Lagrange interpolation for a given sequence or
table obj of numeric pairs x:y where x and y denote a point in the plane. It is often
said that Lagrange interpolation is suited for theoretical purposes only, since it is also
very slow.

See also: calc.interpcalc.interpcalc.interpcalc.interp , calc.polyfitcalc.polyfitcalc.polyfitcalc.polyfit .

calc.maximum (f, a, b, [step [, eps]])

Returns all possible maximum locations of the univariate function f on the interval
[a, b]. The function divides the interval [a, b] into smaller intervals [a, a+step],
[a+step , a+2*step], ··· , [b-step , b], with step =0.1 if step is not given. It then looks
for possible maximum locations x in these smaller intervals and checks whether the
first derivative of f at x is 0.

f must be differentiable on [a, b]. The procedure returns two sequences.

The accuracy of the procedure is determined by eps , with eps = EpsEpsEpsEps as a default. If
a possible extreme location x matches the condition f'(x) = 0 with this accuracy,
it is included in the first sequence that the procedure returns. If the test fails and eps
 EpsEpsEpsEps, then an accuracy of 1e-5 is used for a second test. If it succeeds, x is[

included into both the first and the second sequence, indicating to the user that
the first test failed.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.mcalc.mcalc.mcalc.miniiniiniinimummummummum.

284 7 Standard Libraries

calc.minimum (f, a, b, [step [, eps]])

Returns all possible minimum locations of the univariate function f on the interval [a,
b]. The function divides the interval [a, b] into smaller intervals [a, a+step], [a+step ,
a+2*step], ··· , [b-step , b], with step =0.1 if step is not given. It then looks for
possible minimum locations x in these smaller intervals and checks whether the first
derivative of f at x is 0.

f must be differentiable on [a, b]. The procedure returns two sequences.

The accuracy of the procedure is determined by eps , with eps = EpsEpsEpsEps as a default. If
a possible extreme location x matches the condition f'(x) = 0 with this accuracy,
it is included in the first sequence that the procedure returns. If the test fails and eps
 EpsEpsEpsEps, then an accuracy of 1e-5 is used for a second test. If it succeeds, x is[

included into both the first and the second sequence, indicating to the user that
the first test failed.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.maximumcalc.maximumcalc.maximumcalc.maximum.

calc.nakspline (obj)

calc.nakspline (obj, a)

calc.nakspline (obj, a, coeffs)

Evaluates the `not-a-knot` cubic spline for a given table or sequence obj of pairs
representing the points x k:y k, at a single value a (a number) of the independent
variable.

In the first form, returns a univariate function which can be called with a number to
obtain the value of the interpolating polynomial. This is the recommended usage
due to its run-time behaviour.

In the second form, the function computes the coefficients of the linear, quadratic,
and cubic terms itself in each call.

In the third form, the function expects the coefficients coeffs of the linear,
quadratic, and cubic terms as a sequence of three sequences, in this order, and
each containing numbers. The third argument may be obtained by calling
calc.naksplinecoeffscalc.naksplinecoeffscalc.naksplinecoeffscalc.naksplinecoeffs .

In the second and third form, the function returns the value of the interpolating
polynomial, a number, at the specified value a of the independent variable.

In general, the function returns failfailfailfail if the structure contains less than four pairs.

See also: calc.clampedsplinecalc.clampedsplinecalc.clampedsplinecalc.clampedspline , calc.interpcalc.interpcalc.interpcalc.interp , calc.naksplinecoeffscalc.naksplinecoeffscalc.naksplinecoeffscalc.naksplinecoeffs , calc.nevillecalc.nevillecalc.nevillecalc.neville .

agenaagenaagenaagena >> 285

calc.naksplinecoeffs (obj)

Determines the coefficients for the `not-a-knot` cubic spline for a given table or
sequence obj of pairs representing the points x k:y k. The return can be used to
speed up execution of calc.ncalc.ncalc.ncalc.naksplineaksplineaksplineakspline.

The function returns failfailfailfail if the structure contains less than four pairs.

See also: calc.naksplinecalc.naksplinecalc.naksplinecalc.nakspline .

calc.neville (obj)

calc.neville (obj, a)

In the first form, returns a function that conducts an Aitken-Neville interpolation for a
given sequence or table obj of numeric pairs x k:y k where x k and y k denote a point
in the plane.

In the second form, evaluates the polynomial which interpolates a given sequence
or table obj of points represented by pairs of the form x k:y k at a single value a (a
number) of the independent variable, using Aitken-Neville interpolation, and returns
a number.

Example:

> calc.neville([1:1, 2:2, 3:3], 2):
2

See also: calc.calc.calc.calc.clampedclampedclampedclampedsplinesplinesplinespline, calc.interpcalc.interpcalc.interpcalc.interp , calc.naksplinecalc.naksplinecalc.naksplinecalc.nakspline .

calc.newtoncoeffs (obj)

Returns a sequence of the coefficients of type number of the Newton form of the
polynomial which interpolates a given table or sequence obj of pairs representing
the points x k:y k. The return can be used to speed up execution of calc.calc.calc.calc.interpinterpinterpinterp.

See also: calccalccalccalc.interp.interp.interp.interp.

calc.polyfit (obj, n)

Returns a sequence of coefficients of an n-th-degree polynomial of a sample, in
order of descending degree fitting the input sequence or sequence obj of pairs
xk:yk, with xk and yk being numbers, and using polynomial regression. The degree n

must be a positive integer.

The return may be passed to calc.polygencalc.polygencalc.polygencalc.polygen to generate a polynomial function (use
unpackunpackunpackunpack when passing the coefficient vector), e.g. calc.polygen(unpack(

calc.polyfit(seq(1:0, 2:3, 3:1), 2))) .

286 7 Standard Libraries

There is no limit on the degree, but a degree of 7 or more is not regarded
appropriate.

The function tries to reproduce polynomial trend lines known from spreadsheet
applications.

See also: calc.interpcalc.interpcalc.interpcalc.interp , calc.linterpcalc.linterpcalc.linterpcalc.linterp , calc.polygencalc.polygencalc.polygencalc.polygen .

calc.polygen (c n, c n-1 , ···, c 2, c 1)

Creates a polynomial p(x) = c n*xn-1 + c n-1 *xn-2 + ··· + c 2*x + c 1 from the
coefficients c n, c n-1 , ··· , c 2, c 1 and returns it as a new function p := << x-> p(x) >>,
where x and the return p(x) represent numbers.

See also: calc.polycalc.polycalc.polycalc.poly fitfitfitfit.

calc.Psi (x)

Computes the Psi (digamma) function, the logarithmic derivative of the gamma
function, for a number x . The return is a number.

calc.sections (f, a, b, step)

Returns all intervals where a function has a change in sign. f must be a function, a
the left border of the main interval, b its right border, and step the step size. The
return is a sequence of pairs denoting the found subintervals.

See also: calc.zerocalc.zerocalc.zerocalc.zero.

calc.Shi (x)

Computes the hyperbolic sine integral and returns it as a number. x must be a
number.

See also: calc.Cicalc.Cicalc.Cicalc.Ci, calc.Chicalc.Chicalc.Chicalc.Chi, calc.Sicalc.Sicalc.Sicalc.Si, calc.Ssicalc.Ssicalc.Ssicalc.Ssi.

calc.Si (x)

Computes the sine integral and returns it as a number. x must be a number.

See also: calc.Cicalc.Cicalc.Cicalc.Ci, calc.Chicalc.Chicalc.Chicalc.Chi, calc.Shicalc.Shicalc.Shicalc.Shi, calc.Ssicalc.Ssicalc.Ssicalc.Ssi.

calc.simaptive (f, a, b [, h_min [, eps]])

Integrates the function f on the interval [a, b] using Simpson-Simpson Adaptive
Quadrature and returns a number. The function returns failfailfailfail, if no suitable subinterval
of length greater than min_h could be found for which the estimated error falls
below eps .

agenaagenaagenaagena >> 287

The function is thrice as fast as calc.integralcalc.integralcalc.integralcalc.integral, but is not suited with singularities at or
within the borders.

By default, h_min is 1e-7, and eps is EpsEpsEpsEps/2, where EpsEpsEpsEps is the global system variable
EpsEpsEpsEps.

See also: calc.gtrapcalc.gtrapcalc.gtrapcalc.gtrap, calc.calc.calc.calc.intdeintdeintdeintde, calc.intdeicalc.intdeicalc.intdeicalc.intdei , calc.intdeocalc.intdeocalc.intdeocalc.intdeo, calc.integralcalc.integralcalc.integralcalc.integral .

calc.Ssi (x)

Computes the shifted sine integral and returns it as a number. x must be a number.

See also: calc.Cicalc.Cicalc.Cicalc.Ci, calc.Chicalc.Chicalc.Chicalc.Chi, calc.Shicalc.Shicalc.Shicalc.Shi, calc.Sicalc.Sicalc.Sicalc.Si.

calc.xpdiff (f, x, [, eps [, delta]])

Like calc.diffcalc.diffcalc.diffcalc.diff, but uses Richardson's extrapolation method. f is the function to be
iterated at point x (a number). eps and delta are accuracy values (numbers, as
well). The return of the procedure are the derivative of f at x - a number - and the
error.

xpdiffxpdiffxpdiffxpdiff produces better results with powers and trigonometric functions than calc.diffcalc.diffcalc.diffcalc.diff .

calc.zero (f, a, b, [step [, eps]])

Returns all roots of a function f in one variable on the interval [a, b].

The function divides the interval [a, b] into smaller intervals [a, a+step], [a+step ,
a+2*step], ··· , [b-step , b], with step =0.1 if step is not given. It then looks for
changes in sign in these smaller intervals and if it finds them, determines the roots
using a modified regula falsi method.

The accuracy of the regula falsi method is determined by eps , with eps = EpsEpsEpsEps as a
default. f must be differentiable on [a, b].

The function is implemented in Agena and included in the lib/calc.agnlib/calc.agnlib/calc.agnlib/calc.agn file.

See also: calc.sectionscalc.sectionscalc.sectionscalc.sections .

288 7 Standard Libraries

7.12 7.12 7.12 7.12 linalglinalglinalglinalg - Linear Algebra - Linear Algebra - Linear Algebra - Linear Algebra P P P Packageackageackageackage

This package provides basic functions for Linear Algebra. As a plus package, it is
not part of the standard distribution and must be activated with the importimportimportimport
statement, e.g. import linalg .

There are two constructors available to define vectors and matrices, linalg.vectorlinalg.vectorlinalg.vectorlinalg.vector
and linalg.matrixlinalg.matrixlinalg.matrixlinalg.matrix. Except of these two procedures, the package functions assume
that the geometric objects passed have been created with the above mentioned
constructors.

The package includes a metatable linalg.vmtlinalg.vmtlinalg.vmtlinalg.vmt defined in the lib/linalg.agn file with
metamethods for vector addition, vector subtraction, and scalar vector
multiplication. Further functions are provided to compute the length of a vector with
the absabsabsabs operator and to apply unary minus to a vector.

The table linalg.mmtlinalg.mmtlinalg.mmtlinalg.mmt defines metamethods for matrix addition, subtraction and
multiplication with a scalar. It is assigned via the lib/linalg.agn file, as well.

The vectorvectorvectorvector function allows to define sparse vectors, i.e. if the component n of a
vector v has not been physically set, and if v[n] is called, the return is 0 and not nullnullnullnull.

The dimension of the vector and the dimensions of the matrix are indexed with the
'dim' key of the respective object. You should not change this setting to avoid
errors. Existing vector and matrix values can be overwritten but you should take care
to save the correct new values.

A sample session:

> import linalg alias

Define two vectors in two fashions: In the simple form, just pass all components
explicitly:

agenaagenaagenaagena >> 289

23 The ==== operator just checks whether an element in one structure is residing at any position in the
other structure, whereas the ======== and ~=~=~=~= operators check elements place-by-place. Developers
who would like to extend the linalglinalglinalglinalg package may also have a look at the __eeq and __aeq
metamethod. to influence the behaviour of the ======== and ~= operators, respectively.

Equality checks of vectors or matrices should always be conducted with the
strict equality operator ======== or the ~=~=~=~= approximate equality operator
instead of the Cantor-like ==== equality operator23. For inequality use the

notnotnotnot operator combined with ======== or ~=~=~=~=.

> a := vector(1, 2, 3):
[1, 2, 3]

In a more elaborate form, indicate the dimension of the vector to be created and
only pass the vector components that are not zero in a table:

> b := vector(3, [1~2]):
[2, 0, 0]

Check whether a and b are parallel and have the same direction:

> abs(a+b) = abs(a) + abs(b):
false

Addition:

> a + b:
[3, 2, 3]

Subtraction:

> a - b:
[-1, 2, 3]

Scalar multiplication:

> 2 * a:
[2, 4, 6]

> crossprod(a, b):
[0, 6, -4]

Find the vector x which satisfies the matrix equation A x = b. In this example, we will

solve the equation * x = . The linalg.matrixlinalg.matrixlinalg.matrixlinalg.matrix constructor expects
1 2 −4
2 1 3

−3 1 6

−6
5

−2

row vectors.

> A := matrix([1, 2, -4], [2, 1, 3], [-3, 1, 6]):
[1, 2, -4]
[2, 1, 3]
[-3, 1, 6]

> b := vector(-6, 5, -2):
[-6, 5, -2]

> backsubs(A, b):
[2, -2, 1]

The linalglinalglinalglinalg operators and functions are:

s1 + s2

Adds two vectors or matrices s1 , s2 . The return is a new vector or matrix. This
operation is done by applying the __add metamethod.

290 7 Standard Libraries

s1 - s2

Subtracts two vectors or matrices s1 , s2 . The return is a new vector or matrix. This
operation is done by applying the __sub metamethod.

k * s
s * k
m1 * m2

Multiplies a number k with each element in vector or matrix s , or multiplies the
matrix m1 with matrix m2. The return is a new vector or matrix. This operation is done
by applying the __mul metamethod.

abs (v)

Determines the length of vector v . This operation is done by applying the __abs

metamethod to v .

qsadd (v)

Raises all elements in vector v to the power of 2. The return is the sum of these
powers, i.e. a number. This operation is done by applying the __qsadd metamethod
to v .

linalg.add (v, w)

Determines the vector sum of vector v and vector w. The return is a vector.

See also: linalg.sublinalg.sublinalg.sublinalg.sub.

linalg.augment (···)

Joins two or more matrices or vectors together horizontally. Vectors are supposed to
be column vectors. The matrices and vectors must have the same number of rows.

The return is a new matrix.

See also: linalg.stacklinalg.stacklinalg.stacklinalg.stack .

linalg.backsub (A)

linalg.backsub (A, v)

Performs backward substitution on a system of linear equations.

In the first form, A must be an augmented m x n lower triangular matrix with m+1 =
n. In the second form, A is an lower triangular square matrix and v a right-hand side
vector.

The return is the solution vector.

agenaagenaagenaagena >> 291

The function issues an error if A is not upper triangular. You may change the
tolerance to detect `zeros` by setting the global system variable EpsEpsEpsEps to another
value.

See also: linalg.backsublinalg.backsublinalg.backsublinalg.backsub , linalg.rreflinalg.rreflinalg.rreflinalg.rref .

linalg.backsubs (A, b)

The function has been deprectated. Please use linalg.gsolvelinalg.gsolvelinalg.gsolvelinalg.gsolve instead.

linalg.checkmatrix (A [, B, ···] [, true])

Issues an error if at least one of its arguments is not a matrix. If the last argument is
truetruetruetrue, then the matrix dimensions are returned as a pair, else the function returns
nothing.

Contrary to linalg.checkvectorlinalg.checkvectorlinalg.checkvectorlinalg.checkvector, the dimensions will not be checked if you pass
more than one matrix.

linalg.checksquare (A)

Issues an error if A is not a square matrix. It returns nothing. See linalg.islinalg.islinalg.islinalg.isssssquarequarequarequare for
information on how this check is being done.

linalg.checkvector (v [, w, ···])

Issues an error if at least one of its arguments is not a vector. In case of two or more
vectors it also checks their dimensions and returns an error if they are different.

If everything goes fine, the function will return the dimensions of all vectors passed.

See linalg.islinalg.islinalg.islinalg.isvvvvectorectorectorector for information on how the check is being done.

linalg.coldim (A [, ···])

Determines the column dimension of the matrix A. The return is a number.

If you pass more than one argument, then a time-consuming check whether A is a
matrix, is skipped.

A more direct way of determining the column dimension is right(A.dim) .

See also: linalg.linalg.linalg.linalg.rowdrowdrowdrowdimimimim.

linalg.column (A, n)

Returns the n-th column of the matrix or row vector A as a new vector.

See also: linalg.submatrixlinalg.submatrixlinalg.submatrixlinalg.submatrix .

292 7 Standard Libraries

linalg.c rossprod (v, w)

Computes the cross-product of two vectors v , w of dimension 3. The return is a
vector.

linalg.det (A)

Computes the determinant of the square matrix A. The return is a number. With
singular matrices, it returns 0.

linalg.diagonal (v)

Creates a square matrix A with all vector components in v put on the main
diagonal. The first element in v is assigned A[1][1] , the second element in v is
assigned A[2][2] , etc. Thus the result is a dim(v) x dim(v)-matrix.

See also: linalg.getdiagonallinalg.getdiagonallinalg.getdiagonallinalg.getdiagonal .

linalg.dim (A)

Determines the dimension of a matrix or a vector A. If A is a matrix, the result is a pair
with the left-hand side representing the number of rows and the right-hand side
representing the number of columns. If A is a vector, the size of the vector is
determined.

linalg.dotprod (v, w)

Computes the vector dot product of two vectors v , w of same dimension. The
vectors must consist of Agena numbers. The return is a number.

linalg.forsub (A)

linalg.forsub (A, v)

Performs forward substitution on a system of linear equations.

In the first form, A must be an augmented m x n upper triangular matrix with m+1 =
n. In the second form, A is an upper triangular square matrix and v a right-hand side
vector.

The return is the solution vector.

The function issues an error if A is not upper triangular. You may change the
tolerance to detect `zeros` by setting the global system variable EpsEpsEpsEps to another
value.

See also: linalg.backsublinalg.backsublinalg.backsublinalg.backsub , linalg.rreflinalg.rreflinalg.rreflinalg.rref .

agenaagenaagenaagena >> 293

linalg.getdiagonal (A)

Returns the diagonal of the square matrix A as a vector.

See also: linalg.diagonallinalg.diagonallinalg.diagonallinalg.diagonal .

linalg.gsolve (A [, true])

linalg.gsolve (A, v [, true])

Performs Gaussian elimination on a system of linear equations.

In the first form, A must be an augmented m x n matrix with m+1 = n. In the second
form, A is a square matrix and v a right-hand side vector.

The return is the solution vector. It returns infinityinfinityinfinityinfinity if an infinite number of solutions has
been found, and undefinedundefinedundefinedundefined if no solutions exists. It returns failfailfailfail if it could not
determine whether no or an infinite number of solutions exist.

If the Boolean value truetruetruetrue is given as the last argument, the reduced linear system is
also returned as an (augmented) upper triangular matrix.

See also: linalg.backsublinalg.backsublinalg.backsublinalg.backsub , linalg.forsublinalg.forsublinalg.forsublinalg.forsub , linalg.rreflinalg.rreflinalg.rreflinalg.rref .

linalg.hilbert (n [, x])

Creates a generalised n x n Hilbert matrix H, with H[i, j] := 1/(i+j-x). If x is not
specified, then x is 1. (n and x must be numbers.)

linalg.identity (n)

Creates an identity matrix of dimension n with all components on the main
diagonal set to 1 and all other components set to 0.

linalg.inverse (A)

Returns the inverse of the square matrix A.

linalg.isantisymmetric (A)

Checks whether the matrix A is an antisymmetric matrix. If so, it returns truetruetruetrue and falsefalsefalsefalse
otherwise.

linalg.isdiagonal (A)

Checks whether the matrix A is a diagonal matrix. If so, it returns truetruetruetrue and falsefalsefalsefalse
otherwise.

294 7 Standard Libraries

linalg.isidentity (A)

Checks whether the matrix A is an identity matrix. If so, it returns truetruetruetrue and falsefalsefalsefalse
otherwise.

linalg.ismatrix (A)

Returns truetruetruetrue if A is a matrix, and falsefalsefalsefalse otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘matrix’.

linalg.issquare (A)

Returns truetruetruetrue if A is a square matrix, i.e. a matrix with equal column and row
dimensions, and falsefalsefalsefalse otherwise.

linalg.issymmetric (A)

Checks whether the matrix A is a symmetric matrix. If so, it returns truetruetruetrue and falsefalsefalsefalse
otherwise.

linalg.isvector (A)

Returns truetruetruetrue if A is a vector, and falsefalsefalsefalse otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘vector’.

linalg.ludecomp (A [, n])

Computes the LU decomposition of the square, non-singular matrix A of order n. If n
is missing, it is determined automatically, i.e. n := left(A.dim) .

The return is the resulting matrix, the permutation vector as a vector, and a number
where this number is either 1 for an even number of row interchanges done during
the computation, or -1 if the number of row interchanges was odd. If the matrix is
singular, an error is issued.

linalg.matrix (obj 1, obj 2, ···, obj n)

linalg.matrix (m, n [, lv])

In the first form, creates a matrix from the given structures obj k. The structures are
considered to be row vectors. Valid structures are vectors created with linalg.vectorlinalg.vectorlinalg.vectorlinalg.vector,
tables or sequences.

In the second form, with m and n integers, creates a m x n matrix and optionally fills
it row by row with the elements in the table or sequence lv . lv must not include
structures. If lv is not given, the matrix is filled with zeros.

The return is a table of the user-defined type 'matrix' and a metatable linalg.mmtlinalg.mmtlinalg.mmtlinalg.mmt
assigned to the matrix. The table key 'dim' contains a pair with the dimensions of

agenaagenaagenaagena >> 295

the matrix: the left-hand side specifies the number of rows, the right-hand side the
number of columns.

See also: linalg.vectorlinalg.vectorlinalg.vectorlinalg.vector , utils.readcsvutils.readcsvutils.readcsvutils.readcsv .

linalg.maeq (A, B)

This function checks matrix A and matrix B for approximate equality. The return is
either truetruetruetrue or falsefalsefalsefalse. The function uses Donald Knuth's approximation method to
compare matrix elements (see the approxapproxapproxapprox function for information on how this
works).

You can change the accuracy threshold epsilon with the environ.kernel/epsenviron.kernel/epsenviron.kernel/epsenviron.kernel/eps
function.

See also: ~==== metamethod, approxapproxapproxapprox, linalg.meeqlinalg.meeqlinalg.meeqlinalg.meeq, linalg.vlinalg.vlinalg.vlinalg.vaaaaeqeqeqeq.

linalg.meeq (A, B)

This function checks matrix A and matrix B for strict equality. The return is either truetruetruetrue or
falsefalsefalsefalse.

See also: ======== metamethod, linalg.mlinalg.mlinalg.mlinalg.maaaaeqeqeqeq, linalg.vlinalg.vlinalg.vlinalg.veeeeeqeqeqeq.

linalg.mmap (f, A [, ···])

This function maps a function f to all the components in the matrix A and returns a
new matrix. The function must return only one value. See linalg.vmaplinalg.vmaplinalg.vmaplinalg.vmap for further
information.

linalg.mmul (A, B)

This function multiplies an m x n matrix A with an n x p matrix B. The return is an m x p
matrix. See also: **** metamethod.

linalg.mulrow (A, i, s)

Multiplies each element of row i in matrix A with the scalar s and returns a new
matrix.

See also: linalg.linalg.linalg.linalg.swapcolswapcolswapcolswapcol, linalg.linalg.linalg.linalg.swapswapswapswaprowrowrowrow, linalg.mulrowaddlinalg.mulrowaddlinalg.mulrowaddlinalg.mulrowadd .

linalg.mulrowadd (A, i, j, s)

Returns a copy of matrix A with each element in row j exchanged by the sum of this
element and the respective element in row i multiplied by the number s .

See also: linalg.linalg.linalg.linalg.swapcolswapcolswapcolswapcol, linalg.linalg.linalg.linalg.swapswapswapswaprowrowrowrow, linalg.mulrowaddlinalg.mulrowaddlinalg.mulrowaddlinalg.mulrowadd .

296 7 Standard Libraries

linalg.mzip (f, A, B [, ···])

This function zips together two matrices A, B by applying the function f to each of its
respective components. The result is a new matrix m where each element m[i, j] is
determined by m[i, j] := f (A[i, j], B[i, j]). If the f has more than two arguments, then its
third to last argument must be given right after B.

A and B must have the same dimension.

See also: linalg.vziplinalg.vziplinalg.vziplinalg.vzip , linalg.mmaplinalg.mmaplinalg.mmaplinalg.mmap, linalg.mziplinalg.mziplinalg.mziplinalg.mzip.

linalg.norm (A)

linalg.norm (v [, n])

The function returns the norm of a matrix or vector.

In the first form, the function returns the infinity norm of a matrix A. It is the maximum
row sum, where the row sum is the sum of the absolute values of the elements in a
given row.

In the second form, it returns the n-norm of a vector v , where n is a positive integer.
(The n-norm of a vector is the nth root of the sum of the magnitudes (absolute
values) of each element in v raised to the nth power.) If n is infinityinfinityinfinityinfinity, the return is the
infinity norm, i.e. the maximum magnitude of all elements v .

linalg.rowdim (A [, ···])

Determines the row dimension of the matrix A. The return is a number.

If you pass more than one argument, then a time-consuming check whether A is a
matrix, is skipped.

A more direct way of determining the column dimension is left(A.dim) .

See also: linalg.coldimlinalg.coldimlinalg.coldimlinalg.coldim .

linalg.rref (A [, v])

Returns the reduced row echelon form of any m x n matrix A.

If a vector v is given, the function computes the reduced row echelon form of the
augmented matrix A| v . In this case, A and v must have equal dimensions.

See also: linalg.linalg.linalg.linalg.gsolvegsolvegsolvegsolve.

agenaagenaagenaagena >> 297

linalg.scalarmul (v, n)

linalg.scalarmul (n, v)

Performs a scalar multiplication by multiplying each element in vector v by the
number n. The result is a new vector.

linalg.scale (A)

Normalises the (non-null) columns of a matrix A in such a way that, in each column,
an element of maximum absolute value equals 1. The return is a new matrix where
the normalised vectors are delivered in the corresponding columns.

See also: math.normmath.normmath.normmath.norm, stats.scalestats.scalestats.scalestats.scale.

linalg.stack (···)

Joins two or more matrices or vectors together vertically. Vectors are supposed to
be row vectors. The matrices and vectors must have the same number of columns.

The return is a new matrix.

See also: linalg.augmentlinalg.augmentlinalg.augmentlinalg.augment .

linalg.submatrix (A, p [, r])

linalg.submatrix (A, p:q [, r:s])

In the first form, returns column p from matrix A as a new row vector.

In the second form, returns columns p to q as a new matrix.

An optional third argument may be given to limit the extraction of the columns to
the specified row r or rows r to s .

With the second and third arguments, you may mix numbers with pairs.

See also: linalg.columnlinalg.columnlinalg.columnlinalg.column .

linalg.swapcol (A, p, q)

Swaps column p in matrix A with column q. p, q must be positive integers. The result is
a new matrix.

See also: linalglinalglinalglinalg....swaprowswaprowswaprowswaprow, linalg.mulrowlinalg.mulrowlinalg.mulrowlinalg.mulrow , linalg.mulrowaddlinalg.mulrowaddlinalg.mulrowaddlinalg.mulrowadd .

linalg.swaprow (A, p, q)

Swaps row p in matrix A with row q. p, q must be positive integers. The result is a new
matrix.

298 7 Standard Libraries

See also: linalg.linalg.linalg.linalg.swapcolswapcolswapcolswapcol, linalg.mulrowlinalg.mulrowlinalg.mulrowlinalg.mulrow , linalg.mulrowaddlinalg.mulrowaddlinalg.mulrowaddlinalg.mulrowadd .

linalg.sub (v, w)

Subtracts vector w from vector v . The result is a new vector.

See also: linalglinalglinalglinalg....addaddaddadd.

linalg.trace (A)

Computes the trace of a square matrix A and returns a number.

linalg.transpose (A)

Computes the transpose of a m x n-matrix A and thus returns an n x m-matrix.

linalg.vector (a1, a2, ···)

linalg.vector ([a1, a2, ···])

linalg.vector (seq(a1, a2, ···))

linalg.vector (n, [a1, a2, ···])

linalg.vector (n, [])

Creates a vector with numeric components a1, a2, etc. The function also accepts a
table or sequence of elements a1, a2, etc. (second and third form).

In the fourth form, n denotes the dimension of the vector, and ak might be single
values or key~value pairs. By a metamethod, vector components not explicitly set
automatically default to 0. This allows you to create memory-efficient sparse vectors
and thus matrices.

In the fifth form, a sparse zero vector of dimension n is returned.

The result is a table of the user-defined type 'vector' and the linalg.vmtlinalg.vmtlinalg.vmtlinalg.vmt metatable
assigned to allow basic vector operations with the operators ++++, ----, ****, unary minus
and absabsabsabs. The table key 'dim' contains the dimension of the vector created.

See also: linalg.matrixlinalg.matrixlinalg.matrixlinalg.matrix .

linalg.vaeq (a, b)

This function checks vector a and vector b for approximate equality. The return is
either truetruetruetrue or falsefalsefalsefalse. The function uses Donald Knuth's approximation method to
compare vector elements (see the approxapproxapproxapprox function for information on how this
works).

You can change the accuracy threshold epsilon with the environ.kernel/epsenviron.kernel/epsenviron.kernel/epsenviron.kernel/eps
function.

agenaagenaagenaagena >> 299

See also: ~==== metamethod, approxapproxapproxapprox, linalg.veeqlinalg.veeqlinalg.veeqlinalg.veeq, linalg.mlinalg.mlinalg.mlinalg.maaaaeqeqeqeq.

linalg.veeq (a, b)

This function checks vector a and vector b. for strict equality. The return is either truetruetruetrue
or falsefalsefalsefalse.

See also: ======== metamethod, linalg.mlinalg.mlinalg.mlinalg.meeeeeqeqeqeq, linalg.vlinalg.vlinalg.vlinalg.vaaaaeqeqeqeq.

linalg.vmap (f, v [, ···])

This operator maps a function f to all the components in vector v and returns a new
vector. The function f must return only one value.

If function f has only one argument, then only the function and the vector are
passed to linalg.vmaplinalg.vmaplinalg.vmaplinalg.vmap. If the function has more than one argument, then all
arguments except the first are passed right after the name of the vector.

Examples:

> vmap(<< x -> x^2 >>, vector(1, 2, 3)):
[1, 4, 9]

> vmap(<< (x, y) -> x > y >>, vector(1, 0, 1), 0): # 0 for y
[true, false, true]

See also: linalg.linalg.linalg.linalg.vzipzipzipzip, linalg.mlinalg.mlinalg.mlinalg.mmapmapmapmap, linalg.mlinalg.mlinalg.mlinalg.mzip.

linalg.vzip (f, v1, v2 [, ···])

This function zips together two vectors by applying the function f to each of its
respective components. The result is a new vector v' where each element v'[k] is
determined by v'[k] := f(v1 [k], v2 [k]).

v1 and v2 must have the same dimension. The third to last argument to f must be
given right after v2 .

See also: linalg.vmaplinalg.vmaplinalg.vmaplinalg.vmap, linalg.vlinalg.vlinalg.vlinalg.vzipzipzipzip, linalg.mmaplinalg.mmaplinalg.mmaplinalg.mmap.

linalg.zero (n)

Creates a zero vector of length n with all its components physically set to 0. If you
want to create a sparse zero vector of dimension n, use: linalg.vector(n, []) .

300 7 Standard Libraries

7.13 7.13 7.13 7.13 statsstatsstatsstats - Statistics - Statistics - Statistics - Statistics

This package contains procedures for statistical calculations and operates
completely on tables. As a plus package, it is not part of the standard distribution
and must be activated with the importimportimportimport statement, e.g. import stats .

You might want to use utils.readcsvutils.readcsvutils.readcsvutils.readcsv to read distributions from a file.

Summary of functions:

Averages:

stats.ameanstats.ameanstats.ameanstats.amean, stats.emastats.emastats.emastats.ema, stats.gemastats.gemastats.gemastats.gema, stats.gmeanstats.gmeanstats.gmeanstats.gmean, stats.gsmastats.gsmastats.gsmastats.gsma, stats.gsmmstats.gsmmstats.gsmmstats.gsmm,
stats.hmeanstats.hmeanstats.hmeanstats.hmean, stats.medianstats.medianstats.medianstats.median, stats.meanstats.meanstats.meanstats.mean, stats.qmeanstats.qmeanstats.qmeanstats.qmean, stats.smastats.smastats.smastats.sma, stats.smmstats.smmstats.smmstats.smm,
stats.trimmeanstats.trimmeanstats.trimmeanstats.trimmean .

Combinations:

stats.stats.stats.stats.numbcombnumbcombnumbcombnumbcomb, stats.stats.stats.stats.numbpermnumbpermnumbpermnumbperm.

Deviations:

stats.adstats.adstats.adstats.ad, stats.chauvenetstats.chauvenetstats.chauvenetstats.chauvenet , stats.iosstats.iosstats.iosstats.ios, stats.madstats.madstats.madstats.mad, stats.sdstats.sdstats.sdstats.sd, stats.ssdstats.ssdstats.ssdstats.ssd, stats.varstats.varstats.varstats.var.

Density:

stats.cdfstats.cdfstats.cdfstats.cdf, stats.ndestats.ndestats.ndestats.nde, stats.ndfstats.ndfstats.ndfstats.ndf, statsstatsstatsstats.pdf.

Extrema:

stats.colnormstats.colnormstats.colnormstats.colnorm, stats.extremastats.extremastats.extremastats.extrema, stats.minmaxstats.minmaxstats.minmaxstats.minmax, stats.rownormstats.rownormstats.rownormstats.rownorm, stats.smalleststats.smalleststats.smalleststats.smallest .

Occurrences:

stats.countentriesstats.countentriesstats.countentriesstats.countentries , stats.modestats.modestats.modestats.mode, stats.obcountstats.obcountstats.obcountstats.obcount , stats.obpartstats.obpartstats.obpartstats.obpart .

Ranges:

stats.iqrstats.iqrstats.iqrstats.iqr, stats.percentilestats.percentilestats.percentilestats.percentile , stats.prangestats.prangestats.prangestats.prange, stats.quartilesstats.quartilesstats.quartilesstats.quartiles .

Sums:

qsaddqsaddqsaddqsadd, saddsaddsaddsadd, stats.cumsumstats.cumsumstats.cumsumstats.cumsum, stats.fsumstats.fsumstats.fsumstats.fsum, stats.kosumdatastats.kosumdatastats.kosumdatastats.kosumdata , stats.momentstats.momentstats.momentstats.moment ,
stats.sumstats.sumstats.sumstats.sum, sssstats.sumdatatats.sumdatatats.sumdatatats.sumdata, stats.varstats.varstats.varstats.var.

agenaagenaagenaagena >> 301

Miscellaneous:

stats.acfstats.acfstats.acfstats.acf, stats.acvstats.acvstats.acvstats.acv, stats.dbscanstats.dbscanstats.dbscanstats.dbscan, stats.deltaliststats.deltaliststats.deltaliststats.deltalist , stats.fprodstats.fprodstats.fprodstats.fprod, stats.herfindahlstats.herfindahlstats.herfindahlstats.herfindahl ,
stats.issortedstats.issortedstats.issortedstats.issorted , stats.neighboursstats.neighboursstats.neighboursstats.neighbours , stats.scalestats.scalestats.scalestats.scale, sssstats.skewnesstats.skewnesstats.skewnesstats.skewness , sssstats.sortedtats.sortedtats.sortedtats.sorted,
stats.tovalsstats.tovalsstats.tovalsstats.tovals .

The functions:

stats.acf (obj, lag, [, option])

Returns the autocorrelation of a distribution obj (a table or sequence) of numbers at
a given lag , a non-negative integer. If any third argument option is passed, then
the un-normalised autocorrelation is returned. The return is a number:

(obji -)(obji+lag -)✟
i =1

n-lag

✙ ✙

where n is the number of observations, and is the arithmetic mean of the✙
distribution. If no option is passed, the sum is divided by the variance of obj

multiplied by n, yielding a normalised result. The function uses Kahan-Ozawa
round-off error prevention.

See also: stats.acvstats.acvstats.acvstats.acv.

stats.acv (obj, p, [, option])

Depending on the type of the observation obj , returns a table or sequence of
autocorrelations starting with lag = 0, through and including the given number p of
lags. If any third argument option is passed, then un-normalised autocorrelations
are returned. For the formula and numeric method used, see stats.acfstats.acfstats.acfstats.acf.

stats.ad (obj [, option])

Computes the absolute (or mean) deviation of all the values in a table or sequence
obj , i.e. the mean of the equally likely absolute deviations from the arithmetic
mean :✙

1
n✟

i =1

n

obj i - ✙

The return is a number.

If any second non-nullnullnullnull argument is given, then the variation coefficient is returned:

/ | |1
n ✟

i =1

n

obj i − ✙ ✙

302 7 Standard Libraries

Absolute deviation is more robust than standard deviation since it is less sensitive to
outliers. The function uses Kahan-Ozawa round-off error prevention.

If obj is empty or entirely consists of undefinedundefinedundefinedundefineds, failfailfailfail is returned. The function ignores
undefinedundefinedundefinedundefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefinedundefinedundefinedundefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

The function returns failfailfailfail if obj contains less than two elements.

See also: stats.iosstats.iosstats.iosstats.ios, stats.madstats.madstats.madstats.mad, stats.sdstats.sdstats.sdstats.sd.

stats.amean (obj)

Divides each element in a table or sequence obj by the size of obj and sums up
the quotients to finally return the arithmetic mean. It is equivalent to:

✟
i =1

n
obj i
n

By dividing each element before summation, the function avoids arithmetic
overflows and also uses a modified Kahan algorithm developed by Kazufumi
Ozawa published in his paper `Analysis and Improvement of Kahan's Summation
Algorithm` to prevent round-off errors during summation. Thus the function is more
robust but also significantly slower than stats.meanstats.meanstats.meanstats.mean.

If obj is table, it is assumed to be an array, non-positive integral keys (including
strings, etc.) are ignored.

The function returns failfailfailfail if obj contains less than two elements.

If obj is empty or entirely consists of undefinedundefinedundefinedundefineds, failfailfailfail is returned. The function ignores
undefinedundefinedundefinedundefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefinedundefinedundefinedundefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

See also: stats.stats.stats.stats.ggggmeanmeanmeanmean, stats.stats.stats.stats.hhhhmeanmeanmeanmean, stats.meanstats.meanstats.meanstats.mean, stats.qmeanstats.qmeanstats.qmeanstats.qmean, stats.smastats.smastats.smastats.sma,
stats.trimmeanstats.trimmeanstats.trimmeanstats.trimmean .

agenaagenaagenaagena >> 303

stats.cdf (a, b [, [,]]) ✙ ✤

Computes the cumulative density function between the lower bound a and the
upper bound b. If the mean is not given, it defaults to 0; if the standard deviation ✙
 is not given, it defaults to 1.✤

The return is the number:

 e
1

✤ 2✜

b

a
¶

−(x−✙)2

2✤2

See also: stats.ndstats.ndstats.ndstats.ndeeee, stats.ndstats.ndstats.ndstats.ndffff, stats.pdfstats.pdfstats.pdfstats.pdf.

stats.chauvenet (obj [, x] [, option, ···])

Receives a table or sequence obj of normally distributed numbers and checks
them for outliers using the formula:

p := n * erfc((| x - | / dev),✙

where n is the number of observations in a distribution, x a sample of it, the✙

arithmetic mean = , dev the standard deviation sd = .✙ ✟
i =1

n
obj i
n

1
n ✟

i=1

n

obj i − ✙
2

If at least obj and x is given, the function checks whether the number x is an outlier
by conducting a 1-pass check and returns true or false.

If obj but not x is passed, however, the procedure iterates obj again and again as
long as it does not find an outlier, and returns the outliers in a structure, its type
defined by the type of obj .

By default, if p < 0.5, where 0.5 is the magical Chauvenet number, an outlier is
detected. If you pass the option bailout =c, then c, a non-negative number, will
be the threshold.

If you pass the option jump =true, as soon as an outlier is detected, it is removed
from the distribution and then the whole evaluation process is restarted immediately
with a reduced distribution along with a re-computed mean and deviation.

If you do not, all remaining items are also checked according to the current criteria
- after the last item has been checked, only then the outliers are removed from the
distribution, the mean and deviation are re-computed and another iteration begins.

If you pass the option mean=f, where f is a procedure, then the mean is✙
determined by f. The default is f = stats.ameanstats.ameanstats.ameanstats.amean, i.e. the arithmetic mean.

304 7 Standard Libraries

If you pass the option dev =f, where f is a procedure, then the deviation dev is
determined by f. The default is f = stats.stats.stats.stats.sdsdsdsd, the standard deviation.

if you pass the option outlier='lower' or outlier='upper' , then the function only
checks for lower or upper outliers, respectively.

Further information: `Cleaning Data the Chauvenet Way`, by Lily Lin and Paul D.
Sherman, published at the South East SAS Users Group's website
http://www.sesug.org.

The function is implemented in Agena and included in the lib/stats.agn file.

stats.colnorm (obj)

Returns the largest absolute value of the numbers in the table or sequence obj ,
and the original value with the largest absolute magnitude. If obj includes
undefinedundefinedundefinedundefineds, they are ignored. If the structure obj consists entirely of one or more
undefinedundefinedundefinedundefineds, then the function returns the value undefinedundefinedundefinedundefined twice. If the structure is
empty, failfailfailfail is returned.

See also: stats.scalestats.scalestats.scalestats.scale, stats.rownormstats.rownormstats.rownormstats.rownorm.

stats.countentries (obj [, f [, ···]])

Counts the number of occurrences of each entry in a table or sequence obj and
returns a dictionary with its respective key the entry and its value the number of
occurrences.

You might optionally pass a procedure f to be mapped on the structure before
counting begins on the thus modified structure. If f has more than one argument,
then its second to last argument must be given right after f .

The function is implemented in Agena and included in the lib/stats.agn file.

See also: countitemscountitemscountitemscountitems, bagsbagsbagsbags package.

stats.cumsum (obj)

Returns a structure of the cumulative sums of the numbers in the table or sequence
obj .

The type of return is determined by the type of obj .

The function returns failfailfailfail if obj contains less than one element. It may also return a
structure containing undefinedundefinedundefinedundefined and/or infinityinfinityinfinityinfinity if obj includes non-numbers.

See also: saddsaddsaddsadd, calc.fsumcalc.fsumcalc.fsumcalc.fsum, stats.fsumstats.fsumstats.fsumstats.fsum, stats.sumstats.sumstats.sumstats.sum.

agenaagenaagenaagena >> 305

stats.dbscan (obj, eps, minpts [, option])

The functions finds clusters in a sequence obj of n-dimensional points and returns a
table with the individual clusters along with their respective points.

It also returns a register of the size of the whole distribution listing the cluster number
associated with each point, where the point in this case is represented by its integral
position in the sequence obj .

The co-ordinates of points in obj may be represented by pairs (2-dimensional
space, only), sequences (any space), or vectors created by linalg.vectorlinalg.vectorlinalg.vectorlinalg.vector (any
space).

eps is the maximum allowed distance between two points that shall belong to the
same neighbourhood. minpts is the minimum number of points that shall constitute
a neighbourhood.

By specifying the 'select' option along with a function returning a Boolean, e.g.
'select':<< x -> right x < 1 >> , only points satisfying the given criterion are
examined.

By specifying the 'method' option, you can control how the function determines
clusters: 'method':'original' uses the classic one, 'method':'modified' uses a
much faster and memory-saving implementation that contrary to the original
method immediately flags neighbours of neighbours as being visited and thus does
not examine them again in further passes. The default is 'original' .

stats.deltalist (obj [, option])

Returns a structure of the deltas of neighbouring elements in the table or sequence
obj . If the value truetruetruetrue is given as an option, then absolute differences are returned.

The type of return is determined by the type of obj .

Please note that the difference between undefinedundefinedundefinedundefined and a number is undefinedundefinedundefinedundefined,
and that the difference between infinityinfinityinfinityinfinity and a number is infinityinfinityinfinityinfinity.!

The function returns failfailfailfail if obj contains less than two elements.

See also: stats.iosstats.iosstats.iosstats.ios.

stats.ema (obj, k, alpha [, mode [, y0star]])

Computes the exponential moving average of a table or sequence obj up to and
including its k-th element.

The smoothing factor alpha is a rational number in the range [0, 1].

306 7 Standard Libraries

The function supports two algorithms: If mode is 1 (the default), then the algorithm

 r := alpha * obj[k];
 s := 1 - alpha;
 for i from k - 1 to 1 by -1 do
 r := r + alpha * s ^ i * obj[i]
 od;
 r := r + s ^ k * y0star;

is used to compute the result r. In mode 1, you can pass an explicit first estimate
y0star , otherwise the first value y0star is equal to the sample moving average of
obj . If mode is 2, then the formula

 r := obj[k];
 for i from k - 1 to 1 by -1 do
 r := r + alpha * (obj[i] - r)
 od;

is applied.

The result is a number.

See also: stats.gemastats.gemastats.gemastats.gema.

stats.extrema (obj, delta)

Expects a sequence or table obj of points xk:yk and the number delta and
determines the local minima and maxima.

A value yk is considered an extrema if the difference to its surrounding is at least
delta . The function returns two structures of pairs, i.e. points, the first one including
the local minima, the second one the local maxima.

The type of the structures is determined by the type of obj .

The function is implemented in Agena and included in the lib/stats.agn file.

stats.fprod (f, obj [a [, b [, ···]])

Applies the function f onto all elements in the table or sequence obj and then
multiplies the results. The return is the number:

f(obji)✝
i = a

b

If a is not given, a is set to 1. If b is not given, b is set to the number of elements in
obj . If f is a multivariate function, its second, third, etc. argument must be passed
after b.

See also: calc.fsumcalc.fsumcalc.fsumcalc.fsum, stats.fsumstats.fsumstats.fsumstats.fsum, stats.sumstats.sumstats.sumstats.sum.

agenaagenaagenaagena >> 307

stats.fsum (f, obj [a [, b [, ···]])

Applies the function f onto all elements in the table or sequence obj and then
sums up the results using Kahan-Ozawa round-off error prevention. The return is the
number:

f(obji)✟
i = a

b

If a is not given, a is set to 1. If b is not given, b is set to the number of elements in
obj . If f is a multivariate function, its second, third, etc. argument must be passed
after b.

See also: calc.fsumcalc.fsumcalc.fsumcalc.fsum, stats.fprodstats.fprodstats.fprodstats.fprod, stats.sumstats.sumstats.sumstats.sum.

stats.gema (obj, k, alpha [, mode [, y0star]])

Like stats.emastats.emastats.emastats.ema, but returns a function that, each time it is called, returns the
exponential moving average, starting with sample obj [1], and progressing with
sample obj [2], obj [3], etc. with subsequent calls. It return nullnullnullnull if there are no more
samples in obj . It is much faster than stats.emastats.emastats.emastats.ema with large distributions.

The smoothing factor alpha is a rational number in the range [0, 1].

The function supports two algorithms: If mode is 1 (the default), then the algorithm

 r := alpha * obj[k];
 s := 1 - alpha;
 for i from k - 1 to 1 by -1 do
 r := r + alpha * s ^ i * obj[i]
 od;
 r := r + s ^ k * y0star;

is used to compute the result. In mode 1, you can pass an explicit first estimate
y0star , otherwise the first value y0star is equal to the sample moving average of
obj .

If mode is 2, then the formula

 r := obj[k];
 for i from k - 1 to 1 by -1 do
 r := r + alpha * (obj[i] - r)
 od;

is applied to the period.

The result is a number.

308 7 Standard Libraries

stats.gini (obj [, 'sorted'])

Measures the inequality in a population given by the table or sequence obj by
applying Gini's formula

|xi - xj| / ,✟
i =1

n

✟
j =1

n

2n2✙

where n is the number of occurrences and the arithmetic mean.✙

All members of the population should be numbers. infinityinfinityinfinityinfinity's or undefinedundefinedundefinedundefined's are
ignored.

It returns a number r indicating the absolute mean of the difference between every
pair of observations, divided by the arithmetic mean of the population, with 0 [r [1
, where 0 indicates that all observations are equal, and (a theoretical value of) 1
indicates complete inequality. It is assumed that all observations are non-negative.

If the option 'sorted' is given then the function assumes that all elements in obj are
already sorted in ascending order - thus computing the result much faster.

See also: stats.herfindahlstats.herfindahlstats.herfindahlstats.herfindahl .

stats.gmean (obj [, true])

Returns the geometric mean of all numeric values in table or sequence obj . It is a
measure of central tendency. Its formula is:

✝
i=1

n

obj i

1/n

If the second argument, the Boolean truetruetruetrue is not given, the return is a number if no
element in obj is negative, else the return is a complex number since in this case
Agena conducts complex multiplication.

If the value truetruetruetrue is given as the second argument, the return will always be a
number as real multiplication is applied. The function is much faster when giving this
option.

The function returns failfailfailfail if obj contains less than two elements.

The geometric mean should be applied on positive values that are interpreted to
their products, e.g. rates of growth, instead of their sums.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.ameanstats.ameanstats.ameanstats.amean, stats.hmeanstats.hmeanstats.hmeanstats.hmean, stats.meanstats.meanstats.meanstats.mean, stats.qmeanstats.qmeanstats.qmeanstats.qmean.

agenaagenaagenaagena >> 309

stats.gsma (obj, k, p)

stats.gsma (obj, k, p, b)

Like stats.smastats.smastats.smastats.sma, but returns a function that, each time it is called, returns the simple
moving mean, starting with sample k , and progressing with sample k+1, k+2, etc.
If k > sizesizesizesize obj , then the function returns nullnullnullnull. It is much faster than stats.smstats.smstats.smstats.smaaaa with
large distributions.

stats.gsmm (obj, k, p)

stats.gsmm (obj, k, p, b)

Like stats.smmstats.smmstats.smmstats.smm, but returns a function that, each time it is called, returns the simple
moving median, starting with sample k , and progressing with sample k+1, k+2,
etc. If k > size(obj), then the function returns nullnullnullnull. It is much faster than stats.smmstats.smmstats.smmstats.smm
with large distributions.

stats.herfindahl (obj)

Returns the normalised Herfindahl–Hirschman index of a distribution obj (of type
table or sequence), an indicator of the amount of competition in economy. A
value of 0 means that there is absolute competition, i.e. that all companies have
the same share, and 1 means that there is a monopoly.

The normalised index h is defined as:

H = , where s = obji, h = ✟
i =1

n
obj i

s

2

✟
i =1

n

e
H - 1/n
1 - 1/n

It is also a good measure to determine the stability of a distribution, with a value
tending to zero indicating that the number of outliers is quite low, and a value
tending to 1 that there is at least an extreme outlier.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.ginistats.ginistats.ginistats.gini .

stats.hmean (obj)

Returns the harmonic mean of all numeric values in table or sequence obj as a
number. It is useful with rates and ratios, as it provides the best average. It is defined
as follows:

n / ✟
i =1

n
1

obj i

The function returns failfailfailfail if obj contains less than two elements.

310 7 Standard Libraries

The harmonic mean should be applied on observations containing relations to a
unit, e.g. speed.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.ameanstats.ameanstats.ameanstats.amean, stats.stats.stats.stats.ggggmeanmeanmeanmean, stats.meanstats.meanstats.meanstats.mean, stats.qmeanstats.qmeanstats.qmeanstats.qmean.

stats.ios (obj [, option])

Sums up absolute differences between neighbouring entries in a table or sequence
obj , divides by the number of its elements minus 1, and returns the number:

1

n −1 ✟
i = 2

n

obj i − obj i−1

The function returns failfailfailfail if obj contains less than two elements.

If any second non-nullnullnullnull argument is given, the function first normalises the distribution
to the range (- , 1] (see stats.scalestats.scalestats.scalestats.scale), determines the difference list, sums up its∞

absolute differences and divides the sum by the number of occurrences minus 1 to
make a distribution comparable to other ones.

This indicator is quite useful to find out how stable or volatile a preferably unsorted
distribution is.

See also: stats.adstats.adstats.adstats.ad, stats.deltaliststats.deltaliststats.deltaliststats.deltalist , stats,sdstats,sdstats,sdstats,sd, stats.varstats.varstats.varstats.var.

stats.iqr (obj [, a [, b]])

Without a and b given, the function determines the interquartile range (IQR), i.e. the
difference of the third and first quartile. iqriqriqriqr is useful for determining the variability in a
distribution obj (a table or sequence).

You may optionally pass a lower and upper percentile a, b, both in the range [0,
100). If a is missing, it is set to 25. If b is missing it is set to 100 - a .
It returns the number

stats.percentilestats.percentilestats.percentilestats.percentile (obj , b) - stats.percentilestats.percentilestats.percentilestats.percentile (obj , a)

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.stats.stats.stats.percentilepercentilepercentilepercentile , stats.stats.stats.stats.quartilesquartilesquartilesquartiles.

agenaagenaagenaagena >> 311

stats.issorted (obj [, f])

Checks whether all values in a table or sequence obj of numbers are stored in
ascending order and returns truetruetruetrue or falsefalsefalsefalse. If a value in obj is not a number, it is
ignored.

If obj is a table, you have to make sure that it does not contain holes. If it contains
holes, apply tables.entriestables.entriestables.entriestables.entries on obj .

If f is given, then it must be a function that receives two structure elements to
determine the sorting order. See sortsortsortsort for further information.

See also: sortsortsortsort, sortedsortedsortedsorted, skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted , stats.sortedstats.sortedstats.sortedstats.sorted.

stats.kosumdata (obj [, p [, x m]])

Like stats.sumdatastats.sumdatastats.sumdatastats.sumdata , but uses Kahan-Ozawa round-off error prevention.

stats.mad (obj [, option])

Returns the median of the absolute deviations of all numeric values in table or
sequence obj from obj 's median, and returns the number:

stats.median().-
i =1

size obj

obj i − stats.median(obj)

If any second non-nullnullnullnull argument is given, then the variation coefficient is returned:

stats.median() / stats.median(obj).-
i =1

size obj

obj i − stats.median(obj)

Median absolute deviation is quite robust if a distribution contains a small number of
outliers.

If obj is unsorted, it automatically sorts it before determining the result.

If obj contains less than two elements or entirely consists of undefinedundefinedundefinedundefineds, failfailfailfail is
returned. The function ignores undefinedundefinedundefinedundefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefinedundefinedundefinedundefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

See also: stats.adstats.adstats.adstats.ad, stats.medianstats.medianstats.medianstats.median.

312 7 Standard Libraries

stats.median (obj)

Returns the median of all numeric values in table or sequence obj as a number. If
obj is unsorted, it automatically sorts it before determining the median.

If obj contains less than two elements or entirely consists of undefinedundefinedundefinedundefineds, failfailfailfail is
returned. The function ignores undefinedundefinedundefinedundefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefinedundefinedundefinedundefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

The median is the middle element of a distribution if its size is odd, or the average
of its middle elements it is size is even.

See also: stats.madstats.madstats.madstats.mad, stats.meanmedstats.meanmedstats.meanmedstats.meanmed.

stats.mean (obj)

Returns the arithmetic mean of all numeric values in table or sequence obj as a
number. It is equivalent to:

1
n✟

i=1

n

obj i

If obj is table, it is assumed to be an array, non-positive integral keys (including
strings, etc.) are ignored.

The function returns failfailfailfail if obj contains less than two elements.

For a more robust but slower version, please have a look at stats.ameanstats.ameanstats.ameanstats.amean.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.ameanstats.ameanstats.ameanstats.amean, stats.stats.stats.stats.ggggmeanmeanmeanmean, stats.stats.stats.stats.hhhhmeanmeanmeanmean, stats.meanmedstats.meanmedstats.meanmedstats.meanmed, stats.qmeanstats.qmeanstats.qmeanstats.qmean.

stats.meanmed (obj [, option])

Returns both the arithmetic mean and the median of all numeric values in table or
sequence obj as numbers. If any option is given, the quotient of the mean and the
median is returned.

See also: stats.ameanstats.ameanstats.ameanstats.amean, stats.medianstats.medianstats.medianstats.median.

stats.minmax (obj [, 'sorted'])

Returns a table with the minimum of all numeric values in table or sequence obj as
the first value, and the maximum as the second value. If the option 'sorted' is

agenaagenaagenaagena >> 313

passed than the function assumes that all values in obj are sorted in ascending
order so that execution is much faster.

stats.minmaxstats.minmaxstats.minmaxstats.minmax returns failfailfailfail if a sequence or table of less than two elements has been
passed. If obj consists entirely of undefinedundefinedundefinedundefined entries, [] or seqseqseqseq() are−∞,∞ −∞,∞
returned.

stats.mode (obj)

Returns all values in the sequence or table obj with the largest number of
occurrence, i.e. highest frequency. If there is more than one value with the highest
frequency, they are all returned.

The type of return is determined by the type of its argument. If the given structure is
empty, it is simply returned.

The function is implemented in Agena and included in the lib/stats.agn file.

stats.moment (obj [, p [, x m]])

Computes the moment p of the given table or sequence obj about any origin xm for
a full population and returns a number. It is equivalent to:

1
n✟

i=1

n

obj i − xm
p

If only obj is given, the moment p defaults to 1, and the origin xm defaults to 0. If
given, the moment p and the origin xm must be numbers. If obj is empty, failfailfailfail is
returned.

See also: stats.kosumdatastats.kosumdatastats.kosumdatastats.kosumdata , stats.sumdatastats.sumdatastats.sumdatastats.sumdata .

stats.nde (x [, [, []]) ✙ ✤

Computes e ; and default to 0 and 1, respectively.

−(x−✙)2

2✤2 ✙ ✤

See also: stats.ndstats.ndstats.ndstats.ndf, stats.stats.stats.stats.ppppdfdfdfdf.

stats.ndf ([]) ✤

Computes if is not given, and otherwise, and issues an error if .
1

2✜
✤

1

✤ 2✜
✤ [0

See also: stats.ndestats.ndestats.ndestats.nde, stats.stats.stats.stats.ppppdfdfdfdf.

314 7 Standard Libraries

stats.neighbours (obj, idx, eps [, power [, indices]])

Determines all neighbours of a given n-dimensional point in a distribution obj that lie
in a certain Euclidian distance eps . idx is the position of the point of interest in the
distribution - a positive integer -, and not the point itself. eps is any positive number,
power is a positive integer with which the respective Euclidean distances and eps

shall be raised before a comparison is conducted, its default is 2.

The return is a sequence with the nearby points. If the fifth argument indices is truetruetruetrue,
however, then not the points but their positions in the distribution are returned.

The points may be represented either as pairs (2-dimensional space), sequences of
coordinates (n-dimensional space), or any n-dimensional vectors created by the
linalg.vectorlinalg.vectorlinalg.vectorlinalg.vector function.

See also: linalg.normlinalg.normlinalg.normlinalg.norm, stats.dbscanstats.dbscanstats.dbscanstats.dbscan.

stats.numbcomb (n, r)

stats.numbcomb (s, r)

In the first form, counts the number of combinations of n things taken r at a time. In
the second form, the function counts the number of combinations all the elements
in the set s taken r at a time. The set may include data of any type.

If n or r are non-integral or negative, the function returns undefinedundefinedundefinedundefined.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: binomialbinomialbinomialbinomial, factfactfactfact, stats.numbstats.numbstats.numbstats.numbpermpermpermperm.

stats.numbperm (n, r)

stats.numbperm (s, r)

In the first form, counts the number of permutations of n things taken r at a time. In
the second form, the function counts the number of permutations all the elements
in the set s taken r at a time. The set may include data of any type.

If n or r are non-integral or negative, the function returns undefinedundefinedundefinedundefined.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: binomialbinomialbinomialbinomial, factfactfactfact, stats.numbcombstats.numbcombstats.numbcombstats.numbcomb .

stats.obcount (s, p, n)

Divides a numeric range defined by the pair p and its step size n into its subintervals,
sorts all occurrences in the distribution s (a sequence) into these subranges and
finally counts all elements in these subranges.

agenaagenaagenaagena >> 315

The function returns a table with the keys the respective left borders of the
subranges and the values the number of counts in the respective subranges. It
always also returns a second table which may include all those elements in s which
are not part of the overall range defined by p. If all numbers in s fit into p, an empty
table is returned.

If an element in s equals the right border of a subinterval, then it is considered to be
part of the next subinterval. But if an element in s equals the right border of the
overall interval p, it is considered part of the last subinterval.

The function issues an error if it encounters a non-number in s , or if the left border in
p is greater or equals to the right border in p.

The function is implemented in Agena and included in the lib/stats.agn file.

An example:

> s := seq(0.1, 0.2, 0.3, 0.4, 1, 1.1, 2, 2.1);

> stats.obcount(s, 0:2, 1):
[0 ~ 4, 1 ~ 3] [2.1]

See also: stats.obpartstats.obpartstats.obpartstats.obpart .

stats.obpart (s, p, n [, f [, g]])

The function sorts occurrences into subintervals. It divides a numeric range defined
by the pair p and its step size n into its subintervals, and sorts all occurrences in the
distribution s (a sequence) into these subranges.

If the fourth argument f , a function, is given, then an occurrence or a part of an
occurrence is first converted according to the function definition before the correct
subinterval is being determined.

If the fifth argument g, a function, is given, then it is applied on an occurrence or
part of it before it is inserted into the subinterval that already has been determined.

The function returns a table with the keys the respective left borders of the
subranges and the values sequences with the respective occurrences. It always
also returns a second table which may include all those elements in s which are not
part of the overall range defined by p.

If an element in s equals the right border of a subinterval, then it is considered to be
part of the next subinterval. But if an element in s equals the right border of the
overall interval p, it is considered part of the last subinterval.

The function issues an error if a distribution or part of it is not or could not be
converted to a number, or if the left border in p is greater or equals to the right
border in p.

316 7 Standard Libraries

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.obcountstats.obcountstats.obcountstats.obcount .

Examples:

> s := seq(1.1, 1.2, 2.4, 2.5, 2.6, 3.1);

> stats.obpart(s, 1:4, 1):
[seq(1.1, 1.2), seq(2.4, 2.5, 2.6), seq(3.1)] []

Given are time stamps and running times in seconds:

> s := seq('12:30:05.017':3, '12:31:57.235':4);

To convert a time stamp into its decimal representation, so that stats.obpartstats.obpartstats.obpartstats.obpart can
sort an occurrence into a subinterval, we define the following function:

> import clock

> f := proc(x) is
> local hrs, min, sec;
> hrs, min, sec :=
> strings.match(left(x), '(%d%d):(%d%d):(%d%d \.%d%d%d)');
> return clock.todec(clock.tm(# returns a numb er
> tonumber(hrs), tonumber(min), tonumber(sec)))
> end;

> stats.obpart(s, 12.4:12.6, 1/60, f):
[12.4 ~ seq(), ..., 12.5 ~ seq(12:30:05.017:3),
 12.516667 ~ seq(12:31:57.235:4), ...] []

We only want to insert the running times in milliseconds, but not the time stamps:

> g := << x -> right(x)*1k >>;

> stats.obpart(s, 12.4:12.6, 1/60, f, g):
[12.4 ~ seq(), ..., 12.5 ~ seq(3000), 12.516667 ~ s eq(4000), ...] []

See also: stats.obcountstats.obcountstats.obcountstats.obcount .

stats.pdf (x [, [,]]) ✙ ✤

Computes the probability density function for the normal distribution at the numeric
value x . The defaults are = 0, with standard deviation = 1, thus determining✙ ✤
the standard normal distribution.

The return is the number:

 e
1

✤ 2✜

−(x−✙)2

2✤2

See also: stats.cdfstats.cdfstats.cdfstats.cdf, stats.ndstats.ndstats.ndstats.ndeeee, stats.ndstats.ndstats.ndstats.ndffff.

agenaagenaagenaagena >> 317

stats.percentile (obj, p [, option])

Returns the value below which a certain percent p of the elements in obj fall.

obj must be a table or sequence, p an integer in the range 0 p < 100. If no[

option is given, then the percentile is determined by computing the nearest rank
(rank = p/100 * size obj + ½, `Wikpedia method`). If option is the string 'nist' ,
then the method proposed by NIST is used (rank = p/100 * (size obj + 1)); if the
string 'excel' is given for option , then the algorithm used by Excel is used (rank =
p/100*(size obj -1) + 1).

The function issues an error if obj is empty. It is implemented in Agena and included
in the lib/stats.agn file.

See also: whereiswhereiswhereiswhereis, stats.quartilesstats.quartilesstats.quartilesstats.quartiles .

stats.prange (obj [, a [, b]])

Returns all elements in a table or sequence obj from the a-th percentile rank up but
not including the b-th percentile rank. a and b must be positive integers in the range
[0 .. 100). If a and b are not given, a is set to 25, and b to 75. If b is not given, it is set
to 100 - a. The type of return is determined by the type of obj . If the elements in obj

are not sorted in ascending order, the function automatically sorts them
non-destructively, and any non-numeric values are converted to zeros.

stats.qmean (obj)

Returns the quadratic mean of all numeric values in table or sequence obj as a
number. If obj is table, it is assumed to be an array, non-positive integral keys
(including strings, etc.) are ignored. It can be used to measure the magnitude of a
quantity which variates are positive and negative, e.g. sinusoids.

It is equivalent to:

1
n ✟

i =1

n

obj i
2

The function returns failfailfailfail if obj contains less than two elements.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.ameanstats.ameanstats.ameanstats.amean, stats.stats.stats.stats.ggggmeanmeanmeanmean, stats.stats.stats.stats.hhhhmeanmeanmeanmean, stats.meanstats.meanstats.meanstats.mean.

stats.quartiles (obj)

stats.quartiles (obj [, pos])

In the first form, it returns the first, second, and third quartile of a sorted table or
sequence obj . The first and third quartiles are computed according to the
`Wikipedia method`, see stats.percentilestats.percentilestats.percentilestats.percentile for further information.

318 7 Standard Libraries

It also determines the lower outlier limit L1, where L1 = first quartile - 1.5 times the
interquartile range of obj , and the upper outlier limit U1, where U1 = third quartile +
1.5 times the interquartile range of obj . If a value x in obj is equal to L1 or U1, then x
is returned. If L1 is not included in obj , then the next largest value to L1 is returned. If
U1 is not included in obj , then the next smallest value to U1 is computed. The order
is: first quartile, median, third quartile, `L1`, and `U1`.

In the second form, if either the integer 1, 2, or 3 is passed for the optional second
argument pos , the first second, or third quartile is returned as a number,
respectively.

The number of values in obj should be at least 12, better are 20 or more values.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: whereiswhereiswhereiswhereis, stats.percentilestats.percentilestats.percentilestats.percentile .

stats.rownorm (obj)

Returns the sum of the absolute values of the numbers in the table or sequence
obj . If obj includes undefinedundefinedundefinedundefineds, they are ignored. If the structure consists entirely of
one or more undefinedundefinedundefinedundefineds, then the function returns undefinedundefinedundefinedundefined. If the structure is
empty, failfailfailfail is returned.

See also: stats.scalestats.scalestats.scalestats.scale, stats.stats.stats.stats.colcolcolcolnormnormnormnorm.

stats.scale (obj [, option])

The procedure normalises the numbers in the table or sequence obj in such a way
that an element of maximum absolute value equals 1, thus scaling a distribution to
the range (i , 1] by dividing all observations by this maximum element.∞

When given a second option, the function normalises all its observations to the
range [0, 1]. See math.normmath.normmath.normmath.norm for further details.

The normalised numbers are returned in a new table or sequence, depending on
the type of obj .

If the maximum absolute value is 0, the function returns failfailfailfail.

See also: math.normmath.normmath.normmath.norm, linalglinalglinalglinalg.scale.scale.scale.scale.

stats.sd (obj [, option])

Returns the standard deviation of all numeric values in table or sequence obj as a
number. If obj is a table, it is assumed to be an array, non-positive integral keys
(including strings, etc.) are ignored. It is described by the formula:

agenaagenaagenaagena >> 319

1
n ✟

i =1

n

obj i − ✙
2

where is the arithmetic mean of a distribution.✙

If the return is a small number, it indicates that the points in a distribution are close
to its mean m. A large value indicates that its points are rather spread out. Contrary
to variance, standard deviation is expressed in the same units as the data.
Standard deviation is less robust to outliers than absolute deviation.

The function returns failfailfailfail if obj contains less than two elements.

If any second non-nullnullnullnull argument is given, then the variation coefficient is returned:

/ | |1
n ✟

i =1

n

obj i − ✙
2

✙

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.adstats.adstats.adstats.ad, stats.chauvenetstats.chauvenetstats.chauvenetstats.chauvenet , stats.iosstats.iosstats.iosstats.ios, stats.madstats.madstats.madstats.mad, stats.ssdstats.ssdstats.ssdstats.ssd, stats.varstats.varstats.varstats.var.

stats.skewness (obj)

Returns the sample skewness, a measure of the asymmetry of the probability
distribution of the numeric values in the table or sequence obj ; returns 0 if a
distribution is symmetric; a negative value if the left tail is longer; and a positive
value if the right tail is longer.

It computes the third moment about the mean and divides it by the third power of
the standard deviation.

The function returns failfailfailfail if obj contains less than two elements.

The function is implemented in Agena and included in the lib/stats.agn file.

stats.sma (obj, k, p)

stats.sma (obj, k, p, b)

In the first form, computes the simple moving average of a table or sequence obj

by averaging the last p numbers from the structure (p is also known as the `period`)
including sample k , i.e.:

 (financial form)
1
p ✟

i = k−p+1

k

obj i

320 7 Standard Libraries

In the second form, by passing the Boolean value truetruetruetrue for argument b, the mean is
taken from an equal number of values on either side of k , including k . Thus p must
be an odd number:

 (scientific form)
1
p ✟

i = k−p\2

k+p\2

obj i

It returns undefined, if either the left or right end of the sublist to be evaluated is not
part of obj . The function does not accept structures including the value undefinedundefinedundefinedundefined.

By dividing each element before summation, the function avoids arithmetic
overflows and also uses a modified Kahan algorithm developed by Kazufumi
Ozawa to prevent round-off errors during summation.

stats.gsmstats.gsmstats.gsmstats.gsmaaaa is the iterator version of this function which traverses large distributions
much faster.

See also: stats.ameanstats.ameanstats.ameanstats.amean, stats.gsmastats.gsmastats.gsmastats.gsma, stats.gsmmstats.gsmmstats.gsmmstats.gsmm, stats.smmstats.smmstats.smmstats.smm.

stats.smallest (obj [, k])

Returns the k-th smallest element in the numeric table or sequence obj . If k is not
given, it is set to 1.

stats.smm (obj, k, p)

stats.smm (obj, k, p, b)

In the first form, computes the simple moving median of a table or sequence obj

by sorting the last p numbers from the structure (p is also known as the `period`)
including sample k , and then taking its median.

In the second form, by passing the Boolean value truetruetruetrue for argument b, the simple
moving median is determined by sorting an equal number of values on either side
of k , including k , and then taking the median. Thus p must be an odd number.

The function is more robust than stats.smastats.smastats.smastats.sma to outliers in a period.

It returns undefined, if either the left or right end of the sublist to be evaluated is not
part of obj . The function does not accept structures including the value undefinedundefinedundefinedundefined.

stats.gsmmstats.gsmmstats.gsmmstats.gsmm is the iterator version of this function which traverses large distributions
much faster.

See also: stats.ameanstats.ameanstats.ameanstats.amean, stats.gsmastats.gsmastats.gsmastats.gsma, stats.gsmmstats.gsmmstats.gsmmstats.gsmm, stats.smstats.smstats.smstats.smaaaa.

agenaagenaagenaagena >> 321

stats.sorted (obj [, true] [, options])

Sorts the table or sequence obj of numbers in ascending order and
non-destructively up to and around twice as fast as sortsortsortsort if the structure contains
(around) more than seven elements. It also ignores undefinedundefinedundefinedundefined's. The type of return is
defined by the type of the input.

If an element in obj is not a number, it is replaced with the number 0 before sorting.

By default, the function internally uses a recursive implementation of the Quicksort
algorithm combined with a fallback to Heapsort in ill-conditioned situations, called
Introsort.

You may exclusively use an iterative variant of the Quicksort algorithm by passing
the second argument truetruetruetrue or the string 'pixelsort' , which may be faster on some
older systems, especially with elements in completely random or in (nearly)
ascending order. If the option 'nrquicksort' is given, an alternative non-recursive
algorithm described by Niklaus Wirth is being used. If the option 'heapsort' is
passed, the function uses the Heapsort algorithm.

See also: sortsortsortsort, sortedsortedsortedsorted, skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted , stats.issortedstats.issortedstats.issortedstats.issorted .

stats.ssd (obj)

Returns the sample standard deviation of all numeric values in table or sequence
obj as a number. If obj is a table, it is assumed to be an array, non-positive integral
keys (including strings, etc.) are ignored. It is described by the formula:

1
n-1 ✟

i=1

n

obj i − ✙
2

where is the arithmetic mean of a distribution.✙

The function returns failfailfailfail if obj contains less than two elements.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.adstats.adstats.adstats.ad, stats.sdstats.sdstats.sdstats.sd, stats.varstats.varstats.varstats.var.

322 7 Standard Libraries

stats.sum (obj)

stats.sum (f, obj [, ···])

Sums up all the values of the given table or sequence obj and returns the sum (a
number). Contrary to the saddsaddsaddsadd operator, it prevents round-off errors during
summation. It is equivalent to:

 ✟
i =1

n

obj i

In the second form, if a function f is given, it only sums up the values in obj

satisfying f , which should return a Boolean. If f has more than one argument, then
its second to last argument must be given right after obj .

Examples:

> import stats;

> stats.sum(<< x -> x > 2 >>, seq(1, 2, 3, 4)):
7

> stats.sum(<< x, y -> x+y > 2 >>, seq(1, 2, 3, 4), 1):
9

See also: saddsaddsaddsadd, calccalccalccalc....ffffsumsumsumsum, stats.cumsumstats.cumsumstats.cumsumstats.cumsum, stats.fsumstats.fsumstats.fsumstats.fsum.

stats.sumdata (obj [, p [, x m]])

Sums up all the powers p of the given table or sequence obj of n elements about
the origin xm and returns a number. It is equivalent to:

✟
i =1

n

obj i − xm
p

If only obj is given, the power p defaults to 1, and the origin xm defaults to 0. If given,
p and xm must be numbers. If obj is empty, the function returns failfailfailfail.

See also: stats.kosumdatastats.kosumdatastats.kosumdatastats.kosumdata , stats.stats.stats.stats.momentmomentmomentmoment.

agenaagenaagenaagena >> 323

stats.tovals (obj)

Converts all string values in the structure obj to Agena numbers and returns a new
structure. The type of return is determined by the type of obj .

If a string in obj cannot be converted to a number or if a value in obj is already a
number, it is included unchanged into the resulting structure. If an element in obj is
neither a string nor number, failfailfailfail is inserted instead.

stats.trimmean (obj, f)

Returns the arithmetic mean of the interior of a distribution obj (of type table or
sequence), where the number f [0, 1) determines the fraction of the data that isc

to be excluded from the margins.

The number p of data to be excluded from obj is always rounded down to the
nearest even number. The function then does not take into account p/2 points from
the left margin and p/2 points from the right margin when calculating the average
using Kahan-Ozawa round-off error prevention. The function does not sort the
distribution.

The return is a number. It returns failfailfailfail, if the distribution includes less than two
elements.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.ameanstats.ameanstats.ameanstats.amean.

stats.var (obj)

Returns the variance of all numeric values in table or sequence obj as a number. If
obj is a table, it is assumed to be an array, non-positive integral keys (including
strings, etc.) are ignored. The variance is defined as follows, is the arithmetic✙
mean of a distribution:

1
n✟

i=1

n

obj i − ✙
2

The function returns failfailfailfail if obj contains less than two elements.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.adstats.adstats.adstats.ad, stats.iosstats.iosstats.iosstats.ios, stats.madstats.madstats.madstats.mad, stats.sdstats.sdstats.sdstats.sd.

324 7 Standard Libraries

stats.zscore (obj)

Returns a univariate function `z(x)` computing the z-score (standard score) of a
sample x in the table or sequence obj - the number of standard deviations x is
above or below the mean according to the formula: z(x) = (x -)/ , where ✙ ✑ ✙
denotes the arithmetic mean of obj , and its standard deviation.✑

The resulting function returns a positive number if x is above the mean and a
negative number if it is below. It does, however, not check whether x is part of obj .
The result is computed using Kahan-Ozawa round-off error prevention for and .✙ ✑

The function is implemented in Agena and included in the lib/stats.agn file.

agenaagenaagenaagena >> 325

7.14 7.14 7.14 7.14 ioioioio - Input - Input - Input - Input and and and and Output FacilitiesOutput FacilitiesOutput FacilitiesOutput Facilities

The I/O library provides two ways for file manipulation.

Summary of functions:

Opening and closing files:

io.openio.openio.openio.open, io.closeio.closeio.closeio.close.

Reading data:

io.inputio.inputio.inputio.input, io.linesio.linesio.linesio.lines, io.readio.readio.readio.read, io.readfileio.readfileio.readfileio.readfile , io.readlinesio.readlinesio.readlinesio.readlines .

Writing data:

io.outputio.outputio.outputio.output, io.writeio.writeio.writeio.write, io.writefileio.writefileio.writefileio.writefile , io.writelinesio.writelinesio.writelinesio.writelines .

File positions:

io.eofio.eofio.eofio.eof, io.fileposio.fileposio.fileposio.filepos, io.moveio.moveio.moveio.move, io.seekio.seekio.seekio.seek, io.skiplinesio.skiplinesio.skiplinesio.skiplines .

File locking:

io.lockio.lockio.lockio.lock, io.unlockio.unlockio.unlockio.unlock.

File buffering:

io.setvbufio.setvbufio.setvbufio.setvbuf , io.io.io.io.syncsyncsyncsync

Interaction with applications:

io.pcallio.pcallio.pcallio.pcall, io.popenio.popenio.popenio.popen, io.closeio.closeio.closeio.close.

Keyboard interaction:

io.anykeyio.anykeyio.anykeyio.anykey, io.getkeyio.getkeyio.getkeyio.getkey.

Windows clipboard interaction

io.io.io.io.getclipgetclipgetclipgetclip, io.io.io.io.putclipputclipputclipputclip.

Miscellaneous:

io.isfdescio.isfdescio.isfdescio.isfdesc, io.filenoio.filenoio.filenoio.fileno, io.filesizeio.filesizeio.filesizeio.filesize, io.isopenio.isopenio.isopenio.isopen, io.nlinesio.nlinesio.nlinesio.nlines, io.tmpfileio.tmpfileio.tmpfileio.tmpfile, io.truncateio.truncateio.truncateio.truncate.

326 7 Standard Libraries

Usage:

1. The first one uses file handles; that is, there are operations to set a default input
file and a default output file, and all input/output operations are over these
default files. File handles are values of type userdata and are used as in the
following example:

Open a file and store the file handle to the name fh :

> fh := io.open('d:/agena/src/change.log'):
file(7803A6F0)

Read 10 characters:

> io.read(fh, 10):

Change Log

Close the file:

> io.close(fh):
true

In the following descriptions of the ioioioio functions, file handles are indicated with
the argument filehandle .

The table io provides three predefined file handles with their usual meanings
from C: io.stdin , io.stdout , and io.stderr .

2. The second style uses file names passed as strings like
'd:/agena/lib/library.agn' . File names are always indicated with the
argument filename in this chapter.

Unless otherwise stated, all I/O functions return nullnullnullnull on failure (plus an error message
as a second result) and some value different from nullnullnullnull on success.

io.anykey ()

Checks whether a key is being pressed and returns either truetruetruetrue or falsefalsefalsefalse. A common
usage is as follows:

> while io.anykey() = false do od; # wait until a k ey has been pressed

The function works in the Solaris, Linux, Lion, and Windows editions only. On Lion, the
function sometimes echoes the key being pressed. On other systems, it returns failfailfailfail.

See also: io.io.io.io.getgetgetgetkeykeykeykey, io.readio.readio.readio.read.

agenaagenaagenaagena >> 327

io.close ([filehandle, ···])

Closes one or more files. Note that files are automatically closed when their handles
are garbage collected, but that takes an unpredictable amount of time to
happen.

Without a filehandle , closes the default output file.

The function also deletes the file handles and the corresponding filenames from the
io.openfilesio.openfilesio.openfilesio.openfiles table if the files could be properly closed.

See also: io.io.io.io.openopenopenopen, io.popenio.popenio.popenio.popen.

io.eof (filehandle)

Checks whether the end of the file denoted by filehandle has been reached and
returns truetruetruetrue or falsefalsefalsefalse.

io.fileno (filehandle)

Returns the file descriptor, an integer, associated with the stream referenced by
filehandle , which is of type userdata/fileuserdata/fileuserdata/fileuserdata/file. It is useful for informative purposes, only.
The return cannot be used as a substitute to filehandle in calls to ioioioio functions, and
which require a handle of type userdata/fileuserdata/fileuserdata/fileuserdata/file .

The function issues an error if filehandle is not of type userdata/fileuserdata/fileuserdata/fileuserdata/file or if does not
reference an open file.

See also: io.io.io.io.isisisisfdesfdesfdesfdescccc.

io.filepos (filehandle)

Returns the current position in the file denoted by its file handle filehandle , and
returns a non-negative number.

See also: io.io.io.io.seekseekseekseek.

io.filesize (filehandle)

Returns the size of an open file denoted by its file handle filehandle and returns the
number of bytes as a non-negative integer.

io.getclip ()

Returns the contents of the Windows clipboard as a string. If the clipboard could not
be accessed, it returns failfailfailfail plus an error string. It also returns fail and an error string, if
the clipboard contains a binary object.

328 7 Standard Libraries

The function is available in the Windows edition only.

See also: io.io.io.io.putclipputclipputclipputclip.

io.getkey ()

Waits until a key is pressed and returns its ASCII number.

The function is available in the Solaris, Linux, Mac OS X, and Windows editions only.

See also: io.anykeyio.anykeyio.anykeyio.anykey, io.readio.readio.readio.read.

io.infile (filename, pattern)

io.infile (filehandle, pattern)

Checks whether the file given by the name filename or the file denoted by its
descriptor filehandle includes a pattern of type string, and returns truetruetruetrue or falsefalsefalsefalse.

See also: io.io.io.io.readfilereadfilereadfilereadfile.

io.input (filehandle)

io.input (filename)

io.input ()

When called with a file name, it opens the named file (in text mode), and sets its
handle as the default input file. When called with a file handle, it simply sets this file
handle as the default input file. When called without parameters, it returns the
current default input file.

In case of errors this function raises the error, instead of returning an error code.

io.isfdesc (filehandle)

Checks whether filehandle is a valid file handle. Returns truetruetruetrue if filehandle is an
open file handle, or falsefalsefalsefalse if filehandle is not a file handle.

See also: io.filenoio.filenoio.filenoio.fileno, io.isio.isio.isio.isopenopenopenopen.

io.isopen (filehandle)

Checks whether filehandle references an open file. Returns truetruetruetrue if filehandle is an
open file handle, or falsefalsefalsefalse if filehandle is not a file handle. Thus it also returns falsefalsefalsefalse if
filehandle is not of type userdata/fileuserdata/fileuserdata/fileuserdata/file. Contrary to io.isfdesc, it also detects invalid
file positions caused by files too large or if the stream referenced by filehandle

does not support file positioning.

The function is five times slower than io.fdescio.fdescio.fdescio.fdesc.

agenaagenaagenaagena >> 329

See also: io.filenoio.filenoio.filenoio.fileno, io.isfdescio.isfdescio.isfdescio.isfdesc.

io.lines (filename)

io.lines (filehandle)

io.lines ()

In the first form, the function opens the given file denoted by filename in read
mode and returns an iterator function that, each time it is called, returns a new line
from the file.

In the second form, the function opens the given file in read mode and returns an
iterator function that, each time it is called, returns a new line from the file.

Therefore, the construction

 for keys line in io.lines(f) do body od

will iterate over all lines of the file denoted by f , where f is either a file name or file
handle. When the iterator function detects the end of file, it returns nullnullnullnull (to finish the
loop) and automatically closes the file if a filename is given. In case of a file
handle, the file is not closed.

The call io.lines() (without a file name) iterates over the lines of the default input
file. In this case it does not close the file when the loop ends.

See also: io.readlinesio.readlinesio.readlinesio.readlines .

io.lock (filehandle)

io.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263

bytes are locked, so you have to use the second form described below in Windows
after the file has become larger than bytes (= 8,589,934,592 GBytes).263

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

The function returns truetruetruetrue on a successful lock, and falsefalsefalsefalse otherwise.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access to the file.

See also: io.unlockio.unlockio.unlockio.unlock.

330 7 Standard Libraries

io.move (filehandle, n)

Moves the current file position of the open file denoted by its filehandle either to
the left or the right.

If n is a positive integer, then the file position is moved n characters to the right, if it is
a negative integer, it is moved n characters to the left. If n is zero, the position is not
changed at all.

The function returns truetruetruetrue on success and falsefalsefalsefalse otherwise.

See also: io.io.io.io.seekseekseekseek.

io.nlines (filename)

io.nlines (filehandle)

The function counts the number of lines in the (text) file denoted by filename or
filehandle and returns a non-negative integer.

See also: io.skiplinesio.skiplinesio.skiplinesio.skiplines .

io.open (filename [, mode])

This function opens a file, given by the string filename , in the mode specified in the
string mode. It returns a new file handle of type userdata/fileuserdata/fileuserdata/fileuserdata/file. The function does not
lock the file (see io.lockio.lockio.lockio.lock).

The function also enters the newly opened file into the io.openfilesio.openfilesio.openfilesio.openfiles table in the
following format: [filehandle ~ [filename, mode]].

In case of errors, the function quits with an error.

The mode string can be any of the following:

• 'r''r''r''r', 'read', 'read', 'read', 'read':::: read mode (the default);
• 'w''w''w''w', 'write', 'write', 'write', 'write':::: write mode only; if the file already exists, it is truncated to zero

length;
• 'a''a''a''a'. 'append'. 'append'. 'append'. 'append' :::: append mode;
• 'r+':'r+':'r+':'r+': update mode (both reading and writing), all previous data is preserved;

the initial file position is at the beginning of the file;
• 'w+':'w+':'w+':'w+': update mode (reading and writing), all previous data is erased;
• 'a+':'a+':'a+':'a+': append update mode (reading and appending), previous data is

preserved, writing is only allowed at the end of file.

The mode string may also have a 'b' at the end, which is needed in some systems
to open the file in binary mode. This string is exactly what is used in the standard C
function fopen .

agenaagenaagenaagena >> 331

See also: io.closeio.closeio.closeio.close, io.lockio.lockio.lockio.lock.

io.output ([filehandle])

Similar to io.inputio.inputio.inputio.input but operates over the default output file.

io.pcall (prog [, mode])

Starts programme prog (passed as a string) in a separated process, sends and
receives data to this programme (if mode is 'r' , or mode is not given) via stdout, or
writes data to this programme (if mode is 'w'). After communication finishes, the
connection is automatically closed.

The return is a sequence of strings containing the result sent back by the
application.

The function thus is a combination of io.popenio.popenio.popenio.popen, io.readlinesio.readlinesio.readlinesio.readlines, and io.pcloseio.pcloseio.pcloseio.pclose, has
been written in the Agena language, and is included in the main Agena library
(lib/library.agn).

This function is system dependent and is not available on all platforms.

See also: os.executeos.executeos.executeos.execute.

io.popen ([prog [, mode]])

Starts programme prog in a separated process and returns a file handle that you
can use to read data that is sent from this programme (if mode is 'r' , the default) via
stdout, or to write data to this programme (if mode is 'w').

Use io.closeio.closeio.closeio.close to close the connection.

The following example shows how to receive the output of the UNIX `ls` command:

> p := io.popen('ls -l', 'r'):
file(779509B8)

> for keys i in io.lines(p) do print(i) od;
total 1917
drwxrwxrwx 1 user group 0 Oct 12 17 :00 OS2
-rw-rw-rw- 1 user group 24481 Oct 13 18 :23 aauxlib.c
-rw-rw-rw- 1 user group 6205 Aug 10 02 :26 aauxlib.h
-rw-rw-rw- 1 user group 16067 Oct 12 23 :42 aauxlib.o

> io.close(p):
true

This function is system dependent and is not available on all platforms.

See also: os.executeos.executeos.executeos.execute, io.pcallio.pcallio.pcallio.pcall.

332 7 Standard Libraries

io.putclip (str)

Copies the string str to the Windows clipboard. If the clipboard could not be
accessed, it returns failfailfailfail plus an error string. It only returns fail, if something else went
wrong, and truetruetruetrue on success.

The function is available in the Windows edition only.

See also: io.io.io.io.getgetgetgetclipclipclipclip.

io.read (filehandle [, format])

io.read ()

In the first form, reads the file with the given filehandle , according to the given
formats, which specify what to read. For each format, the function returns a string
(or a number) with the characters read, or nullnullnullnull if it cannot read data with the
specified format. When called without formats, it uses a default format that reads
the entire next line (see below).

The available formats are

• '*n':'*n':'*n':'*n': reads a number; this is the only format that returns a number instead of a
string.

• '*a':'*a':'*a':'*a': reads the whole file, starting at the current position. On end of file, it
returns the empty string24.

• '*l':'*l':'*l':'*l': reads the next line (skipping the end of line), returning nullnullnullnull on end of file.
This is the default format.

• numbernumbernumbernumber: reads a string up to this number of characters, returning nullnullnullnull on end
of file. If numbernumbernumbernumber is zero, it reads nothing and returns an empty string, or nullnullnullnull
on end of file.

In the second form, the function reads from the default input stream (usually the
keyboard) and returns a string or number. This keyboard input functionality is not
available in AgenaEdit.

See also: io.linesio.linesio.linesio.lines, io.readfileio.readfileio.readfileio.readfile, io.reaio.reaio.reaio.readlinesdlinesdlinesdlines, skycrane.readcsvskycrane.readcsvskycrane.readcsvskycrane.readcsv, utils.readcsvutils.readcsvutils.readcsvutils.readcsv,
utils.readxmlutils.readxmlutils.readxmlutils.readxml .

io.readfile (filename [, true [, pattern [, flag]]])

io.readfile (filhandle [, true [, pattern [, flag]]])

Reads the entire file with name filename or the file denoted by its handle
filehandle in binary mode and returns it as a string. Note that contrary to
io.readlinesio.readlinesio.readlinesio.readlines , the function also returns carriage returns (ASCII code 13).

agenaagenaagenaagena >> 333

24 See also io.readfileio.readfileio.readfileio.readfile to read a file entirely.

If a second argument, the Boolean value truetruetruetrue, has been passed, then the function
removes all newlines and if existing all carriage returns at the end of each line.
If the optional third argument pattern is given, the function only returns the whole
contents of a file if the string pattern has been found in the file. Pattern matching is
not supported.

If the optional fourth argument flag is falsefalsefalsefalse, the function returns the whole file
contents file if the string pattern has not been found in the file.

See also: io.readio.readio.readio.read, io.readlinesio.readlinesio.readlinesio.readlines , io.io.io.io.writewritewritewritefilefilefilefile.

io.readlines (filename [, options])

io.readlines (filehandle [, options])

Reads the entire file with name filename or file handle filehandle and returns all
lines in a table. If a string consisting of one or more characters is given as a further
argument, then all lines beginning with this string are ignored. If the option truetruetruetrue is
passed, then diacritics in the file are properly converted to the console character
set, provided you use code page 1252. The function automatically deletes
carriage returns (ASCII code 13) if included in the file.

An error is issued if the file could not be found.

If you use file handles, you must open the file with io.openio.openio.openio.open before applying
io.readlinesio.readlinesio.readlinesio.readlines , and close it with io.closeio.closeio.closeio.close thereafter.

See also: io.linesio.linesio.linesio.lines, io.readio.readio.readio.read, io.readfileio.readfileio.readfileio.readfile , utils.readcsvutils.readcsvutils.readcsvutils.readcsv , utils.readxmlutils.readxmlutils.readxmlutils.readxml , skycrane.readcsvskycrane.readcsvskycrane.readcsvskycrane.readcsv .

io.rewind (filehandle)

Sets the current file position of the open file denoted by its filehandle to the
beginning of the file. It returns the current file position, the number 0, at success,
and nullnullnullnull plus an error string otherwise.

See also: io.moveio.moveio.moveio.move, io.io.io.io.seekseekseekseek, io.toendio.toendio.toendio.toend.

io.seek (filehandle [, whence [, offset]])

Sets and gets the file position, measured from the beginning of the file, to the
position given by offset plus a base specified by the string whence , as follows:

• 'set' :::: base is position 0 (beginning of the file);
• 'cur' :::: base is current position;
• 'end' :::: base is end of file.

In case of success, io.seek returns the final file position, measured in bytes from the
beginning of the file. If this function fails, it returns nullnullnullnull, plus a string describing the
error.

334 7 Standard Libraries

The default value for whence is 'cur' , and for offset is 0. Therefore, the call
io.seek(file) returns the current file position, without changing it; the call
io.seek(file, 'set') sets the position to the beginning of the file (and returns 0);
and the call io.seek(file, 'end') sets the position to the end of the file, and
returns its size.

See also: io.moveio.moveio.moveio.move, io.rewindio.rewindio.rewindio.rewind, io.skiplinesio.skiplinesio.skiplinesio.skiplines , io.toendio.toendio.toendio.toend.

io.setvbuf (filehandle, mode [, size])

Sets the buffering mode for an output file. There are three available modes:

• 'no':'no':'no':'no': no buffering; the result of any output operation appears immediately.
• 'full':'full':'full':'full': full buffering; output operation is performed only when the buffer is full

(or when you explicitly flush the file (see io.io.io.io.syncsyncsyncsync).
• 'line':'line':'line':'line': line buffering; output is buffered until a newline is output or there is any

input from some special files (such as a terminal device).

For the last two cases, sizes specifies the size of the buffer, in bytes. The default is
an appropriate size.

io.skiplines (filehandle, n)

io.skiplines (filename, n)

The function skips the given number of lines and sets the file position to the
beginning of the line that follows the last line skipped.

If a file name is passed, then with each call to io.io.io.io.skiplinesskiplinesskiplinesskiplines the search always starts at
the very first line in the file. The function automatically closes the file if a file name
has been passed and returns the result (see below).

If you use a file handle, then lines can be skipped multiple times, always relative to
the current file position. With a file handle, io.skiplinesio.skiplinesio.skiplinesio.skiplines does not close the file.

The second argument n may be any non-negative number. If n is 0, then the
function does nothing and does not change the file position.

The function returns two values: the non-negative number of lines actually skipped
and the non-negative number of characters skipped in this process, including
newlines and carriage returns.

See also: io.nlinesio.nlinesio.nlinesio.nlines, io.seekio.seekio.seekio.seek.

agenaagenaagenaagena >> 335

io.sync (filehandle)

io.sync ()

In the first form, saves any written data to filehandle . In the second form, the

function flushes the default output.

io.tmpfile ()

Returns a handle for a temporary file. This file is opened in update mode and it is
automatically removed when the programme ends.

io.toend (filehandle)

Sets the current file position of the open file denoted by its filehandle to the end of
the file. It returns the current file position, a number indicating the size of the file, at
success, and nullnullnullnull plus an error string otherwise.

See also: io.moveio.moveio.moveio.move, io.rewindio.rewindio.rewindio.rewind, io.io.io.io.seekseekseekseek.

io.unlock (filehandle [, size])

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again. If size is given, the function, only the given
number of bytes is unlocked, starting from the current file position.

The function returns truetruetruetrue on a successful unlock, and falsefalsefalsefalse otherwise.

For more information, see io.lockio.lockio.lockio.lock.

io.write (···)

io.writeline (···)

Write the value of each of its arguments to standard output if the first argument is
not a file handle, or to the file denoted by the first argument, a file handle. Except
for the file handle and the 'delim' option described below, all arguments must be
strings, numbers, or Booleans. To write other values, use totototosssstringtringtringtring or strings.formatstrings.formatstrings.formatstrings.format.
See skycrane.scribeskycrane.scribeskycrane.scribeskycrane.scribe , as well.

io.io.io.io.writelwritelwritelwriteliiiinnnneeee adds a new line at the end of the data written, whereas io.io.io.io.writewritewritewrite does
not.

By default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':<str> (i.e. a pair, e.g. 'delim':'|') as the
last argument to the functions with <str> being a string of any length. Remember
that in the function call, a shortcut to 'delim':<str> is delim ~ <str> .

The functions return truetruetruetrue on success, and falsefalsefalsefalse otherwise.

336 7 Standard Libraries

Hint: If you work in DOS-like systems, such like DOS, Windows, or eComStation - OS/2,
and if the text to be written includes line breaks, you may wonder why the resulting
file will be larger than the number of characters in the text. This is because the
operating system adds a further control code, i.e. carriage return, in front of each
line break. To avoid this, open the file in binary mode, e.g. io.open(filename,

'wb') .

Examples:

Write a string to the console. Note that in the first statement, no newline is added to
the output, as opposed to the second and third statements.

> io.write('Gauden Dach !')
Gauden Dach !

> io.write('Gauden Dach !', '\n')
Gauden Dach !

> io.writeline('Gauden Dach !')
Gauden Dach !

Write strings to the console:

> io.writeline('Bet', 'to\'n', '16.', 'Johrhunnert' , 'geef', 'dat', 'hier',
> 'baben', 'anne', 'Küst', 'nix', 'anneres', 'as ', 'Platt.')
Betto'n16.JohrhunnertgeefdathierbabenanneKüstnixann eresasPlatt.

Use a white space as a separator:

> io.writeline('Bet', 'to\'n', '16.', 'Johrhunnert' , 'geef', 'dat', 'hier',
> 'baben', 'anne', 'Küst', 'nix', 'anneres', 'as ', 'Platt.',
> delim~' ')
Bet to'n 16. Johrhunnert geef dat hier baben anne K üst nix anneres as
Platt.

Write a string to a new file called 'd:/newfile.txt' : First we have to create the new
file with io.openio.openio.openio.open and the 'w' (write) option.

> fh := io.open('d:/newfile.txt', 'w'):
file(7803A6F0)

Write some text to the file.

> io.write(fh, 'Gouden Dach !'):
true

> io.writeline(fh, '\nBet', 'to\'n', '16.', 'Johrhu nnert', 'geef', 'dat',
> 'hier', 'baben', 'anne', 'Küst', 'nix', 'anner es', 'as', 'Platt.',
> delim~' '):
true

Finally, the file will be closed.

> io.close(fh):
true

agenaagenaagenaagena >> 337

See also: io.writeio.writeio.writeio.writefilefilefilefile, printprintprintprint, skycrane.scribeskycrane.scribeskycrane.scribeskycrane.scribe , skycrane.teeskycrane.teeskycrane.teeskycrane.tee .

io.writefile (filename, ···)

io.writefile (filehandle, ···)

In the first form, creates a new file filename denoted by its first argument (a string)
and writes all of the given strings or numbers starting with the second argument in
binary mode to it. To write other values, use tostringtostringtostringtostring or strings.formatstrings.formatstrings.formatstrings.format. After writing all
data, the function automatically closes the new file.

In the second form, the function writes its arguments to the open file denoted by its
handle filehandle .

By default, no character is inserted between neighbouring strings. This may be
changed by passing the option 'delim':<str> (i.e. a pair, e.g. 'delim':'|') as the last
argument to the function with <str> being a string of any length.

If the file fn already exists, it is overwritten without warning.

The function returns the total number of bytes written, and issues an error otherwise.
It is around twice as fast than using a combination of io.openio.openio.openio.open, io.writeio.writeio.writeio.write, and
io.closeio.closeio.closeio.close.

See also: savesavesavesave, io.readfileio.readfileio.readfileio.readfile .

338 7 Standard Libraries

7.15 7.15 7.15 7.15 biniobiniobiniobinio - Binary File P - Binary File P - Binary File P - Binary File P ackageackageackageackage

This package contains functions to read data from and write data to binary files.

Summary of functions:

Opening and closing files:

binbinbinbinio.openio.openio.openio.open, binio.closebinio.closebinio.closebinio.close .

Reading data:

binio.readbytesbinio.readbytesbinio.readbytesbinio.readbytes , binio.readcharbinio.readcharbinio.readcharbinio.readchar , binio.readlongbinio.readlongbinio.readlongbinio.readlong , binio.readnumberbinio.readnumberbinio.readnumberbinio.readnumber ,
binio.readshortstringbinio.readshortstringbinio.readshortstringbinio.readshortstring , binio.readstringbinio.readstringbinio.readstringbinio.readstring .

Writing data:

binio.writebytesbinio.writebytesbinio.writebytesbinio.writebytes , binio.writecharbinio.writecharbinio.writecharbinio.writechar , binio.writelongbinio.writelongbinio.writelongbinio.writelong , binio.writenumberbinio.writenumberbinio.writenumberbinio.writenumber ,
binio.writeshortstringbinio.writeshortstringbinio.writeshortstringbinio.writeshortstring , binio.writestringbinio.writestringbinio.writestringbinio.writestring .

File positions:

binio.eofbinio.eofbinio.eofbinio.eof, binio.fileposbinio.fileposbinio.fileposbinio.filepos , binio.rewindbinio.rewindbinio.rewindbinio.rewind , binio.seekbinio.seekbinio.seekbinio.seek, binio.toendbinio.toendbinio.toendbinio.toend.

File locking:

binbinbinbinio.lockio.lockio.lockio.lock, binbinbinbinio.unlockio.unlockio.unlockio.unlock.

File buffering:

binbinbinbinio.io.io.io.syncsyncsyncsync.

Miscellaneous:

binio.lengthbinio.lengthbinio.lengthbinio.length .

The binio package always uses file handles that are positive integers greater than 2.
(Note that the ioioioio package uses file handles of type userdata.) The positive integer is
returned by the binio.openbinio.openbinio.openbinio.open function and must be used in all package functions that
require a file handle.

A typical example might look like this:

agenaagenaagenaagena >> 339

Open a file and return the file handle:

> fh := binio.open('c:/agena/lib/library.agn'):
3

Determine the size of the file in bytes:

> binio.length(fh):
46486

Close the file.

> binio.close(fh):
true

The biniobiniobiniobinio functions are:

binio.close (filehandle [, filehandle2, ···])

Closes the files identified by the given file handle(s) and returns truetruetruetrue if successful,
and issues an error otherwise. The function also deletes the file handles and the
corresponding filenames from the binio.openfilesbinio.openfilesbinio.openfilesbinio.openfiles table if the file could be properly
closed.

See also: binio.binio.binio.binio.openopenopenopen.

binio.eof (filehandle)

Checks whether the end of the file denoted by filehandle has been reached and
returns truetruetruetrue or falsefalsefalsefalse.

binio.filepos (filehandle)

Returns the current file position relative to the beginning of the file as a number. In
case of an error, it quits with this error.

binio.length (filehandle)

The function returns the size of the file denoted by filehandle in bytes. In case of an
error, it quits with this error.

binio.lock (filehandle)

binio.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263

bytes are locked, so you have to use the second form in Windows after the file has
become larger than bytes (= 8,589,934,592 GBytes).263

340 7 Standard Libraries

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

The function returns truetruetruetrue on a successful lock, and falsefalsefalsefalse otherwise.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access to the file.

See also: binio.unlockbinio.unlockbinio.unlockbinio.unlock .

binio.open (filename [, anything])

Opens the given file denoted by filename and returns a file handle (a number).

If it cannot find the file, it creates it and leaves it open for further binio operations.

If the file already exists, it leaves it open and sets the current file position to the
beginning of the file. (In subsequent write operations, the contents of the file will thus
be overwritten and the programmer has to ensure its integrity.) Use binio.toendbinio.toendbinio.toendbinio.toend to
append to the file.

The file is always opened in both read and write modes.

If an optional second argument is given (any valid Agena value), the file is opened
in read mode only. Thus, if the file does not yet exist, the function returns an error.

The function also enters the newly opened file into the binio.openfilesbinio.openfilesbinio.openfilesbinio.openfiles table.

See also: binio.binio.binio.binio.closeclosecloseclose, binio.lockbinio.lockbinio.lockbinio.lock, binio.unlockbinio.unlockbinio.unlockbinio.unlock .

binio.readbytes (filehandle [, bytes])

In the first form, the function reads environenvironenvironenviron....kernel['buffersizekernel['buffersizekernel['buffersizekernel['buffersize'''']]]] bytes from the file
denoted by filehandle and returns them as a sequence of integers. You may
change the buffersize value to any other values in order to read less or more bytes.

In the second form, the function reads bytes bytes from the file denoted by
filehandle and returns them as a sequence of integers.

The function increments the file position thereafter so that the next bytes in the file
can be read with a new call to various binio.binio.binio.binio.reareareareadddd* functions.

If the end of the file has been reached, nullnullnullnull is returned. In case of an error, it quits
with the respective error.

The function is much faster when working on a larger number of bytes.

See also: binio.writebytesbinio.writebytesbinio.writebytesbinio.writebytes , strings.tostrings.tostrings.tostrings.tobbbbytesytesytesytes.

agenaagenaagenaagena >> 341

binio.readchar (filehandle)

binio.readchar (filehandle, position)

In the first form, the function reads a byte from the file denoted by filehandle from
the current file position and increments the file position thereafter so that the next
byte in the file can be read with a new call to binio.binio.binio.binio.reareareareadddd* functions.

In the second form, at first the file position is changed by position bytes (a positive
or negative number or zero) relative to the current file position. After that, the byte at
the new file position is read. Next, the file position is being incremented thereafter so
that the next byte in the file can be read with a new function call.

If the byte is successfully read, it is returned as a number. If the end of the file has
been reached, nullnullnullnull is returned. In case of an error, the function quits.

binio.readlong (filehandle)

The function reads a signed C value of type int32_t from the file denoted by
filehandle from the current file position and returns it. If there is an error or nothing
to read, the function quits with an error. Note that the number to be read should
have been written to the file using the binio.writebinio.writebinio.writebinio.write longlonglonglong function.

See also: binio.binio.binio.binio.writewritewritewritelonglonglonglong.

binio.readnumber (filehandle)

The function reads an Agena number from the file denoted by filehandle from the
current file position and returns it. If there is an error or nothing to be read, the
function quits with an error. Note that the number to be read should have been
written to the file using the binio.writebinio.writebinio.writebinio.writenumbernumbernumbernumber function.

See also: binio.binio.binio.binio.writewritewritewritenumbernumbernumbernumber.

binio.readshortstring (filehandle)

The function reads a string of up to 255 characters from the file denoted by
filehandle from the current file position and returns it. If there is an error or nothing
to read, the function quits with an error.

Note that the string to be read should have been written to the file using the
binio.writebinio.writebinio.writebinio.writeshortshortshortshortstringstringstringstring function, as binio.writebinio.writebinio.writebinio.writeshortshortshortshortstringstringstringstring also stores the length of the
string to the file.

See also: binio.binio.binio.binio.writewritewritewriteshortshortshortshortstringstringstringstring.

342 7 Standard Libraries

binio.readstring (filehandle)

The function reads a string of any length from the file denoted by filehandle from
the current file position and returns it. If there is an error or nothing to read, the
function quits with an error.

Note that the string to be read should have been written to the file using the
binio.writestringbinio.writestringbinio.writestringbinio.writestring function, as binio.writestringbinio.writestringbinio.writestringbinio.writestring also stores the length of the string to the
file.

See also: binio.binio.binio.binio.writewritewritewritestringstringstringstring.

binio.rewind (filehandle)

Sets the file position to the beginning of the file denoted by filehandle . The
function returns the new file position as a number in case of success, and quits with
an error otherwise.

See also: binio.binio.binio.binio.totototoendendendend, binio.seekbinio.seekbinio.seekbinio.seek.

binio.seek (filehandle, position)

The function changes the file position of the file denoted by filehandle position

bytes relative to the current position. position may be negative, zero, or positive.

The return is truetruetruetrue if the file position could be changed successfully, or issues an error
otherwise.

See also: binio.rewinbinio.rewinbinio.rewinbinio.rewindddd, binio.toendbinio.toendbinio.toendbinio.toend.

binio.sync (filehandle)

Flushes all unwritten content to the file denoted by the handle filehandle . The
function returns truetruetruetrue if successful, falsefalsefalsefalse if stdin or stdout should be closed, and issues
an error otherwise (e.g. if the file was not opened before or an error during flushing
occurred).

binio.toend (filehandle)

Sets the file position to the end of the file denoted by filehandle so that data can
be appended to the file without overwriting existing data. The function returns the
file position as a number in case of success, and issues an error otherwise.

See also: binio.binio.binio.binio.rewindrewindrewindrewind, binio.seekbinio.seekbinio.seekbinio.seek.

agenaagenaagenaagena >> 343

binio.unlock (filehandle)

binio.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again.

The function returns truetruetruetrue on a successful unlock, and falsefalsefalsefalse otherwise.

For more information, see binio.lockbinio.lockbinio.lockbinio.lock.

binio.writebytes (filehandle, s)

The function writes all integers in the sequence s to the file denoted by filehandle

at its current position. The function returns truetruetruetrue in case of success and failfailfailfail if the
sequence is empty.

The integers in s should be integers number with 0 number < 256, otherwise number[

% 256 will be stored to the file.

Internally, the bytes are stored as C unsigned char 's.

See also: binio.readbytesbinio.readbytesbinio.readbytesbinio.readbytes .

binio.writechar (filehandle, number [, ···])

The function writes the given Agena number , and optionally more numbers, to the
file denoted by filehandle at its current position. The function returns truetruetruetrue in case of
success and quits with an error quits with an error quits with an error quits with an error otherwise.

All number (s) should be integers with 0 number < 256, otherwise number % 256 will[

be stored to the file.

Internally, the bytes are stored as a C unsigned char .

binio.writelong (filehandle, number [, ···])

The function writes the given Agena number , and optionally more numbers, to the
file denoted by filehandle at its current position. The number (s) should be integers
with environenvironenvironenviron....mmmmininininllllongongongong < number < environenvironenvironenviron....maxmaxmaxmaxllllongongongong, otherwise the result is not
defined.

The function returns truetruetruetrue in case of success and quits with an error otherwise.

Internally, the numbers are stored as signed C int32_t in Big Endian notation. Use
binio.readlongbinio.readlongbinio.readlongbinio.readlong to read values written by writelongwritelongwritelongwritelong back into Agena as readlongreadlongreadlongreadlong
transforms the value back into the proper Endian format used by your machine.

344 7 Standard Libraries

binio.writenumber (filehandle, number [, ···])

The function writes the given Agena number , and optionally more numbers, to the
file denoted by filehandle at its current position. The function returns truetruetruetrue in case of
success and issues an error otherwise. The numbers are always stored in Big Endian
notation. The binio.readnumberbinio.readnumberbinio.readnumberbinio.readnumber function conducts proper conversion to Little
Endian if Agena runs on a Little Endian machine.

binio.writeshortstring (filehandle, string [, ···])

The function writes the given string , and optionally more strings, to the file denoted
by filehandle at its current position. The strings can be of length 0 to 255.

The function returns truetruetruetrue in case of success and issues an error otherwise. Internally,
writewritewritewriteshortshortshortshortstringstringstringstring at first writes the length of the respective string as a C unsigned char
and after this it stores the string without a trailing null character to the file. If you call
binio.readbinio.readbinio.readbinio.readstringstringstringstring later, Agena very efficiently returns the string.

See also: binio.readbinio.readbinio.readbinio.readshortshortshortshortstringstringstringstring.

binio.writestring (filehandle, string [, ···])

The function writes the given string , and optionally more strings, to the file denoted
by filehandle at its current position.

The function returns truetruetruetrue in case of success and quits with an error otherwise.
Internally, writestringwritestringwritestringwritestring first writes the length of the respective string as a C long int and
then the string without a null character to the file. This information is then read by the
binio.readstringbinio.readstringbinio.readstringbinio.readstring function to efficiently return the string.

See also: binio.readstringbinio.readstringbinio.readstringbinio.readstring .

agenaagenaagenaagena >> 345

7.16 7.16 7.16 7.16 xbasexbasexbasexbase - L - L - L - Liiiibbbbrrrraaaarrrry to Read and Write y to Read and Write y to Read and Write y to Read and Write xBasexBasexBasexBase Files Files Files Files

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the importimportimportimport statement, e.g.
import xbase .

This package provides basic functions to read and write dBASE III+ compliant files.

A typical session may look like this:

> import xbase alias;

> new('test.dbf', data=Number);

> f := open('test.dbf', 'write');

> writenumber(f, 1, 1, Pi);

> readvalue(f, 1, 1):
3.1415926535898

> close(f):
true

Limitations:

1. The xBase data types currently supported are: Number, Float (dBASE IV 2.0),
Binary Double (dBASE 7), String, Date, and Logical.

2. Only files with extension .dbf are supported. Searching and sorting functions are
not available, and any .ndx, or .idx index files or *.dbt files will be ignored.

3. Files with sizes greater than 2 GBytes are not supported.

xbase.attrib (filehandle)

returns a table with various information on the xBase file pointed to by filehandle .

Number of bytes occupied by each record.'recordlength'
Number of records stored in the file.'records'
UTC date of the last write access, coded as an integer.'lastmodified'
Length of the header in the xBase file.'headerlength'
Name of the xBase file (relative).'filename'
Number of fields in the file.'fields'

A table of tables that describe the respective fields in
consecutive order: title, xBase native type (see below), Agena
type, total number of bytes occupied by the field in the file.
With numbers, the number of decimals following the decimal
point (its scope) given.

'fieldinfo'

Code page used.'codepage'
MeaningTable key

346 7 Standard Libraries

xBase native types recognised are: 'C' for String, 'N' for Number, 'F' for Float, 'L' for
Logical, 'D' for Date, and 'O' for binary Double.

See also: xbase.fileposxbase.fileposxbase.fileposxbase.filepos .

xbase.close (filehandle)

Closes a connection to the xBase file pointed to by filehandle . No more data can
be read or written to the xBase file until you open it again using xbase.openxbase.openxbase.openxbase.open. The
function returns truetruetruetrue if the file could be closed, and falsefalsefalsefalse otherwise.

xbase.field (filehandle, row [, 'set'])

The function has been deprecated. Please use xbase.readdbfxbase.readdbfxbase.readdbfxbase.readdbf instead.

See also: xbase.ismarkedxbase.ismarkedxbase.ismarkedxbase.ismarked , xbase.readdbfxbase.readdbfxbase.readdbfxbase.readdbf , xbase.readvaluexbase.readvaluexbase.readvaluexbase.readvalue , xbase.recordxbase.recordxbase.recordxbase.record .

xbase.fields (filehandle)

Returns the number of fields per record contained in the xBase file denoted by
filehandle .

See also: xbase.xbase.xbase.xbase.attribattribattribattrib, xbase.xbase.xbase.xbase.records.

xbase.filepos (filehandle)

Returns the current file position in the file denoted by filehandle and returns it as a
number.

See also: xbase.attribxbase.attribxbase.attribxbase.attrib .

xbase.header (filehandle)

Returns three sequences: the header field names of the file denoted by
filehandle , the corresponding Agena type names, and the respective
single-chararcter dBASE types.

See also: xbase.attribxbase.attribxbase.attribxbase.attrib .

xbase.ismarked (filehandle, record)

Checks whether a record in a file denoted by filehandle has been marked as to
be deleted and returns truetruetruetrue or falsefalsefalsefalse.

Please make sure that the file has been opened in write, append, or read/write
mode before, otherwise the result may be undefined.
See also: xbase.markxbase.markxbase.markxbase.mark.

agenaagenaagenaagena >> 347

xbase.isopen (filehandle)

Checks whether filehandle points to an open xBase file and returns truetruetruetrue or falsefalsefalsefalse.

xbase.isvoid (filehandle, record, field)

Checks whether the value at record number record and field number field from
the file pointed to by filehandle has been deleted.

The function returns either truetruetruetrue or falsefalsefalsefalse.

See also: xbase.ismarkedxbase.ismarkedxbase.ismarkedxbase.ismarked , xbase.markxbase.markxbase.markxbase.mark, xbase.purgexbase.purgexbase.purgexbase.purge, xbase.xbase.xbase.xbase.readvaluereadvaluereadvaluereadvalue.

xbase.lock (filehandle)

xbase.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263

bytes are locked, so you have to use the second form in Windows after the file has
become larger than bytes (= 8,589,934,592 GBytes).263

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

The function returns truetruetruetrue on success and falsefalsefalsefalse otherwise.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access to the file.

See also: xbasexbasexbasexbase.unlock.unlock.unlock.unlock.

xbase.mark (filehandle, row [, flag])

Marks the record number row , an integer, in the file denoted by its filehandle , as
deleted.

Returns truetruetruetrue if a record has been marked successfully, and falseand falseand falseand false otherwise.

The actual data is not physically deleted, however, xbase.readvaluexbase.readvaluexbase.readvaluexbase.readvalue, xbase.recordxbase.recordxbase.recordxbase.record,
xbase.fieldxbase.fieldxbase.fieldxbase.field, and xbase.readdbfxbase.readdbfxbase.readdbfxbase.readdbf do not return it. Use xbase.purgexbase.purgexbase.purgexbase.purge to delete entries.

If flag is falsefalsefalsefalse, a formerly marked record is activated (`undeleted`) again.

Please make sure that the file has been opened in write, append, or read/write
mode before, otherwise the result may be undefined.

348 7 Standard Libraries

See also: xbase.isxbase.isxbase.isxbase.ismarkedmarkedmarkedmarked.

xbase.new (filename, desc 1 [, codepage] [, desc 2, ···, desc k])

creates a new xBase file with the file name filename .

desc k are k fields (columns) the xBase file will contain. codepage indicates the
code page to be used (see below)25.

In its header, the function designates the resulting file as a dBASE III+ file without
memo .DBT file.

desc k must be a pair of the following form:

1. field_name : data_type

where field_name is a string and the name of the field to be added, and
data_type is one of the strings 'Logical' , 'Date' , 'Float' , 'Number' , 'Double' ,
or 'Character' , i.e. the xBase data type of the values to be stored later.

Examples:

new('dbase.dbf', 'logical':'Logical') or
new('dbase.dbf', logical='Logical') for short for a Boolean.

A Boolean (which in xBase is equal to a `Logical`) will always consist of one
character 'T' , 'F' for truetruetruetrue and falsefalsefalsefalse.

An xBase Number will have a standard length of 19 places with a default scale
of 15 digits, whereas an xBase Float consists of 20 places with a scale of 18
digits (scale: numbers following the decimal point). Numbers are stored in xBase
files as strings with ANSI C double precision. The scale may be in [0, 15] with
xBase Numbers, and in [0, 18] with xBase Floats.

An xBase Double represents an Agena number (integer or float) that is stored in
Little Endian format of eight bytes to an xBase file.

An xBase Character (string) will have a default length of 64 characters. The
minimum length of a string is 1, the maximum length of a string may be 254
characters. Longer strings will be truncated.

A date will always consist of eight digits of the format YYYYMMDD.

2. field_name : data_type : length

agenaagenaagenaagena >> 349

25 Note that code pages are a Foxpro extension.

where field_name and data_type are the same as mentioned above, and
length is the maximum length of the item to be added. length must be a
positive integer. With numbers, length denotes the number of digits after the
decimal point to be stored.

When passing a length value, you may leave out the quotes for data_type
values.

Examples:

new('dbase.dbf', 'value':'Number':5) or
new('dbase.dbf', value=Number:5) for short for a float with five decimal places.

Supported data types are:

III+xbase.writedatexbase.writedatexbase.writedatexbase.writedatestring'Date' or 'D'Date
III+xbase.writestringxbase.writestringxbase.writestringxbase.writestringstring'Character' or 'C'Character
7xbase.writedoublexbase.writedoublexbase.writedoublexbase.writedoublenumber'Double' or 'O'Double
IV 2.0xbase.writefloatxbase.writefloatxbase.writefloatxbase.writefloatnumber'Float' or 'F'Float
III+xbase.writenumberxbase.writenumberxbase.writenumberxbase.writenumbernumber'Number' or 'N'Number
III+xbase.writebooleanxbase.writebooleanxbase.writebooleanxbase.writebooleanboolean'Logical' or 'L'Logical

dBASEdBASEdBASEdBASE
versionversionversionversion

write functionwrite functionwrite functionwrite functionAgenaAgenaAgenaAgena
typetypetypetype

data_typedata_typedata_typedata_type name name name namexBasexBasexBasexBase
typetypetypetype

codepage should be a pair of the form 'codepage' :n, with n an integer in [0, 255].

Valid codepages are:

932Japanese Windows0x7B

936Chinese Simplified
(Singapore, PRC)

0x7A
949Korean Windows0x79

950Traditional Chinese (Taiwan,
Hong Kong SAR)

0x78
857Turkish DOS0x6b
437GGreek DOS0x6a
620Mazovia (Polish) DOS0x69
895Kamenicky (Czech) DOS0x68
861Icelandic DOS0x67
866Russian DOS0x66
865Nordic DOS0x65
852Eastern Europe DOS0x64
10.000Standard Macintosh0x04
1.252Windows ANSI0x03
850DOS Multilingual0x02
437DOS USA0x01
Code pageCode pageCode pageCode pageMeaningMeaningMeaningMeaningnnnn

350 7 Standard Libraries

1.253Greek Windows0xcb
1.254Turkish Windows0xca
1.251Russian Windows0xc9
1.250Eastern Europe Windows0xc8
10.006Greek Macintosh0x98
10.029Eastern European Macintosh0x97
10.007Russian Macintosh0x96
1.256Arabic Windows0x7E
1.255Hebrew Windows0x7D
874Thai Windows0x7C
Code pageCode pageCode pageCode pageMeaningMeaningMeaningMeaningnnnn

If no code page has been passed, it is set to 0x00.

Example for Eastern European Macintosh:

new('dbase.dbf', text=string:255, codepage=0x97);

See also: xbase.openxbase.openxbase.openxbase.open.

xbase.open (filename [, mode])

Opens an xBase file of the name filename for reading or writing, or both.

In the first form, the file is opened for reading only.

In the second form, if mode is either 'write' , 'w' , 'append' , or 'r+' , the file is
opened for reading while new data sets may be added to the end of the file.

If mode is 'read' or 'r', the file is opened for reading only.

The return is a file handle to be used by all other xBase package functions.

See also: xbase.closexbase.closexbase.closexbase.close , xbase.lockxbase.lockxbase.lockxbase.lock, xbase.newxbase.newxbase.newxbase.new.

xbase.purge (filehandle, record, field)

Overwrites the specified field in the given record of the file denoted by its handle
filehandle with asterisks, thus physically deleting the original content. The return is
truetruetruetrue if deletion succeeded, and falsefalsefalsefalse otherwise. After successful completion, a
subsequent call to xbase.isvoidxbase.isvoidxbase.isvoidxbase.isvoid would return truetruetruetrue.

See also: xbase.isxbase.isxbase.isxbase.isvvvvoidoidoidoid, xbase.markxbase.markxbase.markxbase.mark, xbase.wipexbase.wipexbase.wipexbase.wipe.

agenaagenaagenaagena >> 351

xbase.readdbf (filename [, option])

xbase.readdbf (filehandle [, option])

In the first form, opens an xBase file denoted by its filename in read mode, returns
all its records and fields, and closes it. In the second form, it reads the contents of
the open file denoted by its handle filehandle .

If the xBase file contains more than one field, the data is returned as a sequence of
sequences, whereas if the file contains only one field, all values are returned in one
sequence only.

If the option fields=x with x a positive number is given, only the given column x is
extracted, and the return is a sequence of the column values. If the option
fields=obj with obj a table or sequence of positive numbers is given, only the given
fields in the records are returned, and the return is a sequence of sequences.

If a record has been marked as being deleted, the function ignores the record.

See also: xbase.fieldxbase.fieldxbase.fieldxbase.field, xbase.ismarkedxbase.ismarkedxbase.ismarkedxbase.ismarked , xbase.readxbase.readxbase.readxbase.readvaluevaluevaluevalue, xbase.xbase.xbase.xbase.recordrecordrecordrecord.

xbase.readvalue (filehandle, record, field)

Reads a value at record number record and field number field from the file
pointed to by filehandle .

Supported values are of xBase type Logical, Number, Float, Date, and String. If a
number could not be read from the file, the function returns 0.

If record has been marked as being deleted, the function returns nullnullnullnull.

See also: xbase.fieldxbase.fieldxbase.fieldxbase.field, xbase.ismarkedxbase.ismarkedxbase.ismarkedxbase.ismarked , xbase.recordxbase.recordxbase.recordxbase.record , xbase.isxbase.isxbase.isxbase.isvvvvoidoidoidoid.

xbase.record (filehandle, line)

Returns all values in the given record line (a number) of the file denoted by
filehandle and returns them in a sequence.

If record has been marked as being deleted, the function returns nullnullnullnull.

See also: xbase.xbase.xbase.xbase.fieldfieldfieldfield, xbase.ismarkedxbase.ismarkedxbase.ismarkedxbase.ismarked , xbase.readdbfxbase.readdbfxbase.readdbfxbase.readdbf , xbase.readvaluexbase.readvaluexbase.readvaluexbase.readvalue .

xbase.records (filehandle)

Returns the number of records contained in the xBase file denoted by filehandle ,
including the ones marked as to be deleted or being completely void.

See also: xbase.xbase.xbase.xbase.attribattribattribattrib, xbase.fieldsxbase.fieldsxbase.fieldsxbase.fields .

352 7 Standard Libraries

xbase.sync (filehandle)

Writes any unwritten content to the xBase file pointed to by filehandle . The function
either returns truetruetruetrue if flushing succeeded or nothing had be flushed, or failfailfailfail otherwise.

Please make sure that the file has been opened in write, append, or read/write
mode before, otherwise the result may be undefined.

xbase.unlock (filehandle)

xbase.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again.

The function returns truetruetruetrue on success and falsefalsefalsefalse otherwise.

For more information, see xbasexbasexbasexbase.lock.lock.lock.lock.

xbase.wipe (filehandle, record)

In an xBase file denoted by filehandle , deletes all fields of the given record , a
positive integer. It also marks the record as deleted (see xbase.markxbase.markxbase.markxbase.mark for further
information).

To ensure performance, the function does not lock the file before deleting data -
you may want to manually call xbase.lockxbase.lockxbase.lockxbase.lock before and xbase.unlock thereafter.
Also, it does not flush the file.

The function returns nothing.

The function has been written in the Agena language, see lib/xbase.agn .

See also: xbase.markxbase.markxbase.markxbase.mark, xbase.purgexbase.purgexbase.purgexbase.purge.

xbase.writeboolean (filehandle, record, field, valu e)

Writes the Boolean value truetruetruetrue or falsefalsefalsefalse (4th argument) to the file denoted by
filehandle to record number record and field number field . failfailfailfail and nullnullnullnull are not
supported.

The return is truetruetruetrue if writing succeeded, and falsefalsefalsefalse otherwise.

xbase.writedate (filehandle, record, field, value)

Writes the number value (4th argument), an integer in the range
and denoting a date, to the file denoted by filehandle19000101 ê x ê 99991231

to record number record and field number field .

agenaagenaagenaagena >> 353

The return is truetruetruetrue if writing succeeded, and falsefalsefalsefalse otherwise. Note that the return falsefalsefalsefalse
only indicates that an error may have occurred.

xbase.writedouble (filehandle, record, field, value)

Writes the number value (4th argument) to the file denoted by filehandle to record
number record and field number field .

The number is stored in Little Endian binary format of eight bytes (C double). In Big
Endian versions of Agena, when reading the number from an xBase file, proper
conversion is done so that data can be exchanged between these different
architectures. A dBASE 7 extension, many applications that import dBASE files do not
support binary numbers.

The return is truetruetruetrue if writing succeeded, and falsefalsefalsefalse otherwise. Note that the return falsefalsefalsefalse
only indicates that an error may have occurred.

See also: xbase.writexbase.writexbase.writexbase.write floatfloatfloatfloat, xbase.writenumberxbase.writenumberxbase.writenumberxbase.writenumber .

xbase.writefloat (filehandle, record, field, value)

Writes the number value (4th argument) to the file denoted by filehandle to record
number record and field number field .

The number is stored with a total of 20 digits, including a maximum of 18 digits
following the decimal point (scale).

The return is truetruetruetrue if writing succeeded, and falsefalsefalsefalse otherwise. Note that the return falsefalsefalsefalse
only indicates that an error may have occurred.

See also: xbase.writedoublexbase.writedoublexbase.writedoublexbase.writedouble , xbase.writenumberxbase.writenumberxbase.writenumberxbase.writenumber .

xbase.writenumber (filehandle, record, field, value)

Writes the number value (4th argument) to the file denoted by filehandle to record
number record and field number field .

The number is stored with a total of 19 digits, including a maximum of 15 digits
following the decimal point (scale).

The return is truetruetruetrue if writing succeeded, and falsefalsefalsefalse otherwise. Note that the return falsefalsefalsefalse
only indicates that an error may have occurred.

See also: xbase.writedoublexbase.writedoublexbase.writedoublexbase.writedouble , xbase.writexbase.writexbase.writexbase.write floatfloatfloatfloat.

354 7 Standard Libraries

xbase.writestring (filehandle, record, field, value)

Writes the string value (4th argument) to the file denoted by filehandle to record
number record and field number field .

The return is truetruetruetrue if writing succeeded, and falsefalsefalsefalse otherwise. Note that the return falsefalsefalsefalse
only indicates that an error might have occurred.

agenaagenaagenaagena >> 355

7.17 7.17 7.17 7.17 xml xml xml xml - - - - XML ParserXML ParserXML ParserXML Parser

As a plus package, the xmlxmlxmlxml package is not part of the standard distribution and
must be activated with the importimportimportimport statement, e.g. import xml . It is available for
Solaris, eComStation - OS/2, Mac OS X, Linux, and Windows only.

Since the XML package actually is the LuaExpat binding with some few
Agena-specific modifications, large portions of this subchapter have been taken
from the LuaExpat documentation.

7.17.1 Introduction7.17.1 Introduction7.17.1 Introduction7.17.1 Introduction

XML/LuaExpat is a SAX XML parser based on the Expat library. SAX is the Simple API
for XML and allows programmes to:

� process a XML document incrementally, thus being able to handle huge
documents without memory penalties;

� register handler functions which are called by the parser during the processing
of the document, handling the document elements or text.

With an event-based API like SAX the XML document can be fed to the parser in
chunks, and the parsing begins as soon as the parser receives the first document
chunk. XML/LuaExpat reports parsing events (such as the start and end of elements)
directly to the application through callbacks. The parsing of huge documents can
benefit from this piecemeal operation.

XML/LuaExpat is distributed as a library.

7.17.2 Parser objects7.17.2 Parser objects7.17.2 Parser objects7.17.2 Parser objects

Usually SAX implementations base all operations on the concept of a parser that
allows the registration of callback functions. XML/LuaExpat offers the same
functionality but uses a different registration method, based on a table of callbacks.

This table contains references to the callback functions which are responsible for
the handling of the document parts. The parser will assume no behaviour for any
undeclared callbacks.

7.17.3 Shortcuts7.17.3 Shortcuts7.17.3 Shortcuts7.17.3 Shortcuts

xml.decode (str)

Reads a string str containing an XML stream and converts it into a dictionary. Its
return is rather raw, but it can cope with situations where one and the same XML
object is present multiple times on the same hierarchy.

356 7 Standard Libraries

xml.decodexml (str)

Reads a string str containing an XML stream and converts it into a dictionary.

The function provides some checking (basic syntax and balanced tags), and
supports namespaces, XML and DOCTYPE declarations, comments and processing
instructions. If a XML tag includes hyphens or colons, then they are converted to
underscores in the corresponding Agena dictionary key.

The data must be included in an envelope.

The function also returns processing instructions in the xattr tag.

The function is written in the Agena language and included in the xml.agn file.

The function does not cope well if one and the same XML object is present multiple
times on the same hierarchy. Use utils.decodexmlutils.decodexmlutils.decodexmlutils.decodexml or xml.decodexml.decodexml.decodexml.decode instead.

xml.readxml (filename)

Reads an XML file and returns its data in an Agena dictionary. The data must be
included in an envelope.

See also: utils.readcsvutils.readcsvutils.readcsvutils.readcsv , utils.utils.utils.utils.readreadreadreadxmlxmlxmlxml, xml.decodexml.decodexml.decodexml.decode, xml.decodexmlxml.decodexmlxml.decodexmlxml.decodexml .

7.17.4 Constructor7.17.4 Constructor7.17.4 Constructor7.17.4 Constructor

xml.new (callbacks [, separator])

The parser is created by a call to the function xml.new, which returns the created
parser or raises a Lua error. It receives the callbacks table and optionally the parser
separator character used in the namespace expanded element names.

7.17.5 Functions7.17.5 Functions7.17.5 Functions7.17.5 Functions

xml.close (parser)

Closes the parser, freeing all memory used by it. A call to close(parser) without a
previous call to parse(parser) could result in an error.

xml.getbase (parser)

Returns the base for resolving relative URIs.

xml.getcallbacks (parser)

Returns the callbacks table.

agenaagenaagenaagena >> 357

xml.parse (parser, s)

Parse some more of the document. The string s contains part (or perhaps all) of the
document. When called without arguments the document is closed (but the parser
still has to be closed).

The function returns a non nullnullnullnull value when the parser has been successful, and
when the parser finds an error it returns five results: nullnullnullnull, msg, line, col, and pos,
which are the error message, the line number, column number and absolute
position of the error in the XML document.

xml.pos (parser)

Returns three results: the current parsing line, column, and absolute position.

xml.setbase (parser, base)

Sets the base to be used for resolving relative URIs in system identifiers.

xml.setencoding (parser, encoding)

Sets the encoding to be used by the parser. There are four built-in encodings,
passed as strings: 'US-ASCII', 'UTF-8', 'UTF-16', and 'ISO-8859-1'.

7.17.6 7.17.6 7.17.6 7.17.6 CallbacksCallbacksCallbacksCallbacks

The Agena callbacks define the handlers of the parser events. The use of a table in
the parser constructor has some advantages over the registration of callbacks,
since there is no need for for the API to provide a way to manipulate callbacks.

Another difference lies in the behaviour of the callbacks during the parsing itself. The
callback table contains references to the functions that can be redefined at will.
The only restriction is that only the callbacks present in the table at creation time will
be called.

The callbacks table indices are named after the equivalent Expat callbacks:

CharacterData, Comment, Default, DefaultExpand, EndCDataSection, EndElement,
EndNamespaceDecl, ExternalEntityRef, NotStandalone, NotationDecl,
ProcessingInstruction, StartCDataSection, StartElement, StartNamespaceDecl, and
UnparsedEntityDecl.

These indices can be references to functions with specific signatures, as seen
below. The parser constructor also checks the presence of a field called _nonstrict
in the callbacks table. If _nonstrict is absent, only valid callback names are
accepted as indices in the table (Defaultexpanded would be considered an error
for example). If _nonstrict is defined, any other fieldnames can be used (even if not
called at all).

358 7 Standard Libraries

The callbacks can optionally be defined as falsefalsefalsefalse, acting thus as placeholders for
future assignment of functions.

Every callback function receives as the first parameter the calling parser itself, thus
allowing the same functions to be used for more than one parser for example.

callbacks.CharacterData = proc(parser, string)

Called when the parser recognises an XML CDATA string.

callbacks.Comment = proc(parser, string)

Called when the parser recognises an XML comment string.

callbacks.Default = proc(parser, string)

Called when the parser has a string corresponding to any characters in the
document which wouldn't otherwise be handled. Using this handler has the side
effect of turning off expansion of references to internally defined general entities.
Instead these references are passed to the default handler.

callbacks.DefaultExpand = proc(parser, string)

Called when the parser has a string corresponding to any characters in the
document which wouldn't otherwise be handled. Using this handler doesn't affect
expansion of internal entity references.

callbacks.EndCdataSection = proc(parser)

Called when the parser detects the end of a CDATA section.

callbacks.EndElement = proc(parser, elementName)

Called when the parser detects the ending of an XML element with elementName.

callbacks.EndNamespaceDecl = proc(parser, namespace Name)

Called when the parser detects the ending of an XML namespace with
namespaceName. The handling of the end namespace is done after the handling
of the end tag for the element the namespace is associated with.

callbacks.ExternalEntityRef = proc(parser, subparse r, base, systemId,

publicId)

Called when the parser detects an external entity reference.

The subparser is a XML/LuaExpat parser created with the same callbacks and Expat
context as the parser and should be used to parse the external entity.

agenaagenaagenaagena >> 359

The base parameter is the base to use for relative system identifiers. It is set by
setbase and may be nullnullnullnull.

The systemId parameter is the system identifier specified in the entity declaration
and is never nullnullnullnull.

The publicId parameter is the public id given in the entity declaration and may be
nullnullnullnull.

callbacks.NotStandalone = proc(parser)

Called when the parser detects that the document is not `standalone`. This
happens when there is an external subset or a reference to a parameter entity, but
the document does not have standalone set to "yes" in an XML declaration.

callbacks.NotationDecl =

 proc(parser, notationName, base, systemId, publi cId)

Called when the parser detects XML notation declarations with notationName

The base parameter is the base to use for relative system identifiers. It is set by
setbase and may be nullnullnullnull.

The systemId parameter is the system identifier specified in the entity declaration
and is never nullnullnullnull.

The publicId parameter is the public id given in the entity declaration and may be
nullnullnullnull.

callbacks.ProcessingInstruction = proc(parser, targ et, data)

Called when the parser detects XML processing instructions. The target is the first
word in the processing instruction. The data is the rest of the characters in it after
skipping all whitespace after the initial word.

callbacks.StartCdataSection = proc(parser)

Called when the parser detects the begining of an XML CDATA section.

callbacks.StartElement = proc(parser, elementName, attributes)

Called when the parser detects the begining of an XML element with
elementName.

The attributes parameter is a table with all the element attribute names and values.
The table contains an entry for every attribute in the element start tag and entries for
the default attributes for that element.

360 7 Standard Libraries

The attributes are listed by name (including the inherited ones) and by position
(inherited attributes are not considered in the position list).

As an example if the book element has attributes author, title and an optional
format attribute (with `printed` as default value),

 <book author=\"Ierusalimschy, Roberto\" title=\"Programming in Lua\">

 would be represented as

 [1 ~ 'author',
 2 ~ 'title',
 author ~ 'Ierusalimschy, Roberto',
 format ~ 'printed',
 title ~ 'Programming in Lua']

callbacks.StartNamespaceDecl = proc(parser, namespa ceName)

Called when the parser detects an XML namespace declaration with
namespaceName. Namespace declarations occur inside start tags, but the
StartNamespaceDecl handler is called before the StartElement handler for each
namespace declared in that start tag.

callbacks.UnparsedEntityDecl =

 proc(parser, entityName, base, systemId, publicI d, notationName)

Called when the parser receives declarations of unparsed entities. These are entity
declarations that have a notation (NDATA) field.

As an example, in the chunk

 <!ENTITY logo SYSTEM "images/logo.gif" NDATA gif>

entityName would be "logo", systemId would be "images/logo.gif" and
notationName would be "gif". For this example the publicId parameter would be
nullnullnullnull. The base parameter would be whatever has been set with setbase. If not set, it
would be nullnullnullnull.

The separator character:The separator character:The separator character:The separator character:

The optional separator character in the parser constructor defines the character
used in the namespace expanded element names. The separator character is
optional (if not defined the parser will not handle namespaces) but if defined it must
be different from the character '\0'.

agenaagenaagenaagena >> 361

7.18 7.18 7.18 7.18 gzipgzipgzipgzip - - - - LLLLiiiibbbbrrrraaaary to Read and Write UNIX ry to Read and Write UNIX ry to Read and Write UNIX ry to Read and Write UNIX gzipgzipgzipgzip Compressed Files Compressed Files Compressed Files Compressed Files

As a plus package, in Solaris, Linux, Mac OS X, eComStation - OS/2, DOS, and
Windows, this library is not part of the standard distribution and must be activated
with the importimportimportimport statement, e.g. import gzip .

The package is not available in Haiku.

A typical session may look like this:

> import gzip;

> fd := gzip.open('primes.dat.gz', 'r'):
gzipfile(0096A9F8)

>for keys I in gzip.lines(fd) do print(i) od;

> gzip.close(f):

true

gzip.close (filehandle [, filehandle, ···])

Closes the files denoted by the given file handles.

gzip.flush (filehandle)

This function takes a file handle and flushes all output to the working file.

gzip.lines (filehandle)

gzip.lines (filename)

Returns an iterator function that, each time it is called, returns a new line from the
file. Therefore, the construction

 for keys line in gzip.lines(file) do ... od

will iterate over all lines of the file.

If a file name is given, the file is closed when the loop ends. If a file handle is given,
the file is not closed.

gzip.open (filename [, mode])

Opens a file name. If mode is not given, a default mode 'rb' will be used. mode

can include special modes such as characters '1' to '9' that will be treated as the
compression level when opening a file for writing.

It returns a new file handle, or, in case of errors, nullnullnullnull plus an error message.

362 7 Standard Libraries

gzip.read (filehandle, format 1, ···)

Reads the file with the given file handle, according to the given formats, which
specify what to read. For each format, the function returns a string with the
characters read, or nullnullnullnull if it cannot read data with the specified format. When
called without formats, it uses a default format that reads the entire next line (see
below).

The available formats are:

� '*a' reads the whole file, starting at the current position. On end of file, it returns
the empty string.

� '*l' reads the next line (skipping the end of line), returning nullnullnullnull on end of file. This
is the default format.

� number reads a string with up to that number of characters, returning nullnullnullnull on
end of file. If number is zero, it reads nothing and returns an empty string, or nullnullnullnull
on end of file.

Unlike io.readio.readio.readio.read, the '*n' format is not available.

gzip.seek (filehandle [, whence] [, offset])

Sets and gets the file position, measured from the beginning of the file, to the
position given by offset plus a base specified by the string whence , as follows:

� 'set' base is position 0 (beginning of the file),
� 'cur' base is current position,
� 'end' is the end of the file.

In case of success, seekseekseekseek returns the final file position, measured in bytes from the
beginning of the file. If this function fails, it returns nullnullnullnull, plus a string describing the
error.

The default value for whence is 'cur', and for offset is 0. Therefore, the call
gzip.seek(filehandle) returns the current file position, without changing it; the call
gzip.seek(filehandle, 'set') sets the position to the beginning of the file (and returns 0);
and the call gzip.seek(filehandle, 'end') sets the position to the end of the file, and
returns its size.

gzip.write (filehandle, value 1, ···)

Writes the value of each of its arguments to the file specified by filehandle . The
arguments must be strings or numbers. To write other values, use tostringtostringtostringtostring or
strings.formatstrings.formatstrings.formatstrings.format before writewritewritewrite.

agenaagenaagenaagena >> 363

7.19 net 7.19 net 7.19 net 7.19 net - - - - Network LibrNetwork LibrNetwork LibrNetwork Libraryaryaryary

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the importimportimportimport statement, e.g.
import net .

7.19.1 Introduction and Examples7.19.1 Introduction and Examples7.19.1 Introduction and Examples7.19.1 Introduction and Examples

This package provides basic functions to pass text from a client to a server using the
IPv4 protocol. Thus it is suited to exchange information over the Internet and Local
Area Networks.

Communication is performed with `stream sockets` that ensure that data is sent
and received in the original order and hopefully without errors. A socket is being
created by a call to the net.opennet.opennet.opennet.open function.

In the following example, we will set up a one-way communication with the `client`
sending and the `server` receiving data.

A typical session might begin by setting up the server. This is because a client
cannot connect to a server until the latter is ready for it.

> import net alias
net v0.2.1 as of January 13, 2013

accept, address, bind, block, close, connect, liste n, lookup, open,
opensockets, receive, remoteaddress, send, shutdown , survey

Create a socket: the net.opennet.opennet.opennet.open function returns a new socket handle:

> s := open():
932

364 7 Standard Libraries

Please remember that thePlease remember that thePlease remember that thePlease remember that the package only supports package only supports package only supports package only supports unencryptedunencryptedunencryptedunencrypted data data data data
transfer which might be transfer which might be transfer which might be transfer which might be iiiinsecure !nsecure !nsecure !nsecure ! There is no There is no There is no There is no SSLSSLSSLSSL support. support. support. support.

If you do not use this package, no network functionality will be activated.

Please also note that when usingPlease also note that when usingPlease also note that when usingPlease also note that when using net.acceptnet.acceptnet.acceptnet.accept,,,, net.connectnet.connectnet.connectnet.connect,,,, net.receivenet.receivenet.receivenet.receive,,,,
net.sendnet.sendnet.sendnet.send,,,, and and and and net.surveynet.surveynet.surveynet.survey,,,, you you you you will give access to your computer through LANswill give access to your computer through LANswill give access to your computer through LANswill give access to your computer through LANs
or the Internet, so please programme handshaking and or the Internet, so please programme handshaking and or the Internet, so please programme handshaking and or the Internet, so please programme handshaking and blacklist/whitelistblacklist/whitelistblacklist/whitelistblacklist/whitelist
methods.methods.methods.methods.

Limited white and blacklisting to allow or prohibit connections is supported
through the net.net.net.net.whitewhitewhitewhitelistlistlistlist and net.net.net.net.blackblackblackblacklistlistlistlist feature.

Now associate this socket with a port on the server machine26 by running net.bindnet.bindnet.bindnet.bind.
In this example we expect data to be received on your own computer on port
1300.

> bind(s, '127.0.0.1', 1300):
127.0.0.1 1300

Now our socket must be converted to a server socket by calling

> listen(s):
true

and be told to get a pending connection by running net.acceptnet.acceptnet.acceptnet.accept .

net.acceptnet.acceptnet.acceptnet.accept waits until a client asks the server for a connection (see client example
below). It returns a new socket handle which later on manages this specific
connection, while the original socket is ready to wait for requests for other
connection.

net.acceptnet.acceptnet.acceptnet.accept also returns the IP address of the client asking for a connection, and its
port.

> t, ip, port := accept(s):
924 127.0.0.1 3230

If you do not want net.acceptnet.acceptnet.acceptnet.accept to wait indefinitely until something happens, call
net.blocknet.blocknet.blocknet.block with the original server socket and falsethe original server socket and falsethe original server socket and falsethe original server socket and false as its second argument.

Please note that you should check the incoming connection against a white or
black list so that only trusted clients can send you any data. To decline and
terminate an incoming connection, either check the incoming caller and just call
net.closenet.closenet.closenet.close with the handle returned by net.accessnet.accessnet.accessnet.access, or use the built-in basic black
and whitelist functionality described at the end of this subchapter.

It also a good idea to validate the incoming connection with a handshaking
procedure which checks the incoming data for certain information and then
automatically decides whether to go on or shut down the connection.

Data received from the client is returned by calling net.receivenet.receivenet.receivenet.receive with the new file
handle returned by net.acceptnet.acceptnet.acceptnet.accept .

> receive(t):
Kuckuck ! 9

Finally, close both sockets (or just the handle returned by net.acceptnet.acceptnet.acceptnet.accept):

> close(t, s):
true

agenaagenaagenaagena >> 365

26 You may use the operating system commands ifconfig (UNIX, Mac) or ipconfig (Windows) to
determine your own IP address.

To open a client session, start Agena in another shell:

> import net alias

To connect to a server, first issue:

> d := open()
932

Now connect to the server by passing the socket handle, the IP address and port
number of the server. 'localhost' means that the server runs on the same
machine as the client.

> connect(d, 'localhost', 1300):
true

Send some text once or more.

> send(d, 'Kuckuck !'):
9

The server immediately returns the text sent. To finish a client session, type:

> close(d):
true

Call net.opensocketsnet.opensocketsnet.opensocketsnet.opensockets to have a look at the state of all open sockets.

Following now is an extended but crude example for a one-way connection which
sends one thousand hashes from the client to the server on the local host on port
1300.

Since with one single call, net.receivenet.receivenet.receivenet.receive by default processes `only` 512 bytes in
Windows and usually 8,192 bytes in UNIX, the server uses a whilewhilewhilewhile loop to receive all
the data until the client closes the connection.

Since net.receivenet.receivenet.receivenet.receive returns two results - the string and the number of characters
received - its second return will be 0 if the client terminates a network session.

366 7 Standard Libraries

> import net alias

> d := open():
352

> connect(d, 'localhost', 1300):
true

> send(d, strings.repeat('#', 1m)):
1000000

> close(d):
true

> import net alias

> d := open():
132

> bind(d, 'localhost', 1300):
127.0.0.1 1300

> listen(d):
true

> e, f, g := accept(d);

> print(e,f, g);
352 127.0.0.1 49178

> x, y := receive(e);

> print(x, y);
(512 hashes) ##### 512

> while y <> 0 do
> x, y := receive(e);
> print(x, y);
> od;
(more hashes) #### 488
 0

> close(e, d):
true

ClientClientClientClientServerServerServerServer

A simple bi-directional connection:

> import net alias

> d := open():
124

> connect(d, 'localhost', 1300):
true

> send(d, strings.repeat('#', 1k)):
1000

> receive(d):
Got 512 bytes 13

> receive(d):
Got 488 bytes 13

> close(d):
true

> import net alias

> d := open():
124

> bind(d, 'localhost', 1300):
127.0.0.1 1300

> listen(d):
true

> e, f, g := accept(d);

> print(e,f, g);
344 127.0.0.1 49183

> x, y := receive(e);

> print(x, y);
etc. 512

> send(e, 'Got ' & y & ' bytes');

ClientClientClientClientServerServerServerServer

agenaagenaagenaagena >> 367

> while y <> 0 do
> x, y := receive(e);
> print(x, y);
> send(e, 'Got ' & y & '
bytes');
> od;
etc. 488
 0

> close(e, d):
true

ClientClientClientClientServerServerServerServer

Usage of black and whitelists: First initialise the netnetnetnet package.

> import net alias

Now put one or more a numeric (!) IPs to be blocked into the set net.blacklistnet.blacklistnet.blacklistnet.blacklist to
prohibit connections to these addresses (valid for both net.connectnet.connectnet.connectnet.connect and
net.acceptnet.acceptnet.acceptnet.accept).

> net.blacklist := {'127.0.0.1'}

> d := open():
3

> connect(d, '127.0.0.1', 1300):
Error in `net.connect`: partner in blacklist, closi ng socket 3.

Stack traceback: in `connect`
 stdin, at line 1 in main chunk

Socket d is now closed:

> opensockets():

[]

Now define a whitelist with all IPs to which a connection is allowed.

> net.whitelist := {'127.0.0.2'}

> d := open():
3

> return connect(d, '127.0.0.3', 1300)
Error in `net.connect`: partner not in whitelist, c losing socket 3.

Stack traceback: in `connect`
 stdin, at line 1 in main chunk

The socket is closed, as well.

> opensockets():

[]

368 7 Standard Libraries

7.19.2 Functions7.19.2 Functions7.19.2 Functions7.19.2 Functions

net.accept (s)

Accepts a connection request from a client on the given server socket handle s . If
the server socket has been set to blocking mode, it waits until there is an incoming
connection.

The function returns a new socket handle (a number) for the data to be received
later on, and the address (a string) and port (a number) of the client socket.

Please note that the new socket created by net.acceptnet.acceptnet.acceptnet.accept must be closed separately
to avoid too many open sockets.

The function also checks the global sets net.blacklistnet.blacklistnet.blacklistnet.blacklist and net.whitelistnet.whitelistnet.whitelistnet.whitelist, in this order,
and if they exist. If you are trying to accept a connect from an address that is
included in net.blacklistnet.blacklistnet.blacklistnet.blacklist, then net.net.net.net.acceptacceptacceptaccept refuses this connection, closes the new
socket that it created (see above), and issues an error. If you are trying to accept a
connection from an address that is not in net.whitelistnet.whitelistnet.whitelistnet.whitelist, the function does not
establish a connection, closes the freshly created socket, and issues an error, as
well.

Please note that net.blacklistnet.blacklistnet.blacklistnet.blacklist and net.whitelistnet.whitelistnet.whitelistnet.whitelist must only contain must only contain must only contain must only contain numericnumericnumericnumeric IPsIPsIPsIPs, and
not addresses like 'sunsite.abc.xyz'. However, net.net.net.net.acceptacceptacceptaccept tries to convert the
incoming address to a numeric IP address and then checks both lists27. If an
address could not be resolved, the function does not allow a connection, and
closes the newly created socket, and finally issues an error.

You may use protectprotectprotectprotect in order to intercept the errors described above, but you must
take care yourself for allowing or prohibiting a connection.

You have to set up net.blacklistnet.blacklistnet.blacklistnet.blacklist and/or net.whitelistnet.whitelistnet.whitelistnet.whitelist yourself after initialising the netnetnetnet
package.

The procedure is a binding to C's accept function.

See also: net.acceptnet.acceptnet.acceptnet.accept , net.bindnet.bindnet.bindnet.bind, net.blocknet.blocknet.blocknet.block, net.listennet.listennet.listennet.listen, net.receivenet.receivenet.receivenet.receive , net.surveynet.surveynet.surveynet.survey.

net.admin

Table containing various operating system-specific administrative network settings:

a table containing the supported protocolsprotocols

estimated maximum number of open sockets
allowed

maxnsockets

MeaningMeaningMeaningMeaningKeyKeyKeyKey

agenaagenaagenaagena >> 369

27 Usually, the server that tries to connect sends its numeric IP address, but probably it does not. So
this is just a precautionary action.

net.address (s)

Returns two values: the IP address (a string) and port number (a number) to which
socket s is bound.

See also: net.lookupnet.lookupnet.lookupnet.lookup, net.remoteaddressnet.remoteaddressnet.remoteaddressnet.remoteaddress .

net.bind (s [, address [, port]])

Associates a socket s with an IP address and a port on the local machine and
returns its IP address (a string) and the respective port on success or returns falsefalsefalsefalse
and a string containing the error message otherwise.

If address is not given, localhost is bound to the socket (i.e. your own computer),
otherwise the numeric IP address or host name is bound.

By default, port 1234 is connected, but you may specify another port (an integer) as
a third argument. This might require administrative rights.

The procedure is a binding to C's bind function.

To determine your own IP address, open a shell and issue the command ipconfig

in Windows, and ifconfig in Solaris, Linux, Mac, or other UNIX based platforms.

See also: net.acceptnet.acceptnet.acceptnet.accept , net.listennet.listennet.listennet.listen, net.receivenet.receivenet.receivenet.receive , net.surveynet.surveynet.surveynet.survey.

net.block (s, mode)

Sets a socket to blocking or non-blocking mode. The functions expects the socket
handle (a number) s as its first argument and the mode (a Boolean) as its second
argument. If the second argument is truetruetruetrue, the socket is set to blocking mode, else
to non-blocking mode. The return is truetruetruetrue on success and falsefalsefalsefalse otherwise.

The procedure is a binding to C's fcntl (UNIX) or ioctlsocket (Windows) function.

net.close (···)

Terminates all the given servers or clients denoted by their socket handles and
returns truetruetruetrue on success, or falsefalsefalsefalse and a string containing an error message otherwise.

The procedure is a binding to C's close or closesocket function.

net.closewinsock ([anything])

The function is available only in the Windows edition. It finally terminates the current
network session and returns truetruetruetrue on success, or issues an error otherwise if anything

is not given. If any value anything is passed to the function, in case of an error it
returns failfailfailfail plus an error message of type string.

370 7 Standard Libraries

Please note that when you call this function, no further network communication will
be possible. Call net.openwinsocknet.openwinsocknet.openwinsocknet.openwinsock to enable network communication again.

The procedure is a binding to C's WSACleanup function.

See also: net.openwinsocknet.openwinsocknet.openwinsocknet.openwinsock .

net.connect (s [, address [, port]])

Connects the client denoted by it socket handle s (first argument, a number) to a
server at the specified IP address (second argument, a string) and its port (third
argument) so that data can be sent later. If address is missing, the address is set to
'localhost' , if port is missing, port 1234 will be used.

If the client socket is set to blocking mode, the function waits until the server
responds; if the client socket is set to non-blocking mode, it immediately returns
without waiting for a server response.

The return is either truetruetruetrue in case of success or falsefalsefalsefalse and the error message (a string)
at failure.

The function also checks the global sets net.blacklistnet.blacklistnet.blacklistnet.blacklist and net.whitelistnet.whitelistnet.whitelistnet.whitelist, in this order,
and if they exist. If you are trying to connect to an address that is included in
net.blacklistnet.blacklistnet.blacklistnet.blacklist, then net.connectnet.connectnet.connectnet.connect does not establish a connection, closes socket s ,
and issues an error. If you are trying to connect to a server that is not in net.whitelistnet.whitelistnet.whitelistnet.whitelist,
the function does not establish a connection, closes the socket, and issues an error,
as well.

Please note that net.blacklistnet.blacklistnet.blacklistnet.blacklist and net.whitelistnet.whitelistnet.whitelistnet.whitelist must only contain must only contain must only contain must only contain numericnumericnumericnumeric IPsIPsIPsIPs, and
not addresses like 'sunsite.abc.yz'. However, net.connectnet.connectnet.connectnet.connect tries to convert address to
a numeric IP address and then checks both lists. If an address could not be
resolved, the function does not establish a connection, closes socket s and issues
an error.

You may use protectprotectprotectprotect in order to intercept the errors described above, but you must
take care yourself for allowing or prohibiting the connection.

You have to set up net.blacklistnet.blacklistnet.blacklistnet.blacklist and/or net.whitelistnet.whitelistnet.whitelistnet.whitelist yourself after initialising the netnetnetnet
package.

The procedure is a binding to C's connect function.

See also: net.sendnet.sendnet.sendnet.send.

net.listen (s [, length])

agenaagenaagenaagena >> 371

Converts the given socket s to a server socket, enabling it to accept connections.
You may optionally pass an integer in the range [1, 1024] determining the length of
the queue for pending connections.
The return is either truetruetruetrue, or falsefalsefalsefalse and a string with an error message if listening failed.
You must first run this function before calling net.acceptnet.acceptnet.acceptnet.accept and net.receivenet.receivenet.receivenet.receive .

The procedure is a binding to C's listen function.

net.lookup ([x])

Determines the IP, an optional alias, the official name and the supported protocol
of a given URL or numeric IP x of type string. If no argument is passed, the function
will return the information on 'localhost' .

An example:

> lookup('www.zeit.de'):
[networkaddress ~ [0.0.0.1], alias ~ [zeit.de], off icial ~ Die Zeit, type ~
IPv4]

> lookup('10.137.0.1'):
[networkaddress ~ [10.137.0.1], alias ~ [anything.y z], official ~ Anything,
type ~ IPv4]

See also: net.addressnet.addressnet.addressnet.address , net.remoteaddressnet.remoteaddressnet.remoteaddressnet.remoteaddress .

net.open ([blocking])

Creates a (client) network socket. If the optional first argument blocking is set to
falsefalsefalsefalse, the socket is set to non-blocking mode.

The return is the socket handle (a number), the default address 'localhost' and
default port 1234 , the protocol (a number) and a Boolean indicating whether the
handle can be reused by the system after the socket has been closed. If a new
socket could not be opened, an error is issued.

net.opennet.opennet.opennet.open does not connect the client to a server - use net.connectnet.connectnet.connectnet.connect for this.

To create a server socket waiting for input, use net.bindnet.bindnet.bindnet.bind, net.listennet.listennet.listennet.listen, and net.accept.net.accept.net.accept.net.accept.

The procedure is a binding to C's socket function.

See also: net.closenet.closenet.closenet.close.

net.opensockets ()

Returns all open sockets along with their respective attributes.

The return is a table with its keys the open socket handles, and their entries tables
containing information on whether the socket is a server or client (key 'server' ,
truetruetruetrue or falsefalsefalsefalse), their own address (key 'address' , a string), their own port (key

372 7 Standard Libraries

'port' , a number), the protocol being used (key 'protocol' , a number), whether
the socket works in blocking or non-blocking mode (key 'blocking' , truetruetruetrue or falsefalsefalsefalse),
and whether the socket has been connected to a server ('connected' , truetruetruetrue or
falsefalsefalsefalse).

The table key 'mode' holds information on the read and write status of the socket:

the socket can both send and receive data (the default)'readwrite'
the socket can only send data, but cannot receive any'write'
the socket can only receive data, but cannot send any'read'
the socket no longer can receive or send data'shutdown'
the socket is not connected'none'
MeaningMeaningMeaningMeaningValueValueValueValue

Please note that modifying the contents of the table returned will not have any
effect on the status of the sockets, so you cannot do any harm.

See also: net.shutdownnet.shutdownnet.shutdownnet.shutdown.

net.openwinsock ([anything])

The function is available only in the Windows edition. It re-enables network
communication and returns truetruetruetrue on success, or issues an error otherwise if anything

is not given. If any value anything is passed to the function, in case of an error it
returns failfailfailfail plus an error message of type string.

When initialising the netnetnetnet package by calling readlibreadlibreadlibreadlib or withwithwithwith, Agena automatically
starts the Winsock daemon, so you do not have to call this function explicitly.

The procedure is a binding to C's WSAStartup function.

See also: net.closewinsocknet.closewinsocknet.closewinsocknet.closewinsock .

net.receive (s [, getall [, maxlength]])

Allows a server socket s to receive a string from a client. The function returns this
string and its length (a number). s should be the socket handle returned by
net.acceptnet.acceptnet.acceptnet.accept .

If the return is the empty string plus the value 0 (zero) for its length, the client has
closed the connection - this is also a proper check on whether a client is still
connected with a server socket. Please note that in this case, no further data can
be received on this socket and you have to close s manually.

If truetruetruetrue has been passed for the optional argument getall , the function reads in all
data from the client until the latter closes the connection. If the client does not
close the connection, net.receivenet.receivenet.receivenet.receive waits infinitely.

agenaagenaagenaagena >> 373

The optional argument maxlength determines the maximum number of characters
to be received. If a client tries to send more data than specified by maxlength , the
function returns falsefalsefalsefalse and the string 'too many bytes received' .

The maximum number of bytes to be read by one stroke is determined by
environ.kernel['buffersize']environ.kernel['buffersize']environ.kernel['buffersize']environ.kernel['buffersize'] which value depends on the operating system and can
also mbe changed.

If any error occurs during receipt of the data, net.receivenet.receivenet.receivenet.receive does not close the socket
s , but returns falsefalsefalsefalse and a string containing either the message 'failure during

receipt ' or 'too many bytes received' , the latter if maxlength and the number of
bytes received exceeded it.

The procedure is an extended binding to C's recv function.

See also: net.acceptnet.acceptnet.acceptnet.accept, net.bindnet.bindnet.bindnet.bind, net.blocknet.blocknet.blocknet.block, net.listennet.listennet.listennet.listen, net.receivenet.receivenet.receivenet.receive, net.sendnet.sendnet.sendnet.send,
net.surveynet.surveynet.surveynet.survey.

net.remoteaddress (s)

Returns two values: the IP address (a string) and port (a number) of the server that
the client socket s is connected to.

See also: net.addressnet.addressnet.addressnet.address , net.lookupnet.lookupnet.lookupnet.lookup.

net.send (s, str [, true])

Sends a string str (second argument) from the client denoted by its socket handle
s (first argument, a number) to a server.

The return is the number of the characters actually sent. If the kernel decides not to
send all the data in one chunk, the function might not send the complete string. If
an optional third argument, the Boolean truetruetruetrue, is given, net.sendnet.sendnet.sendnet.send, however, tries to
make sure that the complete string has been sent when it returns.

If str is the empty string, it will not be sent to the server.

The function returns failfailfailfail and the string 'socket not connected' if the socket has not
been connected before by either net.connectnet.connectnet.connectnet.connect or net.acceptnet.acceptnet.acceptnet.accept. It also returns fail
and 'socket not connected' if the connection has been disconnected.

If the number of bytes actually sent is not equal to the length of the string str, the
function returns false, the string 'transfer size mismatch' , and the number of
bytes sent.

The procedure is an extended binding to C's send function.

See also: net.connectnet.connectnet.connectnet.connect , net.receivenet.receivenet.receivenet.receive .

374 7 Standard Libraries

net.shutdown (s, what)

The function stops further sends and receives on a socket s . If what is the string
'read' , then the socket can no longer receive data; if what is the string 'write' , it
can lo longer send data; and if what is the string 'readwrite' , it will not do both any
longer.

Please note that socket s will still be active. Call net.closenet.closenet.closenet.close if you want to release the
socket completely.

See also: net.opensocketsnet.opensocketsnet.opensocketsnet.opensockets .

net.smallping (ip, port [, iters [, delay [, messag e [, noprint]]]])

Opens a socket, connects to a server given by the string ip (either a domain name
or a numeric ip) on its port port , a number, optionally sends a string to the server,
and then closes the connection again. It resembles the UNIX ping command, but
works on a low-level network connection and does not use ICMP.

By default, only one connection attempt is conducted before the function returns.
You can specify the number of connection attempts by the optional argument
iters , a positive integer.

The function waits one second before connecting to the server again. You can
change this by passing a different number of seconds for the argument delay , a
positive integer.

If message is not given, the function does not send any data to the server. You can
change this by passing a string as argument message , which might also be the
empty string.

By default, the function prints the connection results at the console with each
iteration. This can be suppressed by passing any non-null value as argument
noprint . If you specify a value for noprint and if you do not want to send a string to
the server, just pass a non-string value as argument message .

The following data is printed at the console if noprint is void: Date and time,
round-trip time for the current connection in seconds, average round-trip time, a
Boolean indicating whether the connection was successful (true) or not (false), and
the number of the current iteration. Example:

> net.smallping('www.anything.foo', 80, 4, 2)
> # four iterations, 2-second delay, no message
2014/01/01 13:54:30 0.296 0.296 true 1
2014/01/01 13:54:32 0.031 0.163 true 2
2014/01/01 13:54:34 0.047 0.125 true 3
2014/01/01 13:54:36 0.047 0.105 true 4

The function returns the date and time of the final iteration as a number indicating
the number of seconds passed since a given `epoch`, the average round-trip time
in seconds as a number, and a Boolean indicating whether the last connection

agenaagenaagenaagena >> 375

attempt was successful (truetruetruetrue) or not (falsefalsefalsefalse). Use skycrane.todateskycrane.todateskycrane.todateskycrane.todate to convert the
numeric date into a readable format.

The function is written in the Agena language and included in the net.agn file.

net.survey ([o], [timeout [, mode [, throw]]])

The function looks for activity on all open sockets, or of specific sockets. If you want
to scan only specific sockets, pass a sequence o of socket handles as the first
argument.

The returns are three sequences and a Boolean: the first sequence with descriptors
of sockets ready for reading, the second sequence containing all descriptors of
sockets ready for writing, and the third sequence with the descriptors of sockets
which encountered exceptional conditions. (Exceptional conditions are not failures.)
If the Boolean is truetruetruetrue then input is available, if it is falsefalsefalsefalse it indicates a timeout.

By default, net.surveynet.surveynet.surveynet.survey waits endlessly and only returns if a network action has been
detected (so-called `blocking mode`).

If the positive number timeout is passed to the function, the functions will always
return after timeout seconds even if there was no activity. if timeout is infinityinfinityinfinityinfinity, it waits
endlessly for a connection.

If mode is the string 'read' , then the function only scans sockets ready for reading. If
mode is the string 'write' , then the function only scans sockets ready for writing. If
mode is the string 'except' , then the function only scans sockets where exceptions
occurred. In all three cases, the returns are a sequence of the respective sockets
handles and the Boolean truetruetruetrue if input is available, or falsefalsefalsefalse at timeout.

If throw is set to falsefalsefalsefalse, then the function does not quit with an error in case the
socket status could not be determined.

A socket handle returned can be passed to the net.acceptnet.acceptnet.acceptnet.accept function so that an
incoming connection can be further processed.

The function is a binding to C's select function.

See also: net.acceptnet.acceptnet.acceptnet.accept , net.bindnet.bindnet.bindnet.bind, net.listennet.listennet.listennet.listen, net.receivenet.receivenet.receivenet.receive .

net.wget (domain, [path [, port]]])

The function downloads an HTML file from a web server.

domain , a string, specifies the domain. path , also of type string, indicates the
absolute path including the HTML file name on the web server. If port , a
non-negative integer less than 65,535 is given, then the function tries to query this
port instead of the standard HTML port 80.

376 7 Standard Libraries

If only domain is given, then it may include the absolute path. If you want to
download data from a different port than 80, however, you must pass the absolute
path as the second argument.

The function uses the HTTP 1.0 protocol along with the GET method.

The function returns the retrieved web page as a string, including its HTTP protocol
header.

Examples:

> import net

> net.wget('www.lua.org', 'about.html'):
HTTP/1.1 200 OK
Server: Zeus/4.3
...

> net.wget('www.lua.org/about.html'):

The function is written in the Agena language and included in the net.agn file.

agenaagenaagenaagena >> 377

7777.20 .20 .20 .20 osososos - Access to the Operating System - Access to the Operating System - Access to the Operating System - Access to the Operating System

This library is implemented through table os .

To determine the operating system and CPU in use by Agena, see the environ.environ.environ.environ.oooossss
and environ.environ.environ.environ.ccccpupupupu environment variables explained in Appendix A3.

Summary of functions:

File and directory handling:

os.chdiros.chdiros.chdiros.chdir , os.existsos.existsos.existsos.exists, os.fattribos.fattribos.fattribos.fattrib, os.fcopyos.fcopyos.fcopyos.fcopy, os.fstatos.fstatos.fstatos.fstat, os.listos.listos.listos.list, os.listcoreos.listcoreos.listcoreos.listcore , oooos.mkdirs.mkdirs.mkdirs.mkdir,
os.moveos.moveos.moveos.move, os.readlinkos.readlinkos.readlinkos.readlink , os.removeos.removeos.removeos.remove, os.rmdiros.rmdiros.rmdiros.rmdir, os.symlinkos.symlinkos.symlinkos.symlink, os.tmpnameos.tmpnameos.tmpnameos.tmpname.

Hardware access:

os.batteryos.batteryos.batteryos.battery, os.beepos.beepos.beepos.beep, os.cdromos.cdromos.cdromos.cdrom, os.endianos.endianos.endianos.endian, os.freememos.freememos.freememos.freemem, os.ismountedos.ismountedos.ismountedos.ismounted ,
os.os.os.os.isisisisremovableremovableremovableremovable, os.isvaliddriveos.isvaliddriveos.isvaliddriveos.isvaliddrive , os.memstateos.memstateos.memstateos.memstate, os.mousebuttonsos.mousebuttonsos.mousebuttonsos.mousebuttons ,
os.screensizeos.screensizeos.screensizeos.screensize .

Operating System Access:

os.computernameos.computernameos.computernameos.computername , os.cpuinfoos.cpuinfoos.cpuinfoos.cpuinfo, os.cpuloados.cpuloados.cpuloados.cpuload, os.drivesos.drivesos.drivesos.drives, os.drivestatos.drivestatos.drivestatos.drivestat ,
os.environos.environos.environos.environ , os.executeos.executeos.executeos.execute, os.exitos.exitos.exitos.exit, os.getenvos.getenvos.getenvos.getenv, os.isANSIos.isANSIos.isANSIos.isANSI, os.isUNIXos.isUNIXos.isUNIXos.isUNIX, os.loginos.loginos.loginos.login,
os.pidos.pidos.pidos.pid, os.setenvos.setenvos.setenvos.setenv, os.settimeos.settimeos.settimeos.settime, os.setlocaleos.setlocaleos.setlocaleos.setlocale , os.systemos.systemos.systemos.system, os.waitos.waitos.waitos.wait.

Date and Time:

os.dateos.dateos.dateos.date, os.datetosecsos.datetosecsos.datetosecsos.datetosecs , os.difftimeos.difftimeos.difftimeos.difftime, os.nowos.nowos.nowos.now, os.secstodateos.secstodateos.secstodateos.secstodate , os.timeos.timeos.timeos.time,
os.uptimeos.uptimeos.uptimeos.uptime.

378 7 Standard Libraries

os.battery ()

On Windows 2000 and later, the function returns the current battery status of your
system (usually laptops) as a table with the following information:

the battery lifetime in seconds when at full charge, a number
(or undefinedundefinedundefinedundefined if it could not be determined)

'fulllifetime'

the remaining battery lifetime in seconds, a number (or
undefinedundefinedundefinedundefined if it could not be determined)

'lifetime'

the battery flag, a number'flag'
truetruetruetrue if battery is currently being charged, or falsefalsefalsefalse otherwise'charging'

either 'low' (capacity < 33%), 'medium' (capacity > 32% and
<67 %), 'high' (capacity > 66%), 'critical' (capacity < 5%),
'charging', 'no battery', 'unknown'

'status'

battery life in percent'life'
truetruetruetrue if a battery is present, and falsefalsefalsefalse otherwise'installed'
'on', 'off', or 'unknown''acline'
MeaningMeaningMeaningMeaningKeyKeyKeyKey

On eComStation, OS/2 Warp 4 and higher, the functions returns the status of the
battery as a table with the following information:

truetruetruetrue if power management is switched on, or falsefalsefalsefalse if not.
'power-
management'

eComstation - OS/2 power flags'flags'
either 'high', 'low', 'critical', 'charging', 'unknown', or 'invalid''status'
battery life in percent, or 'undefined' if not available'life'
'on', 'off', 'unknown', or 'invalid''acline'
MeaningMeaningMeaningMeaningKeyKeyKeyKey

On other operating systems, the function returns failfailfailfail.

os.beep ()

os.beep (freq, dur)

In the first form, the functions sounds the loudspeaker with a short `beep` and
returns nullnullnullnull.

The second form sounds the loudspeaker with frequency freq (a positive integer) for
dur seconds (a positive float) in Windows and eComStation - OS/2. In UNIX and DOS,
the loudspeaker beeps dur times, and the frequency is ignored (just pass any
number to freq). Returns nullnullnullnull if a sound could be created successfully, or failfailfailfail if
non-positive arguments were passed.

os.cdrom (d, action)

Opens and closes the tray of an optical disk drive d. It can also eject any other
removable drive d. If action is 'open' or 'eject' , the tray is opened or the media is

agenaagenaagenaagena >> 379

ejected. If action is 'close' , the tray is closed. The function is available in the
Windows edition of Agena only.

os.chdir ([str])

Changes into the directory given by string str on the file system. Returns truetruetruetrue on
success and issues an error on failure otherwise. If no argument is given or nullnullnullnull is
passed for str , the name of the current working directory is returned as a string.

os.computername ()

Returns the name of the computer in Windows, eComStation - OS/2, DOS, Mac OS
X, Haiku, and UNIX. The return is a string. On other architectures, the function returns
failfailfailfail.

os.cpuinfo ()

Returns various information on the CPU in use: its type, frequency, and number of
cores. It is available in Windows 2000 and later, eComStation - OS/2, DOS, Linux,
and Mac OS X only28. The return is a table with the following fields:

xxx
vendor ID, e.g. 'GenuineAMD',
'GenuineIntel'.

'vendor'

xxxx

architecture: in Windows the string:
'x86', 'x64', 'ARM', 'Itanium', or
'unknown'; on a Mac: 'x86', 'x64',
'ppc', 'ppc64', 'MC680x0',
'MC88000', MC98000', HPPA',
'ARM', 'sparc', 'i860', or 'unknown'. In
Linux: a posint.

'type'

xxprocessor stepping, a posint'stepping'
xprocessor revision, a posint'revision'

xxxnumber of cores, a posint'ncpu'
xxprocessor model, a posint'model'

xxprocessor level, a posint'level'
xxxclock rate in MHz, a posint'frequency'
xxxprocessor name, a string29'brand'

xxxx
endianness: truetruetruetrue means Big
Endian, falsefalsefalsefalse Little Endian, and failfailfailfail
undetermined.

'bigendian'

LinuxLinuxLinuxLinuxMacMacMacMacWin-Win-Win-Win-
dowsdowsdowsdows

eCS
OS/2

MeaningMeaningMeaningMeaningFieldFieldFieldField

On all supported operating systems, all data is determined by querying the first
processor on the platform, assuming that all other cores have the same features.

380 7 Standard Libraries

29 The return may include leading or trailing blanks.

28 In Solaris, you may issue io.pcall('kstat') and parse its return.

The returns may be platform-dependent - especially, the return regarding 'level'
may have a different meaning.
If executed on systems other than Windows, eComStation - OS/2, Linux, DOS,
Sparcs, and Mac OS X, the function returns failfailfailfail.

The Linux version has been written in the Agena language, see the library.agn file;
the other OS versions have been implemented in C.

See also: os.cpuos.cpuos.cpuos.cpuloadloadloadload, os.endianos.endianos.endianos.endian.

os.cpuload ()

In eComStation - OS/2, Linux and Mac OS X, returns the 1, 5 and 15 minute load
averages of the computer as a sequence of three numbers in the range [0 , 1]. In
Windows, it just returns the current CPU load as a sequence of three equal numbers
in the same range. On other platforms, the function returns failfailfailfail.

See also: os.cpuinfoos.cpuinfoos.cpuinfoos.cpuinfo.

os.curdir ()

Has been deprecated. Please use os.chdiros.chdiros.chdiros.chdir(nullnullnullnull) to determine the current working
directory.

os.curdrive ()

In eComStation - OS/2, DOS, and Windows returns the letter of the current drive, a
one.character string.

os.date ([format [, time]])

Returns a string or a table containing date and time, formatted according to the
given string format .

If the time argument is present, i.e. the number of seconds elapsed since a given
epoch (usually January 01, 1970), this is the time to be formatted. Otherwise, datedatedatedate
formats the current time. To convert a date and time to seconds, see
os.datetosecsos.datetosecsos.datetosecsos.datetosecs .

If format starts with '!' , then the date is formatted in Co-ordinated Universal Time.
After this optional character, if format is *t , then datedatedatedate returns a table with the
following fields: year (four digits), month (1..12), day (1..31), hour (0..23), min (0..59),
sec (0..59), msec (0..999) - if milliseconds could be determined, wday (weekday,
Sunday is 1), yday (day of the year), and isdst (daylight saving flag, a boolean).

If format is not *t , then datedatedatedate returns the date as a string, formatted according to the
same rules as the C function strftime .

agenaagenaagenaagena >> 381

When called without arguments, os.os.os.os.datedatedatedate on all supported platforms returns a string
of the format 'YYYY/MM/DD mm:hh:ss.xxx', where .xxx denotes milliseconds, if they
could be determined; otherwise the return would simply be in the format
''YYYY/MM/DD mm:hh:ss'.

See also: os.os.os.os.nownownownow, os.os.os.os.timetimetimetime.

os.datetosecs (obj)

os.datetosecs (year, month, day [, hour [, minute [, second]]])

In the first form, receives a date and optionally time of the form year, month, date [,
hour [, minute [, second]]], with all values in table or sequence obj being integers,
and transforms it to the number of seconds elapsed since the start of an `epoch`.

In the second form, receives the given integers, and conducts the same operation.

The time zone acknowledged may depend on your operating system.

See also: os.timeos.timeos.timeos.time, os.secstodateos.secstodateos.secstodateos.secstodate , utils.checkdateutils.checkdateutils.checkdateutils.checkdate .

os.difftime (t2, t1)

Returns the number of seconds from time t1 to time t2 . In POSIX, Windows, and
some other systems, this value is exactly t2 -t1 .

See also: timetimetimetime, os.timeos.timeos.timeos.time.

os.drives ()

In Windows and eComStation - OS/2, the function returns all the logical drives
available at the local computer. The return is a sequence of drive letters. In other
systems, the return is failfailfailfail.

os.drivestat (driveletter)

In Windows, the function returns information of the given logical drive (a single letter
string) in a table where its keys have the following meaning:

the total number of physical bytes'totalsize'
the number of free space in bytes'freesize'

the type of the drive, i.e. 'Removable', 'Fixed', 'Remote',
'CD-ROM', or 'RAMDISK'

'drivetype'

the file system (e.g. NTFS, FAT32, etc.)'filesystem'
the drive label'label'
MeaningMeaningMeaningMeaningKeyKeyKeyKey

In other systems, the return is failfailfailfail.

382 7 Standard Libraries

Example:

> os.drivestat('c'): # get information on drive C: \
[filesystem ~ NTFS, label ~ drive_c, drivetype ~ Fi xed, freesize ~
75547742208, totalsize ~ 85898014720]

See also: os.ismountedos.ismountedos.ismountedos.ismounted , os.isremovableos.isremovableos.isremovableos.isremovable .

os.endian ()

Determines the endianness of your system. Returns 0 for Little Endian, 1 for Big
Endian, and failfailfailfail if the endianness could not be determined.

See also: os.cpuinfoos.cpuinfoos.cpuinfoos.cpuinfo.

os.environ ()

Returns all environment variables of the underlying operating system and their
current settings as a table of key ~ value pairs of type string.

See also: os.getenvos.getenvos.getenvos.getenv, os.setenvos.setenvos.setenvos.setenv.

os.execute ([command])

This function is equivalent to the C function system . It passes command to be
executed by an operating system shell. It returns a status code, which is
system-dependent. If command is absent, then it returns non-zero if a shell is available
and zero otherwise.

See also: io.pio.pio.pio.pcallcallcallcall.

os.exists (filename)

Checks whether the given file or directory (filename is of type string) exists and the
user has at least read permissions for it. It returns truetruetruetrue or falsefalsefalsefalse.

os.exit ([code])

Calls the C function exit , with an optional code , to terminate the host programme.
The default value for code is the success code.

os.fattrib (fn, mode)

os.fattrib (fn, time)

In the first form, sets or deletes file permission flags given by the mode string to the file
denoted by the filename fn .

The mode argument must consist of at least three characters and have the following
form:

agenaagenaagenaagena >> 383

'a' - user, group, and
other

'x' - execute permission'o' - other
'w' - write permission'-' - remove permission'g' - group
'r' - read permission'+' - add permission'u' - user
Character 3, etc.Character 3, etc.Character 3, etc.Character 3, etc.Character 2Character 2Character 2Character 2Character 1Character 1Character 1Character 1

The first character in mode denotes the owner of the file, the second character
indicates whether to set or delete a permission, and the following characters
indicate which permissions to set or remove.

In Windows and eComStation - OS/2 the following permission flags are additionally
supported:

'r' - read-only flag
'h' - hidden flag
's' - system flag
'a' - archive flag
Character 3, etc.Character 3, etc.Character 3, etc.Character 3, etc.

In the second form, the function changes the modification and access time of the
file denoted by its name fn to the date and time given in table time . The table
must include at least integers representing a year, month, and day. It may
optionally include an hour, a minute, and a second. If they are missing, they
default to zero.

File time stamps can only be changed in UNIX, Windows, Mac OS X , and DOS.

The function returns truetruetruetrue on success, and failfailfailfail otherwise.

Examples:

> os.fattrib('file.txt', 'a-wx'); # deletes write and execute permissions

> os.fattrib('file.txt', [2012, 05, 23, 12, 30, 0]) ; # sets time stamp

See also: os.fstatos.fstatos.fstatos.fstat, os.nowos.nowos.nowos.now.

os.fcopy (infile, outfile)

Copies the file and its permissions denoted by the filename infile to the file called
outfile . If outfile already exists, it is overwritten without warning. The function
internally uses environ.kernel['buffersize']environ.kernel['buffersize']environ.kernel['buffersize']environ.kernel['buffersize'] for the number of bytes to be copied at
the same time, which you may change to another positive integer.

The function returns truetruetruetrue on success, and failfailfailfail and infile otherwise. It also returns failfailfailfail
and infile if the file could be copied, but the file permissions could not be set.

384 7 Standard Libraries

Please note that outfile cannot specify a target directory. Use skycrane.fcopyskycrane.fcopyskycrane.fcopyskycrane.fcopy
instead which copies files into other files and also to directories.

See also: skycrane.fcopyskycrane.fcopyskycrane.fcopyskycrane.fcopy .

os.freemem ([unit])

Returns the amount of free physical RAM available on Windows and Mac OS X,
Haiku, and UNIX machines. In eComStation - OS/2, the function returns the amount
of free virtual RAM.

If no argument is given, the return is in bytes. If unit is the string 'kbytes' , the return is
in kBytes; if unit is 'mbytes' , the return is in Mbytes; if unit is 'gbytes' , the return is in
GBytes. On other architectures, the function returns failfailfailfail.

See also: environ.usedenviron.usedenviron.usedenviron.used , os.memstateos.memstateos.memstateos.memstate.

os.fstat (fn)

Returns information on the file, symbolic link (UNIX and Windows only), or directory
given by the string fn in a table.

The table includes the following information:

The permission bits.'bits'

file attributes coded in an integer (C type file attributes as a string
similar to that in UNIX and DOS, e.g. '-rw-rw-r--:-----' or
'----------:-drhas' where the bits to the left of the colon are set
in the UNIX and DOS versions of Agena, while in Windows and
eComStation - OS/2, the bits to the right of the colon are set.
The letters indicate:
'r' - read permission granted (UNIX & DOS)
'w' - write permission granted (UNIX & DOS)
'x' - execute permission granted (UNIX & DOS)
'd' - indicates directory (eCS - OS/2 only)
'r' - readonly file (eCS -OS/2 and Windows)
'h' - hidden file (eCS -OS/2 and Windows)
'a' - archived file (eCS -OS/2 and Windows)
's' - system file (eCS -OS/2 and Windows)

'perms'

last modification date in the form yyyy, mm, dd, hh, mm, ss'date'
the size of the file in bytes'length'

'FILE' if fn is a regular file, 'LINK' if fn is a symbolic link (UNIX and
Windows only), 'DIR' if fn is a directory, 'CHARSPECFILE' if fn is a
character special file (a device like a terminal), 'BLOCKSPECFILE' if
fn is a block special file (a device like a disk), or 'OTHER' otherwise

'mode'

MeaningMeaningMeaningMeaningKeyKeyKeyKey

agenaagenaagenaagena >> 385

(UNIX only) Unique file serial number.'inode'
Device containing the file, in Windows 0 = A, 1 = B, etc.'device'

(UNIX only) Optimal block size for reading or writing this file, in
bytes.

'blocksize'

(UNIX only) Disk space occupied by the file, measured in units of
512-byte blocks.

'blocks'

Access permissions to the file or directory are returned with the
owner , group (UNIX only), and other (UNIX only) keys which each
reference tables with information on read , write , and execute

permissions. These tables have the following form: ['read' ~

<boolean>, 'write' ~ <boolean>, 'execute' ~ <boolean>] ,
where <boolean> is either truetruetruetrue or falsefalsefalsefalse.

In eComStation - OS/2 and Windows, the file attributes 'hidden' ,
'readonly' , 'archived' , and 'system' are also returned in the
subtable with key 'owner'.

'owner' ,
'group' ,
'other'

MeaningMeaningMeaningMeaningKeyKeyKeyKey

See also: os.fos.fos.fos.fattribattribattribattrib.

os.getenv (varname)

Returns the value of the system environment variable varname , or nullnullnullnull if the variable
is not defined.

See also: os.setenvos.setenvos.setenvos.setenv, os.environos.environos.environos.environ .

os.isANSI ()

Returns truetruetruetrue on Agena editions compiled with the LUA_ANSI (strict ANSI C) option,
and falsefalsefalsefalse otherwise.

os.ismounted (d)

Checks whether the given drive d has been mounted. It is available in the Windows
edition of Agena only.

See also: os.cdromos.cdromos.cdromos.cdrom, os.drivestatos.drivestatos.drivestatos.drivestat , os.isremovableos.isremovableos.isremovableos.isremovable , os.isvaliddriveos.isvaliddriveos.isvaliddriveos.isvaliddrive .

os.isremovable (d)

Checks whether the given drive d is removable. It is available in the Windows edition
of Agena only.

See also: os.cdromos.cdromos.cdromos.cdrom, os.drivestatos.drivestatos.drivestatos.drivestat , os.ismountedos.ismountedos.ismountedos.ismounted , os.isvaliddriveos.isvaliddriveos.isvaliddriveos.isvaliddrive .

386 7 Standard Libraries

os.isUNIX ()

Returns truetruetruetrue if Agena is being run in a UNIX environment (i.e. Solaris, Linux, and
OpenSolaris), and falsefalsefalsefalse otherwise.

os.isvaliddrive (d)

Checks whether the given drive d is part of the file system. It is available in the
Windows edition of Agena only.

See also: os.cdromos.cdromos.cdromos.cdrom, os.drivestatos.drivestatos.drivestatos.drivestat , os.ismountedos.ismountedos.ismountedos.ismounted , os.isremovableos.isremovableos.isremovableos.isremovable .

os.list (d [, options])

Lists the contents of a directory d (given as a string) by returning a table of strings
denoting the files, subdirectories, and links. The second return is a string with the
absolute path to the main directory scanned. If d is nullnullnullnull or the empty string, the
current working directory is evaluated.

d may include the ? and * jokers known from UNIX, eComStation - OS/2, DOS, or
Windows to select a subset of files, e.g. os.list('*.c') to return all files with suffix
.c . Jokers can only be used to select files, but not to parse multiple subdirectories.

If no option is given, files, links, and directories are returned. If the optional argument
'files' is given, only files are returned. If the optional argument 'dirs' is given,
directories are returned exclusively. If the optional argument 'links' is given, links
are returned (UNIX only). The 'r' option forces a recursive descent into all subfolders
of d. Multiple options can be given.

If d is '.' , then the current working directory is examined. If d is '..' , then the
directory one level higher than the current one is searched.

If the string 'r' is passed as an option, the function traverses all subfolders in d.

The function is written in the Agena language and included in the library.agn file.

os.listcore (d)

os.listcore (d [, options] [, pattern])

In the first form, returns a table with all the files, links and directories in the given path
d. If d is void or the string '.' , the current working directory is evaluated. It is the core
function used by os.listos.listos.listos.list.

In the second form, by giving at least one of the options 'files' , 'dirs' , or
'links' , the file, directory name, or link names are returned, respectively. These
three options can be mixed.

agenaagenaagenaagena >> 387

Another option may be a pattern of type string which can include the wildcards ?
and * . If given, the function only returns those filenames which match this pattern.

os.login ()

Returns the login name of the current user as a string. The return is a string. In DOS,
the function returns failfailfailfail.

os.memstate ([unit])

(Windows, UNIX, Mac OS X, Haiku, and eComStation - OS/2 only.) Returns a table
with information on current memory usage. With no arguments, the return is the
respective number of bytes (integers). If unit is the string 'kbytes' , the return is in
kBytes; if unit is 'mbytes' , the return is in Mbytes; if unit is 'gbytes' , the return is in
Gbytes.

The resulting table will contain the following values, an 'x' indicates which values are
returned on your system.

xmemory reactivated'reactivated'

x
memory that cannot be paged
out

'wireddown'

x
unknown meaning, see vm_stat.c
source code.

'speculative'

xinactive memory'inactive'

x
maximum amount of memory the
current process commitable

'totalpagefile'

x
current committed memory limit
for the current process

'freepagefile'

xactive memory'active'

x
maximum number of shareable
bytes available

'maxshmem'

x
maximum number of bytes
available for the active process

'maxprmem'

xoccupied resident pages'resident'
xtotal virtual memory'totalvirtual'
xxfree virtual memory'freevirtual'

xxxxinstalled physical RAM'totalphysical'
xxxfree physical RAM'freephysical'

Mac
UNIX/
Haiku

Win-
dows

eCS
OS/2

DescriptionDescriptionDescriptionDescriptionKeyKeyKeyKey

On Mac, the function returns Mach virtual memory statistics. Type man vm_stat in a
shell to get more information on the meaning of the above mentioned
Mac-specific values.

On other architectures, the function returns failfailfailfail.

388 7 Standard Libraries

See also: environ.usedenviron.usedenviron.usedenviron.used , os.freememos.freememos.freememos.freemem.

os.mkdir (str)

Creates a directory given by string str on the file system. Returns truetruetruetrue on success,
and issues an error on failure otherwise.

The function is available on eComStation - OS/2, DOS, UNIX, Haiku, Mac OS X, and
Windows based systems only.

os.mousebuttons ()

In Windows, returns the number of buttons of the attached mouse. If a mouse is not
connected to your system, 0 is returned. On all other platforms, the function returns
failfailfailfail.

os.move (oldname, newname)

Renames or moves a file or directory named oldname to newname. The function
returns truetruetruetrue on success, and issues an error on failure otherwise.

See also: skycrane.moveskycrane.moveskycrane.moveskycrane.move .

os.now ([secs])

Returns rather low-level information on the current or given date and time in form of
a dictionary.

If no argument is passed, the function returns information on the current date and
time. If a non-negative number is given which represents the amount of seconds
elapsed since the start of the epoch, information on this date and time are
determined (see os.datetosecsos.datetosecsos.datetosecsos.datetosecs to convert a date to seconds).

The `gmt` table in the return of the function represents the current date and time in
GMT/UTC. The `localtime` table includes the same information for your local time
zone.

The `tz` entry represents the difference between your local time zone and GMT in
minutes with daylight saving time cancelled out, and east of Greenwich. The `td`
entry represents the difference between your local time zone and GMT in minutes
including daylight saving time, and east of Greenwich. `East of Greenwich` means:
A positive integer indicates that your computer is located east of Greenwich, a
negative value means that you are in a time zone to the west of Greenwich, and 0
means your computer is using GMT. The `jd` entry features the Julian Date and
Time.

The `seconds` entry is the number of seconds elapsed since some given start time
(the `epoch`), which on most operating systems is January 01, 1970, 00:00:00. The

agenaagenaagenaagena >> 389

`mseconds` entry represents milliseconds; it may be missing if milliseconds could
not be determined on your platform. The `dst` entry indicates whether daylight
saving time is in effect.

The `gmt` and `localtime` entries have the same structure: it is a table of data of
the following order: year, month, day, hour, minute, second, number of weekday
(where 0 means Sunday, 1 is Monday, and so forth), the number of full days since
the beginning of the year (in the range 0:365), whether daylight saving time is in
effect at the time given (0: no, 1: yes), the strings 'AM' or 'PM', the month in English (a
string), and the weekday in English (a string).

If the date and time could not be determined, failfailfailfails are returned.

See also: utils.calendarutils.calendarutils.calendarutils.calendar , os.datetosecsos.datetosecsos.datetosecsos.datetosecs , os.secstodateos.secstodateos.secstodateos.secstodate , os.timeos.timeos.timeos.time.

os.pid ()

Returns Agena's process ID as a number.

os.readlink (linkname)

Returns the target of the symbolic link linkname as a string. If the link does not exist or
if an error occurred, it returns failfailfailfail and optionally a string indicating the type of error.

In Windows, the function only recognises classical Windows shortcut files, it cannot
resolve NTFS symbolic links or junctions.

The function is not available in DOS.

See also: os.symlinkos.symlinkos.symlinkos.symlink.

os.remove (filename)

Deletes the file or directory with the given name. Directories must be empty to be
removed. Returns truetruetruetrue on success, and issues an error on failure otherwise.

os.rmdir (dirname)

Deletes a directory denoted by the string dirname on the file system. Returns truetruetruetrue on
success, and issues an error on failure otherwise.

os.screensize ()

In Windows, returns the current horizontal and vertical resolution of the display as a
pair of width:height. On all other platforms, the function issues failfailfailfail.

390 7 Standard Libraries

os.secstodate (secs)

Takes the number of seconds secs elapsed since the start of an epoch, in your
local time zone, and returns a table of integers in the order: year, month, day, hour,
minute, second. In case of an error, failfailfailfail is returned.

See also: os.datetosecos.datetosecos.datetosecos.datetosec .

os.setenv (var, setting)

Sets the environment variable in the underlying operating system. var must be a
string. If setting is a string or number, the environment variable var is set to setting .
If var has already been assigned before, its value is overwritten.

If setting is nullnullnullnull, then the environment variable var is deleted (not supported in
DOS).

See also: os.getenvos.getenvos.getenvos.getenv, os.environos.environos.environos.environ .

os.setlocale (locale [, category])

Sets the current locale of the programme. locale is a string specifying a locale;
category is an optional string describing which category to change: 'all' ,
'collate' , 'ctype' , 'monetary' , 'numeric' , or 'time' ; the default category is 'all' .

The function returns the name of the new locale, or nullnullnullnull if the request cannot be
honoured.

When called with nullnullnullnull as the first argument or no argument at all, this function only
returns the name of the current locale for the given category.

See also: skycrane.getlocalesskycrane.getlocalesskycrane.getlocalesskycrane.getlocales .

os.settime (secs)

Takes the number of seconds secs elapsed since the start of an epoch, in your
local time zone, and sets the system clock accordingly. Agena must be run in root
mode in order to change the system time. In case of an error, failfailfailfail is returned. The
function is only available in the Windows, Solaris, eComStation - OS/2, and Linux
versions of Agena.

See also: os.datetosecsos.datetosecsos.datetosecsos.datetosecs .

os.symlink (target, linkname)

In UNIX, the function creates a symbolic link named linkname to the file called
target . In Windows, the function creates a classical regular Windows shortcut file
that points to a real file. It does not create NTFS junctions or NTFS symbolic links.

agenaagenaagenaagena >> 391

Both arguments must be strings. The function is not available in DOS.

See also: os.os.os.os.readreadreadreadlinklinklinklink.

os.system ()

Returns information on the platform on which Agena is running.

Under Windows, it returns a table containing the string 'Windows', the major version
(e.g. 'NT 4.0', '2000', etc.) as a string, the Build dwBuildNumber) as a number, the
platform ID (dwPlatformId) as a number, the major version (dwMajorVersion), the
minor version (dwMinorVersion), and the product type (wProductType) in this order.

In UNIX, Mac OS X, Haiku, eComStation - OS/2, and DOS, it returns a table of strings
with the name of the operating system (e.g. 'SunOS'), the release, the version, and
the machine, in this order. Note that Mac OS X is recognised as 'Darwin'. In eCS -
OS/2, the major and minor revision, along with the revision, are returned as
numbers, as well.

If the function could not determine the platform properly, it returns failfailfailfail.

See also: environ.osenviron.osenviron.osenviron.os .

os.time ([obj])

Returns the current time when called without arguments, or a time representing the
date and time specified by the given table or sequence obj .

If a table is given, it must have fields year , month , and day , and may have fields
hour , min , sec , and isdst . See example below.

If obj is a sequence, it must contain a four-digits year, the month, and the day, all
integers, in this order. It may additionally include the hour, the minute, and the
second, all integers, too, in this order. The optional seventh entry must either be the
Boolean truetruetruetrue or falsefalsefalsefalse and indicates whether daylight saving time is in effect (default
is falsefalsefalsefalse). See example below.

The returned value is a number, whose meaning depends on your system. In POSIX,
Windows, and some other systems, this number counts the number of seconds
since some given start time (the `epoch`). In other systems, the meaning is not
specified, and the number returned by time can be used only as an argument to
datedatedatedate and difftimedifftimedifftimedifftime.

If a second number is returned, it denotes the millisecond portion of the current
time in the range [0, 999].

Examples:

392 7 Standard Libraries

> os.time(['year' ~ 2013, 'month' ~ 5, 'day' ~ 23,
> 'hour' ~ 1, 'min' ~ 2, 'sec' ~ 3]):
1369263723 791

> os.time(seq(2013, 5, 23, 1, 2, 3, false)):
1369267323 791

See also: timetimetimetime, os.dateos.dateos.dateos.date, os.datetosecsos.datetosecsos.datetosecsos.datetosecs , os.difftimeos.difftimeos.difftimeos.difftime, os.nowos.nowos.nowos.now.

os.tmpname ()

Returns a string with a file name that can be used for a temporary file. The file must
be explicitly opened before its use and explicitly removed when no longer needed.

os.uptime ()

Returns the number of seconds a system has been running. It is available in
eComStation - OS/2, Windows, and Linux. In Windows, there may be an overflow if
system has been up for more than 49.7 days.

os.wait (x)

Waits for x seconds and returns nullnullnullnull. x may be an integer or a float. This function
does not strain the CPU, but execution cannot be interrupted. The function is
available on eComStation - OS/2, DOS, UNIX, Mac OS X, Haiku, and Windows based
systems only.

On other architectures, the function returns failfailfailfail.

agenaagenaagenaagena >> 393

7.217.217.217.21environenvironenvironenviron - Access to the - Access to the - Access to the - Access to the AgenaAgenaAgenaAgena Environment Environment Environment Environment

This package comprises functions to access the Agena environment, explore the
internals of data, read settings, and set defaults.

environ.anames ([option])

Returns all global names that are assigned values in the environment. If called
without arguments, all global names are returned. If option is given and option is a
string denoting a basic or user-defined type (e.g. 'boolean' , 'table' , etc.), then all
variables of that type are returned.

The function is written in the Agena language and included in the library.agn file.

environ.attrib (obj)

With the table obj , returns a new table with

� the current maximum number of key~value pairs allocable to the array and
hash parts of obj ; in the resulting table, these values are indexed with keys
'array_allocated' and 'hash_allocated' , respectively,

� the number of key~value pairs actually assigned to the respective array and
hash sections of obj; in the resulting table, these values are indexed with keys
'array_assigned' and 'hash_assigned' ,

� an indicator 'array_hasholes' stating whether the array part contains at least
one hole,

� an indicator 'bytes' stating the estimated number of bytes reserved for the
structure,

� an indicator 'metatable' betoking whether a metatable has been attached to
the structure,

� if present, a user-defined type is indexed by the 'utype' key, otherwise failfailfailfail,
� if present, a weak table is indexed by the 'weak' key, otherwise failfailfailfail,
� the 'length' entry contains the estimated number of elements in a table (see

tables.getsizetables.getsizetables.getsizetables.getsize),
� the 'dummynode' entry indicates whether a table has no allocated has part.

With the set obj , returns a new table with

� the current maximum number of items allocable to the set; in the resulting
table, this value is indexed with the key 'hash_allocated' .

� the number of items actually assigned to obj ; in the resulting table, this value is
indexed with the key 'hash_assigned' ,

� an indicator 'bytes' stating the estimated number of bytes reserved for the
structure,

� an indicator 'metatable' betoking whether a metatable has been attached to
the structure,

� if present, a user-defined type is indexed by the 'utype' key, otherwise failfailfailfail.

394 7 Standard Libraries

With the sequence obj , returns a new table with

� the maximum number of items assignable; in the resulting table, this value is
indexed with the key 'maxsize' . If the number of entries is not restricted,
'maxsize' is infinityinfinityinfinityinfinity.

� the current number of items actually assigned to obj ; in the resulting table, this
value is indexed with the key 'size' ,

� an indicator 'bytes' stating the estimated number of bytes reserved for the
structure,

� an indicator 'metatable' betoking whether a metatable has been attached to
the structure,

� if present, a user-defined type is indexed by the 'utype' key, otherwise failfailfailfail,
� if present, a weak table is indexed by the 'weak' key, otherwise failfailfailfail.

With the function obj returns a new table with

� the information whether the function is a C or an Agena function. In the resulting
table, this value is indexed with the key 'C' ;

� the information whether a function contains a remember table, indicated by the
key 'rtableWritemode', where the entry truetruetruetrue indicates that it is an rtable (which is
updated by the returnreturnreturnreturn statement), where false false false false indicates that it is an rotable
(which cannot be updated by the returnreturnreturnreturn statement), and where failfailfailfail indicates
that the function has no remember table at all,

� an indicator 'bytes' stating the estimated number of bytes reserved,
� if present, a user-defined type is indexed by the 'utype' key, otherwise failfailfailfail.

With the pair obj , returns a new table with

� an indicator 'bytes' stating the estimated number of bytes reserved,
� an indicator 'metatable' betoking whether a metatable has been attached to

the structure,
� if present, a user-defined type is indexed by the 'utype' key, otherwise failfailfailfail.

environ.gc ([opt [, arg]])

This function is a generic interface to the garbage collector. It performs different
functions according to its first argument, opt :

• 'stop':'stop':'stop':'stop': stops the garbage collector.
• 'restart':'restart':'restart':'restart': restarts the garbage collector.
• 'collect':'collect':'collect':'collect': performs a full garbage-collection cycle (if no option is given, this is

the default action).
• 'count':'count':'count':'count': returns the total memory in use by Agena (in Kbytes).
• 'step':'step':'step':'step': performs a garbage-collection step. The step 'size' is controlled by arg

(larger values mean more steps) in a non-specified way. If you want to
control the step size you must experimentally tune the value of arg. Returns
truetruetruetrue if the step finished a collection cycle.

• 'setpause':'setpause':'setpause':'setpause': sets arg /100 as the new value for the pause of the collector.

agenaagenaagenaagena >> 395

• 'setstepmul':'setstepmul':'setstepmul':'setstepmul': sets arg /100 as the new value for the step multiplier of the
collector.

• ''''statusstatusstatusstatus':':':': determines whether the garbage collector is running or has been
stopped, and returns truetruetruetrue - i.e. collection has been activated - or falsefalsefalsefalse.

environ.getfenv (f)

Returns the current environment in use by the function. f can be an Agena function
or a number that specifies the function at that stack level: Level 1 is the function
calling getfenvgetfenvgetfenvgetfenv. If the given function is not an Agena function, or if f is 0, getfenvgetfenvgetfenvgetfenv
returns the global environment. The default for f is 1.

environ.globals (f)

Determines30 whether function f includes global variables (names which have not
been defined local). The return is a sequence of pairs: their left-hand side the
variable name of type string, the right-hand side the respective line number (of type
number). If no global variables could be found, the function returns nullnullnullnull.

environ.isselfref (obj)

Checks whether a structure obj (table, set, sequence, or pair) references to itself. It
returns truetruetruetrue if it is self-referencing, and falsefalsefalsefalse otherwise.

The function is written in the Agena language and included in the library.agn file.

environ.kernel (setting)

environ.kernel (setting:value)

Queries or defines kernel settings that cannot be changed or deleted automatically
by the restartrestartrestartrestart statement.

In the first form, by passing the given setting as a string, the current configuration is
returned.

In the second form, by passing a pair of the form setting:value , where setting is a
string and value the respective setting given in the table below, the kernel is set to
the given configuration.

The return is the new configuration.

Settings are:

396 7 Standard Libraries

30 Note that the function not always returns all global names.

Sets the default size of registers, the number
must be a non-negative integer.

a number'regsize'

If set to truetruetruetrue, prints an empty line between
the input and outputline regions. Default is
falsefalsefalsefalse.

truetruetruetrue or falsefalsefalsefalse'promptnewline'

The token that separates paths in libname;
by default is ';', cannot be changed. Grep
LUA_PATHSEP in the C sources.

a string'pathsep'

The minimum integral value of the C type
int32_t on your platform; cannot be
changed. Grep LUAI_MININT32 in the C
sources.

a number'minlong'

The maximum integral value of the C type
unsigned long int on your platform; cannot
be changed. Grep ULONG_MAX in the C
sources.

a number'maxulong'

The maximum integral value of the C type
int32_t on your platform; cannot be
changed. Grep LUAI_MAXINT32 in the C
sources.

a number'maxlong'

If set truetruetruetrue, then each key~value pair in a
table will be printed at a separate line,
otherwise a table will be printed like sets or
sequences. Default is falsefalsefalsefalse.

truetruetruetrue or falsefalsefalsefalse'longtable'

If set truetruetruetrue, the restartrestartrestartrestart statement resets
libnamelibnamelibnamelibname and mainlibnamemainlibnamemainlibnamemainlibname to their original
values. Default is falsefalsefalsefalse.

truetruetruetrue or falsefalsefalsefalse'libnamereset'

If set truetruetruetrue, tells the interpreter that it has been
invoked by AgenaEdit. Default is falsefalsefalsefalse.

truetruetruetrue or falsefalsefalsefalse'gui'

Stores the accuracy threshold epsilon used
by the ~=~=~=~= operator and the approxapproxapproxapprox
function.

a number'eps'

If set truetruetruetrue (the default), two input regions are
always separated by an empty line. If set
falsefalsefalsefalse, no empty line is inserted.

truetruetruetrue or falsefalsefalsefalse'emptyline'

Sets the number of digits used in the output
of numbers. Note that this setting does not
affect the precision of arithmetic operations.
The default is 14.

an integer in
[1, 17]

'digits'

Prints further debugging information if the
initialisation of a C dynamic library failed

truetruetruetrue or falsefalsefalsefalse'debug'

The default buffer size for file operations for
the os.fcopyos.fcopyos.fcopyos.fcopy, net.receivenet.receivenet.receivenet.receive, and
binio.readlinesbinio.readlinesbinio.readlinesbinio.readlines functions. Must be set to [512
.. 10243] It is equal to the C constant BUFSIZ
in stdio.h. Grep LUAL_BUFFERSIZE in the C
sources.

a number'buffersize'

DescriptionDescriptionDescriptionDescriptionValueValueValueValueSettingSettingSettingSetting

agenaagenaagenaagena >> 397

When set to truetruetruetrue, real and imaginary parts of
complex values close to zero are rounded
to zero on output. (Note that internally,
complex values are not rounded.) Default is
falsefalsefalsefalse.

truetruetruetrue or falsefalsefalsefalse'zeroedcomplex'

If set to truetruetruetrue, the bitwise operators &&&&&&&&, ~~~~~~~~,
||||||||, ^^^^^^^^, and shiftshiftshiftshift internally use signed
integers (the default), otherwise they use
unsigned integers.

truetruetruetrue or falsefalsefalsefalse'signedbits'

DescriptionDescriptionDescriptionDescriptionValueValueValueValueSettingSettingSettingSetting

Examples:

> environ.kernel('signedbits'):
true

> environ.kernel(signedbits = false):
false

environ.pointer (obj)

Converts obj to a generic C pointer (void*) and returns the result as a string. obj

may be userdata, a table, set, sequence, register, pair, thread, function, or
complex value; otherwise, pointerpointerpointerpointer returns failfailfailfail. Different objects will give different
pointers.

environ.setfenv (f, table)

Sets the environment to be used by the given function. f can be an Agena function
or a number that specifies the function at that stack level: Level 1 is the function
calling setfenvsetfenvsetfenvsetfenv. setfenvsetfenvsetfenvsetfenv returns the given function.

As a special case, when f is 0 setfenvsetfenvsetfenvsetfenv changes the environment of the running
thread. In this case, setfenvsetfenvsetfenvsetfenv returns no values.

environ.used ([opt])

By default, returns the total memory in use by Agena in Kbytes. If opt is the string
'bytes' , 'kbytes' , 'mbytes' , or 'gbytes' , the number is returned in the given unit.

See also: osososos.freememfreememfreememfreemem, os.memstateos.memstateos.memstateos.memstate.

environ.userinfo (f, level [, ···])

Writes information to the user of a procedure f depending on the given level , an
integer. The information to be printed is passed as the third, etc. arguments and
may be either numbers or strings.

398 7 Standard Libraries

At first the procedure should be registered in the environ.infolevelenviron.infolevelenviron.infolevelenviron.infolevel table along with a
level (an integer) indicating the infolevel setting at which information will be printed,
e.g. environ.infolevel[myfunc] := 1 .

If you do not enter an entry for the function to the environ.infolevelenviron.infolevelenviron.infolevelenviron.infolevel table, then
nothing is printed.

> f := proc(x) is
> environ.userinfo(f, 1, 'primary info to the us er: ', x, '\n');
> environ.userinfo(f, 2, 'additional info to the user: ', x, '\n')
> end;

If the level argument to userinfouserinfouserinfouserinfo is equal or less than the environ.environ.environ.environ.infolevelinfolevelinfolevelinfolevel table
setting, then the information is printed, otherwise nothing is printed.

> environ.infolevel[f] := 2;

> f('hello !');
primary info to the user: hello !
additional info to the user: hello !

Now the infolevel is decreased such that less information will be output.

> environ.infolevel[f] := 1;

> f('hello !');

primary info to the user: hello !

agenaagenaagenaagena >> 399

7.22 package - Modules7.22 package - Modules7.22 package - Modules7.22 package - Modules

The package library provides a basic facility to inspect which packages have been
loaded in a session.

package.checkclib (pkg)

Checks whether the package denoted by the string pkg and stored to a C dynamic
library has already been initialised. If not, it returns a warning printed on screen and
creates an empty package table. Otherwise it does nothing.

package.loadclib (packagename, path)

Loads the C library packagename (with extension .so in UNIX and Mac, or .dll in
Windows) residing in the folder denoted by path . path must be the name of the
folder where the C library is stored, and not the absolute path name of the file. The
function returns truetruetruetrue in case of success and falsefalsefalsefalse otherwise. On successful
initialisation, the name of the package is entered into the package.readlibbedpackage.readlibbedpackage.readlibbedpackage.readlibbed set.

See also: readlibreadlibreadlibreadlib, withwithwithwith.

package.loaded

A table containing all the names of the packages that have been initialised.

package.readlibbed

A table with all the names of the packages that have been initialised with the
readlibreadlibreadlibreadlib and withwithwithwith functions, and the importimportimportimport statement.

400 7 Standard Libraries

7777.23 .23 .23 .23 rtablertablertablertable - Remember Tables - Remember Tables - Remember Tables - Remember Tables

This package comprises functions to administer remember tables.

rtable.defaults (f)

rtable.defaults (f, tab)

rtable.defaults (f, null)

Administrates read-only remember tables of functions. As it works exactly like the
rememberrememberrememberremember function, except that it creates remember tables that cannot be
updated by the returnreturnreturnreturn statement, please refer to the description of the
rtable.rememberrtable.rememberrtable.rememberrtable.remember function for further details.

rtable.rdelete (f)

Deletes the remember table or read-only remember table of procedure f entirely.
The function returns nullnullnullnull.

rtable.remember (f)

rtable.remember (f, tab)

rtable.remember (f, null)

Administers remember tables.

In the first form, the remember table stored to procedure f is returned. See
rrrrtabletabletabletable....rgetrgetrgetrget for more information.

In the second form, rememberrememberrememberremember adds the arguments and returns contained in table
tab to the remember table of function f . If the remember table of f has not been
initialised before, rememberrememberrememberremember creates it. If there are already values in the remember
table, they are kept and not deleted.

If f has only one argument and one return, the function arguments and returns are
passed as key~value pairs in table tab .

If f has more than one argument, the arguments are passed in a table. If f has
more than one return, the returns are passed in a table, as well.

Valid calls are:

with('rtable', 'remember');

remember(f, [0 ~ 1]); # one argument 0 & one return 1
remember(f, [[1, 2] ~ [3, 4]); # two arguments 1, 2 & two returns 3, 4
remember(f, [1 ~ [3, 4]]); # one argument 1 & two returns 3, 4
remember(f, [[1, 2] ~ 3]]; # two arguments 1, 2 & one return 3

In the third form, by explicitly passing nullnullnullnull as the second argument, the remember
table of f is destroyed and a garbage collection run to free up space occupied by
the former rtable.

agenaagenaagenaagena >> 401

rememberrememberrememberremember always returns nullnullnullnull. It is written in the Agena language and included in
the library.agn file.

See Chapter 6.18 for examples. See also: rtable.defaultsrtable.defaultsrtable.defaultsrtable.defaults .

rtbale.rget (f [, option])

Returns the contents of the current remember table or read-only remember table of
procedure f . If any value for option is given, the internal remember table including
all the hash values are returned.

> fib := proc(n) is
> assume(n >= 0);
> return fib(n-2) + fib(n-1)
> end;

> rtable.remember(fib, [0~0, 1~1]);

> rget(fib):
[[0] ~ [0], [1] ~ [1]]

You cannot destroy the internal remember table by changing the table returned by
rgetrgetrgetrget.

rtbale.rinit (f)

Creates a remember table (an empty table) for procedure f . The procedure must
have been written in the Agena language; reminisce that rtables for C API functions
are not supported and that in these cases the function quits with an error.

If there is already a remember function for f , it is overwritten. rinitrinitrinitrinit returns nullnullnullnull.

rtbale.rmode (f)

Returns the string 'rtable' if function f has a remember table, 'rotable' if f has a
read-only remember table (that cannot be updated by the returnreturnreturnreturn statement), and
the string 'none' otherwise.

rtbale.roinit (f)

Creates a read-only remember table (an empty table) for procedure f , which may
be either a C function or an Agena procedure.

If there is already a remember function for f , it is overwritten. rorororoinitinitinitinit returns nullnullnullnull.

402 7 Standard Libraries

rtbale.rset (f, arguments, returns)

The function adds one (and only one) function-argument-and-returns `pair` to the
already existing remember table or read-only remember table of procedure f .

arguments must be a table array, returns must also be a table array. If the
argument(s) already exist(s) in the remember table, then the corresponding result(s)
are replaced with returns .

Given a function f := << x -> x >> for example, valid calls are:

 rset(f, [1], [2]) ; rset(f, [1, 2], [2]); rset(f, [1], [1, 2]) .

agenaagenaagenaagena >> 403

7777....24 24 24 24 CoroutineCoroutineCoroutineCoroutinessss

The operations related to coroutines comprise a sub-library of the basic library and
come inside the table coroutine . To find out what coroutines are, please have a
look at the website of the Lua programming language.

coroutine.resume (co [, val1, ···])

Starts or continues the execution of coroutine co . The first time you resume a
coroutine, it starts running its body. The values val1 , ··· are passed as the arguments
to the body function. If the coroutine has yielded, resume restarts it; the values val1 ,
··· are passed as the results from the yield.

If the coroutine runs without any errors, resume returns truetruetruetrue plus any values passed
to yield (if the coroutine yields) or any values returned by the body function (if the
coroutine terminates). If there is any error, resume returns falsefalsefalsefalse plus the error
message.

coroutine.running ()

Returns the running coroutine, or nullnullnullnull when called by the main thread.

coroutine.setup (f)

Creates a new coroutine, with body f . f must be an Agena function. Returns this
new coroutine, an object with type 'thread'.

coroutine.status (co)

Returns the status of coroutine co , as a string: 'running', if the coroutine is running
(that is, it called status); 'suspended', if the coroutine is suspended in a call to yield,
or if it has not started running yet; 'normal' if the coroutine is active but not running
(that is, it has resumed another coroutine); and 'dead' if the coroutine has finished
its body function, or if it has stopped with an error.

coroutine.wrap (f)

Creates a new coroutine, with body f . f must be an Agena function. Returns a
function that resumes the coroutine each time it is called. Any arguments passed to
the function behave as the extra arguments to resume. Returns the same values
returned by resumeresumeresumeresume, except the first boolean. In case of error, propagates the error.

coroutine.yield (···)

Suspends the execution of the calling coroutine. The coroutine cannot be running a
C function, a metamethod, or an iterator. Any arguments to yield are passed as
extra results to resume.

404 7 Standard Libraries

7777.25.25.25.25 debug - Debuggingdebug - Debuggingdebug - Debuggingdebug - Debugging

This library provides the functionality of the debug interface to Agena programmes.
You should exert care when using this library. The functions provided here should be
used exclusively for debugging and similar tasks, such as profiling. Please resist the
temptation to use them as a usual programming tool: they can be very slow.
Moreover, several of its functions violate some assumptions about Agena code
(e.g., that variables local to a function cannot be accessed from outside or that
userdata metatables cannot be changed by Agena code) and therefore can
compromise otherwise secure code.

All functions in this library are provided inside the debug table. All functions that
operate over a thread have an optional first argument which is the thread to
operate over. The default is always the current thread.

debug.debug ()

Enters an interactive mode with the user, running each string that the user enters.
Using simple commands and other debug facilities, the user can inspect global
and local variables, change their values, evaluate expressions, and so on. A line
containing only the word cont finishes this function, so that the caller continues its
execution.

Note that commands for debug.debugdebug.debugdebug.debugdebug.debug are not lexically nested within any function,
and so have no direct access to local variables.

debug.getfenv (obj)

Returns the environment of object obj .

See also: debug.debug.debug.debug.ssssetetetetfenvfenvfenvfenv.

debug.gethook ([thread])

Returns the current hook settings of the thread, as three values: the current hook
function, the current hook mask, and the current hook count (as set by the
debug.sethookdebug.sethookdebug.sethookdebug.sethook function).

debug.getinfo ([thread,] function [, what])

Returns a table with information about a function. You can give the function
directly, or you can give a number as the value of function , which means the
function running at level function of the call stack of the given thread: level 0 is the
current function (getinfogetinfogetinfogetinfo itself); level 1 is the function that called getinfogetinfogetinfogetinfo; and so on.
If function is a number larger than the number of active functions, then getinfogetinfogetinfogetinfo
returns nullnullnullnull.

agenaagenaagenaagena >> 405

The returned table may contain all the fields returned by lua_getinfolua_getinfolua_getinfolua_getinfo, with the string
what describing which fields to fill in. The default for what is to get all information
available, except the table of valid lines. If present, the option 'f' adds a field
named func with the function itself. If present, the option 'L' adds a field named
activelines with the table of valid lines. If present, the option 'g' adds a field
named globals with a table of variables that have been globally assigned. The 'a'
option adds a field called arity that includes the number of arguments expected
by function .

For instance, the expression debug.getinfo(1, 'n').name returns a name of the
current function, if a reasonable name can be found, and debug.getinfo(print)

returns a table with all available information about the printprintprintprint function.

debug.getlocal ([thread,] level, local)

This function returns the name and the value of the local variable with index local

of the function at level level of the stack. (The first parameter or local variable has
index 1, and so on, until the last active local variable.) The function returns nullnullnullnull if
there is no local variable with the given index, and raises an error when called with
a level out of range. (You can call debug.getinfodebug.getinfodebug.getinfodebug.getinfo to check whether the level is
valid.)

Variable names starting with '(' (open parentheses) represent internal variables
(loop control variables, temporaries, and C function locals).

See also: debug.debug.debug.debug.ssssetlocaletlocaletlocaletlocal.

debug.getmetatable (object)

Returns the metatable of the given object or nullnullnullnull if it does not have a metatable.

See also: debug.debug.debug.debug.ssssetetetetmetatablemetatablemetatablemetatable.

debug.getregistry ()

Returns the registry table.

debug.getupvalue (f, up)

This function returns the name and the value of the upvalue with index up of the
function f . The function returns nullnullnullnull if there is no upvalue with the given index.

See also: debug.debug.debug.debug.ssssetetetetupvalueupvalueupvalueupvalue.

debug.setfenv (object, t)

Sets the environment of the given object to the given table t . Returns object .

See also: debug.debug.debug.debug.ggggetetetetfenvfenvfenvfenv.

406 7 Standard Libraries

debug.sethook ([thread,] hook, mask [, count])

Sets the given function as a hook. The string mask and the number count describe
when the hook will be called. The string mask may have the following characters,
with the given meaning:

• 'c' :::: The hook is called every time Agena calls a function;
• 'r' :::: The hook is called every time Agena returns from a function;
• 'l' :::: The hook is called every time Agena enters a new line of code.

With a count different from zero, the hook is called after every count instructions.

When called without arguments, debug.sethookdebug.sethookdebug.sethookdebug.sethook turns off the hook.

When the hook is called, its first parameter is a string describing the event that has
triggered its call: 'call' , 'return' (or 'tail return'), 'line' , and 'count' . For line
events, the hook also gets the new line number as its second parameter. Inside a
hook, you can call getinfogetinfogetinfogetinfo with level 2 to get more information about the running
function (level 0 is the getinfogetinfogetinfogetinfo function, and level 1 is the hook function), unless the
event is 'tail return' . In this case, Agena is only simulating the return, and a call
to getinfogetinfogetinfogetinfo will return invalid data.

debug.setlocal ([thread,] level, local, value)

This function assigns the value value to the local variable with index local of the
function at level level of the stack. The function returns nullnullnullnull if there is no local
variable with the given index, and raises an error when called with a level out of
range. (You can call getinfogetinfogetinfogetinfo to check whether the level is valid.) Otherwise, it returns
the name of the local variable.

See also: debug.getlocaldebug.getlocaldebug.getlocaldebug.getlocal .

debug.setmetatable (object, t)

Sets the metatable for the given object to the given table t (which can be nullnullnullnull).

See also: debug.getdebug.getdebug.getdebug.getmetatablemetatablemetatablemetatable.

debug.setupvalue (f, up, value)

This function assigns the value value to the upvalue with index up of the function f .
The function returns nullnullnullnull if there is no upvalue with the given index. Otherwise, it
returns the name of the upvalue.

See also: debug.getdebug.getdebug.getdebug.getupvalueupvalueupvalueupvalue.

agenaagenaagenaagena >> 407

debug.system (n)

Returns a table with the following system information: The size of various C types
(char, int, long, long long, float, double, int32_t), the endianness of your platform,
the hardware and the operating system for which the Agena executable has been
compiled.

debug.traceback ([thread,] [message])

Returns a string with a traceback of the call stack. An optional message string is
appended at the beginning of the traceback. This function is typically used with
xpcallxpcallxpcallxpcall to produce better error messages.

408 7 Standard Libraries

7777.26.26.26.26 utilsutilsutilsutils - Utilities- Utilities- Utilities- Utilities

The utilsutilsutilsutils package provides miscellaneous functions.

utils.calendar ([x])

Converts x seconds (an integer) elapsed since the beginning of an epoch to a
table representing the respective calendar date in your local time. The table
contains the following keys with the corresponding values:

'year' (integer)
'month' (integer)
'day' (integer)
'hour' (integer)
'min' (integer)
'sec' (integer)
'wday' (integer, day of the week)
'yday' (integer, day of the year)
'DST' (Boolean, is Daylight Saving Time)

If x is nullnullnullnull or not specified, then the current system time is returned. If x is invalid, the
function issues failfailfailfail.

See also: os.nowos.nowos.nowos.now.

utils.checkdate (obj)

utils.checkdate (year, month, day [, hour [, minute [, second]]])

In the first form, receives a date of the form year, month, date [, hour [, minute [,
second]]], with these values in table or sequence obj being integers, and checks
whether the given date and optionally time exists and returns truetruetruetrue or falsefalsefalsefalse.

In the second form, receives the given integers, and conducts the same operation.

utils.decodeb64 (str)

Decodes the Base64 encoded string str and returns it as a string.

See also: utils.utils.utils.utils.encodeencodeencodeencodeb64b64b64b64.

utils.decodexml (str [, options])

Reads a string str containing an XML stream and converts it into a dictionary.

You can pass one or two options in any order:

agenaagenaagenaagena >> 409

If the Boolean option falsefalsefalsefalse is given, the function does not automatically try to
convert strings representing numbers, complex numbers and the Booleans truetruetruetrue,
falsefalsefalsefalse, and failfailfailfail into the proper Agena representation.

If the option 'nocomment' is given, the function does not return XML comments.

The function provides some checking (basic syntax and balanced tags), and
supports namespaces, XML and DOCTYPE declarations, comments and processing
instructions. If a XML tag includes hyphens or colons, then they are converted to
underscores in the corresponding Agena dictionary key.

Since the function does not return processing instructions, you may want to have a
look at the auxiliary utils.aux.decoderawxml function included in the
lib/library.agn file which returns a user-defined table containing processing
instructions in the xarg tag.

The function is written in the Agena language and included in the libary.agn file.

Here is an example:

> xmlstr := '<?xml version="1.0"?>
> <Data>
> <Name1>Agena</Name1>
> <Name2>1</Name2>
> <Name3>1.1</Name3>
> <Name4>1.1+2.2*I</Name4>
> </Data>
> <Lang:Info-All>
> <Name action="interpret">Agena</Name>
> <Version>1.6.1</Version>
> </Lang:Info-All>
> <!-- this is a comment -->
> <Motto>The Power of Procedural Programming</Motto >'

> utils.decodexml(xmlstr):
[Data ~ [Name1 ~ Agena, Name2 ~ 1, Name3 ~ 1.1, Nam e4 ~ 1.1+2.2*I],
Lang_Info_All ~ [Name ~ Agena, Version ~ 1.6.1], Mo tto ~ The Power of
Procedural Programming, header ~ <?xml version="1.0 "?>]

> for i, j in ans do print(i, j) od
Lang_Info_All [Name ~ Agena, Version ~ 1.6.1]
Motto The Power of Procedural Programming
Data [Name1 ~ Agena, Name2 ~ 1, Name3 ~ 1.1, Nam e4 ~ 1.1+2.2*I]
header <?xml version="1.0"?>

The function is quite slow when parsing deeply nested XML structures, but it is more
exact than xml.decodexml.decodexml.decodexml.decodexxxxmlmlmlml. If you need to parse only certain portions of an XML
stream, just extract them from the string using the strings.matchstrings.matchstrings.matchstrings.match function before
applying utils.decodexml.

See also: utils.encodexmlutils.encodexmlutils.encodexmlutils.encodexml , utils.readxmlutils.readxmlutils.readxmlutils.readxml .

410 7 Standard Libraries

utils.encodeb64 (str)

Encodes a string str into Base64 format and returns it as a string.

See also: utils.utils.utils.utils.decodedecodedecodedecodeb64b64b64b64.

utils.encodexml (obj [, indent [, flag]])

Encodes a dictionary obj of the same format as created by utils.readxmlutils.readxmlutils.readxmlutils.readxml into XML
format.

If indent (a non-negative number) is not given the number of white space
indentations is 3.

If any value is given for flag , the return is a flat table of substrings, else the return is
one concatenated string.

See also: utils.utils.utils.utils.decodedecodedecodedecodexmlxmlxmlxml.

utils.findfiles (d, what [, options])

utils.findfiles (obj, what [, options])

Searches a single file - or searches a directory for all the files - that include a certain
string or which satisfy a given condition.

In the first form, the directory to be searched is denoted by the first argument d, a
string, which may include file wildcards. d may also denote a single file. In the
second form, obj is a table of a table with file names of type string, and the
absolute path to the directory containing the given files. (os.listos.listos.listos.list returns such a table.)

The second argument what can either be a string to be searched for, or a
procedure of one argument that describes a satisfying condition and which should
result in either truetruetruetrue or falsefalsefalsefalse.

The returns are two lists: the first list includes all the names of the files where the
search has been successful, and the second lists includes all files that could not be
read due to errors, for example because of missing read permissions.

By default, the function searches all files line by line for a given search criterion. Pass
the option 'whole' if the search criterion should be applied to the entire file, i.e. to
search in the string concatenation of all the lines of a file, so that line breaks do not
matter.

By passing the further option 'r' , the function also searches recursively in all
respective subfolders.

Options may be given in any order after the second argument what.

agenaagenaagenaagena >> 411

Examples:

> utils.findfile('*.c', '#define'):

> utils.findfile('*.c', << x -> '#define' in x = 1 >>, 'whole'):

> utils.findfile([['a.txt', 'b.txt'], 'c:/text'], ' hello'):

utils.readcsv (filename [, options [, fn]])

Reads a comma-separated value (CSV) file and returns its contents in a sequence.
The delimiter of the fields in a line by default is a semicolon.

If a line contains more than one field, then the respective fields are returned in a
sequence31. If a line contains only one field, then it is returned without including it in
a sequence32. If a line contains nothing, i.e. '\n', it is by default ignored33.

Strings containing numbers are automatically converted to numbers.

Options can be passed as pairs:

field = 3a positive integer: If given, only the
given field in the CSV file is
extracted, else all fields are
returned.

field

delim = '|'A string. Use this string as the
delimiter instead of a semicolon
which is the default.

delim

comma = truetruetruetruetrue or falsefalsefalsefalse: If a field contains a
string recognised as a number by
strings.iscenumericstrings.iscenumericstrings.iscenumericstrings.iscenumeric - i.e. with a
decimal comma instead of a
decimal dot - this option
automatically transforms the value
to an Agena number if the option
evaluates to truetruetruetrue. Default is falsefalsefalsefalse.
This option is applied before
checking for the `convert` option.

comma

convert = truetruetruetruetrue or falsefalsefalsefalse: If falsefalsefalsefalse, do not
attempt to convert strings to
numbers. Default: truetruetruetrue.

convert

ExampleExampleExampleExampleRight pair elementRight pair elementRight pair elementRight pair elementLeft pair elementLeft pair elementLeft pair elementLeft pair element

412 7 Standard Libraries

33 See the skipemptylines option to override this behaviour.

32 See the newseq option to override this behaviour.

31 See the flat option to override this behaviour.

newseq = truetruetruetruetrue or falsefalsefalsefalse: if only one field, i.e.
one value per line, is stored in the
CSV file, always put this single value
in each line into a new sequence
(truetruetruetrue), resulting in a sequence of
sequences returned by readcsvreadcsvreadcsvreadcsv;
otherwise simply add it to the flat
sequence returned by the function,
which is the default (falsefalsefalsefalse).

newseq

mapfields =
 [1:f, 3:g]

mapfields =
 ['name':f, 2:g]

A table or sequence of pairs of the
form posint:procedure. Applies the
given function to a specific field in
the CSV file.

If a CSV file contains a header,
then column numbers or strings
denoting the field name can be
passed along with the procedures,
and column numbers and field
names can be mixed.

mapfields

ignore spaces = falsetruetruetruetrue or falsefalsefalsefalse: all spaces in a line are
deleted before returning the fields.
Default is truetruetruetrue.

ignorespaces

ignore =
 << x ->
 'text' in x
 <> null
 >>

a procedure returning either truetruetruetrue,
falsefalsefalsefalse, or failfailfailfail. If given, the procedure
is applied to each line of the CSV
file and if it evaluates to truetruetruetrue, it
does not process the line and
proceeds with the next one.

ignore

header = truetruetruetruetrue or falsefalsefalsefalse: If truetruetruetrue, ignore the very
first line. Default: falsefalsefalsefalse.

header

flat = truetruetruetruetrue or falsefalsefalsefalse: If truetruetruetrue, do not return
values in each line in a new
sequence. Default: falsefalsefalsefalse.

flat

fields = [3, 1, 5]

fields =
 ['name', 'phone']

fields =
 ['name', 2]

A table or sequence of positive
integers. If given, only the fields
given in this table or sequence are
returned, and in the order of the
elements in this table or sequence;
if not given, all fields are returned.

If a CSV file contains a header,
then column numbers or strings
denoting the field name can be
passed, and column numbers and
field names can be mixed.

fields

ExampleExampleExampleExampleRight pair elementRight pair elementRight pair elementRight pair elementLeft pair elementLeft pair elementLeft pair elementLeft pair element

agenaagenaagenaagena >> 413

subs = '':undefined
subs = ['':undefined,
 'HUGE_VAL':infinity]

a pair, or a table or sequence of
pairs x:y. For each line read from
the CSV file, replaces x with y. If you
pass a function as the last
argument, substitution is done
before finally mapping this function
on the return.

subs

skipspaces = truetruetruetruetrue or falsefalsefalsefalse: If truetruetruetrue, do not return
lines consisting of spaces only.
Default is falsefalsefalsefalse.

skipspaces

skipemptylines = truetruetruetruetrue or falsefalsefalsefalse: If truetruetruetrue, do not return
empty lines. Default is truetruetruetrue.

skipemptylines

remove = 'quotes''quotes' or 'doublequotes' , or
both.
If 'quotes' is given, enclosing
single quotes are removed from
the CSV field.
If 'doublequotes' is given,
enclosing double quotes are
removed from the CSV field.

remove

output = 'record'A string. If the right-hand side is
'record' , then a dictionary is
returned, with its keys being defined
by the tokens in the first line of the
file (if the header=truetruetruetrue option is
also given), otherwise a table array
is returned.

output

ExampleExampleExampleExampleRight pair elementRight pair elementRight pair elementRight pair elementLeft pair elementLeft pair elementLeft pair elementLeft pair element

You may also optionally pass a function fn - at any position in the argument list - to
be mapped on each value of the input to be returned, or mix options given as
pairs and a function to be applied to each value to be returned, e.g.:

> L := utils.readcsv('data.dat', delim=' ', flat=tr ue, << x -> x^2 >>);

The function is written in the Agena language and included in the libary.agn file.

See also: columnscolumnscolumnscolumns, io.linesio.linesio.linesio.lines, io.readlinesio.readlinesio.readlinesio.readlines, utils.readxmlutils.readxmlutils.readxmlutils.readxml, utils.writecsvutils.writecsvutils.writecsvutils.writecsv,
skycrane.readcsvskycrane.readcsvskycrane.readcsvskycrane.readcsv .

414 7 Standard Libraries

utils.readini (filename [, options])

Reads a traditional initialisation file and returns its contents as a table. Initialisation
files supported look like the following:

#
This is an example of an ini file
#
; Pizzas

Taxi=Pizza Cab
Agena=

[Pizza] ; <- this is a section name

Ham = yes; <- and this is a key~value pair
Mushrooms = true ;
Capres = 0
Cheese = "Non" ;
Price = 3.99
Preis=3,99

A line beginning with a hash (#), followed optionally by one or more characters, is
completely ignored.

In a line, any text starting with a semicolon is also skipped. Key~value pairs may be
separated by one or more white spaces.

The result is a table.

The file is parsed from top to bottom. As long as no section name has been given
(here `[Pizza]`), any key~value pairs encountered are entered into the table as
such.

If a section name is given, then a subtable of the form section ~ [key ~ value pairs]
is stored to the resulting main table.

If a key is given, but now value, then the corresponding value will be the empty
string. Values may also be enclosed in double quotes, but double quotes will be
stripped of during import.

By default, any number values are automatically transformed to numbers, and the
strings 'true' , 'false' , or 'fail' are converted to Booleans, and all other values
are returned as strings. You may prevent any conversion by passing the
convert=false option.

If the option comma=true is given, then all floating point values containing a decimal
comma are converted to a representation with a decimal dot. Default is
comma=false .

agenaagenaagenaagena >> 415

The option sections=true reads only the section names in the ini file and returns
them in the order of occurrence in a table array. Default is sections=false .

The results of reading the above ini file will look as follows if no option is given:

[Agena ~ , Taxi ~ 'Pizza Cab', Pizza ~ [Capres ~ 0, Cheese ~ Non, Ham ~
yes, Mushrooms ~ true, Preis ~ 3,99, Price ~ 3.99]]

See also: utils.writeiniutils.writeiniutils.writeiniutils.writeini .

utils.readxml (filename [, options])

Reads an XML file and returns its data in an Agena dictionary.

You can pass one or two options in any order:

If the Boolean option falsefalsefalsefalse is given, the function does not automatically try to
convert strings representing numbers, complex numbers and the Booleans truetruetruetrue,
falsefalsefalsefalse, and failfailfailfail into the proper Agena representation.

If the option 'nocomment' is given, the function does not return XML comments.

For further information on how the function works, see utils.decodexmlutils.decodexmlutils.decodexmlutils.decodexml .

See also: utils.decodexmlutils.decodexmlutils.decodexmlutils.decodexml , utils.readcsvutils.readcsvutils.readcsvutils.readcsv , xml.readxmlxml.readxmlxml.readxmlxml.readxml.

utils.singlesubs (str, sp)

Substitutes individual characters in string str by corresponding replacements in
sequence sp . The return is a new string. Note that the function tries to find a
replacement for a single character in str by determining its integer ASCII value n
and then accessing index n in sp . If an entry is found for index n, then the character
is replaced, otherwise the character remains unchanged.

utils.writecsv (obj, filename [, delim [, keyoption [, dot]]])

Creates a comma-separated value (CSV) file. The function writes all values or keys
and value(s) of a table, set, or sequence obj to a text file given by filename . Each
value or key ~ value pair is written on a separate line.

By default only values are written, the keys are ignored.

If the optional argument delim (a string) is given and if the value itself is a structure,
then all entries in this substructure are written in a separate line, separated by the
given delimiter; default is a semicolon. delim might also be of the form delim=< any
string> or delim :<any string>.

416 7 Standard Libraries

If the optional argument keyoption is given, of any value other than falsefalsefalsefalse, failfailfailfail, or
nullnullnullnull, then the also the keys and the values are written and are separated by the
given delimiter (third argument) which must be passed, as well.

If the argument dot is given, i.e. a single character of type string, then a decimal
dot in a number to be written is replaced by dot . This, for example, allows to
replace a decimal dot in a float with a decimal comma. When wanting to
substitute decimal dots, you must also pass either true or false for the fourth,
keyoption argument.

The function returns nothing, is written in the Agena language and included in the
library.agn file.

Example:

> obj := seq(seq(1.1, 2, 3), seq(4, 5.1, 6), seq(7, 8, 9)) ;

> utils.writecsv(obj, 'c:/out.csv', delim='|', true, ',');

creating a file with the contents:

1|1,1|2|3
2|4|5,1|6
3|7|8|9

See also: utils.utils.utils.utils.readreadreadreadcsvcsvcsvcsv, skycrane.readcsvskycrane.readcsvskycrane.readcsvskycrane.readcsv .

utils.writeini (obj, filename [, options])

Creates a traditional initialisation file with name filename and writes a dictionary obj

of key~value pairs to it. If values are not tables, they are written at the beginning of
the file. If values are tables of key~value pairs, then they are written to the
corresponding sections.

By default, the function writes the entries and sections in ascending order. You may
change the order of the sections and the specific sections to be written by passing
a table array of section names with the sections option, e.g. sections=['Salad',

'Pizza'] first writes all entries of the Salad section, and then the Pizza section is
written.

An optional spacer in front and behind the equals signs may be given by passing
the spacer option which accepts any string, e.g. spacer='\t' . Default is the empty
string.

A floating point value may be written with a decimal comma instead of a decimal
dot by passing the comma=true option, default is comma=false .

The function returns nothing, is written in the Agena language and included in the
library.agn file.

agenaagenaagenaagena >> 417

See also: utils.readutils.readutils.readutils.read iniiniiniini.

utils.writexml (obj, filename [, indent])

Creates an XML file with name filename from the dictionary obj which should be of
the same format as the dictionary returned by utils.decodexmlutils.decodexmlutils.decodexmlutils.decodexml .

The function returns nothing, is written in the Agena language and included in the
library.agn file.

See also: utils.decodexmlutils.decodexmlutils.decodexmlutils.decodexml , utils.encodexmlutils.encodexmlutils.encodexmlutils.encodexml , utils.utils.utils.utils.readreadreadreadxmlxmlxmlxml.

418 7 Standard Libraries

7.27 7.27 7.27 7.27 sssskykykykyccccraneraneranerane - Auxiliary Functions- Auxiliary Functions- Auxiliary Functions- Auxiliary Functions

As a plus package, the skycraneskycraneskycraneskycrane package is not part of the standard distribution
and must be activated with the importimportimportimport statement, e.g. import skycrane .

The package contains functions that you might or might not find usefully.

skycrane.bagtable (o)

Creates a table of empty bags with its keys determined by the values in the
sequence o. o may include values of any type. If o is empty, an error is issued.

The function automatically loads the bagsbagsbagsbags package if it has not yet been initialised.

The function is written in the Agena language and included in the skycrane.agn file.

See also: bags.bagbags.bagbags.bagbags.bag.

skycrane.counter ([start [, step [, mode]]])

Returns an iterator function that, each time it is called, returns a new number.

If no argument is given, the first number returned by the iterator is 0, the next call
returns 1, the next one 2, and so forth. This means that the number returned with
each call is increased by 1.

If only start is given, the first number returned by the iterator is start , the next call
returns start + 1, the next one start + 2, and so forth. This means that the number
returned with each call is increased by 1.

If start and step are given, the first number returned by the iterator is start , the
next call returns start + step , the next one start + 2*step , and so forth. This means
that the number returned with each call is increased by step , which may be
negative. In the latter case the next number returned will be less than the current
returned number.

If start or step are not numbers, the factory issues an error.

If start or step is a non-integer, the function by default automatically applies the
Kahan summation algorithm to avoid round-off errors if mode is not given or if mode is
the string 'kahan' . If mode is the string 'ozawa' , then the improved Kahan-Ozawa
summation algorithm is used, which may be a little bit slower with a very large
number of calls.

See also: skycrane.iterateskycrane.iterateskycrane.iterateskycrane.iterate .

agenaagenaagenaagena >> 419

skycrane.dice ()

Returns random integers in the range [1 .. 6].

See also: math.randommath.randommath.randommath.random, math.randomseedmath.randomseedmath.randomseedmath.randomseed .

skycrane.enclose (str [, d])

Encloses a string str with the given character or string d. If d is not given, the string is
enclosed in double quotes. If str is a number, it is converted to a string before the
operation starts. Otherwise it returns an error. It also returns an error if the optional
second argument is not a string.

See also: skycrane.removedquotesskycrane.removedquotesskycrane.removedquotesskycrane.removedquotes .

skycrane.fcopy (a, b [, verbose])

This function is an interface to os.fcopyos.fcopyos.fcopyos.fcopy but can also deal with directories. If a and b
are file names, then the function works like os.fcopyos.fcopyos.fcopyos.fcopy. If b is a directory, then a is
copied into it. If a is a directory, then all files in it are copied into b.

If verbose is true then the name of the file copied successfully is printed at stdout.

The function is written in the Agena language and included in the skycrane.agn file.

See also: os.fcopyos.fcopyos.fcopyos.fcopy, skycrane.moveskycrane.moveskycrane.moveskycrane.move .

skycrane.getlocales ()

Returns all locales available at your operating system. The return is a table with the
keys being valid arguments to os.setlocaleos.setlocaleos.setlocaleos.setlocale, and the entries the result of the
respective call to os.setlocaleos.setlocaleos.setlocaleos.setlocale .

Since the function has been implemented generically, it is very slow, for
os.setlocaleos.setlocaleos.setlocaleos.setlocale is called around 476.000 times. In UNIX, it would be better to issue the
command 'locale -a' in a shell to determine the locales supported by your system.

The function is written in the Agena language and included in the skycrane.agn file.

See also: os.os.os.os.setlocalesetlocalesetlocalesetlocale.

skycrane.iterate (o)

Returns an iterator function traversing a table, set, register, or sequence o always in
strict ascending order.

If o is a table, the function first sorts its keys and returns a function which if called,
returns the table values of o in the ascending order of these sorted keys.

420 7 Standard Libraries

If o is a set, the function first sorts its entries and returns a function that if called,
returns the elements one by one in ascending sorted order.

Although unnecessary: if o is a sequence or register, the function returns a function
that if called, returns each value in o one by one in their original order.

The function is written in the Agena language and included in the skycrane.agn file.
For the order how keys or values will be sorted, see sortedsortedsortedsorted.

A note: This function is utterly slow compared with the forforforfor/inininin statement. But there
may be few situations demanding loops iterating in the strict ascending order of its
(numeric or string) indices, or set, register, and sequence values.

See also: nextnextnextnext, sortedsortedsortedsorted, skycrane.counskycrane.counskycrane.counskycrane.coun terterterter.

skycrane.move (a, b [, verbose])

This function is an interface to os.os.os.os.movemovemovemove but can also deal with directories. If a and b
are file names, then the function works like os.os.os.os.movemovemovemove. If b is a directory, then a is
moved into it. If a is a directory, then all files in it are moved into b.

The function is written in the Agena language and included in the skycrane.agn file.

If verbose is true then the file copied successfully moved is printed at stdout.

See also: os.os.os.os.movemovemovemove, skycrane.skycrane.skycrane.skycrane. fcopyfcopyfcopyfcopy.

skycrane.readcsv (filename [, ···])

Like utils.readcsvutils.readcsvutils.readcsvutils.readcsv , but with the following default options, which can be overridden:

convert=false, ignorespaces=false, remove='quotes', remove='doublequotes'.

The function is written in the Agena language and included in the skycrane.agn file.

skycrane.removedquotes (str)

Removes enclosing double quotes from the string str and returns the modified
string. If str is not enclosed by double quotes, str is returned unmodified.

See also: skycrane.encloseskycrane.encloseskycrane.encloseskycrane.enclose .

skycrane.scribe (fh, obj [, ···])

skycrane.scribe (obj [, ···])

skycrane.scribe (···)

Like io.writeio.writeio.writeio.write and io.writelineio.writelineio.writelineio.writeline, but if a table, register, or sequence obj is being
passed, it writes the values in the structure to the file denoted by its handle fh (first

agenaagenaagenaagena >> 421

form) or the console (second form) instead of throwing an exception. fh is a file
handle, not a file name.

The values in the structure obj must either be numbers or strings.

The function accepts the following options of type pair:

� If the delim option (third to last argument) has been passed, all values are
separated by the given string. Default is a semicolon. Examples: delim='|' : use
a pipe instead of a semicolon, delim='' (i.e. the empty string): do not include a
delimiter.

� If the newline or nl option has been passed, and if its value is falsefalsefalsefalse, then no
newline is included after the elements have been written. (Include a trailing
delimiter - if needed - by calling io.writeio.writeio.writeio.write.) Default is truetruetruetrue. Example:
newline=false .

If no structure has been passed (third form), the function just behaves like io.writeio.writeio.writeio.write or
io.writelineio.writelineio.writelineio.writeline .

Examples:

> import skycrane;

> skycrane.scribe('men ne cunnon hwyder helrunan hw yrftum scriþað'):
men ne cunnon hwyder helrunan hwyrftum scriþað

> fd := io.open('Depeche Mode','wb');

> skycrane.scribe(fd,
> 'Enjoy the silence,
> words are very unnecessary,
> they can only do harm.');

> io.close(fd);

> fd := io.open('c:/wulfila.txt', 'w');

> paternoster 34 := seq(
> 'atta', 'unsar', 'þu', 'in', 'himinam',
> 'weihnai', 'namo', 'þein',
> 'qimai', 'þiudinassus', 'þeins',
> 'wairþai', 'wilja', 'þeins',
> 'swe', 'in', 'himina', 'jah', 'ana', 'airþai',
> 'hlaif', 'unsarana', 'þana', 'sinteinan',
> 'gif', 'uns', 'himma', 'daga');

> skycrane.scribe(fd, paternoster, delim = ' ');

> io.close(fd);

The function is written in the Agena language and included in the skycrane.agn file.

See also: io.writeio.writeio.writeio.write, io.writelineio.writelineio.writelineio.writeline , skycrane.teeskycrane.teeskycrane.teeskycrane.tee .

422 7 Standard Libraries

34 Taken from the Gothic Language Wulfila Bible edited by Wilhelm Streitberg.

skycrane.sorted (obj [, f])

Sorts a table, register, or sequence obj non-destructively but contrary to sortsortsortsort and
sortedsortedsortedsorted can cope with structures including values of different types. First, numbers
are sorted, then strings, the others are not. The function, however, is slower than
sortedsortedsortedsorted.

If f is given, then it must be a function that receives two structure elements, and
returns truetruetruetrue when the first is less than the second (so that not f(obj[i+1], obj[i])

will be truetruetruetrue after the sort). If f is not given, then the standard operator < (less than) is
used instead.

The function is written in the Agena language and included in the skycrane.agn file.

See also: sortsortsortsort, sortedsortedsortedsorted, stats.issortedstats.issortedstats.issortedstats.issorted , stats.sortedstats.sortedstats.sortedstats.sorted.

skycrane.stopwatch ()

Implements a stopwatch. Just follow the instructions when calling
skycrane.stopwatch(). The function returns nothing.

The function is written in the Agena language and included in the skycrane.agn file.

skycrane.tee (fh, x [,···] [, 'delim':str])

skycrane.tee (fh, x [,···], 'format':str)

In the first form, the function writes one or more numbers or strings x to both the
console (stdout), and a file denoted by its handle fh to the current working
directory. By default, the values are separated with a tabulator (\t). It finally puts a
line feed at the end of the output. By passing the option 'delim' :str , as the last
argument, the delimiter is given by the string str .

In the second form, one or more numbers or strings x are written to both the
console (stdout), and a file denoted by its handle fh to the current working
directory. The resulting string is formatted according to the printf-like template
information in str passed with the format option. See strings.formatstrings.formatstrings.formatstrings.format for more
information on the template string. It does not put a line feed at the end of the
output, but to do so, you may add a \n control character to the end of the format
string.

The function returns nothing.

See also: printprintprintprint, skycrane.scribeskycrane.scribeskycrane.scribeskycrane.scribe .

agenaagenaagenaagena >> 423

skycrane.tocomma (x)

If x is a number, the function converts x to a string. If x is a float (containing a
decimal dot), the dot is replaced by a comma. If x is a string and represents an
integer or float, an optional decimal-dot is replaced by a comma.

The return is a string.

skycrane.todate (x)

Returns the calendar date and time represented by the number x , which should
hold the number of seconds (and optionally milliseconds) elapsed since the start of
the given epoch. The return is a string of the format `YYYY/MM/DD hh:mm:ss` .

If no argument is given, the current system date and time is returned. You may pass
an optional format string if you prefer another representation of the date and time.

See also: strings.formatstrings.formatstrings.formatstrings.format , os.nowos.nowos.nowos.now, os.timeos.timeos.timeos.time.

skycrane.trimpath (str)

Converts backslashes in the string str to slashes and then removes, if existing, one
trailing slash, and returns the modified string. If str does not include backslashes or
trailing slashes/backslashes, str is returned unmodified.

424 7 Standard Libraries

7.28 7.28 7.28 7.28 clockclockclockclock - Clock Package - Clock Package - Clock Package - Clock Package

This package contains mathematical routines to perform basic operations on time
values, i.e. hours, minutes, and seconds.

As a plus package, it is not part of the standard distribution and must be activated
with the importimportimportimport statement, e.g. import clock .

A time value is always defined by the clock.clock.clock.clock.tmtmtmtm constructor. You may apply the
ordinary +, - , * and / operators in order to add, subtract, multiply or divide values.
The relations <<<<, <=<=<=<=, ====, >=>=>=>=, and >>>> are also supported.

Also, the following operators can be used for sexagesimal arithmetic - but please
beware of round-off errors, for they convert a sexagesimal argument to decimal,
apply the operator, and convert the result back to sexagesimal.

The ^̂̂̂ operator exponentiates sexagesimals, or sexagesimals and numbers, and
returns a sexagesimal.

The absabsabsabs operator determines the absolute value of a sexagesimal and returns a
sexagesimal.

The signsignsignsign operator returns the sign of a sexagesimal and returns a number.

The sqrtsqrtsqrtsqrt operator returns the square root of a sexagesimal and returns a
sexagesimal. If the sexagesimal is negative, it returns undefinedundefinedundefinedundefined.

The lnlnlnln operator returns the natural logarithm of a sexagesimal and returns a
sexagesimal. If the sexagesimal is nonnegative, it returns undefinedundefinedundefinedundefined.

The expexpexpexp operator returns the value of EEEE to the power of the given sexagesimal and
returns a sexagesimal.

The ssssinininin operator returns the sine of a sexagesimal and returns a sexagesimal, in
radians.

The coscoscoscos operator returns the cosine of a sexagesimal and returns a sexagesimal, in
radians.

The tantantantan operator returns the tangent of a sexagesimal and returns a sexagesimal, in
radians. It returns undefined undefined undefined undefined if poles have been encountered.

The arctanarctanarctanarctan operator returns the arcus tangent of a sexagesimal and returns a
sexagesimal, in radians. With poles, it returns undefinedundefinedundefinedundefined.

agenaagenaagenaagena >> 425

By default, all time values are properly adjusted to a normalised representation if
the value of the environment variable _clockAdjust_clockAdjust_clockAdjust_clockAdjust is not changed. If it _clockAdjust_clockAdjust_clockAdjust_clockAdjust
is set to a value different from truetruetruetrue, then this normalisation is switched off.

All functions are implemented in Agena and included in the lib/clock.agn file.

A typical example might look like this:

> import clock alias

add, adjust, div, mul, sub, pow, tm, todec, totm

Subtract 10 hours and fifteen minutes from 20 hours and 15 minutes:

> tm(20, 15, 0) - tm(10, 15, 0):
tm(10, 0, 0)

61 seconds are automatically converted to 1 minute and 1 second:

> tm(0, 61):
tm(0, 1, 1)

Turn off normalisation:

> _clockAdjust := null

> tm(0, 61):
tm(0, 0, 61)

Turn on normalisation again:

> _clockAdjust := true

The functions provided by the package are:

clock.add (t1, t2 [, ···])

The function adds two or more values of type tmtmtmtm. The return is a value of type ttttmmmm.

clock.adjust (t)

The function adjusts the representation of tm values in a time object t by applying
the rules described in the description of clock.clock.clock.clock.ttttmmmm.

clock.sub (t1, t2 [, ···])

The function subtracts two or more values of type tmtmtmtm. The return is a value of type
tmtmtmtm.

426 7 Standard Libraries

clock.sgstr (x [, d])

Converts a float or `tm` value x into its sexagesimal string representation of the
format hh:mm:ss. The colon to separate hours, minutes, and seconds can be
changed by passing another optional delimiter d of type string.

See also: clock.totmclock.totmclock.totmclock.totm.

clock.tm (min)

clock.tm (min, sec)

clock.tm (hrs, min, sec)

This function is used to define time values, where hrs , min , sec are numbers.

In the first form, minutes are defined. The return is a value of type tm of the form
tm(0, min, 0).

In the second form, both minutes and seconds are defined. The return is a value of
type tm of the form tm(0, min, sec).

In the third form, both hours, minutes, and seconds are defined and returned as a
value of type tm of the form tm(hrs, min, sec). (hrs may be set to 0.)

By default, if min > 59 and / or if sec > 59, proper adjustments are made before
the time value is returned. If min > 59 the call to timetimetimetime returns tm(hrs + 1, min - 60,
sec). If sec > 59 the call to time returns tm(hrs, min + 1, sec - 60). The default is set
by the global variable _clockAdjust which is assigned truetruetruetrue at initialisation of the
package if it has not already been set falsefalsefalsefalse before the clock package has been
loaded.

hrs might be any non-negative number.

If _clockAdjust is set false then no adjustments are made to the arguments. You
can use clock.clock.clock.clock.adjustadjustadjustadjust to apply the adjustments described above.

clock.todec (t)

Converts a tm value t into its decimal representation of type number.

See also: clock.totmclock.totmclock.totmclock.totm, math.todecimalmath.todecimalmath.todecimalmath.todecimal .

clock.totm (t)

Converts a tm value t in decimals (of type number) into its tm representation. The
return is of type tm.

See also: clock.todecclock.todecclock.todecclock.todec.

agenaagenaagenaagena >> 427

7.29 7.29 7.29 7.29 aaaastrostrostrostro - Astronomy Functions - Astronomy Functions - Astronomy Functions - Astronomy Functions

As a plus package, the astroastroastroastro package is not part of the standard distribution and
must be activated with the importimportimportimport statement, e.g. import astro .

astro.cdate (x)

Converts a Julian date, represented by the float x , into its calendar date
representation, returning three integer values and one float in the following order:
the year, the month, the day, and the fraction of day. Concerning the fraction of
day, please beware of round-off errors.

See also: astro.jdateastro.jdateastro.jdateastro.jdate.

astro.dectodms (x, orientation)

Converts co-ordinates x in decimal degrees (a number) to the form degree,
minute, second, and their orientation 'N', 'S', 'W', or 'E' (DMS format). You must also
specify whether to compute latitude or longitude values, by passing the strings
'lat' or 'lon' , respectively for orientation .

The return are three numbers and the orientation, a string.

See also: astro.dastro.dastro.dastro.dmsmsmsmstotototodecdecdecdec.

astro.dmstodec (degree, minute, second, hour, orien tation)

Converts co-ordinates in DMS format consisting of degree , minute , second , (all
numbers) and their orientation 'N', 'S', 'W', or 'E' (a single-character string) to their
corresponding decimal degree representation (DegDec format). The return is a
number.

See also: astro.dectodmsastro.dectodmsastro.dectodmsastro.dectodms .

astro.isleapyear (x)

Returns truetruetruetrue if the given year x (a number) is a leap year, and falsefalsefalsefalse otherwise.

astro.jdate (year, month, day [, hour [, minute [, second]]])

Converts a Gregorian date represented by year , month , day and optionally hour ,
minute , and second (all numbers) to the corresponding Julian date. The return is a
number, or failfailfailfail if the date or time is of a wrong format.

The defaults for hour , minute , and second are 0.

See also: astro.astro.astro.astro.ccccdatedatedatedate.

428 7 Standard Libraries

astro.moon (year, month, day, hour, lon, lat)

Provides an easier-to-use interface to astro.moonrisesetastro.moonrisesetastro.moonrisesetastro.moonriseset . and astro.moonphaseastro.moonphaseastro.moonphaseastro.moonphase .

The first four arguments represent the year , month , day , and hour , all of type number.
Longitudes and latitudes can be given in form of two tables lon , lat containing
degrees (a number), minutes (a number), seconds (a number), and the orientation
(the single character 'N', 'S', 'W', or 'E').

The return is a table with the indices 'riseset', containing the rise and set times of the
Moon in `tm` representation, and the index 'phase' which holds the computed
Lunar phase (a float and an integer).

See astro.moonrisesetastro.moonrisesetastro.moonrisesetastro.moonriseset and astro.moonphaseastro.moonphaseastro.moonphaseastro.moonphase for further information.

The function uses the `tm` time notation of the clockclockclockclock package. You do not have to
readlib clockclockclockclock before.

The function is written in the Agena language and included in the astro.agn file.

Example for Düsseldorf:

> astro.moon(2013, 1, 7, 0, [7, 6, 0, 'E'], [50, 43 , 48, 'N']):
[phase ~ [0.2995659104481, 7], riseset ~ [tm(2, 27, 0), tm(11, 50, 0)]]

astro.moonphase (year, month, day [, hour])

Takes a year , a month, a day , and optionally an hour (all numbers) and returns the
moon phase as a real number in the range [0, 1], where 0 is new moon and 1 is full
Moon; and an integer in the range [0, 7], where 0 indicates new moon and 4
indicates full moon. If hour is not given, it is set to 0.

See also: astro.moonastro.moonastro.moonastro.moon.

astro.moonriseset (year, month, day, lon, lat)

Returns the times of Lunar rise and set in GMT. Receives the year , month day , the
longitude and latitude lon and lat (all of type number) and returns two numbers:
the GMT rise time in a decimal, and the GMT set time also in a decimal.

Use clock.totmclock.totmclock.totmclock.totm to convert the rise and set times to sexagesimal format, or try
astro.moonastro.moonastro.moonastro.moon.

Example for Düsseldorf:

> astro.moonriseset(2013, 1, 8,
> astro.dmstodec(6, 46, 58, 'E'), astro.dmstodec(51, 13, 32, 'N')):

3.7666666666667 12.566666666667

agenaagenaagenaagena >> 429

astro.sun (year, month, day, lon, lat)

Provides an easier-to-use interface to astro.sunrisesetastro.sunrisesetastro.sunrisesetastro.sunriseset .

year , month , and day must be integers. Longitudes and latitudes can be given in
form of two tables lon , lat , containing degrees (a number), minutes (a number),
seconds (a number), and the orientation (the single-character string 'N', 'S', 'W', or 'E').

The return is a table with the indices 'riseset', 'civil', 'astro', and 'nautical' containing
the rise and set times in `tm` representation. The index 'south' holds the time where
the Sun is at south.

See astro.sunrisesetastro.sunrisesetastro.sunrisesetastro.sunriseset for further information.

The function uses the `tm` time notation of the clockclockclockclock package. The function uses
the `tm` time notation of the clockclockclockclock package. You do not have to readlib clockclockclockclock
before.

The function is written in the Agena language and included in the astro.agn file.

Example for Düsseldorf:

> astro.sun(2013, 1, 7, [6, 46, 58, 'E'], [51, 13, 32, 'N']):
[astro ~ [tm(5, 34, 5.1483689555826), tm(17, 44, 22 .952745470386)],
civil ~ [tm(6, 56, 25.738372228174), tm(16, 22, 2.3 627421977944)],
nautical ~ [tm(6, 14, 13.023074498407), tm(17, 4, 1 5.078039927568)],
riseset ~ [tm(7, 35, 19.775508661645), tm(15, 43, 8 .325605764323)],
south ~ tm(11, 39, 14.050557212984)]

astro.sunriseset (year, month, day, lon, lat)

Returns the sunrise/sunset times in UTC for years starting with 1800 A.D. to 2099 A.D. It
is a workhorse function, maybe you would like to use astro.sunastro.sunastro.sunastro.sun for a more
convenient interface.

year , month and day , all integers, are the values of the day to evaluate. lon is the
longitude (west/east), and lat the latitude (west/east), both in decimal degrees of
type float of the location that is of interest. Use astro.dmstodecastro.dmstodecastro.dmstodecastro.dmstodec to convert
co-ordinates containing degrees (integer), minutes (integer), and seconds (integer
or float), and the orientation to decimal degrees.

Example for Düsseldorf:

> astro.sunriseset(2013, 1, 7,
> astro.dmstodec(6, 46, 58, 'E'), astro.dmstodec(51, 13, 32, 'N')):

7.5888265301838 15.718979334935 0 6.940482881174 5 16.367322983944 0
6.2369508540273 17.070855011091 0 5.568096769154 3 17.739709095964 0
11.653902932559

430 7 Standard Libraries

The first and second returns are the sunrise/sunset times which are considered to
occur when the Sun's upper limb is 35 arc minutes below the horizon (this accounts
for the refraction of the Earth's atmosphere).

The third return is 0, if the rises and sun sets in a day; +1 if the Sun is above the
specified `horizon` 24 hours, -1 if the Sun is below the specified `horizon` 24 hours.

The fourth and fifth returns are start and end times of civil twilight. Civil twilight
starts/ends when the Sun's centre is 6 degrees below the horizon.

The sixth return is 0, if the rises and sun sets in a day; +1 if the Sun is above the
specified `civil twilight horizon` 24 hours, -1 if the Sun is below the specified
`horizon` 24 hours.

The seventh and eighth returns are the start and end times of nautical twilight.
Nautical twilight starts/ends when the Sun's centre is 12 degrees below the horizon.

The ninth return is 0, if the rises and sun sets in a day; +1 if the Sun is above the
specified `nautical twilight horizon` 24 hours, -1 if the Sun is below the specified
`horizon` 24 hours.

The tenth and eleventh returns are the start and end times of astronomical twilight.
Astronomical twilight starts/ends when the Sun's centre is 18 degrees below the
horizon.

The twelfth return is 0, if the rises and sun sets in a day; +1 if the Sun is above the
specified `nautical twilight horizon` 24 hours, -1 if the Sun is below the specified
`astronomical twilight horizon` 24 hours.

The thirteenth return is the time when the Sun is at south (in decimal UTC).

All times returned are given in decimal hours of type number. Use clock.totmclock.totmclock.totmclock.totm to
convert them into `tm` notation.

See also: astro.sunastro.sunastro.sunastro.sun, astro.moonastro.moonastro.moonastro.moon.

agenaagenaagenaagena >> 431

7.7.7.7.30303030 adsadsadsads - - - - AgenaAgenaAgenaAgena Database System Database System Database System Database System

As a plus package, this simple database is not part of the standard distribution and
must be activated with the importimportimportimport statement, e.g. import ads .

Agena is a database for storing and accessing strings and currently supports three
`base` types:

1. Sorted `databases` with a key and one or more values,

2. sorted `lists` which store keys only,

3. unsorted `sequences` to hold any value (but no keys).

With databases and lists, each record is indexed, so that access to it is very fast. If
you store data with the same key multiple times in a database, the index points
to the last record stored, so you always get a valid record.

Sequences do not have indexes, so searching in sequences is rather slow.
However, all values can be read into the Agena environment very fast and stored
to a set (using ads.getall).

The Agena Database System (ADS) pays attention to both file size and fast I/O
operation. To reduce file size, the keys (and values) are stored with their actual
lengths (of C type int32_t , so keys and values can be of almost unlimited size) and
they are not extended to a fixed standard length. To fasten I/O operations, the
length of each key (and value) is also stored within the base file.

key-value pairs with databases, and keys with lists or sequences. records

only with databases and lists: area containing all file positions of
the actual records. The index section is always sorted. Sequences
do not contain an index section.

index

various information on the data file, including the maximum
number of possible records, the actual number of records, and
the type of the base (database, list, or sequence).

header

Description Description Description Description SectionSectionSectionSection

A sample session:

First activate the package:

> import ads alias

432 7 Standard Libraries

Create a new database (file c:\test.agb) including all administration data like
number of records, etc.:

> createbase('c:/test.agb');

Open the database for processing. The variable fh is the file handle which
references to the database file (c:\test.agb) and is used in all ads functions.

> fh := openbase('c:/test.agb');

Put an entry into the database with key `Duck` and value `Donald`.

> writebase(fh, 'Duck', 'Donald');

Check what is stored for `Duck`.

> readbase(fh, 'Duck'):
Donald

Show information on the database:

> attrib(fh):
keylength ~ 31 # Maximum length fo r key
type ~ 0 # database type, 0 for relational database
stamp ~ AGENA DATA SYSTEM # name of database
indexstart ~ 256 # begin of index se ction in file
commentpos ~ 0 # position of a des cription, 0 because none
 # was given.
version ~ 300 # base version, her e 3.00
maxsize ~ 20000 # maximum number of possible records. Agena
 # automatically ext ends the database, if
 # this number is ex ceeded.
indexend ~ 80255 # end of index sect ion
creation ~ 2008/01/18-19:00:50 # number of creatio n
columns ~ 2 # number of columns
size ~ 1 # number of actual entries

Close the database. After that you cannot read or enter any entries. Use the openopenopenopen
function if you want to have access again.

> closebase(fh);

On all types, you may use the following procedures:

ads.attrib (filehandle)

Returns a table with all attributes of the `base` file. The table includes the following
keys:

number
The position of a comment in the base. If no
comment is present, its value is 0.

'commentpos'

numberThe number of columns in the base. 'columns'

TypeTypeTypeTypeDescriptionDescriptionDescriptionDescriptionKeyKeyKeyKey

agenaagenaagenaagena >> 433

numberThe base version.'version'

numberIndicator for database (0), list (1), or sequence (2).'type'

stringThe base stamp at the beginning of the file. 'stamp'

number
the actual number of valid data sets (see ads.sizeofads.sizeofads.sizeofads.sizeof
as a shortcut).

'size'

numbertotal number of data sets allowed.'maxsize'

numberthe maximum length of the record key.'keysize'

numberthe last byte in the base file of the index section. 'indexend'

numberthe first byte in the base file of the index section. 'indexstart'

string
The date of creation of the base. The return is a
formatted string including date and time.

'creation'

TypeTypeTypeTypeDescriptionDescriptionDescriptionDescriptionKeyKeyKeyKey

If the file is not open, attribattribattribattrib returns falsefalsefalsefalse.

See also: ads.freeads.freeads.freeads.free, ads.sizeads.sizeads.sizeads.sizeofofofof.

ads.clean (filehandle)

Physically deletes all entries that have become invalid (i.e. replaced by new values)
from the database or list. The file index section is adjusted accordingly and the file
shrunk to the new reduced size.

If there are no invalid records, falsefalsefalsefalse is returned. If all records could be deleted
successfully, truetruetruetrue is returned. If the file is not open, the result is failfailfailfail. If a file truncation
error occurred, clean quits with an error. The function issues an error if the file
contains a sequence.

ads.closebase (filehandle [, filehandle2, ···])

Closes the base(s) identified by the given file handle(s) and returns truetruetruetrue if successful,
and falsefalsefalsefalse otherwise. falsefalsefalsefalse will be returned if at least one base could not be closed.
The function also deletes the file handles and the corresponding filenames from the
ads.openfiles table.

ads.comment (filehandle)

ads.comment (filehandle, comment)

ads.comment (filehandle, '')

In the first form, the function returns the comment stored to the database or list if
present. The return is a string or nullnullnullnull if there is no comment.

In the second form, ads.comment writes or updates the given comment to the
database or list and if successful, returns truetruetruetrue. The comment is always written to the

434 7 Standard Libraries

end of the file. If it could not successfully add or update a comment, the function
quits with an error.

In the third form, by passing an empty string, the existing comment is entirely
deleted from the database or list.

If filehandle points to a sequence, an error is an error is an error is an error is issued, and no comment is written.
failfailfailfail is returned, if the file is not open.

Internally, the position of the comment is stored in the file header. See ads.attrib
['commentpos'].

ads.createbase (filename
 [, number_of_records [, type [, number_of_colum ns

 [, length_of_key [, description]]]]])

ads.createbase (filename

 [, number_of_records [, type [, length_of_key [, description]]]])

Creates and initialises the index section of the new base with the given number of
columns. It returns the file handle as a number, and closes the created file.

The first form defines a database, the second form is used to create sequences
and lists.

Arguments / Options:

The maximum length of the base key. Note that internally,
the length is incremented by 1 for the terminating \0
character. Default: 31 including the terminating \0
character.

length_of_key

The number of columns in a database. Default: 2 (key
and value). If the base is not a database, do not pass any
value (see second form). If the number of columns is
non-positive, failfailfailfail will be returned and no base will be
created.

number_of_columns

By default, the type is 'database'. If you pass the string 'list',
then a list will be created. The string 'seq' will create a
sequence. If the type passed is not known, failfailfailfail is returned
and no base is created.

type

The maximum number of records in the base. Default is
20000. If you pass 0, fail is returned and the base is not
created.

number_of_records

The path and full name of the base file.filename

agenaagenaagenaagena >> 435

A string with a description of the contents of the base. A
maximum of 75 characters is allowed (including the \0
character). If the string is too long, it will be truncated.
Default: 75 spaces.

description

ads.createseq (filename)

Creates a sequence with the given filename (a string). The function is written in the
Agena language and can be used after running import ads .

ads.desc (filehandle)

ads.desc (filehandle, description)

In the first form, returns the description of a base stored in the file header.

In the second form, adsadsadsads....descdescdescdesc sets or overwrites the description section of a
database or list. Pass the description as a string. If the string is longer than 75
characters, fafafafailililil is returned and there are no changes to the base file. If the file is
not open, fafafafailililil is returned, as well. If it was successful, the return is truetruetruetrue.

ads.expand (filehandle [, n])

Increases the maximum number of datasets by n records (n an integer). By default,
n is 10. Internally, all data sets are shifted, so that the index section in the data file
can be extended - so the greater n, the faster shifting will be, which is significant for
large files.

The function returns failfailfailfail if the file is not open, and truetruetruetrue otherwise. It issues an error if
the file contains a sequence.

ads.free (filehandle)

Determines the number of free data sets and returns them as an integer. If
the base has not open, it returns fafafafailililil. See also: ads.attribads.attribads.attribads.attrib.

ads.getall (filehandle)

Converts a sequence to a set and returns this set. The function automatically
initialises the set with the number of entries in the sequence. If the file is not open,
failfailfailfail is returned.

See also: ads.ads.ads.ads.getgetgetgetkeyskeyskeyskeys, ads.ads.ads.ads.getgetgetgetvaluesvaluesvaluesvalues.

436 7 Standard Libraries

ads.getkeys (filehandle)

Gets all valid keys in a database or list and returns them in a table. Argument: file
handle (integer). If the file is not open, failfailfailfail is returned. If the base is empty, nullnullnullnull is
returned. The function issues an error if the file contains a sequence.

See also: ads.getads.getads.getads.get, ads.getvaluesads.getvaluesads.getvaluesads.getvalues .

ads.getvalues (filehandle [, column])

By default gets all valid entries in the second column in a database and returns
them in a table. If the optional argument column is given, the entries in this column
are returned. Argument: file handle (integer). If the file is not open or if the column
does not exist, failfailfailfail is returned. If the base is empty, nullnullnullnull is returned. With lists, the
return is always nullnullnullnull.

See also: ads.getads.getads.getads.get, ads.getkeysads.getkeysads.getkeysads.getkeys .

ads.index (filehandle, key)

Searches for the given key (a string) in the base pointed to by filehandle and returns
its file position as a number. If their are no entries in the set, the function returns nullnullnullnull.
If the file is not open, failfailfailfail is returned.

ads.indices (filehandle)

Returns the file positions of all valid detests as a table.

If the file is not open, indices returns failfailfailfail. If there are no entries in the base, the return
is an empty table, otherwise a table with the indices is returned. The function issues
an error if the file contains a sequence.

See also: ads.retrieveads.retrieveads.retrieveads.retrieve , ads.invalidsads.invalidsads.invalidsads.invalids , ads.peekads.peekads.peekads.peek, ads.indexads.indexads.indexads.index.

ads.invalids (filehandle)

Returns the file positions of all invalid records in a database as a table.

If the file is not open, invalids returns failfailfailfail. If no invalid entries are found, the return is
an empty table. See also ads.retrieve. Note that the function also works with lists.
However, since lists never contain invalid records, an empty table will always be
returned with lists.

With sequences, the function issues an error.

ads.iterate (filehandle)

Iterates sequentially and in ascending order over all keys in the database or list. With
databases, both the next key and its corresponding value are returned. With lists,
only the next key is returned.

agenaagenaagenaagena >> 437

The very first key can be accessed with an empty string. If there are no more keys
left, the function returns nullnullnullnull. If the database is empty, nullnullnullnull is returned as well. If the
file is not open, the function returns failfailfailfail.

Example:

> s, t := ads.iterate(fh, '');

> s, t := ads.iterate(fh, s);

ads.lock (filehandle)

ads.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263

bytes are locked, so you have to use the second form in Windows after the file has
become larger than bytes (= 8,589,934,592 GBytes).263

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access to the file.

See also: adsadsadsads.unlock.unlock.unlock.unlock.

ads.openbase (filename [, anything])

Opens the base with name filename and returns a file handle (a number). If it
cannot find the file, or the base has not the correct version number, the function
returns failfailfailfail. The base is opened in both read and write mode.

If an optional second argument is given (any valid Agena value), the base is
opened in read mode only.

The function also enters the newly opened file into the ads.openfiles table.

ads.openfiles

A global table containing all files currently open. Its keys are the file handles
(integers), the values the file names (strings). If there are no open files, ads.openfilesads.openfilesads.openfilesads.openfiles
is an empty table.

ads.peek (filehandle, position)

Returns both the length of an entry (including the terminating \0 character) and the
entry itself at the given file position as two values (an integer and a string). The

438 7 Standard Libraries

function is save, so if you try to access an invalid file position, the function will exit
returning failfailfailfail. It issues an error if the file contains a sequence.

See also: ads.indexads.indexads.indexads.index, ads.retrieveads.retrieveads.retrieveads.retrieve .

ads.rawsearch (filehandle, key [, column])

With databases, the function searches all entries in the given column for the
substring key and returns all respective keys and the matching entries in a table. If
column is omitted, the second column is searched. The value for column must be
greater than 0, so you can also search for keys.

With lists and sequences, the function always returns nullnullnullnull. If the base is empty, nullnullnullnull is
returned.

If the file is not open or the column does not exist, the function returns fafafafailililil.

See also: ads.readads.readads.readads.read, ads.getvaluesads.getvaluesads.getvaluesads.getvalues .

ads.readbase (filehandle, key)

With databases, the function returns the entry (a string) to the given key (also a
string). With lists and sequences, the function returns truetruetruetrue if it finds the key, and falsefalsefalsefalse
otherwise.

If the file is not open, read returns fafafafailililil. If the base is empty, nullnullnullnull is returned. The
function uses binary search.

See also ads.rawsearchads.rawsearchads.rawsearchads.rawsearch .

ads.remove (filehandle, key)

With databases, the function deletes a key-value pair from the database; with lists,
the key is deleted. Physically, only the key to the record is deleted, the key or
key-value pair still resides in the record section but cannot be found any longer.
The function returns truetruetruetrue if it could delete the data set, and falsefalsefalsefalse if the set to be
deleted was not found. If the file is not open, delete returns fail. The function issues
an error if the file contains a sequence.

If you want to physically delete all invalid records, use ads.cleanads.cleanads.cleanads.clean.

ads.retrieve (filehandle, position)

Gets a key and its value from a database or list (indicated by its first argument, the
file handle) at the given file position (an integer, the second argument). Two values
are returned: the respective key and its value. With lists, only the key is returned.
The function is save, so if you try to access an invalid file position, the function will
exit and return failfailfailfail.

agenaagenaagenaagena >> 439

If the file is not open, retrieve returns failfailfailfail. . . . The function issues an error if the file
contains a sequence.

See also ads.indicesads.indicesads.indicesads.indices , ads.invalidsads.invalidsads.invalidsads.invalids .

ads.sizeof (filehandle)

Returns the number of valid records (an integer) in the base pointed to be
filehandle. If the base pointed to by the numeric filehandle is not open, the
function returns fafafafailililil.

ads.sync (filehandle)

Flushes all unwritten content to the base file. The function returns truetruetruetrue if successful,
and failfailfailfail otherwise (e.g. if the file was not opened before or an error during flushing
occurred).

ads.unlock (filehandle)

ads.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again. For more information, see adsadsadsads.lock.lock.lock.lock.

ads.writebase (filehandle, key [, value1, value2, · ··])

With databases, the function writes the key (a string) and the values (strings) to the
database file pointed to by filehandle (an integer). If value is omitted, an empty
string is written as the value.

With lists, the function writes only the key (a string) to the database file. If you pass
values, they are ignored. If the key already exists, nothing is written or done and truetruetruetrue
is returned. Thus, lists never contain invalid records.

In both cases, the index section is updated. If a key already exists, its position in the
index section is deleted and the new index position is inserted instead (in this case
there is no reshifting). This does not remove the actual key-value pair in the record
section. The function always writes the new key-value pair to the end of the file. (The
file position after the write operation has completed is always 0.)

If the maximum number of possible records is exceeded, the base is automatically
expanded by 10 records. You do not need to do this manually.

writewritewritewrite returns the truetruetruetrue if successful. If the file is not open, writewritewritewrite returns fafafafailililil.

440 7 Standard Libraries

7.7.7.7.31313131 gdigdigdigdi - Graphic Device Interface - Graphic Device Interface - Graphic Device Interface - Graphic Device Interface package package package package

As a plus package, this graphics interface is not part of the standard distribution
and must be activated with the importimportimportimport statement, e.g. import gdi .

The gdi package provides functions to plot graphics either to a window or a PNG,
GIF, JPEG, FIG, or PostScript file. It is available for the Solaris, Linux, Mac OS X for Intel
CPUs, and Windows editions of Agena.

The gdi package provides procedures to plot basic geometric objects such as
points, lines, circles, ellipses, rectangles, etc.

It also provides means to easily plot graphs of univariate functions and geometric
objects where the user does not need pay attention for proper axis ranges,
mapping to the internal coordinate systems, etc.

7.7.7.7.31313131.1 Opening a File or Window.1 Opening a File or Window.1 Opening a File or Window.1 Opening a File or Window

Operation starts by opening a device - window or file - with the gdi.opengdi.opengdi.opengdi.open function.
The function returns a device handle for later reference. Almost all functions
provided by the package request this device handle.

> import gdi;

> d := gdi.open(640, 480);

7.7.7.7.31313131.2 .2 .2 .2 Plotting FunctionsPlotting FunctionsPlotting FunctionsPlotting Functions

Plot a point to the window at x=200 and y=100:

> gdi.point(d, 200, 100);

Plot a line between two points [200, 150] and [300, 200]:

> gdi.line(d, 200, 150, 300, 200);

Draw a circle and a filled circle. Besides giving the device number, pass a centre (x
and y co-ordinates) and a radius.

> gdi.circle(d, 320, 240, 50);

> gdi.circlefilled(d, 400, 240, 50);

agenaagenaagenaagena >> 441

7.7.7.7.31313131.3 .3 .3 .3 Colours, Part 1Colours, Part 1Colours, Part 1Colours, Part 1

All functions accept a colour option passed as an additional - the last - argument.

The colour must be given as an integer that must be determined by a call to the
gdi.inkgdi.inkgdi.inkgdi.ink function. gdi.inkgdi.inkgdi.inkgdi.ink requires the device number, and three RGB colour values in
the range [0 .. 1]. Each colour should be determined only once.

There are 26 predefined colours with numbers 0 to 25, automatically set at each
invocation of a new device (call to the gdi.opengdi.opengdi.opengdi.open function). Thus, these 26 basic
colours do not need to be explicitely set with gdi.inkgdi.inkgdi.inkgdi.ink.

The default colours are:

purple20khaki13sky-blue6
red19light lilac12cyan5

yellow25light sky-blue18lilac11greenish4
light lilac24light greenish17bordeaux10light blue3
purple23bright green16light sky-blue9blue2
dark orange22grey-blue15greenish8black1
purple21grey14light green7white0

> cyan := gdi.ink(d, .1, .5, .5);

> gdi.rectanglefilled(d, 200, 200, 400, 400, cyan);

If you want to set a default colour for all subsequent drawings, use gdi.useinkgdi.useinkgdi.useinkgdi.useink .

7.7.7.7.31313131.4 Closing a File or Window.4 Closing a File or Window.4 Closing a File or Window.4 Closing a File or Window

To finally close the window, use gdi.closegdi.closegdi.closegdi.close.

> gdi.close(d);

7.7.7.7.31313131.5 Supported File Types.5 Supported File Types.5 Supported File Types.5 Supported File Types

To create image files, simply pass the name of the file as the third argument to
gdi.opengdi.opengdi.opengdi.open. Agena determines the type of the image file from its suffix.

If a file name ends in .png , it creates a PNG file. If a file name ends in .gif , it
creates a GIF file. If a file name ends in .jpg , it creates a JPEG file. Likewise, the
suffix .fig creates a FIG, and .ps generates a PostScript file.

442 7 Standard Libraries

7.7.7.7.31313131.6 .6 .6 .6 Plotting Graphs of Plotting Graphs of Plotting Graphs of Plotting Graphs of UnivariateUnivariateUnivariateUnivariate Functions Functions Functions Functions

The gdi.plotfngdi.plotfngdi.plotfngdi.plotfn function plots graphs of functions in one real to a window or file. It
accepts various options for colour, line thickness, line style, sizing, axis type, etc. The
function takes care for opening a device, plotting the graph and axes, so that the
user does not need to draw them manually. The function requires a function and
the left and right border on the x-axis.

> import gdi alias

> plotfn(<< x -> x*sin(x) >>, -10, 10);

For further details and examples see gdi.plotngdi.plotngdi.plotngdi.plotn. For available plot options, see
gdi.options. See calc.noksplinecalc.noksplinecalc.noksplinecalc.nokspline which along with gdi.plotfngdi.plotfngdi.plotfngdi.plotfn generates a smoothed
graph through a given list of interpolation points.

7.7.7.7.31313131.7 .7 .7 .7 Plotting Geometric Objects EasilyPlotting Geometric Objects EasilyPlotting Geometric Objects EasilyPlotting Geometric Objects Easily

Like gdi.plotfngdi.plotfngdi.plotfngdi.plotfn, the gdi function plotplotplotplot outputs geometric objects in the Cartesian
co-ordinate system with the point [0, 0] its centre. It accepts options for user-defined
colours, window sizes, axis types, etc. The function opens a device automatically,
plots all the objects that are stored in a PLOT data structure optionally along with
axes, a user-defined background colour, etc.

The function requires the PLOT structure as the first argument, and any options as
additional arguments. Contrary to gdi.plotfngdi.plotfngdi.plotfngdi.plotfn, it does not accept left, right, lower or
upper borders, for it determines the borders automatically.

A PLOT data structure is a sequence of the user-defined type 'PLOT', and contains
the geometric objects with their positions and respective colours.

The following geometric objects can be drawn with gdi.plotgdi.plotgdi.plotgdi.plot:

TRIANGLEFILLEDfilled triangleELLIPSEFILLEDfilled ellipse

TRIANGLEtriangleELLIPSEellipse

RECTANGLEFILLEDfilled rectangleCIRCLEFILLEDfilled circle

RECTANGLErectangleCIRCLEcircle

POINTpointARCFILLEDfilled arc

LINElineARCarc
NameObjectNameObject

A line stretching from [0, 0] to [1, 1] in grey colour (RGB values 0.5, 0.5, 0.5) for
example is represented as follows:

LINE(0, 0, 1, 1, [0.5, 0.5, 0.5])

A PLOT structure can be created with the gdi.structuregdi.structuregdi.structuregdi.structure function that optionally
accepts the minimum number of entries (for speed).

agenaagenaagenaagena >> 443

> import gdi alias;

> s := structure();

Any geometric objects is inserted into the structure with its respective gdigdigdigdi.set*.set*.set*.set*
function. The line LINE(0, 0, 1, 1, [0.5, 0.5, 0.5]) for example is added with the
gdi.setlinegdi.setlinegdi.setlinegdi.setline function:

> setline(s, 0, 0, 1, 1, [0.5, 0.5, 0.5]);

A PLOT structure can include any number of objects:

> setcircle(s, 0, 0, 0.5, [1, 0, 0]);

Finally, the plotplotplotplot statement puts them onto the screen:

> plot(s);

The following table shows the various functions to create objects:

settriangle-
filled

filled
triangle

setpoint
pointsetcircle-

filled
filled
circle

settriangletrianglesetlinelinesetcirclecircle

setrectangle-
filled

filled
rectangle

setellipse-
filled

filled
ellipse

setarcfilled
filled
arc

setrectanglerectanglesetellipseellipsesetarcarc
FunctionFunctionFunctionFunctionObjectObjectObjectObjectFunctionFunctionFunctionFunctionObjectObjectObjectObjectFunctionFunctionFunctionFunctionObjectObjectObjectObject

7.7.7.7.31313131.8 .8 .8 .8 Colours, Part 2Colours, Part 2Colours, Part 2Colours, Part 2

The following colour names (of type string) are built in and are accepted by the
gdi.plotgdi.plotgdi.plotgdi.plot and gdi.gdi.gdi.gdi.plotfnplotfnplotfnplotfn functions only, so that you must not define colours with
gdi.useinkgdi.useinkgdi.useinkgdi.useink or gdi.inkgdi.inkgdi.inkgdi.ink when plotting sets of points or graphs of functions:

'aquamarine', 'black', 'blue', 'bordeaux', 'brown', 'coral', 'cyan',
'darkblue', 'darkcyan', 'darkgrey', 'gold', 'green' , 'grey', 'khaki',
'lightgrey','magenta', 'maroon', 'navy', 'orange', 'pink', 'plum', 'red',
'sienna', 'skyblue', 'tan', 'turquoise', 'violet', 'wheat', 'white',
'yellow', 'yellow2' .

7.7.7.7.31313131.9 .9 .9 .9 GDIGDIGDIGDI Functions Functions Functions Functions

gdi.arc (d, x, y, r1, r2, a1, a2 [, colour])

Draws an arc around the centre [x , y] with x radius r1 , y radius r2 , and the starting
and ending angles a1, a2, given in degrees [0 .. 360], on device d. A colour (an
integer, see Chapter 7.31.3), may be given optionally.

444 7 Standard Libraries

gdi.arcfilled (d, x, y, r1, r2, a1, a2 [, colour])

Draws a filled arc around the centre [x , y] with x radius r1 , y radius r2 , and the
starting and ending angles a1, a2, given in degrees [0 .. 360], on device d. The arc
is filled with either the default colour, or the one given by colour (an integer, see
Chapter 7.31.3).

gdi.autoflush (d, state)

Sets the auto flush mode for device d to either truetruetruetrue or falsefalsefalsefalse (second argument). If
state is truetruetruetrue (the default), then after each graphical operation the output is flushed
so that it is immediately displayed.

This may decrease performance significantly with a large number of graphical
operations - Sun Sparcs seem to be the only exceptions -, so it is advised to

1. set state to falsefalsefalsefalse right after opening device d before calling any other function
that plots something,

2. call gdi.flushgdi.flushgdi.flushgdi.flush after the graphical operations have been completed,
3. set state to truetruetruetrue thereafter.

gdi.background (d, c)

Sets the background colour on device d. c must be a number determined by
gdi.inkgdi.inkgdi.inkgdi.ink, see Chapter 7.31.3. Note that in Windows, the image is also cleared so that
the background is properly displayed, whereas in UNIX, the image is not reset.

gdi.circle (d, x, y, r [, colour])

Draws a circle around the centre [x , y] with radius r , on device d. A colour (an
integer, see Chapter 7.31.3), may be given optionally.

gdi.circlefilled (d, x, y, r [, colour])

Draws a filled circle around the centre [x , y] with radius r , on device d. The circle is
filled with either the default colour, or the one given by colour (an integer, see
Chapter 7.31.3).

gdi.clearpalette (d)

Removes all inks on device d.

gdi.close (d)

Closes the window or file referred to by device id d. If d points to a file, all image
contents is saved to it.

gdi.dash (d, s)

Sets the line dash on device id d. The sequence s includes a vector of dash lengths
(black, white, black, ...). If s is the empty sequence, a solid line is restored.

agenaagenaagenaagena >> 445

gdi.ellipse (d, x, y, r1, r2 [, colour])

Draws an ellipse around the centre [x , y] with x radius r1 , and y radius r2 , on device
d. A colour (an integer, see Chapter 7.31.3), may be given optionally.

gdi.ellipsefilled (d, x, y, r1, r2 [, colour])

Draws a filled ellipse around the centre [x , y] with x radius r1 , and y radius r2 , on
device d. The ellipse is filled with either the default colour, or the one given by
colour (an integer, see Chapter 7.31.3).

gdi.flush (d)

Writes all buffered contents to the window or file referred to by device id d.

See also: gdi.autoflushgdi.autoflushgdi.autoflushgdi.autoflush .

gdi.fontsize (d, s)

Sets the font size s for text written by gdi.text, for device d.

See also: gdi.textgdi.textgdi.textgdi.text.

gdi.hasoption (t, o)

Iterates a table t and returns true if one of its keys is equal to o.

See also: gdi.optionsgdi.optionsgdi.optionsgdi.options .

gdi.initpalette (d)

Sets up basic colours on device d.

gdi.ink (d, r, g, b)

Returns a palette colour value - an integer - for the colour given by its RGB values r
(red), g (green), and b (blue), for device d. r , g, and b must be numbers x with 0 x [
 1. The palette colour value can be given as an optional argument in most of the[

gdigdigdigdi functions, or be used in the gdi.useinkgdi.useinkgdi.useinkgdi.useink function. Subsequent calls with the same
arguments return different palette values.

gdi.lastaccessed ()

Returns the id of the last accessed device as a number.

gdi.line (d, x1, y1, x2, y2 [, colour])

Draws a line from the first point [x1 , y1] to the second point [x2 , y2] on device d. A
colour , an integer (see Chapter 7.31.3), may be given optionally.

446 7 Standard Libraries

gdi.mouse (d [, offset])

Returns three numbers: the current horizontal and vertical positions of the mouse
relative to the screen, and its button state button_state. The button state is coded
as a positive integer.

By applying a bitmask to the button state, you can query whether the left or the right
mouse button has been pressed:

� button_state && 0x0100 = 0x0100: left button has been pressed,
� button_state && 0x0400 = 0x0400: right button has been pressed.

gdi.open (width, height)

gdi.open (width, height, filename)

In the first form, opens a window with the given width and height and returns a
device number (an integer) for later reference needed by all other gdigdigdigdi functions.

In the second form, creates the image file with name filename , the given width

and height and returns a device number (an integer) for later reference needed by
all other gdigdigdigdi functions.

The type of the image file format is determined by the suffix in filename :

'output.ps'PostScript format (DIN A4 size).ps

'c:/images/circle.png'PNG format.png

'c:/images/fractal.jpg'JPEG format.jpg

'c:/images/fractal.gif'GIF format.gif

'/export/home/misc/fern.fig'FIG format.fig
ExampleExampleExampleExampleResulting image file formatResulting image file formatResulting image file formatResulting image file formatSuffixSuffixSuffixSuffix

gdi.options (···)

Checks the given plotting options for correctness and returns them in a new table,
along with the defaults for options that have not been passed to this function. The
function currently only works with the gdi.plotgdi.plotgdi.plotgdi.plot, gdi.pointplotgdi.pointplotgdi.pointplotgdi.pointplot, and gdi.plotfngdi.plotfngdi.plotfngdi.plotfn
functions.

Valid options (all key~value pairs) are:

agenaagenaagenaagena >> 447

'x':(-2):2
horizontal range (left and right border)
over which the plot is displayed

'x'

'titlesize':15
sets the font size (a positive number) of
the title (gdi.gdi.gdi.gdi.plotfnplotfnplotfnplotfn function only)

'titlesize'

'titlecolour':
 'red'

sets the colour (a string, see Chapter
7.31.3) of the title (gdi.gdi.gdi.gdi.plotfnplotfnplotfnplotfn only)

'titlecolour'

'title':
'Graph of sin(x)'

sets the title (a string) for the plot
(gdi.gdi.gdi.gdi.plotfnplotfnplotfnplotfn function only)

'title'

'thickness':2
sets the thickness (a positive number) of
the line to be plotted (gdi.gdi.gdi.gdi.plotfnplotfnplotfnplotfn function
only)

'thickness'

'square':true
in a plot, uses the same scale for the
y-axis as given for the x-axis

'square'

'res':(1024:768)
resolution of the window or image file in
pixels (pair of numbers)

'res'

'mouse':true
prints the current position of the mouse to
the console. Click the right mouse button
to finish. Default is falsefalsefalsefalse.

'mouse'

'maxtickmarks':5
sets the maximum number of tickmarks
on both axes, by default is (around) 20.

'maxtickmarks'

'linestyle':10
sets the dash style (a positive number) for
the graph to be plotted (gdi.gdi.gdi.gdi.plotfnplotfnplotfnplotfn
function only)

'linestyle'

'labelsize':6
sets the font size (a positive number) for
axis labels (gdi.gdi.gdi.gdi.plotfnplotfnplotfnplotfn function only)

'labelsize'

'labels':false
if set to false, no labels are printed
(default is truetruetruetrue)

'labels'

'file':'image.png'
indicates the name of the file (a string) to
be created

'file'

'colourfn':
 << x -> ... >>sets a colouring function'colourfn'

'colour':'navy'

sets the default colour (a string, see
Chapter 7.31.3) for the objects to be
plotted. Note that the individual colour of
an object overrides the one given by this
option

'colour'

'bgcolour':
 'yellow'

sets the background colour (a colour
string, see Chapter 7.31.3)

'bgcolour'

'axescolour':'red'
defines the colour of the axes (a colour
string, see Chapter 7.31.3)

'axescolour'

'axes':'normal'

'none' - do not print axes
'normal' - print axes with labels and tick
marks
'boxed' - print axes at top and bottom,
and at the left and the right side
'frame' - print axes at the bottom and at
the left side

'axes'

ExampleMeaning (value)Meaning (value)Meaning (value)Meaning (value)Option (key)Option (key)Option (key)Option (key)

448 7 Standard Libraries

'yscale':0.5
sets the step size for the tick marks on the
vertical axis

'yscale'

'xscale':0.5
sets the step size for the tick marks on the
horizontal axis

'xscale'

'y':0:5
vertical range (lower and upper border)
over which the plot is displayed

'y'

ExampleMeaning (value)Meaning (value)Meaning (value)Meaning (value)Option (key)Option (key)Option (key)Option (key)

The function is written in the Agena language and included in the lib/gdi.agn file.

See also: gdi.setoptionsgdi.setoptionsgdi.setoptionsgdi.setoptions .

gdi.point (d, x, y [, colour])

Plots a point with co-ordinates [x , y] on device d. A colour , an integer (see Chapter
7.31.3), may be given optionally.

gdi.pointplot (p [, options])

gdi.pointplot ([p1 [, p2, ···]], [, options])

Takes one or more tables or sequences consisting of points xk:yk and generates a
plot. xk and yk must be finite numbers. The function automatically determines the
common proper borders automatically.

By passing the option colour =c, where c is either a string denoting a colour, or a
table of strings denoting colours, you can set individual colours for the distributions.
The default is 'black' .

By passing the option symbol =s, where s is the name of a symbol or a table of
strings denoting symbols, each point in a distribution is plotted accordingly.
Supported symbols are: 'cross' , 'circle' , 'circlefilled' , 'box' , 'boxfilled' ,
'triangle' , 'trianglefilled' , 'crosscircle' , and 'dot' . The default is 'dot' .

The size of the symbols can be controlled by the symbolsize option which denotes
a radius in pixels. Only one common size can be set for all distributions passed. The
default is 3.

Alternatively, by passing the connect =truetruetruetrue option, you can connect all points in
each distribution with a line.

The function supports various plotting options, see gdi.optionsgdi.optionsgdi.optionsgdi.options .

In the first form, only one distribution p is passed, in the second form you can pass
various distributions p1, p2, etc. by putting them into a table.

The function ignores y-values if they evaluate to infinityinfinityinfinityinfinity or undefinedundefinedundefinedundefined.

agenaagenaagenaagena >> 449

Example:

> s := seq(0.1, 0.2, 0.1, 0.3, 1, 2, 5, -1, 0);

> p := nseq(<< x -> x:s[x] >>, 1, size s);

> s1 := << x -> ln(x) >> @ s;

> p1 := nseq(<< x -> x:s1[x] >>, 1, size s1);

> gdi.pointplot([p, p1], colour=['red', 'black'],
> symbol=['circle', 'cross'], symbolsize=5, conn ect=true);

The function is written in the Agena language and included in the lib/gdi.agn file.

gdi.plot (p [, options])

Plots PLOT structures stored in p. PLOT structures are points, lines, circles, triangles,
rectangles, arcs, and ellipses, along with the information given by its optional INFO
structure.

A PLOT structure is created by a call to gdi.structuregdi.structuregdi.structuregdi.structure, and the respective gdigdigdigdi.set.set.set.set****
functions.

The function accepts all plot options (see gdi.optionsgdi.optionsgdi.optionsgdi.options).

Example:

> p := gdi.structure();

> gdi.setline(p, 0, 0, 1, 1, 'navy');

> gdi.setcircle(p, 0, 0, 1, 'red');

> gdi.plot(p);

> gdi.plot(p, axes='normal', square=true, x=-2:2, y =-2:2);

The function is written in the Agena language and included in the lib/gdi.agn file.

gdi.plotfn (f, a, b [[c, d], options])

gdi.plotfn (ft, a, b [[c, d], options])

Plots graphs of one or more functions.

In the first form, the graph of the function f is plotted.

In the second form, by passing a table ft of functions, the graphs of the functions
are plotted on one device - to one file or window.

If the file option is missing, the graphs are plotted in a window (UNIX/Mac and
Windows, only). If the file option is given, the file type is determined by the suffix of
the file you pass to this option.

450 7 Standard Libraries

a and b (both numbers with a < b) must be given explicitly and specify the horizontal
range. If c and d are missing, the vertical range is determined automatically.

You may specify one or more options for proper layout of the graphs. See
gdi.optionsgdi.optionsgdi.optionsgdi.options for more details.

If a table of function is passed, you may specify an individual colour, line style, and
the thickness for each of their graphs. Just pass a table of settings at the right-hand
side of the respective option. See the examples below.

See gdi.autoflushgdi.autoflushgdi.autoflushgdi.autoflush if you experience performance problems while plotting.

Examples:

Plot the graph of the sine function on the horizontal range a to b. The vertical range
is computed automatically.

> with('gdi');

> plotfn(<< x -> sin(x) >>, -10, 10);

Plot the graph of the sine function on the horizontal range a to b and the vertical
range c to d.

> plotfn(<< x -> sin(x) >>, -10, 10, -2, 2);

Specify a colour other than black:

> plotfn(<< x -> sin(x) >>, -10, 10, colour='red');

Give a specific thickness for the line:

> plotfn(<< x -> sin(x) >>, -10, 10, thickness=3);

Combine the options - their order does not matter:

> plotfn(<< x -> sin(x) >>, -10, 10, thickness=3, c olour='red');

Plot two and more functions:

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10);

Give options, too:

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10, colour='navy');

Specify individual colours. The graph of the sine function shall be red, the cosine
function shall by cyan:

agenaagenaagenaagena >> 451

>

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10,

> colour=['red', 'cyan']);

Choose another colour for the axes and another axes style:

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10,
> colour~['red', 'cyan'], axescolour='grey', axe s='boxed'
> res=480:200);

Do not draw axes:

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10,
> colour=['red', 'cyan'], axes='none');

If you want to set default options that will always be used by plotfnplotfnplotfnplotfn and that do not
need to be specified with each call to plotfnplotfnplotfnplotfn, use gdi.setoptionsgdi.setoptionsgdi.setoptionsgdi.setoptions :

> gdi.setoptions(colour~'red', axescolour~'grey');

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10)

The function is written in the Agena language and included in the lib/gdi.agn file.

See also: calc.calc.calc.calc.clampedsplineclampedsplineclampedsplineclampedspline , calc.naksplinecalc.naksplinecalc.naksplinecalc.nakspline .

gdi.rectangle (d, x1, y1, x2, y2 [, colour])

Draws a rectangle with the lower left and upper right corners [x1 , y1] and [x2 , y2] on
device d. A colour (an integer, see Chapter 7.31.3), may be given optionally for the
lines.

gdi.rectanglefilled (d, x1, y1, x2, y2 [, colour])

Draws a filled rectangle with the lower left and upper right corners [x1 , y1] and [x2 ,
y2] on device d. The rectangle is filled with either the default colour, or the one
given by colour (an integer, see Chapter 7.31.3).

452 7 Standard Libraries

gdi.reset (d)

Clears the entire window or image file contents of device d.

gdi.resetpalette (d)

Clears the colour palette by removing all inks and reallocates basic colours, on
device d.

gdi.setarc (s, x, y, r1, r2, a1, a2 [, colour])

Inserts an arc around the centre [x , y] with x radius r1 , y radius r2 , and the starting
and ending angles a1, a2, given in degrees [0 .. 360], to PLOT structure s . The
optional colour argument may be either a string denoting a colour like 'black' ,
'red' , etc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.setarcfilled (s, x, y, r1, r2, a1, a2 [, colour])

Inserts a filled arc around the centre [x , y] with x radius r1 , y radius r2 , and the
starting and ending angles a1, a2, given in degrees [0 .. 360], to PLOT structure s .
The optional colour argument may be either a string denoting a colour like 'black' ,
'red' , etc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.setcircle (s, x, y, r [, colour])

Inserts a circle around the centre [x , y] with radius r , to PLOT structure s . The optional
colour argument may be either a string denoting a colour like 'black' , 'red' , etc.,
or a table with three RGB numeric values in the range 0 .. 1.

gdi.setcirclefilled (s, x, y, r [, colour])

Inserts a filled circle around the centre [x , y] with radius r , to PLOT structure s . The
optional colour argument may be either a string denoting a colour like 'black' ,
'red' , etc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.setellipse (s, x, y, r1, r2 [, colour])

Inserts an ellipse around the centre [x , y] with x radius r1 , and y radius r2 , to PLOT
structure s . The optional colour argument may be either a string denoting a colour
like 'black' , 'red' , etc., or a table with three RGB numeric values in the range 0 ..
1.

gdi.setellipsefilled (s, x, y, r1, r2 [, colour])

Inserts a filled ellipse around the centre [x , y] with x radius r1 , and y radius r2 , to
PLOT structure s . The optional colour argument may be either a string denoting a
colour like 'black' , 'red' , etc., or a table with three RGB numeric values in the
range 0 .. 1.

agenaagenaagenaagena >> 453

gdi.setinfo (s, ···)

Inserts information on the minimum and maximum values (x- and y values) and their
scaling of all the geometric objects included in the PLOT data structure s into its
INFO substructure. The INFO object always is the last element in s .

The options xdim=a:b and ydim=c:d set the x-range and y-range on which objects
will be plotted, respectively, where a, b, c , d are numbers (i.e. borders). The
unconstrained = false option scales the x and y dimensions equally, the
unconstrained = true does not.

The information is useful so that gdi.plotgdi.plotgdi.plotgdi.plot can automatically determine the proper
plotting ranges for s .

Example:

> gdi.setinfo(s, xdim = 0:10, ydim = -5:5, unconstr ained = true);

gdi.setline (s, x1, y1, x2, y2 [, colour])

Inserts a line drawn from point (x1 , y1) to point (x2 , y2) with the optional colour into
the PLOT structure s . x1 , y1 , x2 , y2 should be numbers. colour may be either a string
denoting a colour like 'black' , 'red' , etc., or a table with three RGB numeric
values in the range 0 .. 1.

gdi.setoptions (···)

Checks the given plotting options (all key~value pairs) for correctness and sets
them as the respective defaults for subsequent calls to the gdi.plotgdi.plotgdi.plotgdi.plot and gdi.plotfngdi.plotfngdi.plotfngdi.plotfn
functions.

For a list of valid plotting options, see gdi.optionsgdi.optionsgdi.optionsgdi.options .

Internally, the function assigns the given options to the global environment variable
environenvironenvironenviron....ggggdididididdddefaultefaultefaultefaultooooptionsptionsptionsptions which is checked by gdi.plotgdi.plotgdi.plotgdi.plot and gdi.plotfngdi.plotfngdi.plotfngdi.plotfn.

gdi.setpoint (s, x, y [, colour])

Inserts a point with co-ordinates [x , y] to PLOT structure s . The optional colour

argument may be either a string denoting a colour like 'black' , 'red' , etc., or a
table with three RGB numeric values in the range 0 .. 1.

gdi.setrectangle (s, x1, y1, x2, y2 [, colour])

Inserts a rectangle with the lower left and upper right corners [x1 , y1] and [x2 , y2] to
PLOT structure s . The optional colour argument may be either a string denoting a
colour like 'black' , 'red' , etc., or a table with three RGB numeric values in the
range 0 .. 1.

454 7 Standard Libraries

gdi.setrectanglefilled (s, x1, y1, x2, y2 [, colour])

Inserts a filled rectangle with the lower left and upper right corners [x1 , y1] and [x2 ,
y2] to PLOT structure s . The optional colour argument may be either a string
denoting a colour like 'black' , 'red' , etc., or a table with three RGB numeric
values in the range 0 .. 1.

gdi.settriangle (s, x1, y1, x2, y2, x3, y3 [, colou r])

Inserts a triangle with the corners [x1 , y1], [x2 , y2], and [x3 , y3] to PLOT structure s .
The optional colour argument may be either a string denoting a colour like 'black' ,
'red' , etc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.settrianglefilled (s, x1, y1, x2, y2, x3, y3 [, colour])

Inserts a filled triangle with the corners [x1 , y1], [x2 , y2], and [x3 , y3] to PLOT structure
s . The optional colour argument may be either a string denoting a colour like
'black' , 'red' , etc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.structure ([n])

Creates a PLOT data structure with n pre-allocated entries. Of course, the structure
may contain less or more entries. If n is not given, no pre-allocation is done which
may slow down inserting new objects into s later in a session. The return is the PLOT
data structure (a sequence of user type ‘PLOT’).

See also: gdi.setinfogdi.setinfogdi.setinfogdi.setinfo .

gdi.system (d, x, y, xs, ys)

Sets the user's co-ordinate system on device d, where x , y , xs , and ys are numbers.
The pixel [x , y] determines the origin. The horizontal unit is given in xs pixels, the
vertical unit in ys pixels. The function returns nothing.

> d := open(640, 480);

> gdi.system(d, 320, 240, 320, 240);

> gdi.line(d, -1, 0, 1, 0);

> gdi.line(d, 0, -1, 0, 1);

gdi.text (d, x, y, str [, colour])

Prints the string str at [x , y] on device d. A text colour (an integer), may be given
optionally.

See also: gdi.fontsizegdi.fontsizegdi.fontsizegdi.fontsize .

agenaagenaagenaagena >> 455

gdi.thickness (d, t)

Sets the default thickness for all lines to t pixels, on device d.

gdi.triangle (d, x1, y1, x2, y2, x3, y3 [, colour])

Draws a triangle with the corners [x1 , y1], [x2 , y2], and [x3 , y3] on device d. A colour

(an integer, see Chapter 7.31.3), may be given optionally for the lines.

gdi.trianglefilled (d, x1, y1, x2, y2, x3, y3 [, co lour])

Draws a filled triangle with the corners [x1 , y1], [x2 , y2], and [x3 , y3] on device d. The
triangle is filled with either the default colour, or the one given by colour (an integer,
see Chapter 7.31.3).

gdi.useink (d, c)

Sets the default colour c (a number) for all subsequent drawings, on device d. c

must be a number determined by gdi.inkgdi.inkgdi.inkgdi.ink.

456 7 Standard Libraries

7.7.7.7.32323232 ffffrrrraaaaccccttttaaaallllssss - L - L - L - Liiiibbbbrrrraaaarrrry to y to y to y to CrCrCrCreeeeaaaatttte e e e FFFFrrrraaaaccccttttaaaallllssss

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the importimportimportimport statement, e.g.
import fractals .

Since it needs gdigdigdigdi graphics functions, it is of no use in OS/2 and DOS.

The library creates fractals and includes three types of functions:

1. escape-time iteration functions like fractals.mandelfractals.mandelfractals.mandelfractals.mandel ,
2. auxiliary mathematical functions lie fractals.flipfractals.flipfractals.flipfractals.flip ,
3. fractals.draw to draw fractals using escape-time iteration functions.

See Chapter 7.32.4 for some examples.

7.7.7.7.32323232.1 Escape-time Iteration Functions.1 Escape-time Iteration Functions.1 Escape-time Iteration Functions.1 Escape-time Iteration Functions

fractals.amarkmandel (x, y, iter, radius)

This function computes the escape-time fractal created by Mark Peterson of the
formula:

z := z2 * c0.1 + c

It returns the number of iterations a point [x , y] needs to escape radius . The
maximum number of iterations conducted is given by iter .

See also: fractals.markmandelfractals.markmandelfractals.markmandelfractals.markmandel .

fractals.albea (x, y, iter, radius)

This function calculates the Julia set of the formula lambda * bea(z), where lambda
is the point 1!0.4 and z =x!y , and iter is the maximum number of iteration. Its
return is the number of iterations the function needs to escape radius . The function
is written in the Agena language.

See also: fractals.lbeafractals.lbeafractals.lbeafractals.lbea .

fractals.alcos (x, y, iter, radius)

This function calculates the Julia set of the formula lambda * cos(z), where lambda
is the point 1!0.4 and z =x!y , and iter is the maximum number of iteration. Its
return is the number of iterations the function needs to escape radius . The function
is written in the Agena language.

agenaagenaagenaagena >> 457

fractals.alcosxx (x, y, iter, radius)

This function calculates the Julia set of the formula lambda * cosxx(z), where
lambda is the point 1!0.4 and z =x!y , and iter is the maximum number of
iteration. Its return is the number of iterations the function needs to escape radius .
The function is written in the Agena language.

The function implements FRACTINT's buggy cos function till v16, and creates
beautiful fractals.

fractals.alsin (x, y, iter, radius)

This function calculates the Julia set of the formula lambda * sin(z), where lambda is
the point 1!0.4 and z =x!y , and iter is the maximum number of iteration. Its return
is the number of iterations the function needs to escape radius . The function is
written in the Agena language.

fractals.anewton (x, y, iter, radius)

This function implements Newton's formula for finding the roots of z3 - 1, with z = x!y ,
and returns the number of iterations it takes for an orbit to be captured by a root.
The iteration formula itself is

z := z - (z3-1)/(3*z2)

The function stops if |z3-1| < radius or the maximum number of iterations iter is
reached. The function is written in the Agena language.

See also: fractals.newtonfractals.newtonfractals.newtonfractals.newton .

fractals.lbea (x, y, iter, radius)

This function calculates the Julia set of the formula lambda * bea(z), where lambda
is the point 1!0.4 and z =x!y , and iter is the maximum number of iteration. Its
return is the number of iterations the function needs to escape radius . The function
is implemented in C.

See also: fractals.fractals.fractals.fractals.aaaalbealbealbealbea.

fractals.mandel (x, y, iter, radius)

This function computes the Mandelbrot set of the formula

z := z2 + c

using complex arithmetic. It returns the number of iterations a point [x , y] needs to
escape radius . The maximum number of iterations conducted is given by iter .
The function is implemented in C.

458 7 Standard Libraries

fractals.mandelbrot (x, y, iter, radius)

Like fractals.mandelfractals.mandelfractals.mandelfractals.mandel , but written in Agena and using complex arithmetic.

fractals.mandelbrotfast (x, y, iter, radius)

Like fractals.mandelfractals.mandelfractals.mandelfractals.mandel , but written in Agena and using real arithmetic.

fractals.mandelbrottrig (x, y, iter, radius)

Like fractals.mandelfractals.mandelfractals.mandelfractals.mandel, but written in Agena and using real arithmetic and
trigonometric functions.

fractals.markmandel (x, y, iter, radius)

Like fractals.amarkmandelfractals.amarkmandelfractals.amarkmandelfractals.amarkmandel , but implemented in C.

fractals.newton (x, y, iter, radius)

Like fractals.fractals.fractals.fractals.anewtonanewtonanewtonanewton, but implemented in C.

7.7.7.7.32323232.2 Auxiliary Mathematical Functions.2 Auxiliary Mathematical Functions.2 Auxiliary Mathematical Functions.2 Auxiliary Mathematical Functions

fractals.bea (z)

The function has been removed. Please use the faster beabeabeabea operator.

fractals.cosxx (z)

The function has been removed. Please use the faster cosxxcosxxcosxxcosxx operator.

fractals.flip (z)

The function has been removed. Please use the much faster flipflipflipflip operator.

7.7.7.7.32323232.3 The Drawing Function .3 The Drawing Function .3 The Drawing Function .3 The Drawing Function fractals.drawfractals.drawfractals.drawfractals.draw

The function takes an escape-time iterator, various other parameters, and creates
either image files or windows of fractals. By default a window is opened (see file
option on how to create image files).

agenaagenaagenaagena >> 459

fractals.draw (iterator, x_centre, y_centre, x_widt h [, options])

Draws a fractal given by the escape-time iterator function iterator with image
centre [x_centre , y_centre] and of the total length on the x-axis x_width . x_centre

and y_centre are numbers whereas x_width is a positive number.

Options are:

with n a non-negative number:
determines the number of rows after an
image is being flushed to a file or
window during computation

update ~ n

res ~ 1024:768resolution of the window or image, with
width and height positive numbers.
Default is 640:480

res ~ width:height

radius ~ 2iteration radius r , a positive numberradius ~ r

mouse ~ truedisplay pointer co-ordinates on console
after image has been finished, if bool

= truetruetruetrue. Default: bool = falsefalsefalsefalse. Click the
right mouse button to quit printing
co-ordinates.

mouse ~ bool

map ~ 'basic.map'FRACTINT colour map to be used to
draw the fractal.

The FRACTINT maps can be
downloaded separately from:
http://agena.sourceforge.net/
downloads.html#fractintmaps

Put these files into the share folder of
your Agena distribution, preserving the
subfolder fractint. A valid path may thus
be: /usr/agena/share/fractint.

Alternatively, set the environment
variable environ.fractintcolourmaps to
the folder where your map files reside.

map ~
'filename.map'

lambda ~ 1!0.4lambda value p, a complex number,
for fractals.[a]l* functions like albeaalbeaalbeaalbea

lambda ~ p

iter ~ 512maximum number of iterations with n a
positive number; default is 128

iter ~ n

file ~ 'mandel.gif'creates a GIF, PNG, or JPEG file, if the
file suffix is .gif, .png, or .jpg

file~'filename.suf'

colour ~ << x ->
0, 0, 0.05*x >>
colour ~ blue

a colouring function f of the form f :=
<< x -> r, g, b >>. Predefined
functions are: red, blue, violet, cyan,
cyannew.

colour ~ f

ExampleExampleExampleExampleMeaningMeaningMeaningMeaningOptionOptionOptionOption

460 7 Standard Libraries

Notes on the updateupdateupdateupdate option:

On all operating systems the default is 1. This behaviour can globally be changed in
a session by assigning a non-negative integer to the environment variable
environ.environ.environ.environ. ffffractractractractsssscreencreencreencreenuuuupdatespdatespdatespdates.

In Sun x86 Solaris and Linux, update ~ 0 is the fastest, but when outputting to a
window, it does not plot anything while the fractal is being computed (of course, if
computation finishes, the fractal will be displayed).

Sparcs do not show any effect when changing the update rate, at least with
XVR-1200 VGAs. The same applies to Microsoft Windows XP and 7, as well as Mac
OS X 10.5.

7.7.7.7.32323232.4 Examples.4 Examples.4 Examples.4 Examples

> import fractals alias

> draw(fractals.lbea, 1.75, 0.5, 0.001, map='grayis h.map', radius=1024,
> iter=1024, lambda=1!0.4);

There are further examples at the bottom of the fractals.agn file residing in the main
Agena library folder.

agenaagenaagenaagena >> 461

> draw(mandel, -1.0037855135, 0.2770816775, 0.08668 6273, iter~255);

> draw(mandel, -1.0037855135, 0.2770816775, 0.08668 6273, file~'out.png',
> iter~255, res~1024:768); # create a PNG file of the Mandelbrot set

462 7 Standard Libraries

7.7.7.7.33333 3 3 3 divsdivsdivsdivs - L - L - L - Liiiibbbbrrrraaaarrrry to y to y to y to Process FractionsProcess FractionsProcess FractionsProcess Fractions

As a plus package, this library is not part of the standard distribution and must be
activated with the importimportimportimport statement, e.g. import divs .

The library provides basic arithmetic to calculate with fractions. To create a fraction,
use divdivdivdivssss.di.di.di.divsvsvsvs which accepts mixed, improper and proper fractions. The package
implements metamethods so that the common addition, subtraction, division, and
unary minus operators can be used.

The ++++ operator adds two fractions, or a number and a fraction in any order.

The ---- operator subtracts two fractions, or a number and a fraction in any order.

The **** operator multiplies two fractions, or a number and a fraction in any order.

The //// operator divides two fractions, or a number and a fraction in any order.

The ^̂̂̂ operator exponentiates two fractions, or a number and a fraction in any
order.

The ******** operator raises a fraction to an integer power, in this order.

The absabsabsabs operator returns the absolute value of a fraction and returns a fraction.

The signsignsignsign operator returns the sign of a fraction and returns a number.

The sqrtsqrtsqrtsqrt operator returns the square root of a fraction and returns a fraction. If the
resulting fraction could not be evaluated with absolute precision, it returns a
number.

The lnlnlnln operator returns the natural logarithm of a fraction and returns a fraction. If
the resulting fraction could not be evaluated with absolute precision, it returns a
number.

The expexpexpexp operator returns the value of EEEE to the power of the given fraction and
returns a fraction. If the resulting fraction could not be evaluated with absolute
precision, it returns a number.

The ssssinininin operator returns the sine of a fraction and returns a fraction in radians. If the
resulting fraction could not be evaluated with absolute precision, it returns a
number (in radians).

The coscoscoscos operator returns the cosine of a fraction and returns a fraction in radians. If
the resulting fraction could not be evaluated with absolute precision, it returns a
number (in radians).

agenaagenaagenaagena >> 463

The tantantantan operator returns the tangent of a fraction and returns a fraction in radians. If
the resulting fraction could not be evaluated with absolute precision, it returns a
number (in radians). It returns undefined undefined undefined undefined if poles have been encountered.

The arctanarctanarctanarctan operator returns the arcus tangent of a fraction and returns a fraction in
radians. If the resulting fraction could not be evaluated with absolute precision, it
returns a number (in radians). It returns undefined undefined undefined undefined if poles have been encountered.

The intintintint operator returns the integer quotient of the numerator of a fraction divided
by its denominator.

The numerators and denominators should all be integers.

The return always is an improper fraction. There are also two functions to convert
fractions to decimals and vice versa.

Examples:

> import divs;

> divs.divs(1, 2, 3) + divs.divs(1, 3):
2

> divs.divs(1, 2) * divs.divs(1, 3):
divs(5, 6)

> divs.divs(1, 2) * divs.divs(1, 3):
divs(1, 6)

> 2 * divs.divs(1, 3):
divs(2, 3)

> divs.todec(divs.divs(1, 2)):
0.5

> divs.todiv(ans):
div(1, 2) 0

Relations: Two fractions can be compared with the <<<<, <=<=<=<=, ====, ========, ~=~=~=~=, >=>=>=>=, and
>>>> operators.

464 7 Standard Libraries

Functions:

divs.denom (a)

This function returns the denominator of the fraction a of the user-defined type
'divs' and returns it as a number.

The function is written in the Agena language and is included in the lib/divs.agn

file.

See also: divdivdivdivssss....numernumernumernumer.

divs.divs ([x,] y, z)

divs.divs ([x:]y:z)

This function defines a fraction and returns it as a value of the user-defined type
'div' if z is not 1, with proper metamethods added. It returns a number if z equals
1, and undefinedundefinedundefinedundefined if z is 0.

In the first form: if all three arguments are given, representing a mixed fraction x ,
y
z

the function converts it into an improper fraction and returns it. If only y and z are

given, the function returns a reduced improper or proper fraction .
x
y

The second form allows to pass x , y , and z as a nested pair x:y:z , representing a
mixed fraction, or the pair y:z representing an improper or proper fraction.

In both forms, x , y , and z should be integers.

The function is written in the Agena language and is included in the lib/divs.agn

file.

divs.equals (a, b [, option])

This function checks two fractions a, b for equality. Alternatively, either a or b may be
simple Agena numbers. The result is either truetruetruetrue or falsefalsefalsefalse. If any non-nullnullnullnull option is
given, the function checks for approximate equality (see approxapproxapproxapprox function). Note
that the equality operators ====, ========, and ~=~=~=~= cannot check values of different types.

The function is written in the Agena language and is included in the lib/divs.agn

file.

divs.numer (a)

This function returns the numerator of the fraction a of the user-defined type 'divs'

and returns it as a number.

The function is written in the Agena language and is included in the lib/divs.agn

file.

agenaagenaagenaagena >> 465

See also: divdivdivdivssss....denomdenomdenomdenom.

divs.todec (a)

This function converts a fraction a of the user-defined type 'divs' to a float and
returns it.

The function is written in the Agena language and is included in the lib/divs.agn

file.

See also: divdivdivdivssss.todiv.todiv.todiv.todiv.

divs.todiv (x)

This function converts a number x to an improper fraction of the user-defined type
'divs' and returns it. The second return is the accuracy (see math.fractionmath.fractionmath.fractionmath.fraction for
further information).

The function is written in the Agena language and is included in the lib/divs.agn

file.

See also: divdivdivdivssss.to.to.to.todecdecdecdec, math.fractionmath.fractionmath.fractionmath.fraction .

466 7 Standard Libraries

7.7.7.7.34 34 34 34 cordiccordiccordiccordic - Numerical - Numerical - Numerical - Numerical CORDICCORDICCORDICCORDIC L L L Liiiibbbbrrrraaaarrrryyyy

As a plus package, this library is not part of the standard distribution and must be
activated with the importimportimportimport statement, e.g. import cordic .

The CORDIC algorithm (CORDIC stands for COordinate Rotation DIgital Computer)
also known as the `Volder's algorithm`, is used to calculate hyperbolic,
trigonometric, logarithmic, and root functions, on hardware not featuring multipliers,
requiring only addition, subtraction, bitshift and table lookup.

The algorithm, similar to one published by Henry Briggs around 1624, has been
developed in 1959 by Kack E. Volder to improve an aviation system. According to
Wikipedia, it has not only been used in pocket calculators, but also in x87 FPUs, in
CPUs prior to Intel 80486 - and in Motorola's 68881, in signal and image processing,
communication systems, robotics, and also 3D graphics - and other applications.

This binding to John Burkardt's CORDIC implementation uses additon, subtraction,
table lookups, multiplication, divisions, and the absolute function.

The package accepts and returns Agena number only.

Available functions are:

cordic.carccos (x)

Returns the inverse cosine operator in radians.

cordic.carcsin (x)

Returns the inverse sine operator in radians.

cordic.carctan2 (y, x)

Returns the arc tangent of y /x in radians, but uses the signs of both parameters to
find the quadrant of the result.

cordic.carctanh (x)

Returns the inverse hyperbolic tangent of x in radians.

cordic.ccbrt (x)

Returns the cubic root of the number x .

cordic.ccos (x)

Returns the cosine of x in radians.

agenaagenaagenaagena >> 467

cordic.ccosh (x)

Returns the hyperbolic cosine of x in radians.

cordic.cexp (x)

Returns , the exponential function to the base e =2.718281828459 ...ex

cordic.chypot (x, y)

Returns , the hypotenuse.x 2 + y 2

cordic.cln (x)

Returns the natural logarithm of x .

cordic.csin (x)

Returns the sine of x in radians.

cordic.csinh (x)

Returns the hyperbolic sine of x in radians.

cordic.csqrt (x)

Returns the square root of x .

cordic.ctan (x)

Returns the tangent of x in radians.

cordic.ctanh (x)

Returns the hyperbolic tangent of x in radians.

468 7 Standard Libraries

7.7.7.7.35 35 35 35 usbusbusbusb - - - - libusblibusblibusblibusb Binding Binding Binding Binding

As a plus package, this library is not part of the standard distribution and must be
activated with the importimportimportimport statement, e.g. import usb .

The package provides 1:1 access to libusb functions. Please have a look at the
libusb man pages and is available in the Windows version of Agena, only.

The functions provided by this binding are:

7.35.1 7.35.1 7.35.1 7.35.1 CTXCTXCTXCTX Functions Functions Functions Functions

libusb_wait_for_eventusb.wait_for_event
libusb_unlock_eventsusb.unlock_events
libusb_unlock_event_waitersusb.unlock_event_waiters
libusb_try_lock_eventsusb.try_lock_events
libusb_set_pollfd_notifiersusb.set_pollfd_notifiers
libusb_set_debugusb.set_debug
libusb_pollfds_handle_timeoutsusb.pollfds_handle_timeouts
libusb_lock_eventsusb.lock_events
libusb_lock_event_waitersusb.lock_event_waiters
libusb_handle_events_timeoutusb.handle_events_timeout
libusb_handle_events_lockedusb.handle_events_locked
libusb_handle_eventsusb.handle_events
libusb_get_pollfdsusb.get_pollfds
libusb_get_next_timeoutusb.get_next_timeout
libusb_get_device_listusb.get_device_list
libusb_event_handling_okusb.event_handling_ok
libusb_event_handler_activeusb.event_handler_active
Corresponding Corresponding Corresponding Corresponding libusblibusblibusblibusb function function function functionPackage function namePackage function namePackage function namePackage function name

7.35.2 7.35.2 7.35.2 7.35.2 DEVDEVDEVDEV Functions Functions Functions Functions

libusb_openusb.open
libusb_get_max_packet_sizeusb.get_max_packet_size
libusb_get_max_iso_packet_sizeusb.get_max_iso_packet_size
libusb_get_device_descriptorusb.get_device_descriptor
libusb_get_device_addressusb.get_device_address
libusb_get_config_descriptor_by_valueusb.get_config_descriptor_by_value
libusb_get_config_descriptorusb.get_config_descriptor
libusb_get_bus_numberusb.get_bus_number
libusb_get_active_config_descriptorusb.get_active_config_descriptor
Corresponding Corresponding Corresponding Corresponding libusblibusblibusblibusb function function function functionPackage function namePackage function namePackage function namePackage function name

agenaagenaagenaagena >> 469

7.35.3 Handles7.35.3 Handles7.35.3 Handles7.35.3 Handles

libusb_set_interface_alt_settingusb.set_interface_alt_setting
libusb_set_configurationusb.set_configuration
libusb_reset_deviceusb.reset_device
libusb_release_interfaceusb.release_interface
libusb_kernel_driver_activeusb.kernel_driver_active
libusb_interrupt_transferusb.interrupt_transfer
libusb_get_string_descriptor_utf8usb.get_string_descriptor_utf8
libusb_get_string_descriptor_asciiusb.get_string_descriptor_ascii
libusb_get_string_descriptorusb.get_string_descriptor
libusb_get_deviceusb.get_device
libusb_get_descriptorusb.get_descriptor
libusb_get_configurationusb.get_configuration
libusb_detach_kernel_driverusb.detach_kernel_driver
libusb_control_transferusb.control_transfer
closehandleusb.close
libusb_clear_haltusb.clear_halt
libusb_claim_interfaceusb.claim_interface
libusb_bulk_transferusb.bulk_transfer
libusb_attach_kernel_driverusb.attach_kernel_driver
Corresponding Corresponding Corresponding Corresponding libusblibusblibusblibusb function function function functionPackage function namePackage function namePackage function namePackage function name

7.35.4 Transfer Functions7.35.4 Transfer Functions7.35.4 Transfer Functions7.35.4 Transfer Functions

libusb_transfer_get_datausb.transfer_get_data
libusb_submit_transferusb.submit_transfer
libusb_set_iso_packet_lengthsusb.set_iso_packet_lengths
libusb_set_iso_packet_bufferusb.set_iso_packet_buffer
libusb_get_iso_packet_bufferusb.get_iso_packet_buffer
libusb_fill_iso_transferusb.fill_iso_transfer
libusb_fill_interrupt_transferusb.fill_interrupt_transfer
libusb_fill_control_transferusb.fill_control_transfer
libusb_fill_control_setupusb.fill_control_setup
libusb_fill_bulk_transferusb.fill_bulk_transfer
libusb_control_transfer_get_setupusb.control_transfer_get_setup
libusb_control_transfer_get_datausb.control_transfer_get_data
libusb_cancel_transferusb.cancel_transfer
Corresponding Corresponding Corresponding Corresponding libusblibusblibusblibusb function function function functionPackage function namePackage function namePackage function namePackage function name

7.35.5 Miscellaneous Functions7.35.5 Miscellaneous Functions7.35.5 Miscellaneous Functions7.35.5 Miscellaneous Functions

libusb_transferusb.transfer
libusb_open_device_with_vid_pidusb.open_device_with_vid_pid
libusb_initusb.init
Corresponding Corresponding Corresponding Corresponding libusblibusblibusblibusb function function function functionPackage function namePackage function namePackage function namePackage function name

470 7 Standard Libraries

7.36 7.36 7.36 7.36 RegistersRegistersRegistersRegisters

Summary of Functions:

Queries

countitemscountitemscountitemscountitems, filledfilledfilledfilled, inininin, sizesizesizesize.

Retrieving Values

getentrygetentrygetentrygetentry, uniqueuniqueuniqueunique, unpackunpackunpackunpack, valuesvaluesvaluesvalues.

Operations

copycopycopycopy, mapmapmapmap, purgepurgepurgepurge, removeremoveremoveremove, selectselectselectselect, selectremoveselectremoveselectremoveselectremove , sortsortsortsort, sortedsortedsortedsorted, subssubssubssubs, zipzipzipzip.

Relational Operators

====, ========, ~=~=~=~=, <><><><>.

Cantor Operations

intersectintersectintersectintersect, minusminusminusminus, subsetsubsetsubsetsubset, unionunionunionunion, xsubsetxsubsetxsubsetxsubset.

With the exception of getentry,,,, mapmapmapmap and zipzipzipzip, the following functions have been
built into the kernel as unary operators:

7777.36.36.36.36.1 Kernel O.1 Kernel O.1 Kernel O.1 Kernel Operatorsperatorsperatorsperators

copy (r)

The operator deep-copies the entire contents of a register r into a new register. See
Chapter 7.1 for more information.

countitems (item, r)

countitems (f, r [, ···])

Counts the number of occurrences of an item in the register r . For further
information, see Chapter 7.1.

duplicates (obj [, option])

Returns all the values that are stored more than once to the given register obj , and
returns them in a new register. Each duplicate is returned only once.

agenaagenaagenaagena >> 471

If option is not given, the structure is sorted before evaluation since this is needed to
determine all duplicates. The original structure is left untouched, however.

The total size of the new register is equal to the number of the elements in the result.

If a value of any type is given for option , the function assumes that the register has
been already sorted. Otherwise it is suggested to use skycrane.sortedskycrane.sortedskycrane.sortedskycrane.sorted before the
call to duplicatesduplicatesduplicatesduplicates if the register contains values of different types, to prevent errors.

The function is written in the Agena language and included in the library.agn file.

filled (r)

The operator checks whether the register r contains at least one element. The return
is truetruetruetrue or falsefalsefalsefalse.

getentry (r [, k 1, ···, k n])

Returns the entry r[k 1, ··· , k n] from the register r without issuing an error if one of
the given indices k i (second to last argument) does not exist.

map (f, r [, ···])

Maps the function f on all elements of a register r . See mapmapmapmap in Chapter 7.1 for
more information. See also: removeremoveremoveremove, selectselectselectselect, subssubssubssubs, zipzipzipzip.

purge (obj [, pos])

Removes from register obj the element at position pos , shifting down other
elements to close the space, if necessary. Returns the value of the removed
element, or nothing if pos is invalid. The default value for pos is n, where n is the
length of the table or sequence, so that a call purge(obj) removes the last
element of obj .

Note that the function als reduces the top pointer of obj by one.

remove (f, r [, ···])

Returns all values in register r that do not satisfy a condition determined by function
f . The total size of the new register is equal to the number of the elements in the
result. See removeremoveremoveremove in Chapter 7.1 for more information. See also: mapmapmapmap, selectselectselectselect,
subssubssubssubs, zipzipzipzip.

select (f, r [, ···])

Returns all values in register r that satisfy a condition determined by function f . The
total size of the new register is equal to the number of the elements in the result. See
selectselectselectselect in Chapter 7.1 for more information. See also: mapmapmapmap, removeremoveremoveremove, subssubssubssubs, zipzipzipzip.

472 7 Standard Libraries

selectremove (f, r [, ···])

Returns all values in register r that satisfy and do not satisfy a condition determined
by function f , in two new registers. The total size of the new registers is equal to the
number of the elements in the respective results. See selectremoveselectremoveselectremoveselectremove in Chapter 7.1
for more information.

See also: mapmapmapmap, removeremoveremoveremove, selectselectselectselect, subssubssubssubs, zipzipzipzip.

size (r)

Returns the total number of items assignable in register r .

sort (r [, comp])

Sorts register r in a given order, and in-place. All the values in the register up to the
position pointed to by registers.gettopregisters.gettopregisters.gettopregisters.gettop must be of the same type and non-nullnullnullnull. See
sortsortsortsort in Chapter 7.1 for more information. See also: sortedsortedsortedsorted.

sorted (r [, comp])

Sorts register elements in r in a given order, but - unlike sort - not in-place, and
non-destructively. All the values in the register up to the position pointed to by
registers.gettopregisters.gettopregisters.gettopregisters.gettop must be of the same type and non-nullnullnullnull. See sortedsortedsortedsorted in Chapter 7.1
for more information. See also: sortsortsortsort.

subs (x:v [, ···], r)

Substitutes all occurrences of the value x in register r with the value v . See subssubssubssubs in
Chapter 7.1 for more information. See also: mapmapmapmap, removeremoveremoveremove, selectselectselectselect, zipzipzipzip.

unique (r)

With a register r , the uniqueuniqueuniqueunique operator removes multiple occurrences of the same
item, if present in r , and returns a new register. The total size of the new register is
equal to the number of the elements in the result. See uniqueuniqueuniqueunique in Chapter 7.1 for
more information.

values (r, i 1 [, i 2, ···]])

Returns the elements from the given register r in a new register. This operator is
equivalent to

 return reg(r[i 1], r[i 2], ···)

The total size of the new register is equal to the number of the elements in the result.
See also: opsopsopsops, selectselectselectselect, unpackunpackunpackunpack.

agenaagenaagenaagena >> 473

zip (f, r1, r2)

This function zips together two registers r1 , r2 by applying the function f to each of
its respective elements. See Chapter 7.1 for more information. See also: mapmapmapmap,
removeremoveremoveremove, selectselectselectselect, subssubssubssubs.

The following functions have been built into the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. reg(1,

1) = reg(1) true, reg(1, 2) xsubset reg(1, 1, 2, 2, 3, 3) true.d d

r1 = r2

This equality check of two registers r1 , r2 first tests whether r1 and r2 point to the
same register reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether s1 and s2 contain the same values without
regard to their keys, and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is quadratic.

r1 == r2

This strict equality check of two registers r1 , r2 first tests whether r1 and r2 point to
the same register reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether r1 and r2 contain the same number of
elements and whether all entries in the registers are the same and are in the same
order, and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is linear.

r1 ~= r2

This approximate equality check of two registers r1 , r2 first tests whether r1 and r2

point to the same register reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether r1 and r2 contain the same number of
elements and whether all entries in the registers are approximately equal and are in
the same order, and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is linear. See
approxapproxapproxapprox for further information on the approximation check.

r1 <> r2

This inequality check of two registers s1 , s2 first tests whether s1 and s2 do not point
to the same register reference in memory. If so, it returns truetruetruetrue and quits.

If not, the operator then checks whether s1 and s2 do not contain the same values,
and returns truetruetruetrue or falsefalsefalsefalse. In this case, the search is quadratic.

474 7 Standard Libraries

c in r

Checks whether the register s contains the value c and returns truetruetruetrue or falsefalsefalsefalse. The
search is linear.

r1 intersect r2

Searches all values in register r1 that are also values in register r2 and returns them
in a new register. The search is quadratic. The total size of the new register is equal
to the number of the elements in the result.

r1 minus r2

Searches all values in register r1 that are not values in register sr2 and returns them
as a new register. The search is quadratic. The total size of the new register is equal
to the number of the elements in the result.

r1 subset r2

Checks whether all values in register r1 are included in register r2 and returns truetruetruetrue or
falsefalsefalsefalse. The operator also returns truetruetruetrue if r1 = r2 . The search is quadratic. The total size
of the new register is equal to the number of the elements in the result.

r1 union r2

Concatenates two registers r1 and r2 simply by copying all its elements - even if
they occur multiple times - to a new register. The total size of the new register is
equal to the number of the elements in the result.

r1 x subset r2

Checks whether all values in register r1 are included in register r2 and whether r2

contains at least one further element, so that the result is always falsefalsefalsefalse if r1 = r2 . The
search is quadratic. The total size of the new register is equal to the number of the
elements in the result.

The following functions in the base library base library base library base library also support registers:

7777.36.36.36.36.2 registers L.2 registers L.2 registers L.2 registers L ibraryibraryibraryibrary

This library provides generic functions for register manipulation. It provides all its
functions inside the table registers .

registers.extend (r, n)

Extends the given register r to - and not by - the given number of elements. All the
elements already residing in r are kept. If n is less or equal to the current top (see
registers.gettopregisters.gettopregisters.gettopregisters.gettop), the structure is left unchanged and falsefalsefalsefalse is returned - otherwise
returns truetruetruetrue.

agenaagenaagenaagena >> 475

See also: registers.registers.registers.registers. reducereducereducereduce.

registers.gettop (r)

Returns the current position of the pointer to the top of the register r . The return is an
integer. This is contrary to sizesizesizesize which returns the total number of slots allocated to r .

See also: registers.settopregisters.settopregisters.settopregisters.settop .

registers.reduce (r, n)

Reduces register r to - and not by - to the first n given number of elements. All the
elements residing above are removed. If the current top pointer is greater than n, it
is reset to n.

See also: registers.registers.registers.registers.extend.

registers.settop (r, n)

Sets the current position of the pointer to the top of register r to the given position n,
a non-negative integer. Values above this position cannot be altered by any
functions and operators. It returns true on success, and false otherwise. If the return
is falsefalsefalsefalse, the current position of the top pointer is not changed.

See also: registers.registers.registers.registers.ggggettopettopettopettop.

476 7 Standard Libraries

7.37 hashes7.37 hashes7.37 hashes7.37 hashes - Hashes- Hashes- Hashes- Hashes

As a plus package, the hashes package is not part of the standard distribution and
must be activated with the importimportimportimport statement, e.g. import hashes .

7.37.1 Introduction7.37.1 Introduction7.37.1 Introduction7.37.1 Introduction

The packages computes various hashes for variable-sized strings. All the functions
require a strings as the first argument, and with the exception of the hashes.md5hashes.md5hashes.md5hashes.md5
function, the maximum number of slots in an assumed hash table.

For almost each of the functions listed below an algorithm in the Agena language
roughly explaining its mode of operation has been given. Please be aware that the
respective hasheshasheshasheshashes library functions work in unsigned bits mode and internally also
use C unsigned long ints, so the results will differ for the Agena `equivalents`.

7.37.2 Functions7.37.2 Functions7.37.2 Functions7.37.2 Functions

hashes.collisions (s, f [, iters [, factor]])

Takes a sequence s of strings and one of the hash functions f and returns the
number of collisions and the time it took to compute the hashes, as numbers. If
iters , a positive integer, is not given, then the function determines the hash values
only once. If factor , a positive integer, is not given, the number of slots of the virtual
hash table is twice the number of elements in s .

The function is written in the Agena language.

hashes.djb (s, n)

Computes the Daniel J. Bernstein hash for strings s with an assumed number of n

slots. The return is a number. The algorithm used roughly resembles:

djb := proc(s :: string, n :: number) is
 local h := 5381;
 for i in s do
 inc h, (h <<< 5) + abs i
 od;
 return h % n

end;

agenaagenaagenaagena >> 477

hashes.djb2 (s, n)

Computes a modified Daniel J. Bernstein hash for strings s with an assumed number
of n slots. The return is a number. The algorithm used roughly resembles:

djb2 := proc(s :: string, n :: number) is
 local h := 5381;
 for i in s do
 h := 33 * h ^^ abs i;
 od;
 return h % n
end;

hashes.fnv (s, n)

Computes the Fowler-Noll-Vo hash for strings s with an assumed number of n slots.
The return is a number. The algorithm used roughly resembles:

fnv := proc(s :: string, n :: number) is
 local h := 2166136261;
 for i in s do
 h := (h * 16777619) ^^ abs i
 od;
 return h % n

end;

hashes.jen (s, n)

Computes the Bob Jenkins' hash for strings s with an assumed number of n slots. The
return is a number. Please see the C hashes.c source file for its implementation.

hashes.md5 (s)

Computes the MD5 hash for strings s . The return is a string of 32 characters that
represent 16 pairs of hexagesimal numbers where the alphabetical letter is in
upper-case. Please see the C hashes.c source file for its implementation.

hashes.oaat (s, n)

Computes the One-at-a-Time hash for strings s with an assumed number of n slots.
The return is a number. The algorithm used roughly resembles:

hashmask := << n -> (1 <<< n) - 1 >>

oaat := proc(s :: string, n :: number) is
 local h := 0;
 for i in s do
 inc h, abs i;
 inc h, h <<< 10;
 h := h ^^ (h >>> 6);
 od;
 inc h, h <<< 3;
 h := h ^^ (h >>> 11);
 inc h, h <<< 15
 return h && hashmask(n)

end;

478 7 Standard Libraries

hashes.pl (s, n)

Computes Paul Larson's hash of Microsoft Research for strings s with an assumed
number of n slots. The return is a number. The algorithm used roughly resembles:

pl := proc(s :: string, n :: number) is
 local h := 0;
 for i in s do
 h := h * 101 + abs i
 od;
 return h % n
end;

hashes.raw (s, n)

Computes a self-invented hash for strings s with an assumed number of n slots that
works quite well with dictionaries of lower and upper-case strings of German
language words. The return is a number. The algorithm used roughly resembles:

raw := proc(s :: string, n :: number) is
 local h := 0;
 for i in s do
 h := 38*(h <<< 1) + abs i - 63;
 od;
 return h % n
end;

hashes.sax (s, n)

Computes the Shift-Add-XOR hash for strings s with an assumed number of n slots.
The return is a number. The algorithm used roughly resembles:

sax := proc(s :: string, n :: number) is
 local h := 5381;
 for i in s do
 h := h ^^ ((h <<< 5) + (h >>> 2) + abs i)
 od;
 return h % n
end;

hashes.sdbm (s, n)

Computes the ndbm database library hash for strings s with an assumed number of
n slots. The return is a number. The algorithm uses a public-domain
implementation. The algorithm used roughly resembles:

sdbm := proc(s :: string, n :: number) is
 local h := 0;
 for i in s do
 h := abs i + (h <<< 6) + (h <<< 16) - h;
 od;
 return h % n
end;

agenaagenaagenaagena >> 479

hashes.sth (s, n)

Computes the sth hash for string s with an assumed number of n slots. The return is a
number. The algorithm has been published at StackOverflow. The algorithm used
roughly resembles:

sth := proc(s :: string, n :: number) is
 local h := 0;
 for i in s do
 h := (h <<< 6) ^^ (h >>> 26) ^^ abs i;
 od;
 return h % n
end

480 7 Standard Libraries

Chapter Chapter Chapter Chapter EightEightEightEight

C API FC API FC API FC API Functionsunctionsunctionsunctions

agenaagenaagenaagena >> 481

482 8 C API Functions

8 C API Functions8 C API Functions8 C API Functions8 C API Functions

As already noted in Chapter 1, Agena features the same C API as Lua 5.1 so you
are able to easily integrate your C packages and functions written for Lua 5.1 in
Agena. Actually, Agena's C API is a superset of Lua's C API35. For a description of the
API functions taken from Lua, see its Lua 5.1 manual.

The functions listed cannot be used in your Agena procedures - they have been
created to access Agena's features from within C code. It generally supports GCC
3.4.6 and above.

If you would like to compile a Lua C package for Agena, usually only the names of
following header files have to be changed:

agnconf.hluaconf.h
agenalib.hlualib.h
agnxlib.hlauxlib.h
agena.hlua.h
Corresponding Corresponding Corresponding Corresponding AgenaAgenaAgenaAgena Header File Header File Header File Header FileLuaLuaLuaLua Header File Header File Header File Header File

The following Agena-specific header files exist:

API to exponential integral functions written by RLH.rlhmath.h
Interface to Stephen L. Moshier's mathematical functions.cephes.h

Year 2038-fix headers for 32-bit systems.
agnt64.h,
agnt64_c.h,
agnt64_l.h

Provides C helper functions and definitions, primarily for file
access, further 64-bit types, quicksort, IEEE, Endian,
mathematical operations & constants, cross-platform keyboard
access, and fast and secure string concatenation and
search-and-replace functions. Useful to compile Agena on
SPARCs, PPCs, other RISC systems, and also on Little Endian
architectures, since the biniobiniobiniobinio package, read,read,read,read, and savesavesavesave work in
Big Endian mode.

agnhlps.h

Establishes cross-platform compatibility for certain
mathematical C functions, a few 64-bit C types, and functions
to work with files beyond the 2 GBytes size limit. Applicable
primarily to Solaris, but also Linux, eComStation - OS/2, Windows,
and GCC.

agncmpt.h

This file will be created when executing `make config`. It
determines the Endianess of your system, extends C long ints to
eight bytes, and determines the date and time for the Agena
build. It is advised to not change the contents of this header file.

agncfg.h

FunctionalityFunctionalityFunctionalityFunctionalityAgenaAgenaAgenaAgena Header Header Header Header

agenaagenaagenaagena >> 483

35 Full compatibility to Lua's API has been established with Agena 1.6.0 in May 2012.

Interface to dBASE III file support of the Shapelib library.xbase.h

Miscellaneous astronomical C functions
moon.h,
sunriset.h

Interface to the IAU Standards of Fundamental Astronomy (SOFA)
Libraries.

sofa.h

Interface to Professor Brian Bradie's various interpolation and
spline functions.

interp.h

FunctionalityFunctionalityFunctionalityFunctionalityAgenaAgenaAgenaAgena Header Header Header Header

Agena features a macro agn_Complexagn_Complexagn_Complexagn_Complex which is a shortcut for complex double.

The following API functions have been added (see files lapi.c and agena.h):

agnagnagnagn_arraytoseq_arraytoseq_arraytoseq_arraytoseq

void agn_arraytoseq (lua_State *L, lua_Number *a, s ize_t n)

Converts a numeric array a with n elements to a sequence and pushes it on the top
of the stack.

agn_agn_agn_agn_aaaasizesizesizesize

size_t agn_asize (lua_State *L, int idx);

Returns the number of items actually currently stored to the array part of the table at
stack index idx , using a linear method. See also: agn_sizeagn_sizeagn_sizeagn_size.

agnagnagnagn_ccall_ccall_ccall_ccall

agn_Complex agn_ccall (lua_State *L, int nargs, int nresults); (Non-ANSI)

agn_Complex agn_ccall (lua_State *L, int nargs, int nresults,

 lua_Number *real, lua_Number *imag); (ANSI)

There are two different versions of this API function available. The first form supports
Non-ANSI versions of Agena, e.g. Solaris, eComStation - OS/2, etc. The second form
can be used in the ANSI versions of Agena (compiled with the LUA_ANSI option).

Non-ANSI version: Exactly like lua_calllua_calllua_calllua_call, but returns a complex value as its result, so a
subsequent conversion to a complex number via stack operation is avoided. If the
result of the function call is not a complex value, an error is issued. agnagnagnagn____cccccallcallcallcall pops
the function and its arguments from the stack.

ANSI version: Like lua_calllua_calllua_calllua_call, but returns the real and imaginary parts of the complex
result through the parameters real and imag . If the result of the function call is not a
complex value, an error is issued. agnagnagnagn____cccccallcallcallcall pops the function and its arguments
from the stack.

484 8 C API Functions

agn_checkcomplexagn_checkcomplexagn_checkcomplexagn_checkcomplex

LUALIB_API agn_Complex agn_checkcomplex (lua_State *L, int idx)

Checks whether the value at index idx is a complex value and returns it. An error is
raised if the value at idx is not of type complex.

agn_checkagn_checkagn_checkagn_check integerintegerintegerinteger

lua_Number agn_checkinteger (lua_State *L, int idx) ;

Checks whether the value at index idx is a number and an integer and returns this
integer. An error is raised if the value at idx is not a number, or if it is a float.

agn_checkagn_checkagn_checkagn_check lstringlstringlstringlstring

const char *agn_checklstring (lua_State *L, int idx , size_t *len);

Works exactly like luaL_checklstring but does not perform a conversion of numbers
to strings.

agn_checknumberagn_checknumberagn_checknumberagn_checknumber

lua_Number agn_checknumber (lua_State *L, int idx);

Checks whether the value at index idx is a number and returns this number. An error
is raised if the value at idx is not a number. This procedure is an alternative to
luaL_checknumberluaL_checknumberluaL_checknumberluaL_checknumber for it is around 14 % faster in execution while providing the
same functionality by avoiding different calls to internal Auxiliary Library functions.

agn_checkagn_checkagn_checkagn_checkstringstringstringstring

const char *agn_checkstring (lua_State *L, int idx) ;

Works exactly like luaL_checkstring but does not perform a conversion of numbers
to strings. An error is raised if idx is not a string.

If idx is negative: due to garbage collection, there is no guarantee that the pointer
returned will be valid after the corresponding value is removed from the stack.

aaaagngngngn____complexgetcomplexgetcomplexgetcomplexget imagimagimagimag

LUA_API void agn_complexgetimag (lua_State *L, int idx)

Pushes the imaginary part of the complex value at position idx onto the stack.

agenaagenaagenaagena >> 485

agnagnagnagn_complexgetreal_complexgetreal_complexgetreal_complexgetreal

LUA_API void agn_complexgetreal (lua_State *L, int idx)

Pushes the real part of the complex value at position idx onto the stack.

aaaagngngngn____complexcomplexcomplexcomplex imagimagimagimag (ANSI version only) (ANSI version only) (ANSI version only) (ANSI version only)

lua_Number agn_compleximag (lua_State *L, int idx)

Returns the imaginary part of the complex value at stack index idx as a
lua_Number.

agnagnagnagn_complexreal_complexreal_complexreal_complexreal (ANSI version only) (ANSI version only) (ANSI version only) (ANSI version only)

lua_Number agn_complexreal (lua_State *L, int idx)

Returns the real part of the complex value at stack index idx as a lua_Number.

agn_copyagn_copyagn_copyagn_copy

LUA_API void agn_copy (lua_State *L, int idx)

Returns a true copy of the table, set, or sequence at stack index idx. The copy is put
on top of the stack, but the original structure is not removed.

agnagnagnagn_crea_crea_crea_createtetetecomplexcomplexcomplexcomplex

LUA_API void agn_createcomplex (lua_State *L, agn_C omplex c)

Pushes a value of type complex onto the stack with its complex value given by c .

agnagnagnagn_createpair_createpair_createpair_createpair

void agn_createpair (lua_State *L, int idxleft, int idxright);

Pushes a pair onto the stack with the left operand determined by the value at index
idxleft , and the right operand by the value at index idxright . The left and right
values are not popped from the stack.

agnagnagnagn_createpair_createpair_createpair_createpair numbersnumbersnumbersnumbers

void agn_createpairnumber (lua_State *L, lua_Number l, lua_Number r);

Pushes a pair onto the stack with the left-hand side of the pair given by the
lua_Number l , and its right-hand side by the lua_Number r .

486 8 C API Functions

agn_createregagn_createregagn_createregagn_createreg

LUA_API void agn_createreg (lua_State *L, int nrec)

Pushes a register onto the top of the stack with nrec pre-allocated places (nrec may
be zero).

agn_creatertableagn_creatertableagn_creatertableagn_creatertable

LUA_API void agn_creatertable (lua_State *L, int id x)

Creates an empty remember table for the function at stack index idx . It does not
change the stack.

agnagnagnagn_createse_createse_createse_createseqqqq

void agn_createseq (lua_State *L, int nrec);

Pushes a sequence onto the top of the stack with nrec pre-allocated places (nrec

may be zero).

agnagnagnagn_createset_createset_createset_createset

void agn_createset (lua_State *L, int nrec);

Pushes an empty set onto the top of the stack. The new set has space
pre-allocated for nrec items.

agnagnagnagn_create_create_create_createtabletabletabletable

LUA_API void agn_createtable (lua_State *L, int nar ray, int nrec)

Like lua_createtablelua_createtablelua_createtablelua_createtable, but marks the new table such that the sizesizesizesize operator will always
return the correct number of elements stored in its array part. Note that sizesizesizesize is slower
on these special tables (arrays) since it has to conduct a linear count - instead of a
binary one - on its array part.

agn_agn_agn_agn_deletertabledeletertabledeletertabledeletertable

LUA_API void agn_deletertable (lua_State *L, int ob jindex)

Deletes the remember table of the procedure at stack index idx . If the procedure
has no remember table, nothing happens. The function leaves the stack
unchanged.

agenaagenaagenaagena >> 487

agn_fnextagn_fnextagn_fnextagn_fnext

int agn_fnext (lua_State *L, int indextable, indexf unction, int mode);

Pops a key from the stack, and pushes three or four values in the following order:
the key of a table given by indextable , its corresponding value (if mode = 1), the
function at stack number indexfunction , and the value from the table at the given
indextable . If there are no more elements in the table, then aaaagngngngn_fnext_fnext_fnext_fnext returns 0
(and pushes nothing).

The function is useful to avoid duplicating values on the stack for lua_calllua_calllua_calllua_call and the
iterator to work correctly.

A typical traversal looks like this:

 /* table is in the stack at index 't', function is at stack index 'f' */
 lua_pushnil(L); /* first key */
 while (lua_fnext(L, t, f, 0) != 0) {
 /* 'key' is at index -3, function at -2, and 'va lue' at -1 */
 lua_call(L, 1, 1); /* call the function with on e arg & one result */
 lua_pop(L, 1); /* removes result of lua_cal l;
 keeps 'key' for next iter ation */
 }

While traversing a table, do not call lua_tolstringlua_tolstringlua_tolstringlua_tolstring directly on a key, unless you know
that the key is actually a string. Recall that lua_tolstringlua_tolstringlua_tolstringlua_tolstring changes the value at the
given index; this confuses the next call to lua_nextlua_nextlua_nextlua_next.

agn_agn_agn_agn_freefreefreefree

void *agn_free (lua_State *L, ...);

De-allocates one or more blocks of memory pointed to by pointers of type void *.
The last argument must be NULLNULLNULLNULL.

See also: agn_agn_agn_agn_mallocmallocmallocmalloc.

agn_getbitwiseagn_getbitwiseagn_getbitwiseagn_getbitwise

void agn_getbitwise (lua_State *L)

Returns the current mode for bitwise arithmetic: 0 if the bitwise operators (&&&&&&&&, ||||||||,
^^^^^^^^, ~~~~~~~~, and shiftshiftshiftshift), internally calculate with unsigned integers, and 1 if signed
integers are used.

See also: agn_agn_agn_agn_ssssetbitwiseetbitwiseetbitwiseetbitwise.

488 8 C API Functions

agn_getagn_getagn_getagn_getemptylineemptylineemptylineemptyline

void agn_getemptyline (lua_State *L)

Returns the current setting for two input prompts always being separated by an
empty line and pushes a Boolean on the stack.

See also: agn_agn_agn_agn_ssssetetetetemptylineemptylineemptylineemptyline.

agn_getagn_getagn_getagn_getepsepsepseps

lua_Number agn_geteps (lua_State *L)

Returns the value of the Agena system variable Eps (epsilon) without changing the
stack.

agn_getagn_getagn_getagn_getepsepsepsepsilonilonilonilon

lua_Number agn_getepsilon (lua_State *L)

Returns the setting of the accuracy threshold epsilon used by the ~=~=~=~= operator and
the approxapproxapproxapprox function. See also: agn_setepsilonagn_setepsilonagn_setepsilonagn_setepsilon .

agn_getfunagn_getfunagn_getfunagn_getfuncccctiontypetiontypetiontypetiontype

LUA_API int agn_getfunctiontype (lua_State *L, int idx)

Returns 1 if the function at stack index idx is a C function, 0 if the function at idx is an
Agena function, and -1 of the value at idx is no function at all.

agn_getagn_getagn_getagn_get iiiinumbernumbernumbernumber

lua_Number agn_getinumber (lua_State *L, int idx, i nt n);

Returns the value t[n] as a lua_Number, where t is a table at the given valid index
idx . If t[n] is not a number, the return is 0. The access is raw; that is, it does not
invoke metamethods.

agn_getagn_getagn_getagn_get iiiistringstringstringstring

const char *agn_getistring (lua_State *L, int idx, int n);

Returns the value t[n] as a const char *, where t is a table at the given valid index
idx. If t[n] is not a string, the return is NULL. The access is raw; that is, it does not
invoke metamethods.

agenaagenaagenaagena >> 489

agn_getagn_getagn_getagn_get llllibnameresetibnameresetibnameresetibnamereset

void agn_getlibnamereset (lua_State *L)

Returns the current setting for the restartrestartrestartrestart statement to also reset libnamelibnamelibnamelibname and
pushes a Boolean on the stack.

See also: agn_agn_agn_agn_ssssetetetetlongtablelongtablelongtablelongtable.

agn_getagn_getagn_getagn_get longtablelongtablelongtablelongtable

void agn_getlongtable (lua_State *L)

Returns the current setting for key~value pairs in tables being output line by line
instead of just a single line and puts a Boolean on the stack.

See also: agn_agn_agn_agn_ssssetetetetlongtablelongtablelongtablelongtable.

agn_getnoroundoffsagn_getnoroundoffsagn_getnoroundoffsagn_getnoroundoffs

void agn_getnoroundoffs (lua_State *L)

Returns the current mode used by for/in loops with step sizes that are not integral: 0
if the improved precision method to prevent round-off errors in iteration is not used,
and 1 if it is.

See also: agn_setnoroundoffsagn_setnoroundoffsagn_setnoroundoffsagn_setnoroundoffs .

agnagnagnagn_getrtable_getrtable_getrtable_getrtable

LUA_API int agn_getrtable (lua_State *L, int idx)

Pushes the remember table if the function at stack index idx onto the stack and
returns 1. If the function does not have a remember table, it pushes nothing and
returns 0.

agn_getrtablewritemodeagn_getrtablewritemodeagn_getrtablewritemodeagn_getrtablewritemode

int agn_getrtablewritemode (lua_State *L, int idx)

Returns Returns Returns Returns 0 if the remember table of the function at stack index idx cannot be
updated by the returnreturnreturnreturn statement (i.e. if it is an rotable), 1 if it can (i.e. if it is an
rtable), 2 if the function at idx has no remember table at all, and -1 if the value at
idx is not a function.

490 8 C API Functions

agn_getseqlstringagn_getseqlstringagn_getseqlstringagn_getseqlstring

const char *agn_getseqlstring (lua_State *L, int id x, int n, size_t *l);

Gets the string at index n in the sequence at stack index idx . The length of the string
is stored to l.

agn_getutypeagn_getutypeagn_getutypeagn_getutype

int agn_getutype (lua_State *L, int idx);

Returns the user-defined type of a procedure, table, sequence, set, userdata, or
pair at stack position idx as a string, pushes it onto the top of the stack and returns
1. If no user-defined type has been defined, the function returns 0 and pushes
nothing onto the stack.

See also: agn_isutypeagn_isutypeagn_isutypeagn_isutype, agnagnagnagn_set_set_set_setuuuutypetypetypetype.

agnagnagnagn_is_is_is_isfailfailfailfail

int agn_isfail (lua_State *L, int idx);

Returns 1 if the Boolean value at the given acceptable index results to fail, 0
otherwise (truetruetruetrue and falsefalsefalsefalse).

agn_isagn_isagn_isagn_isfalsefalsefalsefalse

int agn_isfalse (lua_State *L, int idx);

Returns 1 if the Boolean value at the given acceptable index results to falsefalsefalsefalse, 0
otherwise (truetruetruetrue and failfailfailfail).

agnagnagnagn_islinalgvector_islinalgvector_islinalgvector_islinalgvector

int agn_islinalgvector (lua_State *L, int idx, size _t *dim)

Tests if a value at the given acceptable index is a vector created with the linalglinalglinalglinalg
package, and returns 1 if true and 0 otherwise. It also stores the dimension of the
vector in dim .

agn_isnumberagn_isnumberagn_isnumberagn_isnumber

int agn_isnumber (lua_State *L, int idx);

Returns 1 if the value at the given acceptable index is a number, and 0 otherwise.

agenaagenaagenaagena >> 491

agn_agn_agn_agn_isisisisseqseqseqsequtypeutypeutypeutype

int *agn_issequtype (lua_State *L, int idx, const c har *str);

Checks whether the type at stack index idx is a sequence and whether the
sequence has the user-defined type denoted by str . It returns 1 if the above
condition is true, and 0 otherwise.

agn_agn_agn_agn_isseisseisseissettttutypeutypeutypeutype

int *agn_issetutype (lua_State *L, int idx, const c har *str);

Checks whether the type at stack index idx is a set and whether this set has the
user-defined type denoted by str . It returns 1 if the above condition is true, and 0
otherwise.

agn_isagn_isagn_isagn_isstringstringstringstring

int agn_isstring (lua_State *L, int idx);

Returns 1 if the value at the given acceptable index idx is a string, and 0 otherwise.

agn_isagn_isagn_isagn_istabletabletabletableutypeutypeutypeutype

int *agn_istableutype (lua_State *L, int idx, const char *str);

Checks whether the type at stack index idx is a table and whether the table has the
user-defined type denoted by str . It returns 1 if the above condition is true, and 0
otherwise.

agnagnagnagn_istrue_istrue_istrue_istrue

int agn_istrue (lua_State *L, int idx);

Returns 1 if the Boolean value at the given acceptable index idx results to truetruetruetrue, 0
otherwise (falsefalsefalsefalse and failfailfailfail).

agn_isutypeagn_isutypeagn_isutypeagn_isutype

int *agn_isutype (lua_State *L, int idx, const char *str);

Checks whether a user-defined type str has been set for the given table, set,
sequence, pair, or procedure at stack position idx . It returns 1 if the user-defined
type has been set, and 0 otherwise.

492 8 C API Functions

agn_isutypesetagn_isutypesetagn_isutypesetagn_isutypeset

int *agn_isutypeset (lua_State *L, int idx, const c har *str);

Checks whether a user-defined type has been set for the given object at stack
position idx. It returns 1 if a user-defined type has been set, and 0 otherwise. The
function accepts any Agena types. By default, if the object is not a table,
sequence, a pair, set, or procedure, it returns 0.

agnagnagnagn_ncall_ncall_ncall_ncall

lua_Number agn_ncall (lua_State *L, int nargs, int nresults);

Exactly like lua_calllua_calllua_calllua_call, but returns a numeric result as an Agena number, so a
subsequent conversion to a number via stack operations is avoided. If the result of
the function call is not numeric, an error is issued. agnagnagnagn_ncall_ncall_ncall_ncall pops the function and
its arguments from the stack.

agn_agn_agn_agn_mallocmallocmallocmalloc

void *agn_malloc (lua_State *L, size_t size, const char *procname, ...);

Allocates size bytes of memory and returns a pointer to the newly allocated block.
In case memory could not be allocated, it returns an error message including
procname that called agn_mallocagn_mallocagn_mallocagn_malloc. The function optionally can free one or more
objects referenced by their pointers in case memory allocation failed.

In all cases, the last argument must be NULLNULLNULLNULL.

See also: agn_freeagn_freeagn_freeagn_free.

agn_agn_agn_agn_nopsnopsnopsnops

size_t agn_nops (lua_State *L, int idx);

Determines the number of actual table, set, or sequence entries of the structure at
stack index idx . If the value at idx is not a table, set, or sequence, it returns 0. With
tables, this procedure is an alternative to lua_objlenlua_objlenlua_objlenlua_objlen if you want to get the size of a
table since lua_objlenlua_objlenlua_objlenlua_objlen does not return correct results if there are holes in the table or
if the table is a dictionary.

agn_agn_agn_agn_optoptoptoptcomplexcomplexcomplexcomplex

agn_Complex agn_optcomplex (lua_State *L, int narg, agn_Complex z);

If the value at index narg is a complex number, it returns this number. If this
argument is absent or is nullnullnullnull, the function returns complex z . Otherwise, raises an
error.

agenaagenaagenaagena >> 493

agn_paircheckbooloptionagn_paircheckbooloptionagn_paircheckbooloptionagn_paircheckbooloption

agn_paircheckbooloption (lua_State *L, const char * procname, int idx,
 const char *option)

For the given Agena procedure procname , checks whether the value at index idx is a
pair, and whether its left operand is equals to option (of type string), and whether
the right operand is a Boolean.

Returns -2 if the value at idx is not a pair, or the result of the call to the
lua_toboolean C API function.

The function issues an error if the left operand of the pair is not equals to option , or if
the right operand is not a Boolean.

The function does not pop the pair at idx .

agnagnagnagn_pairgeti_pairgeti_pairgeti_pairgeti

void agn_pairgeti (lua_State *L, int idx, int n);

Returns the left operand of a pair at stack index idx if n is 1, and the right operand if
n is 2, and puts it onto the top of the stack. You have to make sure that n is either 1
or 2.

agn_pairgetnumbersagn_pairgetnumbersagn_pairgetnumbersagn_pairgetnumbers

void agn_pairgetnumbers (lua_State *L, const char * procname, int idx,
 lua_Number *x, lua_Number *y)

For the given Agena procedure procname , checks whether the value at stack index
idx is a pair (i.e. idx must be negative). It then checks whether the left-hand and
right-hand side are numbers and returns these numbers in x and y . Finally, the
function pops the pair from the stack.

If the value at idx is not a pair, or if at least one of its operands is not a number, it
issues an error.

agn_pairrawgetagn_pairrawgetagn_pairrawgetagn_pairrawget

void agn_pairrawget (lua_State *L, int idx);

Pushes onto the stack the left or the right hand value of a pair t , where t is the value
at the given valid index idx and the number k (k=1 for the left hand side, k=2 for
the right hand side) is the value at the top of the stack. It does not invoke any
metamethods. This function pops both k from the stack.

494 8 C API Functions

agnagnagnagn_pairrawset_pairrawset_pairrawset_pairrawset

void agn_pairrawset (lua_State *L, int idx);

Does the equivalent to p[k] := v, where p is a pair at the given valid index idx , v is
the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. It does not invoke any
metamethods.

agn_pairstateagn_pairstateagn_pairstateagn_pairstate

LUA_API void agn_pairstate (lua_State *L, int idx, size_t a[])

Returns a flag indicating whether a metatable has been assigned to the pair at
index idx in a, a C array with one entry, where 1 indicates that the pair features a
metatable, and 0 means it does not.

agnagnagnagn_poptop_poptop_poptop_poptop

void agn_poptop (lua_State *L);

Pops the top element from the stack. The function is more efficient than lua_pop(L,
1).

agn_poptoptwoagn_poptoptwoagn_poptoptwoagn_poptoptwo

void agn_poptoptwo (lua_State *L);

Pops the top element and the value just below the top from the stack. The function
is more efficient than lua_pop(L, 2).

agn_agn_agn_agn_pushbooleanpushbooleanpushbooleanpushboolean

void agn_pushboolean (lua_State *L, int b);

Pushes true onto the stack if b is 1 or larger, and pushes false onto the stack if b is 0.
If b is -1, it pushes fail onto the stack.

agn_regextendagn_regextendagn_regextendagn_regextend

LUA_API int agn_regextend (lua_State *L, int idx, s ize_t newsize)

Extends the size of the register at stack position idx to newsize elements and fills the
newly created slots with nullnullnullnull. If newsize is less than the current size, it simply returns 0
and does not change the size of the register, otherwise the function returns 1. If the
current top pointer already refers to the total size of the register, it is set to newsize ,

agenaagenaagenaagena >> 495

otherwise it is left unchanged.

agn_reggetiagn_reggetiagn_reggetiagn_reggeti
LUA_API void agn_reggeti (lua_State *L, int idx, si ze_t n)

Pushes the value stored at position n of the resister located at stack index idx to the
top of the stack. If n is out-of-range, or larger than the position of the top pointer, it
issues an error.

agn_reggetiagn_reggetiagn_reggetiagn_reggeti numbernumbernumbernumber
LUA_API void agn_reggeti (lua_State *L, int idx, si ze_t n)

Pushes the number stored at position n of the resister located at stack index idx to
the top of the stack. If n is out-of-range, or larger than the position of the top pointer,
it issues an error. It returns infinityinfinityinfinityinfinity if the value at n is non-numeric.

agn_reggettopagn_reggettopagn_reggettopagn_reggettop

LUA_API size_t agn_reggettop (lua_State *L, int idx)

Returns the position of the top pointer of a register at stack index idx . See also:
agn_regsettopagn_regsettopagn_regsettopagn_regsettop .

agn_regpurgeagn_regpurgeagn_regpurgeagn_regpurge

LUA_API void agn_regpurge (lua_State *L, int idx, i nt n)

Removes the value at position n of the register at stack index idx and shifts down all
values beyond n if necessary. The function does not reduce the size of the register,
but decrements the top pointer by 1.

agn_regrawgetagn_regrawgetagn_regrawgetagn_regrawget

LUA_API void agn_regrawget (lua_State *L, int idx)

Pushes onto the stack the value t[k], where t is the register at the given valid index
idx and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). It
does not invoke metamethods.

agn_agn_agn_agn_regregregregrawget2rawget2rawget2rawget2

void agn_regrawget2 (lua_State *L, int idx);

Pushes onto the stack the register value t[k], where t is the register at the given valid
index idx and k is the value at the top of the stack.

496 8 C API Functions

Contrary to agn____regregregregrawgetrawgetrawgetrawget, the function does not issue an error if an index does not
exist in the register. Instead, nullnullnullnull is returned.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

agn_regreduceagn_regreduceagn_regreduceagn_regreduce

LUA_API int agn_regreduce (lua_State *L, int idx, s ize_t newsize, int nil)

Reduces the size of the register residing at stack index idx to newsize entries. If nil is
1, then all values residing at positions larger then newindex , are null'null'null'null'ed, otherwise set
nil to 0. The function returns 0 if newindex is less than 0, and 1 otherwise. See also:
agn_regextendagn_regextendagn_regextendagn_regextend .

agn_regsetagn_regsetagn_regsetagn_regset

LUA_API void agn_regset (lua_State *L, int idx)

Assumes that the value to be set to a register residing at stack position idx is at the
top of the stack and the numeric key just below the stack and conducts the
assignment.

agn_regsetiagn_regsetiagn_regsetiagn_regseti

LUA_API void agn_regseti (lua_State *L, int idx, in t n)

Sets the value residing at the top of the stack to position n of the register at index
idx and pops the inserted value from the stack.

agn_regsettopagn_regsettopagn_regsettopagn_regsettop

LUA_API int agn_regsettop (lua_State *L, int idx)

Sets the current top pointer of a register residing at index idx to the number stored
at the top of the stack. See also: agn_reggettopagn_reggettopagn_reggettopagn_reggettop .

agn_regstateagn_regstateagn_regstateagn_regstate

LUA_API void agn_regstate (lua_State *L, int idx, s ize_t a[])

Returns the current top pointer, the total number of items, and a flag indicating
whether a metatable has been assigned to the register at index idx in a, a C array
with three entries. The position of the top pointer is stored to a[0], the total number of
entries to a[1]. The metatable flag is stored to a[2], where 1 indicates that the
sequence features a metatable, and 0 means it does not.

agenaagenaagenaagena >> 497

agnagnagnagn____seqseqseqseqgetgetgetgetiiiinumbernumbernumbernumber

lua_Number agn_seqgetinumber (lua_State *L, int idx , int n);

Returns the value t[n] as a lua_Number, where t is a sequence at the given valid
index idx . If t[n] is not a number, the return is 0. The access is raw; that is, it does not
invoke metamethods.

See also: See also: See also: See also: lualualualua_seqgetinumber.seqgetinumber.seqgetinumber.seqgetinumber.

agn_seqsizeagn_seqsizeagn_seqsizeagn_seqsize
size_t agn_seqsize (lua_State *L, int idx);

Returns the number of items currently stored to the sequence at stack index idx .

agn_agn_agn_agn_sssseqeqeqeqstatestatestatestate

void agn_seqstate (lua_State *L, int idx, size_t a[])

Returns the actual number of items, the maximum number of items assignable to,
and a flag indicating whether a metatable has been assigned to the sequence at
index idx in a, a C array with three entries. The actual number of items is stored to
a[0], the maximum number of entries to a[1]. If a[1] is 0, then the number of
possible entries is infinite. The The The The metatablemetatablemetatablemetatable flag is stored in a[2], where 1 indicates flag is stored in a[2], where 1 indicates flag is stored in a[2], where 1 indicates flag is stored in a[2], where 1 indicates
that the sequence features a that the sequence features a that the sequence features a that the sequence features a metatable,metatable,metatable,metatable, and 0 means it does not. and 0 means it does not. and 0 means it does not. and 0 means it does not.

agn_setbitwiseagn_setbitwiseagn_setbitwiseagn_setbitwise

void agn_setbitwise (lua_State *L, int value)

Sets the mode for bitwise arithmetic. If value is greater than 0, the bitwise functions
(&&&&&&&&, ||||||||, ^^^^^^^^, ~~~~~~~~, and shiftshiftshiftshift) internally calculate with signed integers, otherwise
Agena calculates with unsigned integers.

See also: agn_getbitwiseagn_getbitwiseagn_getbitwiseagn_getbitwise .

agn_setagn_setagn_setagn_setemptylineemptylineemptylineemptyline

void agn_setemptyline (lua_State *L, int value)

If value is greater than 0, then two input prompts are always separated by an
empty line. If set falsefalsefalsefalse, no empty line is inserted.

See also: agn_getagn_getagn_getagn_getemptylineemptylineemptylineemptyline.

498 8 C API Functions

agn_agn_agn_agn_ssssetetetetepsepsepsepsilonilonilonilon

lua_Number agn_setepsilon (lua_State *L, lua_Number x)

Sets the accuracy threshold epsilon used by the ~=~=~=~= operator and the approxapproxapproxapprox
function to the number x . See also: agn_agn_agn_agn_ggggetepsilonetepsilonetepsilonetepsilon.

agn_setagn_setagn_setagn_set libnameresetlibnameresetlibnameresetlibnamereset

void agn_setlibnamereset (lua_State *L, int value)

If value is greater than 0, then the restartrestartrestartrestart statement resets libname to its default. If
value is non-positive, then libname is not changed with a restartrestartrestartrestart.

See also: agn_getagn_getagn_getagn_get libnameresetlibnameresetlibnameresetlibnamereset .

agn_setagn_setagn_setagn_set llllongtableongtableongtableongtable

void agn_setlongtable (lua_State *L, int value)

If value is greater than 0, then the printprintprintprint function outputs key~value pairs in tables
line-by-line. If value is non-positive, then the print function prints all pairs in a single
consecutive line.

See also: agn_getlongtableagn_getlongtableagn_getlongtableagn_getlongtable .

agn_agn_agn_agn_ssssetnoroundoffsetnoroundoffsetnoroundoffsetnoroundoffs

void agn_setnoroundoffs (lua_State *L, int value)

Sets the mode used by forforforfor/inininin loops with step sizes that are not integral: pass 0 for
value if the improved precision method to prevent round-off errors in iteration shall
not used, and 1 if it shall be used.

See also: agn_agn_agn_agn_ggggetnoroundoffsetnoroundoffsetnoroundoffsetnoroundoffs .

agn_setreadlibbedagn_setreadlibbedagn_setreadlibbedagn_setreadlibbed

int agn_setreadlibbed (lua_State *L, const char *na me)

Inserts name into the global set package.readlibbedpackage.readlibbedpackage.readlibbedpackage.readlibbed .

agenaagenaagenaagena >> 499

agn_setrtableagn_setrtableagn_setrtableagn_setrtable

LUA_API void agn_setrtable (lua_State *L, int find, int kind, int vind)

Sets argument~return values to the function at stack index find . The argument list
reside at a table array at stack index kind , the return list are in another table at stack
index vind . See the description for the rsetrsetrsetrset function for more information.

agn_setudmetatableagn_setudmetatableagn_setudmetatableagn_setudmetatable

LUA_API void agn_setudmetatable (lua_State *L, int idx)

Expects a valid userdata metatable at the top of the stack, assigns it to the
userdata residing at stack index idx, and pops the value at the top of the stack
thereafter. If the value at the top of the stack is null, then a metatable assigned to a
userdatum is deleted, and null is popped from the stack.

agnagnagnagn_set_set_set_setuuuutypetypetypetype

void agn_setutype (lua_State *L, int idxobj, int id xtype);

Sets a user-defined type of a procedure, table, sequence, set, userdata, or pair.
The object is at stack index idxobj , the type (a string) is at position idxtype . The
function leaves the stack unchanged.

If nullnullnullnull is at idxtype , the function deletes the user-defined type.

Setting the type of a sequence, set, table, procedure, or pair also causes the pretty
printer to display the string passed to the function instead of the usual output at the
console.

See also: agnagnagnagn____ggggetetetetuuuutypetypetypetype.

agn_sizeagn_sizeagn_sizeagn_size

int agn_size (lua_State *L, int idx);

Returns the number of items currently stored to the array and the hash part of the
table at stack index idx . See also: agn_asizeagn_asizeagn_asizeagn_asize.

agn_ssizeagn_ssizeagn_ssizeagn_ssize

int agn_ssize (lua_State *L, int idx);

Returns the number of items currently stored to the set at stack index idx .

500 8 C API Functions

agn_agn_agn_agn_ssssstatestatestatestate

void agn_sstate (lua_State *L, int idx, size_t a[])

Returns the actual number of items and the current maximum number of items
allocable to the set at index idx in a, a C array with three entries. The actual
number of items is stored to a[0], the current allocable size to a[1]. a[2] indicates
whether a metatable has been assigned to the set, where 0 means it does not,
and 1 that it does.

agn_agn_agn_agn_ttttaaaablesblesblesblesizeizeizeize

void agn_tablesize (lua_State *L, int idx, size_t a [])

Returns a guess on the number of elements in a table at stack index idx in a[0] , an
indicator on whether a table contains an allocated hash part a[1] , and an
indicator on whether null has been assigned to a table (a[2]).

The function is useful to determine the size of a table much more quickly than the
sizesizesizesize operator does, using a logarithmic instead of linear method, but may return
incorrect results if the array part of a table has holes, so the programmer should
make sure that the array part of a table has no holes. It also does not count the
number of elements in the hash part of a table.

See also: See also: See also: See also: agn_agn_agn_agn_tablestate.tablestate.tablestate.tablestate.

agn_agn_agn_agn_ttttaaaablestateblestateblestateblestate

void agn_tablestate (lua_State *L, int idx, size_t a[], int mode)

Returns the number of key~value pairs allocable and actually assigned to the
respective array and hash sections of the table at index idx by storing the result in a,
a C array with nine entries.

The number of key~value pairs currently stored in the array part is stored to a[0], the
number of pairs currently stored in the hash part to a[1]. a[2] contains the
information whether the array part has holes (1) or not (0). The number of allocable
key~value pairs to the array part is stored to a[3], and the number of allocable
key~value pairs to the hash part is stored to a[4]. a[5] indicates whether nullnullnullnull has
been set to the table, where 0 = false, and 1 = true. If a[6] is 0, then the table does
not feature a metatable, if it is 1 then a metatable has been assigned. a[7]
contains information on whether the hash part of a table does not have an
allocated node (no dummynode), a[9] contains a guess on the number of
elements in the array part of a table (see agn_tablesizeagn_tablesizeagn_tablesizeagn_tablesize for further information).

If mode is not 1, then the number of pairs actually assigned is not determined,
which may save time. In this case a[0] = a[1] = a[2] = 0.

agenaagenaagenaagena >> 501

agn_agn_agn_agn_ttttoooocomplexcomplexcomplexcomplex (non-ANSI versions only) (non-ANSI versions only) (non-ANSI versions only) (non-ANSI versions only)

agn_Complex agn_tocomplex (lua_State *L, int idx)

Assumes that the value at stack index idx is a complex value and returns it as a
lua_Number. It does not check whether the value is a complex number.

agn_agn_agn_agn_ttttonumberonumberonumberonumber

lua_Number agn_tonumber (lua_State *L, int idx)

Assumes that the value at stack index idx is a number and returns it as a
lua_Number. It does not check whether the value is a number. The strings or names
'undefined' and 'infinity' are recognised properly.

The function does not change the stack.

agn_agn_agn_agn_ttttonumberonumberonumberonumberxxxx

lua_Number agn_tonumberx (lua_State *L, int idx, in t *exception)

If the value at stack index idx is a number or a string containing a number, it returns
it as a lua_Number. The strings or names 'undefined' and 'infinity' are
recognised properly. If successful, exception is assigned to 0.

If the value could not be converted to a number, 0 is returned, and exception is
assigned to 1.

agn_tagn_tagn_tagn_toooostringstringstringstring

const char *agn_tostring (lua_State *L, int idx)

Assumes that the value at stack index idx is an Agena string and returns it as a C
string of type const char *. It does not check whether the value is a string.

If idx is negative: due to garbage collection, there is no guarantee that the pointer
returned will be valid after the corresponding value is removed from the stack.

agn_agn_agn_agn_usedbytesusedbytesusedbytesusedbytes

LUAI_UMEM agn_usedbytes (lua_State *L)

Returns the number of bytes used by the interpreter.

502 8 C API Functions

agnagnagnagnLLLL_get_get_get_gettablefieldtablefieldtablefieldtablefield

agnL_gettablefield (lua_State *L, const char *table , const char *field,
 const char *procname, int issueerror);

Determines the entry from the table field <table >. <field > and puts it on top of
the stack. procname is the name of the function that calls agnL_gettablefieldagnL_gettablefieldagnL_gettablefieldagnL_gettablefield .

If issueerror is set to 1, then an error is issued if table is not a table. If issueerror is
set to 0 and table is not a table, then no such error will be issued and the global
value found is pushed on the stack. In the latter case, the function returns
LUA_TNONE-1.

The function returns the Lua/Agena type, an integer (e.g. LUA_TBOOLEAN), in case of
success. If the field does not exist, LUA_TNIL is returned and the function instead
pushes nullnullnullnull on top of the stack. See the agena.h source file for the proper type
mapping (grep "basic types").

A typical call might look like this:

type = agnL_gettablefield(L, "environ", "infolevel" ,
 "environ.userinfo", 1);

if (type != LUA_TTABLE) {
 /* do something */
}

agnL_optbooleanagnL_optbooleanagnL_optbooleanagnL_optboolean

LUALIB_API int agnL_optboolean (lua_State *L, int n arg, int def)

If the value at stack index narg is a Boolean, returns this Boolean as an integer: -1 for
failfailfailfail, 0 for falsefalsefalsefalse, and 1 for truetruetruetrue. If there is no value at index narg or if it is nullnullnullnull, returns
def . Otherwise, raises an error.

agnL_optintegeragnL_optintegeragnL_optintegeragnL_optinteger

lua_Integer agnL_optinteger (lua_State *L, int narg , lua_Integer def)

If the function argument narg is a number, returns this number cast to a lua_Integer.
If this argument is absent or is NULL, returns def . Otherwise, raises an error.

The function internally uses agn_checknumberagn_checknumberagn_checknumberagn_checknumber which avoids internal calls to other C
API auxiliary library functions and thus is somewhat faster than luaL_optintegerluaL_optintegerluaL_optintegerluaL_optinteger .

agnagnagnagnLLLL____optnumberoptnumberoptnumberoptnumber

LUALIB_API agnL_optnumber(lua_State *L, int narg, l ua_Number d)

If the value at stack index narg is a number, returns this number. If this stack value is
absent or is NULL, returns d. Otherwise, raises an error. Contrary to luaL_optnumberluaL_optnumberluaL_optnumberluaL_optnumber,
agnL_optnumberagnL_optnumberagnL_optnumberagnL_optnumber does not try to convert a string to a number.

agenaagenaagenaagena >> 503

lua_lua_lua_lua_isisisiscomplexcomplexcomplexcomplex

void lua_iscomplex (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a complex number. It
returns 1 if the value is a complex number, and 0 otherwise. It does not pop
anything.

lua_lua_lua_lua_isisisisregregregreg

void lua_isreg (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a register. It returns 1 if the
value is a pair, and 0 otherwise. It does not pop anything.

lua_lua_lua_lua_ispairispairispairispair

void lua_ispair (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a pair. It returns 1 if the
value is a pair, and 0 otherwise. It does not pop anything.

lua_isselua_isselua_isselua_isseqqqq

void lua_isseq (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a sequence. It returns 1 if
the value is a sequence, and 0 otherwise. It does not pop anything.

lua_lua_lua_lua_isisisissetsetsetset

void lua_isset (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a set. It returns 1 if the
value is a set, and 0 otherwise. It does not pop anything.

lua_pushfalua_pushfalua_pushfalua_pushfa ilililil

void lua_pushfail (lua_State *L);

This macro pushes the Boolean value failfailfailfail onto the stack.

llllua_pushfalseua_pushfalseua_pushfalseua_pushfalse

void lua_pushfalse (lua_State *L);

This macro pushes the Boolean value falsefalsefalsefalse onto the stack.

504 8 C API Functions

lua_pushundefinedlua_pushundefinedlua_pushundefinedlua_pushundefined

void lua_pushundefined (lua_State *L);

Pushes the value undefinedundefinedundefinedundefined onto the stack.

lua_pushtruelua_pushtruelua_pushtruelua_pushtrue

void lua_pushtrue (lua_State *L);

This macro pushes the Boolean value truetruetruetrue onto the stack.

lua_rawlua_rawlua_rawlua_rawaaaaequalequalequalequal
int lua_rawaequal (lua_State *L, int index1, int in dex2);

Returns 1 if the two values in acceptable indices index1 and index2 are primitively
approximately equal (that is, without calling metamethods, see also approxapproxapproxapprox, ~=~=~=~=).
Otherwise returns 0. Also returns 0 if any of the indices are non valid.

lua_rawset2lua_rawset2lua_rawset2lua_rawset2

void lua_rawset2 (lua_State *L, int idx);

Similar to lua_settablelua_settablelua_settablelua_settable , but does a raw assignment (i.e., without metamethods).

Contrary to lua_rawsetlua_rawsetlua_rawsetlua_rawset, only the value is deleted from the stack, the key is kept, thus
you save one call to lua_poplua_poplua_poplua_pop. This makes it useful with lua_nextlua_nextlua_nextlua_next which needs a key
in order to iterate successfully.

lua_rawsetilstringlua_rawsetilstringlua_rawsetilstringlua_rawsetilstring

void lua_rawsetilstring (lua_State *L, int idx, int n, const char *str,
 int len);

This macro does the equivalent of t[n] := string, where t is the table at the given
valid index idx , n is an integer, str the string to be inserted and len the length of
then string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetikeylua_rawsetikeylua_rawsetikeylua_rawsetikey

void lua_rawsetikey (lua_State *L, int idx, int n);

Does the equivalent of t[n] := k, where t is the value at the given valid index idx and
k is the value just below the top of the stack.

agenaagenaagenaagena >> 505

This function pops the topmost value from the stack and leaves everything else
untouched. The assignment is raw; that is, it does not invoke metamethods.

lua_rawsetinumberlua_rawsetinumberlua_rawsetinumberlua_rawsetinumber

void lua_rawsetinumber (lua_State *L, int idx, int n, lua_Number num);

This macro does the equivalent of t[n] := num, where t is the value at the given valid
index idx , n is an integer, and num an Agena number (a C double).

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetistringlua_rawsetistringlua_rawsetistringlua_rawsetistring

void lua_rawsetistring (lua_State *L, int idx, int n, const char *str);

This macro does the equivalent of t[n] = str , where t is the value at the given valid
index idx , n is an integer, and str a string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

llllua_rawsetstringbooleanua_rawsetstringbooleanua_rawsetstringbooleanua_rawsetstringboolean

void lua_rawsetstringboolean
 (lua_State *L, int idx, const char *str, int n);

This macro does the equivalent of t[str] := (n == 1), where t is the value at the
given valid index idx , str a string, and n an integer.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetstringlua_rawsetstringlua_rawsetstringlua_rawsetstring numbernumbernumbernumber

void lua_rawsetstringnumber
 (lua_State *L, int idx, const char *str, lua_Num ber n);

This macro does the equivalent of t[str] := n, where t is the value at the given valid
index idx , str a string, and n a number.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

506 8 C API Functions

lua_rawsetstringlua_rawsetstringlua_rawsetstringlua_rawsetstring stringstringstringstring

void lua_rawsetstringstring
 (lua_State *L, int idx, const char *str, const c har *text);

This macro does the equivalent of t[str] := text , where t is the value at the given
valid index idx , str a string, and text is a string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_lua_lua_lua_regregregregnextnextnextnext

int lua_regnext (lua_State *L, int idx);

Pops a key from the stack, and pushes the next key~value pair from the register at
the given index idx . If there are no more elements in the register or the position of
the top pointer has been exceeded, then lua_lua_lua_lua_regregregregnextnextnextnext returns 0 (and pushes
nothing). To access the very first item in a register, put nullnullnullnull on the stack before (with
lua_pushnillua_pushnillua_pushnillua_pushnil).

While traversing a register, do not call lua_tolstringlua_tolstringlua_tolstringlua_tolstring directly on the key. Recall that
lua_tolstringlua_tolstringlua_tolstringlua_tolstring changes the value at the given index; this confuses the next call to
lua_lua_lua_lua_regregregregnextnextnextnext.

lua_slua_slua_slua_sdeletedeletedeletedelete

void lua_sdelete (lua_State *L, int idx);

Deletes the element residing at the top of the stack from the set at stack position
idx . The element at the stack top is popped thereafter.

lua_seqgetilua_seqgetilua_seqgetilua_seqgeti

void lua_seqgeti (lua_State *L, int idx, int n);

Gets the n-th item from the sequence at stack index idx and pushes it onto the
stack. You have to make sure that the index is valid, otherwise there may be
segmentation faults.

See also: lua_seqlua_seqlua_seqlua_seqsetisetisetiseti.

lualualualua____seqseqseqseqgetgetgetgetiiiinumbernumbernumbernumber

lua_Number lua_seqgetinumber (lua_State *L, int idx , int n);

Returns the value t[n] as a lua_Number, where t is a sequence at the given valid
index idx . If t[n] is not a number, the return is HUGE_VAL. The access is raw; that is, it
does not invoke metamethods.

agenaagenaagenaagena >> 507

See also: See also: See also: See also: agn_seqgetinumber....

lua_seqinsertlua_seqinsertlua_seqinsertlua_seqinsert

void lua_seqinsert (lua_State *L, int idx);

Inserts the element on top of the Lua stack into the sequence at stack index idx .
The element is inserted at the end of the sequence. The value added to the
sequence is popped from the stack thereafter.

lua_seqnextlua_seqnextlua_seqnextlua_seqnext

int lua_seqnext (lua_State *L, int idx);

Pops a key from the stack, and pushes the next key~value pair from the sequence
at the given index idx . If there are no more elements in the sequence, then
lua_seqnextlua_seqnextlua_seqnextlua_seqnext returns 0 (and pushes nothing). To access the very first item in a
sequence, put nullnullnullnull on the stack before (with lua_pushnillua_pushnillua_pushnillua_pushnil).

While traversing a sequence, do not call lua_tolstringlua_tolstringlua_tolstringlua_tolstring directly on the key. Recall that
lua_tolstringlua_tolstringlua_tolstringlua_tolstring changes the value at the given index; this confuses the next call to
lua_seqnextlua_seqnextlua_seqnextlua_seqnext .

lua_slua_slua_slua_seqeqeqeqrawgetrawgetrawgetrawget

void lua_seqrawget (lua_State *L, int idx);

Pushes onto the stack the sequence value t[k], where t is the sequence at the given
valid index idx and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

lua_slua_slua_slua_seqeqeqeqrawgetirawgetirawgetirawgeti

void lua_seqrawgeti (lua_State *L, int idx, size_t n);

Pushes onto the stack the sequence value t[n], where t is the sequence at the given
valid index idx .

The function does not invoke any metamethods. Contrary to lua_rawgetilua_rawgetilua_rawgetilua_rawgeti, it issues
an error if n is out of range.

508 8 C API Functions

lua_slua_slua_slua_seqeqeqeqrawget2rawget2rawget2rawget2

void lua_seqrawget2 (lua_State *L, int idx);

Pushes onto the stack the sequence value t[k], where t is the sequence at the given
valid index idx and k is the value at the top of the stack.

Contrary to lua_seqrawgetlua_seqrawgetlua_seqrawgetlua_seqrawget, the function does not issue an error if an index does not
exist in the sequence. Instead, nullnullnullnull is returned.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

lua_seqrawsetlua_seqrawsetlua_seqrawsetlua_seqrawset

void lua_seqrawset (lua_State *L, int idx);

Does the equivalent to s[k] := v, where s is a sequence at the given valid index idx ,
v is the value at the top of the stack, and k is the value just below the top.
This function pops both the key and the value from the stack. It does not invoke any
metamethods.

lua_seqrawsetilstringlua_seqrawsetilstringlua_seqrawsetilstringlua_seqrawsetilstring

void lua_seqrawsetilstring (lua_State *L, int idx, int n, const char *str,
 int len);

This macro does the equivalent of s[n] = string , where s is the sequence at the
given valid index idx , n is an integer, str the string to be inserted and len the length
of then string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_seqsetilua_seqsetilua_seqsetilua_seqseti

void lua_seqseti (lua_State *L, int idx, int n);

Sets the value at the top of the stack to the non-zero and positive index n of the
sequence at stack index idx .

If the value added is nullnullnullnull, the entry at sequence index n is deleted and all elements
to the right of the value deleted are shifted to the left, so that their index positions
get changed, as well.

The function pops the value at the top of the stack.

If there is already an item at position n in the sequence, it is overwritten.

agenaagenaagenaagena >> 509

If you want to extend a current sequence, the function allows to add a new item
only at the next free index position. Larger index positions are ignored, but the value
to be added is popped from the stack, as well.

See also: lualualualua_seqgeti_seqgeti_seqgeti_seqgeti .

lua_seqsetinumberlua_seqsetinumberlua_seqsetinumberlua_seqsetinumber

void lua_seqsetinumber (lua_State *L, int idx, int n, lua_Number num);

This macro sets the given Agena number num to the non-zero and positive index n of
the sequence at stack index idx .

lua_seqsetilua_seqsetilua_seqsetilua_seqseti stringstringstringstring

void lua_seqsetistring (lua_State *L, int idx, int n, const char *str);

This macro sets the given string str to the non-zero and positive index index n of the
sequence at stack index idx .

lua_slua_slua_slua_sinsertinsertinsertinsert

void lua_sinsert (lua_State *L, int idx);

This macro inserts an item into a set. The set is at the given index idx , and the item
is at the top of the stack.

This function pops the item from the stack.

lua_sinsertlstringlua_sinsertlstringlua_sinsertlstringlua_sinsertlstring

void lua_sinsertlstring (lua_State *L, int idx, con st char *str, size_t l);

This macro sets the first l characters of the string denoted by str into the set at the
given index idx .

lua_slua_slua_slua_sinsertinsertinsertinsertnumbernumbernumbernumber

void lua_sinsertnumber (lua_State *L, int idx, lua_ Number n);

This macro sets the number denoted by n into the set at the given index idx .

lua_slua_slua_slua_sinsertinsertinsertinsertstringstringstringstring

void lua_sinsertstring (lua_State *L, int idx, cons t char *str);

This macro sets the string denoted by str into the set at the given index idx .

510 8 C API Functions

lua_srawgetlua_srawgetlua_srawgetlua_srawget

void lua_srawget (lua_State *L, int idx);

Checks whether the set at index idx contains the item at the top of the stack. The
function pops this item from the stack putting the Boolean value truetruetruetrue or falsefalsefalsefalse in its
place.

This function pops the value from the stack. It does not invoke any metamethods.

lua_srawsetlua_srawsetlua_srawsetlua_srawset

void lua_srawset (lua_State *L, int idx);

Does the equivalent to insert v into s, where s is the set at the given valid index
idx , v is the value at the top of the stack.

This function pops the value from the stack. It does not invoke any metamethods.

lua_tobooleanlua_tobooleanlua_tobooleanlua_toboolean

int lua_toboolean (lua_State *L, int idx)

Converts the value at the given acceptable index to an integer value (-1, 0 or 1).

If the value at idx is nullnullnullnull or falsefalsefalsefalse, the functions returns 0.
If the value at idx is failfailfailfail, the function returns -1.
If the value at idx is different from falsefalsefalsefalse, failfailfailfail, and nullnullnullnull, the function returns 1.

The function also returns 0 when called with a non-valid index. (If you want to
accept only actual Boolean values, use lua_isbooleanlua_isbooleanlua_isbooleanlua_isboolean to test the value's type.)

lua_lua_lua_lua_toint32_ttoint32_ttoint32_ttoint32_t

int32_t lua_toint32_t (lua_State *L, int idx)

Converts the value at the given acceptable index to the signed integral type
int32_t. The value must be a number or a string convertible to a number; otherwise,
lua_toint32_t returns 0.

If the number is not an integer, it is truncated in some non-specified way.

agenaagenaagenaagena >> 511

lua_usnextlua_usnextlua_usnextlua_usnext

int lua_usnext (lua_State *L, int idx);

Pops a key from the stack, and pushes the next item twice (!) from the set at the
given idx . If there are no more elements in the set, then lua_usnextlua_usnextlua_usnextlua_usnext returns 0 (and
pushes nothing). To access the very first item in a set, put nullnullnullnull on the stack before
(with lua_pushnillua_pushnillua_pushnillua_pushnil).

While traversing a set, do not call lua_tolstringlua_tolstringlua_tolstringlua_tolstring directly on an item, unless you know
that the item is actually a string. Recall that lua_tolstringlua_tolstringlua_tolstringlua_tolstring changes the value at the
given index; this confuses the next call to lua_usnextlua_usnextlua_usnextlua_usnext .

luaL_luaL_luaL_luaL_checkint32checkint32checkint32checkint32____tttt

int32_t luaL_checkint32_t (lua_State *L, int narg)

Checks whether the function argument narg is a number and returns this number
cast to an int32_t.

luaL_getudataluaL_getudataluaL_getudataluaL_getudata

void *luaL_getudata (lua_State *L, int narg, const char *tname,

 int *result);

Checks whether the function argument narg is a userdata of the type tname .
Contrary to luaL_checkudataluaL_checkudataluaL_checkudataluaL_checkudata, it does not issue an error if the argument is not a
userdata, and also stores 1 to result if the check was successful, and 0 otherwise.

512 8 C API Functions

AppendicesAppendicesAppendicesAppendices

agenaagenaagenaagena >> 513

514 Appendix

Appendix AAppendix AAppendix AAppendix A

A1 OperatorsA1 OperatorsA1 OperatorsA1 Operators

Unary operators are:

&&, ~~, || , ^^ , abs , arccos , arcsec , arcsin , arctan , assigned , atendof , bea , char ,
conjugate , copy , cos , cosh , cosxx , entier , even , exp , filled , finite , first , flip ,
float , lngamma, gethigh , getlow , imag , instr , int , join , last , left , ln , lower , nan ,
nargs , not , qsadd , real , recip , replace , right , sadd , sign , sin , sinh , size , sqrt ,
tan , tanh , trim , type , unassigned , unique , upper , typeof , - (unary minus).

Binary operators are:

in , intersect , minus , shift , split , subset , union , xor , xsubset , + (addition), -

(subtraction), * (multiplication), / (division), *% (percentage) /% (ratio), \ (integer
division), % (modulus), ^ (exponentiation), ** (integer exponentiation), &

(concatenation), = (equality), < (less than), <= (less or equal), > (greater than), >=

(greater or equal), @ (mapping), $ (selection), : (pair constructor), ! (complex
constructor), && (bitwise and), || (bitwise or), ^^ (bitwise xor), ~~ (bitwise
complement), <<< (bitwise shift to the left), >>> (right-shift).

A2A2A2A2 MetamethodsMetamethodsMetamethodsMetamethods

The following metamethods were inherited from Lua 5.1:

Declaration of weak tables, sets, and sequences.'__weak'
Protection for metatables.'__metatable'
Method for pretty printing values at stdout.'__tostring'
See Lua 5.1 manual.'__call'
Concatenation.'__concat'
Less-than or equals operation.'__le'
Less-than operation.'__lt'
Equality operation.'__eq'
Unary minus.'__unm'
Exponentiation.'__pow'
Modulus.'__mod'
Division of two values.'__div'
Multiplication of two values.'__mul'
Subtraction of two values.'__sub'
Addition of two values.'__add'
Sets weakness of a table.'__mode'
Garbage collection (for userdata only).'__gc'

Procedure invoked when a value shall to be read from
a table, set, sequence, or pair.

'__index'

MeaningMeaningMeaningMeaningIndex to Index to Index to Index to metatablemetatablemetatablemetatable

Table 20: Metamethods taken from Lua

agenaagenaagenaagena >> 515

The __len__len__len__len metamethod in Lua 5.1 to determine the size of an object was replaced
with the __size__size__size__size metamethod. Lua's __mode__mode__mode__mode metamethod has been renamed
__weak__weak__weak__weak.

The following methods are new in Agena:

Procedure invoked when a value shall to be written to
a table, set, sequence, or pair.

'__writeindex'

unionunionunionunion operator (for tables, sets, sequences only)'__union'
tantantantan operator'__tan'
sinsinsinsin operator'__sin'
sizesizesizesize operator'__size'

saddsaddsaddsadd operator for table or sequence based
user-defined types

'__sadd'

qqqqssssaddaddaddadd operator for table or sequence based
user-defined types

'__qsadd'

minusminusminusminus operator (for tables, sets, sequences only)'__minus'
exponentiation with an integer power'__ipow'
intersectintersectintersectintersect operator (for tables, sets, sequences only)'__intersect'
integer division'__intdiv'
inininin binary operator (for tables and sequences only)'__in'
eveneveneveneven operator'__even'
strict equality operator (==)'__eeq'
coscoscoscos operator'__cos'
arctanarctanarctanarctan operator'__arctan'
approximate equality operator'__aeq'
absabsabsabs operator'__abs'
MeaningMeaningMeaningMeaningIndex to Index to Index to Index to metatablemetatablemetatablemetatable

Table 21: Metamethods introduced with Agena

516 Appendix

A3A3A3A3 System VariablesSystem VariablesSystem VariablesSystem Variables

Agena lets you configure the following settings, where `n/e` means `no effect`.

no

A sequence containing the string `AGENA`,
the main interpreter version as a number,
the subversion as a number, and the C
patch number as a number, as well. The
lib/library.agn patch level is denoted by
the fourth entry, or 0 if non-existent. Do not
change environ.releaseenviron.releaseenviron.releaseenviron.release. See also system
variable _RELEASE._RELEASE._RELEASE._RELEASE.

environ.release

no

Contains the name of the operating system
in use as a lower-case string, e.g. 'windows' ,
'macosx' , 'solaris' , 'os/2' , 'haiku' , 'dos' ,
or 'linux' . Do not change this value. See
also system variable environ.environ.environ.environ.ccccpupupupu.

environ.os

yes

The number of entries in tables and sets
printed by printprintprintprint and the end-colon
functionality before issuing the `press any
key` prompt. Default is 40.

environ.more

no
The minimum value an Agena number can
represent. See also system variable
environ.menviron.menviron.menviron.maxaxaxaxnumbernumbernumbernumber.

environ.minnumber

no
The maximum number of characters for a
file path (excluding C's \0 character).

environ.maxpathlength

no
The maximum value an Agena number can
represent. See also system variable
environ.minnumberenviron.minnumberenviron.minnumberenviron.minnumber .

environ.maxnumber

no
The update version of the main Agena
library (in lib/library.agn). Mostly defaults to
nullnullnullnull.

environ.libpatchlevel

no
A table with all default plotting options for
some functions in the gdigdigdigdi package. This
table is set by gdi.setoptionsgdi.setoptionsgdi.setoptionsgdi.setoptions .

environ.gdidefaultoptions

yesThe path to the user's home directory.environ.homedir

no

Contains the name of the CPU in use as a
lower-case string, e.g. 'sparc' , 'ppc' for
PowerPC, or 'x86' for Intel 386-compatible
processors. See also system variable
environ.environ.environ.environ.oooossss.

environ.cpu

yesThe path to the main Agena directory.mainlibname
yesThe paths to Agena libraries.libname

WriteMeaningMeaningMeaningMeaningSystem variableSystem variableSystem variableSystem variable

agenaagenaagenaagena >> 517

no

Release information on the installed Agena
release, returned as a string, e.g. 'AGENA
>> 2.2.0'. See also system variable
environ.environ.environ.environ. releasereleasereleaserelease.

_RELEASE

yes
Defines the prompt Agena displays at the
console. If unassigned, by default the
prompt is '> ' .

_PROMPT

yes

A table holding all currently assigned global
names and their values, and itself. You can
add or delete entries by simple table
assignment or unassignment, e.g. to delete
the printprintprintprint function in the current session, just
enter:

> delete print from _G

> print('Klöße !')
Error in stdin, at line 1:
attempt to call global `print` (a null
value)

_G

yes
If set to falsefalsefalsefalse, the withwithwithwith function will not
display warnings, the initialisation string, and
the short names assigned. Default is truetruetruetrue.

environ.withverbose

yes

A set of names (passed as strings) that
cannot by overwritten by the withwithwithwith function.
Currently the names `next`, `print`, `with`,
`write`, `read`, `writeline` have been
assigned.

environ.withprotected

WriteMeaningMeaningMeaningMeaningSystem variableSystem variableSystem variableSystem variable

Table 22: System variables

All environ.* settings are reset by the restartrestartrestartrestart statement to their original defaults,
whereas those settings the user defines with the environ.kernelenviron.kernelenviron.kernelenviron.kernel function will never be
modified or deleted by a restartrestartrestartrestart.

Some of the default settings can be found at the bottom of the library.agn file.

See also:

� Chapter 7.21 for a description of the kernelkernelkernelkernel functions for other settings.
� Appendix A5 for settings that control how Agena outputs data at the console.

518 Appendix

A4 Command Line UsageA4 Command Line UsageA4 Command Line UsageA4 Command Line Usage

Agena can be used in the command line as follows:

agena [options] [script [arguments]]

This means that any option, an Agena script, and the arguments are all optional. If
you just enter

shell> agena

Agena is started in interactive mode immediately.

There are two ways to run an Agena script with some arguments and then return to
the command line immediately without entering interactive mode:

A4.1 Using the A4.1 Using the A4.1 Using the A4.1 Using the -e Option Option Option Option

We may write a script with a text editor, e.g. one to print the sine of a number. This
script may look like the following two lines:

n := n or Pi; # if n is not set from the shell, ju st assign Pi to n
writeline(sin(n));

This script prints the sine to a user-given numeric argument which is passed by using
the -e option and a string containing a valid Agena statement. It uses a variable n
which you must assign via the -e option:

shell> agena -e "n := Pi/2" sin.agn
1

Note that you first have to enter the -e option along with the Agena statement, and
then the name of the script.

agenaagenaagenaagena >> 519

A4.2 Using the internal A4.2 Using the internal A4.2 Using the internal A4.2 Using the internal argsargsargsargs Table Table Table Table

Everything you pass to the interpreter from the command line is stored in the argsargsargsargs
table.

The name of the script is always stored at index 0, the arguments are stored at the
positive indices 1, 2, etc., in the order given by the user. Any options are accessible
via negative keys. The name of the interpreter is always at the smallest index.

Consider the following script called 'args.agn':

for i, j in args do
 writeline(i, j, delim~'\t')
od;

If it is run, the output is:

shell> agena args.agn 0
-1 agena
0 args.agn
1 0

Just play around with this a little bit.

Let us use our new knowledge: The script 'ln.agn' requires a string and a number
and calculates the natural logarithm of this number. The number entered at the
command line is entered into the argsargsargsargs table as a string, so you first must convert it
into a `real` number.

arg1 := args[1];
arg2 := tonumber(args[2]);

assume(arg1 :: string, 'expected a string');
assume(arg2 :: number, 'expected a number');
writeline(arg1, ln(arg2));

Use it:

shell> agena ln.agn "The natural logarithm of 1 is: " 1
The natural logarithm of 1 is: 0

A4.3 Running a ScriptA4.3 Running a ScriptA4.3 Running a ScriptA4.3 Running a Script and then and then and then and then EEEEntering ntering ntering ntering IIIInteractinteractinteractinteractive Modeve Modeve Modeve Mode

The -i option allows you to enter the interactive level after running a script or
passing other options to Agena. The position of the -i option does not matter. The
following shell statement resets the Agena prompt and starts the interpreter:

shell> agena -i -e "_PROMPT := 'AGENA> '"
AGENA>

520 Appendix

A4.4 Running Scripts in A4.4 Running Scripts in A4.4 Running Scripts in A4.4 Running Scripts in UNIXUNIXUNIXUNIX and and and and Mac OS XMac OS XMac OS XMac OS X

If you use Agena in UNIX and Mac OS X, then you can execute Agena scripts
directly by just entering the name of the script followed by any arguments (if
needed).

Just insert the following line at the head (i.e. line 1) of each script:

#!/usr/local/bin/agena

and set the appropriate rights for the script file (e.g. chmod a+x scriptname).
An example:

bash> ./sin.agn 1

0.8414709848079

In all other operating systems, the first line is ignored by the interpreter, so you do not
have to delete the first line of the script in order to use scripts you have originally
written under UNIX or Mac.

A4.5 Command Line A4.5 Command Line A4.5 Command Line A4.5 Command Line SwitchesSwitchesSwitchesSwitches

The available switches are:

execute stdin and stop handling options-
stop handling options--
show version information and compilation time-v

readlib library <name>. The name of the library does not need to be
put in quotes.

-r name

� sets <path> to libnamelibnamelibnamelibname, overriding the standard initialisation
procedure for this environment variable. The path does not need to
be put in quotes if it does not contain spaces.

-p path

do not run initialisation file `agena.ini`-n
print the amount of free RAM at start-up-m
print licence information-l
enter interactive mode after executing `script` or other options-i
help information-h
execute string "stat" (double quotes needed)-e "stat"
FunctionFunctionFunctionFunctionOptionOptionOptionOption

Table 23: Command line options

agenaagenaagenaagena >> 521

A5 A5 A5 A5 Define Define Define Define YYYYour our our our OOOOwn Printing wn Printing wn Printing wn Printing Rules for Rules for Rules for Rules for TypesTypesTypesTypes

You can tell Agena how to output strings, tables, sets, sequences, pairs, and
complex values at the console.

With each call to the internal printing routine, the interpreter uses the respective
environ.environ.environ.environ.aux.aux.aux.aux.pppprintrintrintrint* function or settings defined in the library.agn file. You may
change these functions or settings according to your needs.

defines how to print a procedure,
overriding the built-in default

functionenviron.aux.printprocedure

if set, Agena outputs strings with the
prepending and appending string
assigned to environ.printenclosestrings

string
environ.
printenclosestrings

defines how to print a complex value,
overriding the built-in default

functionenviron.aux.printcomplex

defines how to print a pair, overriding the
built-in default

functionenviron.aux.printpair

defines how to print a sequence,
overriding the built-in default

functionenviron.aux.printsequence

defines how to print a set, overriding the
built-in default

functionenviron.aux.printset

defines how to print a table if
kernel/lkernel/lkernel/lkernel/longongongongttttableableableable has been set true

functionenviron.aux.printlongtable

defines how to print a table, overriding
the built-in default

functionenviron.aux.printtable

FunctionalityFunctionalityFunctionalityFunctionalityTypeTypeTypeTypeTable indexTable indexTable indexTable index

Table 24: Printing functions

Alternative environ.environ.environ.environ.aux.aux.aux.aux.pppprintrintrintrint* functions might look like the following one:

> environ.aux.printset := proc(s) is
> write('set(');
> if size s > 0 then
> for i in s do
> write(i, ', ');
> od;
> write('\b\b');
> fi;
> write(')');
> end;

> environ.aux.printcomplex := proc(s) is
> write('cmplx(', real(s), ', ', imag(s), ')');
> end;

> {1, 2}:
set(1, 2)

> 1*2*I:
cmplx(1, 2)

522 Appendix

A6 The A6 The A6 The A6 The AgenaAgenaAgenaAgena Initialisation FileInitialisation FileInitialisation FileInitialisation File

You can customise your personal Agena environment via special initialisation files.

The initialisation files may include code written in the Agena language and will
always be executed when Agena is started or restartrestartrestartrestarted. They can include
definitions or redefinitions of predefined (environment) variables, and feature
self-written procedures or statements to be executed at start-up.

Two kinds of initialisation files are supported:

1. a global initialisation file, and
2. a personal initialisation file for the current user.

Agena first tries to read the global initialisation file, and then the user's initialisation
file. If the initialisation files do not exist, nothing happens and Agena starts without
errors.

The global initialisation file should reside in the lib folder of your Agena installation
and is always named agena.ini for all operating systems. You may find your Agena
installation in /usr/agena on UNIX platforms, and usually in <drive:>/Program

Files/Agena or <drive:>/Program Files(x86)/Agena on Windows systems.

In Solaris, Linux, Mac OS X and Haiku, the personal initialisation file resides in the
folder pointed to be the HOME environment variable. The personal Agena initialisation
file on UNIX machines is called .agenainit (not agena.ini). Thus the path is
$HOME/.agenainit .

In Windows, the system environment variable UserProfile points to the user's home
folder, and the personal initialisation file is called agena.ini , (not .agenainit), thus
the file path is %UserProfile%/agena.ini .

On Windows platforms, the user's initialisation file should be put into the user's
respective home folder:

<drive:>\Users\<username>Vista and 7

<drive:>\Documents and Settings\<username>2000, XP, 2003

<drive:>\WINNT\Profiles\<username>NT 4.0
Path to user's home directoryPath to user's home directoryPath to user's home directoryPath to user's home directoryWindows versionWindows versionWindows versionWindows version

Table 25: Windows' `home` paths

In eComStation - OS/2 and DOS, Agena tries to find the user's personal agena.ini

file in the directory pointed to by the environment variable HOME, if it has been
defined. If HOME has not been defined, it searches in the folder pointed to by the
environment variable USER, if the latter has been defined. Otherwise, the personal
file is not read.

agenaagenaagenaagena >> 523

Agena is shipped with a file called agena.ini.sample that resides in the lib folder of
your installation. You can rename it to agena.ini or .agenainit and play with it - but
beware not to overwrite the initialisation which you may already have created.

Here is a sample file:

########################
#
Agena initialisation file
#
########################

assign short names for the following library func tions:
execute := os.execute;

########################
Extend libname to include paths to additional lib raries (but only
if directories exist)
########################

if os.isWin() or os.isOS2() or os.isDOS() then
 addpaths := seq(
 'd:/agena/phq',
 'd:/agena/pcomp'
)
elif os.isSolaris() then
 addpaths := seq(
 '/export/home/proglang/agena/phq',
 '/export/home/proglang/agena/pcomp'
)
elif os.isLinux() then
 addpaths := seq(
 '~/agena/phq',
 '~/agena/pcomp'
)
fi;

for i in addpaths do
 if os.exists(i) and i in libname = null then
 libname := libname & ';' & i
 fi
od;

clear addpaths;

writeline('Have fun with Agena !\n');

########################
Set default plotting options for gdi.plotfn
########################

import gdi;
gdi.setoptions(colour~'red', axescolour~'grey');

524 Appendix

A7 A7 A7 A7 Escape SequencesEscape SequencesEscape SequencesEscape Sequences

Agena supports the following escape sequences known from ANSI C:

vertical tabulator\v
horizontal tabulator\t
carriage return\r
new line\n
formfeed\f
backspace\b
alert\a
MeaningMeaningMeaningMeaningSequenceSequenceSequenceSequence

Table 26: Escape sequences

A8 Backward CompatibA8 Backward CompatibA8 Backward CompatibA8 Backward Compatib ilityilityilityility

Aliases for deprecated functions in Agena versions prior to 1.0 are no longer
automatically initialised at start-up. However, by entering

> import compat;

you can activate them in your current session if you prefer compatibility to Agena
1.0. For all other cases, please consult the change.log file distributed with the source
and binary editions.

This concerns all deprecated function names in the base library, in the mathmathmathmath,
packagepackagepackagepackage, stringsstringsstringsstrings, tablestablestablestables, utilsutilsutilsutils packages, as well as the former _Env_Env_Env_Env* environment
control variables.

Deprecated names of functions in the linalglinalglinalglinalg package can only be used by
uncommenting the alias assignments at the bottom of the lib/linalg.agn file.

Users of the mapmmapmmapmmapm package should first importimportimportimport the mapmmapmmapmmapm package and then load
the compat.agn file.

agenaagenaagenaagena >> 525

A9 Mathematical ConstantsA9 Mathematical ConstantsA9 Mathematical ConstantsA9 Mathematical Constants

the Golden number (1+)/25math.Phimath.Phimath.Phimath.Phi
An expression stating that it is undefined, e.g. a singularityundefinedundefinedundefinedundefined
Factor /180 to convert degrees to radians✜radiansradiansradiansradians
Constant = 0.785398163397448309616✜/4PiO4PiO4PiO4PiO4
Constant = 1.570796326794896619232✜/2PiO2PiO2PiO2PiO2
Constant 2 = 6.283185307179586476926✜Pi2Pi2Pi2Pi2
Constant = 3.14159265358979323846✜PiPiPiPi
Infinity ∞infinityinfinityinfinityinfinity
Imaginary unit −1IIII
Constant e = exp(1) = 2.71828182845904523536EEEE, ExpExpExpExp
Euler-Mascheroni constant, equals 0.57721566490153286061EulerGammaEulerGammaEulerGammaEulerGamma
Equals 1.4901161193847656e-08EpsEpsEpsEps
Factor 1/ *180 to convert radians to degrees✜degreesdegreesdegreesdegrees
MeaningMeaningMeaningMeaningConstantConstantConstantConstant

Table 27: Constants

A10 Some Few Technical NotesA10 Some Few Technical NotesA10 Some Few Technical NotesA10 Some Few Technical Notes

All Solaris and Linux binaries of Agena have been created with GCC 4.4.5.

All eComStation binaries have been created with Paul Smith's GCC 4.4.6.

All Windows binaries of Agena have been created with MinGW/GCC 4.5.2.

All Mac OS X binaries of Agena have been created with Apple's GCC 4.2.1.

The C Sources should be ANSI C99 compatible, mostly due to Agena's support of
complex arithmetic. Since Agena 1.4.0, the sources have been successfully
compiled with GCC in Solaris 10, Windows 2000 and above, Linux, Mac OS X 10.7,
and DJGPP for the DOS version. The same applies to Agena 2.2.7 for eComStation.

526 Appendix

Appendix BAppendix BAppendix BAppendix B

B1 B1 B1 B1 AgenaAgenaAgenaAgena Licence Licence Licence Licence

The Agena source code is licenced under the terms of the following licence:

Agena is free for private, non-military scientific, and educational purposes and does
not require any agreement by the author. For any other usage please contact the
author for an agreement.

If Agena is used in private, non-military scientific, and educational projects, or if you
received an agreement for use in any other project, then always the following
original MIT licence applies:

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicence, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notices and this permission notice shall be included in all
copies or portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS' WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

B2 GNU B2 GNU B2 GNU B2 GNU GPLGPLGPLGPL v2 Licence v2 Licence v2 Licence v2 Licence

The Solaris, Linux, Windows, eComStation - OS/2, Mac OS X, and DOS binaries are
distributed under the GNU GPL v2 licence reproduced below:

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this licence
document, but changing it is not allowed.

agenaagenaagenaagena >> 527

Preamble

 The licences for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licence is intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public Licence applies to most of the
Free Software Foundation's software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public Licence instead.) You can apply it to your programs,
too.

 When we speak of free software, we are referring to freedom, not price. Our
General Public Licences are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these
things.

 To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

 We protect your rights with two steps: (1) copyright the software, and (2) offer you
this licence which gives you legal permission to copy, distribute and/or modify the
software.

 Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the software
is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

 Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent
licences, in effect making the program proprietary. To prevent this, we have made
it clear that any patent must be licenced for everyone's free use or not licenced at
all.

 The precise terms and conditions for copying, distribution and modification follow.

528 Appendix

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This Licence applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public Licence. The "Program", below, refers to any such program or work,
and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion
of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term "modification".)
Each licencee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this
Licence; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this Licence and to the absence of any
warranty; and give any other recipients of the Program a copy of this Licence along
with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licenced as a
whole at no charge to all third parties under the terms of this Licence.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this Licence. (Exception: if the
Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections

agenaagenaagenaagena >> 529

of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this Licence, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this Licence, whose
permissions for other licencees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this Licence.

 3. You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source
code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for
non-commercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

530 Appendix

 4. You may not copy, modify, sublicence, or distribute the Program except as
expressly provided under this Licence. Any attempt otherwise to copy, modify,
sublicence or distribute the Program is void, and will automatically terminate your
rights under this Licence. However, parties who have received copies, or rights, from
you under this Licence will not have their licences terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this Licence, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program or
its derivative works. These actions are prohibited by law if you do not accept this
Licence. Therefore, by modifying or distributing the Program (or any work based on
the Program), you indicate your acceptance of this Licence to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works
based on it.

 6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a licence from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
Licence.

 7. If, as a consequence of a court judgement or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this Licence, they do not excuse you from the conditions of this Licence. If you
cannot distribute so as to satisfy simultaneously your obligations under this Licence
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent licence would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this Licence would be
to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public licence practices. Many people have made generous
contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a
licencee cannot impose that choice.

agenaagenaagenaagena >> 531

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this Licence.
 8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this Licence may add an explicit geographical distribution
limitation excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this Licence incorporates the
limitation as if written in the body of this Licence.

 9. The Free Software Foundation may publish revised and/or new versions of the
General Public Licence from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this Licence which applies to it and "any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this Licence, you may choose any version ever published by
the Free Software Foundation.

 10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

532 Appendix

WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest possible use
to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the
full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public Licence as published by
 the Free Software Foundation; either version 2 of the Licence, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public Licence for more details.

 You should have received a copy of the GNU General Public Licence along
 with this program; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public Licence. Of course, the commands you use may be
called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

agenaagenaagenaagena >> 533

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a "copyright disclaimer" for the program, if necessary. Here is a
sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public Licence does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Lesser General Public Licence instead of this Licence.

B3 B3 B3 B3 Sun Microsystems Licence for the Sun Microsystems Licence for the Sun Microsystems Licence for the Sun Microsystems Licence for the fdlibmfdlibmfdlibmfdlibm IEEE 754 Style Arithmetic Library IEEE 754 Style Arithmetic Library IEEE 754 Style Arithmetic Library IEEE 754 Style Arithmetic Library

 * == ====
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. bu siness.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this n otice
 * is preserved.
 * == ====

B4 GNU Lesser General Public LicenceB4 GNU Lesser General Public LicenceB4 GNU Lesser General Public LicenceB4 GNU Lesser General Public Licence

Agena uses the g2 graphic library which is distributed under the GNU LGPL v2.1
licence reproduced below:

 GNU LESSER GENERAL PUBLIC LICENSE
 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this licence document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of
the GNU Library Public Licence, version 2, hence the version number 2.1.]

Preamble

 The licences for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licences are intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users.

534 Appendix

 This licence, the Lesser General Public Licence, applies to some specially
designated software packages--typically libraries--of the Free Software Foundation
and other authors who decide to use it. You can use it too, but we suggest you first
think carefully about whether this licence or the ordinary General Public Licence is
the better strategy to use in any particular case, based on the explanations below.

 When we speak of free software, we are referring to freedom of use, not price.
Our General Public Licences are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you wish); that you
receive source code or can get it if you want it; that you can change the software
and use pieces of it in new free programs; and that you are informed that you can
do these things.

 To protect your rights, we need to make restrictions that forbid distributors to deny
you these rights or to ask you to surrender these rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis or for a fee, you
must give the recipients all the rights that we gave you. You must make sure that
they, too, receive or can get the source code. If you link other code with the
library, you must provide complete object files to the recipients, so that they can
relink them with the library after making changes to the library and recompiling it.
And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the library, and (2)
we offer you this licence, which gives you legal permission to copy, distribute and/or
modify the library.

 To protect each distributor, we want to make it very clear that there is no warranty
for the free library. Also, if the library is modified by someone else and passed on,
the recipients should know that what they have is not the original version, so that the
original author's reputation will not be affected by problems that might be
introduced by others.

 Finally, software patents pose a constant threat to the existence of any free
program. We wish to make sure that a company cannot effectively restrict the
users of a free program by obtaining a restrictive licence from a patent holder.
Therefore, we insist that any patent licence obtained for a version of the library must
be consistent with the full freedom of use specified in this licence.

 Most GNU software, including some libraries, is covered by the ordinary GNU
General Public Licence. This licence, the GNU Lesser General Public Licence,
applies to certain designated libraries, and is quite different from the ordinary
General Public Licence. We use this licence for certain libraries in order to permit
linking those
libraries into non-free programs.

agenaagenaagenaagena >> 535

 When a program is linked with a library, whether statically or using a shared library,
the combination of the two is legally speaking a combined work, a derivative of the
original library. The ordinary General Public Licence therefore permits such linking
only if the entire combination fits its criteria of freedom. The Lesser General Public
Licence permits more lax criteria for linking other code with the library.
 We call this licence the "Lesser" General Public Licence because it does Less to
protect the user's freedom than the ordinary General Public Licence. It also
provides other free software developers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary
General Public Licence for many libraries. However, the Lesser license provides
advantages in certain special circumstances.

 For example, on rare occasions, there may be a special need to encourage the
widest possible use of a certain library, so that it becomes a de-facto standard. To
achieve this, non-free programs must be allowed to use the library. A more
frequent case is that a free library does the same job as widely used non-free
libraries. In this case, there is little to gain by limiting the free library to free software
only, so we use the Lesser General Public Licence.

 In other cases, permission to use a particular library in non-free programs enables
a greater number of people to use a large body of free software. For example,
permission to use the GNU C Library in non-free programs enables many more
people to use the whole GNU operating system, as well as its variant, the GNU/Linux
operating system.

 Although the Lesser General Public Licence is Less protective of the users'
freedom, it does ensure that the user of a program that is linked with the Library has
the freedom and the wherewithal to run that program using a modified version of
the Library.

 The precise terms and conditions for copying, distribution and modification follow.
Pay close attention to the difference between a "work based on the library" and a
"work that uses the library". The former contains code derived from the library,
whereas the latter must be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This Licence Agreement applies to any software library or other program which
contains a notice placed by the copyright holder or other authorized party saying it
may be distributed under the terms of this Lesser General Public Licence (also
called "this Licence"). Each licensee is addressed as "you".

 A "library" means a collection of software functions and/or data prepared so as to
be conveniently linked with application programs (which use some of those
functions and data) to form executables.

536 Appendix

 The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term "modification".)
 "Source code" for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the library.

 Activities other than copying, distribution and modification are not covered by this
Licence; they are outside its scope. The act of running a program using the Library
is not restricted, and output from such a program is covered only if its contents
constitute a work based on the Library (independent of the use of the Library in a
tool for writing it). Whether that is true depends on what the Library does and what
the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this Licence and to
the absence of any warranty; and distribute a copy of this Licence along with the
Library.

 You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a. The modified work must itself be a software library.
b. You must cause the files modified to carry prominent notices stating that you

changed the files and the date of any change.
c. You must cause the whole of the work to be licensed at no charge to all third

parties under the terms of this Licence.
d. If a facility in the modified Library refers to a function or a table of data to be

supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function
or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.
 (For example, a function in a library to compute square roots has a purpose
that is entirely well-defined independent of the application. Therefore,
Subsection 2d requires that any application-supplied function or table used by

agenaagenaagenaagena >> 537

this function must be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Library, and can be reasonably considered
independent and separate works in themselves, then this Licence, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Library, the distribution of the whole must be on the terms of this Licence, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this Licence.

 3. You may opt to apply the terms of the ordinary GNU General Public Licence
instead of this Licence to a given copy of the Library. To do this, you must alter all
the notices that refer to this Licence, so that they refer to the ordinary GNU General
Public Licence, version 2, instead of to this Licence. (If a newer version than version
2 of the ordinary GNU General Public Licence has appeared, then you can specify
that version instead if you wish.) Do not make any other change in these notices.

 Once this change is made in a given copy, it is irreversible for that copy, so the
ordinary GNU General Public Licence applies to all subsequent copies and
derivative works made from that copy.

 This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

 4. You may copy and distribute the Library (or a portion or derivative of it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you accompany it with the complete corresponding
machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

 If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from
the same place satisfies the requirement to distribute the source code, even
though third parties are not compelled to copy the source along with the object
code.

 5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is called a

538 Appendix

"work that uses the Library". Such a work, in isolation, is not a derivative work of the
Library, and therefore falls outside the scope of this Licence.

 However, linking a "work that uses the Library" with the Library creates an
executable that is a derivative of the Library (because it contains portions of the
Library), rather than a "work that uses the library". The executable is therefore
covered by this Licence. Section 6 states terms for distribution of such executables.
 When a "work that uses the Library" uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library
even though the source code is not. Whether this is true is especially significant if the
work can be linked without the Library, or if the work is itself a library. The threshold
for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length),
then the use of the object file is unrestricted, regardless of whether it is legally a
derivative work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may distribute the object
code for the work under the terms of Section 6. Any executables containing that
work also fall under Section 6, whether or not they are linked directly with the Library
itself.

 6. As an exception to the Sections above, you may also combine or link a "work
that uses the Library" with the Library to produce a work containing portions of the
Library, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this Licence. You must supply a
copy of this Licence. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a
reference directing the user to the copy of this Licence. Also, you must do one
of these things:

a. Accompany the work with the complete corresponding machine-readable
source code for the Library including whatever changes were used in the work
(which must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work
that uses the Library", as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing
the modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present

agenaagenaagenaagena >> 539

on the user's computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the
same place.

e. Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

 For an executable, the required form of the "work that uses the Library" must
include any data and utility programs needed for reproducing the executable from
it. However, as a special exception, the materials to be distributed need not
include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

 It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an
executable that you distribute.

 7. You may place library facilities that are a work based on the Library side-by-side
in a single library together with other library facilities not covered by this Licence,
and distribute such a combined library, provided that the separate distribution of
the work based on the Library and of the other library facilities is otherwise permitted,
and provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this Licence. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this Licence. However, parties who have received copies, or
rights, from you under this Licence will not have their licenses terminated so long as
such parties remain in full compliance.

 9. You are not required to accept this Licence, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Library or its
derivative works. These actions are prohibited by law if you do not accept this

540 Appendix

Licence. Therefore, by modifying or distributing the Library (or any work based on
the
Library), you indicate your acceptance of this Licence to do so, and all its terms
and conditions for copying, distributing or modifying the Library or works based on it.

 10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy,
distribute, link with or modify the Library subject to these terms and conditions. You
may not impose any further restrictions on the recipients' exercise of the rights
granted herein. You are not responsible for enforcing compliance by third parties
with this Licence.

 11. If, as a consequence of a court judgement or allegation of patent
infringement or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this Licence, they do not excuse you from the conditions of this
Licence. If you cannot distribute so as to satisfy simultaneously your obligations
under this Licence and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
Licence would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as
a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this Licence.

 12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Library under this Licence may add an explicit geographical distribution
limitation excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this Licence incorporates the
limitation as if written in the body of this Licence.

 13. The Free Software Foundation may publish revised and/or new versions of the
Lesser General Public Licence from time to time. Such new versions will be similar in

agenaagenaagenaagena >> 541

spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a
version number of this Licence which applies to it and "any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by the Free
Software Foundation.

 14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER
SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

 If you develop a new library, and you want it to be of the greatest possible use to
the public, we recommend making it free software that everyone can redistribute
and change. You can do so by permitting redistribution under these terms (or,
alternatively, under the terms of the ordinary General Public Licence).

542 Appendix

 To apply these terms, attach the following notices to the library. It is safest to
attach them to the start of each source file to most effectively convey the exclusion
of warranty; and each file should have at least the "copyright" line and a pointer to
where the full notice is found.

 <one line to give the library's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 Licence as published by the Free Software Foundation; either
 version 2.1 of the Licence, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public Licence for more details.

 You should have received a copy of the GNU Lesser General Public
 Licence along with this library; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample;
alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 library `Frob' (a library for tweaking knobs) written by James Random Hacker.

 <signature of Ty Coon>, 1 April 1990
 Ty Coon, President of Vice
That's all there is to it!

B5 SOFA Software LicenceB5 SOFA Software LicenceB5 SOFA Software LicenceB5 SOFA Software Licence

Copyright (C) 2012
Standards Of Fundamental Astronomy Board
of the International Astronomical Union.

=====================
SOFA Software Licence
=====================

NOTICE TO USER:

agenaagenaagenaagena >> 543

BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND CONDITIONS
WHICH APPLY TO ITS USE.

1. The Software is owned by the IAU SOFA Board ("SOFA").

2. Permission is granted to anyone to use the SOFA software for any purpose,
including commercial applications, free of charge and without payment of
royalties, subject to the conditions and restrictions listed below.

3. You (the user) may copy and distribute SOFA source code to others, and use and
adapt its code and algorithms in your own software, on a world-wide, royalty-free
basis. That portion of your distribution that does not consist of intact and
unchanged copies of SOFA source code files is a "derived work" that must comply
with the following requirements:

a) Your work shall be marked or carry a statement that it (i) uses routines and
computations derived by you from software provided by SOFA under license to you;
and (ii) does not itself constitute software provided by and/or endorsed by SOFA.

b) The source code of your derived work must contain descriptions of how the
derived work is based upon, contains and/or differs from the original SOFA software.

c) The names of all routines in your derived work shall not include the prefix "iau" or
"sofa" or trivial modifications thereof such as changes of case.

d) The origin of the SOFA components of your derived work must not be
misrepresented; you must not claim that you wrote the original software, nor file a
patent application for SOFA software or algorithms embedded in the SOFA
software.

e) These requirements must be reproduced intact in any source distribution and
shall apply to anyone to whom you have granted a further right to modify the
source code of your derived work.

Note that, as originally distributed, the SOFA software is intended to be a definitive
implementation of the IAU standards, and consequently third-party modifications
are discouraged. All variations, no matter how minor, must be explicitly marked as
such, as explained above.

4. You shall not cause the SOFA software to be brought into disrepute, either by
misuse, or use for inappropriate tasks, or by inappropriate modification.

5. The SOFA software is provided "as is" and SOFA makes no warranty as to its use or
performance. SOFA does not and cannot warrant the performance or results which
the user may obtain by using the SOFA software. SOFA makes no warranties,
express or implied, as to non-infringement of third party rights, merchantability, or
fitness for any particular purpose. In no event will SOFA be liable to the user for any
consequential, incidental, or special damages, including any lost profits or lost

544 Appendix

savings, even if a SOFA representative has been advised of such damages, or for
any claim by any third party.

6. The provision of any version of the SOFA software under the terms and conditions
specified herein does not imply that future versions will also be made available
under the same terms and conditions.

In any published work or commercial product which uses the SOFA software directly,
acknowledgement (see www.iausofa.org) is appreciated.

Correspondence concerning SOFA software should be addressed as follows:

 By email: sofa@ukho.gov.uk
 By post: IAU SOFA Center
 HM Nautical Almanac Office
 UK Hydrographic Office
 Admiralty Way, Taunton
 Somerset, TA1 2DN
 United Kingdom

B6 B6 B6 B6 MAPMMAPMMAPMMAPM Copyright Remark (Mike's Arbitrary Precision Math Library) Copyright Remark (Mike's Arbitrary Precision Math Library) Copyright Remark (Mike's Arbitrary Precision Math Library) Copyright Remark (Mike's Arbitrary Precision Math Library)

Copyright (C) 1999 - 2007 Michael C. Ring

This software is Freeware.

Permission to use, copy, and distribute this software and its documentation for any
purpose with or without fee is hereby granted, provided that the above copyright
notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation.

Permission to modify the software is granted. Permission to distribute the modified
code is granted. Modifications are to be distributed by using the file 'license.txt' as a
template to modify the file header. 'license.txt' is available in the official MAPM
distribution.

To distribute modified source code, insert the file 'license.txt' at the top of all
modified source code files and edit accordingly.

This software is provided "as is" without express or implied warranty.

agenaagenaagenaagena >> 545

B7 B7 B7 B7 RSARSARSARSA Security/MD5Security/MD5Security/MD5Security/MD5 Licence Licence Licence Licence

Copyright (C) 1990, RSA Data Security, Inc. All rights reserved.

License to copy and use this software is granted provided that it is identified as the
"RSA Data Security, Inc. MD5 Message Digest Algorithm" in all material mentioning or
referencing this software or this function.

License is also granted to make and use derivative works provided that such works
are identified as "derived from the RSA Data Security, Inc. MD5 Message Digest
Algorithm" in all material mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either the
merchantability of this software or the suitability of this software for any particular
purpose. It is provided "as is" without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this documentation
and/or software.

BBBB8888 Other Copyright Remarks Other Copyright Remarks Other Copyright Remarks Other Copyright Remarks

The Solaris, Linux, Mac OS X, and Windows binaries include code from the gd
package which has been published with the following copyright notices:

Portions copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 by Cold
Spring Harbor Laboratory. Funded under Grant P41-RR02188 by the National
Institutes of Health.

Portions copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 by
Boutell.Com, Inc.

Portions relating to GD2 format copyright 1999, 2000, 2001, 2002
Philip Warner.

Portions relating to PNG copyright 1999, 2000, 2001, 2002 Greg
Roelofs.

Portions relating to gdttf.c copyright 1999, 2000, 2001, 2002 John
Ellson (ellson@lucent.com).

Portions relating to gdft.c copyright 2001, 2002 John Ellson
(ellson@lucent.com).

Portions copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
Pierre-Alain Joye (pierre@libgd.org).

Portions relating to JPEG and to color quantization copyright 2000, 2001, 2002,
Doug Becker and copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,

546 Appendix

2002, Thomas G. Lane. This software is based in part on the work of the
Independent JPEG Group. See the file README-JPEG.TXT for more information.

Portions relating to WBMP copyright 2000, 2001, 2002 Maurice Szmurlo and Johan
Van den Brande.

Permission has been granted to copy, distribute and modify gd in any context
without fee, including a commercial application, provided that this notice is present
in user-accessible supporting documentation.

This does not affect your ownership of the derived work itself, and the intent is to
assure proper credit for the authors of gd, not to interfere with your productive use of
gd. If you have questions, ask. "Derived works" includes all programs that utilise the
library. Credit must be given in user-accessible documentation.

This software is provided "AS IS." The copyright holders disclaim all warranties, either
express or implied, including but not limited to implied warranties of merchantability
and fitness for a particular purpose, with respect to this code and accompanying
documentation.

Although their code does not appear in gd, the authors wish to thank David Koblas,
David Rowley, and Hutchison Avenue Software Corporation for their prior
contributions.

agenaagenaagenaagena >> 547

Appendix CAppendix CAppendix CAppendix C

C1: Further ReadingC1: Further ReadingC1: Further ReadingC1: Further Reading

A selection of books that helped a lot in recent years when advancing Agena:

� Niklaus Wirth: Algorithmen und Datenstrukturen mit Modula-2,
� Roberto Ierusalimschy: Programming in Lua,
� Kurt Jung & Aaron Brown: Beginning Lua Programming,
� Jürgen Wolf: C von A bis Z,
� Brian W. Kernighan & Dennis M. Ritchie: The C Programming Language,
� Federico Biancuzzi & Shane Warden (Ed.): Masterminds of Programming,
� Michael. B. Monagan, Keith O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter,

J. McCarron, P. DeMarco: Maple 7 Programming Guide,
� Brian “Beej Jorgensen” Hall, Beej's Guide to Network Programming, Using Internet

Sockets,
� Frank G. Pagan: A Practical Guide to Algol68.

548 Appendix

IndexIndexIndexIndex

agenaagenaagenaagena >> 549

550 Index

AAAA

AgenaEdit, 33, 41, 397
Algol 68, 23
Arithmetic, 44, 60, 61, 253

Absolute Value, 257, 260, 276
Addition, 62, 276, 277
Add-on, 255
Arbitrary Precision, 61
Bessel Functions, 259
Beta Function, 259
Binomial, 259
Bitwise Operators, 63, 186, 201, 256,

257, 398
Checking Integers and Floats, 187, 188,

189, 265, 266
Complex Math, 65, 66, 68, 70
Complex Number Functions, 259, 260,

267
Conjugate, 260
Constants, 274
Conversion Functions, 270, 271, 274,

275
cordic Library, 467
Cosine Integral, 279
Dawson's Integral, 280
dec Statement, 64
Degrees & Radians, 526
Digamma Function, 287
Dilogarithm, 280
Discount, 255
div Statement, 65
Division, 62, 255, 268, 276, 277
divs Library, 463
Error Functions, 261, 262
Exponential Functions, 262, 263, 266,

273
Exponential Integral, 281
Exponentiation, 60, 62, 256, 271, 275,

276
Factorial, 262, 276
Floating Point Functions, 263, 273
Fractions, 463
Fresnel Integral, 281
Gamma Functions, 263, 266
GCD, 272
Heaviside Function, 263
Higher & Lower Bits, 63, 268
Higher & Lower Bytes, 263
Hypotenuse, 264
inc Statement, 64

Increment and Decrement, 64
Integer Division, 255, 264, 276
Integer Functions, 267, 271, 272
LCM, 272
Logarithmic Functions, 264, 266, 267,

272, 276
mapm Library, 276
math Library, 270
MiniMax Functions, 190, 273, 307
Modulus, 62, 256, 277
mul Statement, 65
Multiplication, 62, 202, 255, 276, 277,

281, 307
Normalisation, 274
Number Evaluation Functions, 262, 267,

273
Operators, 62, 255
Operators & Functions, Overview, 62
Percentage, 255
Polynomial, 282, 283, 287
Power, 62, 256, 276, 277
Premium, 255
Primes, 272, 274
Product function, 281
Psi Function, 287
Random Number Generator, 274
Ratio, 255
Remainder Function, 261, 264
Root Functions, 260, 267, 268, 269, 276
Rounding Functions, 260, 261, 264, 267,

268, 270, 277
Round-Off Errors, 121
Sexagesimal Values, 271, 275, 425
Sign, 269, 270, 276
Sine Integral, 287, 288
Subtraction, 62, 255, 276, 277
Summation, 195, 199, 202, 232, 233,

241, 255, 291, 308, 312, 323
Trigonometric & Related Functions, 257,

258, 259, 260, 261, 268, 269, 270,
276

Arrays, 81
Assignment, 44, 46, 47, 56, 86, 93, 97

Checking for Assigned Names, 181, 206
Defining new Variables, 151
Enumeration, 58
Multiple Assignment, 57, 58
Short-Cut Multiple Assignment, 58
Unassignment, 58

Assumptions, 140, 181

agenaagenaagenaagena >> 551

BBBB

Bags
(please see Multisets), 250

Base64
Decoding, 409
Encoding, 411

Block, 146
Booleans, 45, 55, 80, 137, 187

Expressions, 79
fail, 79, 80
Logical Operators, 79
Relational Operators, 79, 272
Short-Circuit Evaluation, 80

CCCC

C API Functions, 483
agn_arraytoseq, 484
agn_asize, 484
agn_ccall, 484
agn_checkcomplex, 485
agn_checkinteger, 485
agn_checklstring, 485
agn_checknumber, 485
agn_checkstring, 485
agn_complexgetimag, 485
agn_complexgetreal, 485
agn_compleximag, 486
agn_complexreal, 486
agn_copy, 486
agn_createcomplex, 486
agn_createpair, 486
agn_createreg, 487
agn_creatertable, 487
agn_createseq, 487
agn_createset, 487
agn_createtable, 487
agn_deletertable, 487
agn_fnext, 488
agn_free, 488
agn_getbitwise, 488
agn_getempytline, 489
agn_geteps, 489
agn_getepsilon, 489
agn_getfunctiontype, 489
agn_getinumber, 489
agn_getistring, 489
agn_getlibnamereset, 490
agn_getlongtable, 490

agn_getnoroundoffs, 490
agn_getreginumber, 496
agn_getrtable, 490
agn_getrtablewritemode, 490
agn_getseqlstring, 491
agn_getutype, 491
agn_isfail, 491
agn_isfalse, 491
agn_islinalgvector, 491
agn_isnumber, 491
agn_issequtype, 492
agn_issetutype, 492
agn_isstring, 492
agn_istableutype, 492
agn_istrue, 492
agn_isutypeset, 492, 493
agn_malloc, 493
agn_ncall, 493
agn_nops, 493
agn_paircheckbooloption, 494
agn_pairgeti, 494
agn_pairgetnumbers, 494
agn_pairrawget, 494
agn_pairrawset, 495
agn_pairstate, 495
agn_poptop, 495
agn_poptoptwo, 495
agn_pushboolean, 495
agn_regextend, 495
agn_reggeti, 496
agn_reggettop, 496
agn_regpurge, 496
agn_regrawget, 496
agn_regrawget2, 496
agn_regreduce, 497
agn_regset, 497
agn_regsettop, 497
agn_seqgetinumber, 498
agn_seqsize, 498
agn_seqstate, 498
agn_setbitwise, 498
agn_setemptyline, 498
agn_setepsilon, 499
agn_setlibnamereset, 499
agn_setlongtable, 499
agn_setnoroundoffs, 499
agn_setreadlibbed, 499
agn_setrtable, 500
agn_setudmetatable, 500
agn_setutype, 500
agn_size, 500
agn_ssize, 484, 500

552 Index

agn_sstate, 501
agn_tablesize, 501
agn_tablestate, 501
agn_tocomplex, 502
agn_tonumber, 502
agn_tonumberx, 502
agn_tostring, 502
agn_usedbytes, 502
agnL_gettablefield, 503
agnL_optboolean, 503
agnL_optinteger, 503
agnL_optnumber, 503
lua_iscomplex, 504
lua_ispair, 504
lua_isreg, 504
lua_isseq, 504
lua_isset, 504
lua_pushfail, 504
lua_pushfalse, 504
lua_pushtrue, 505
lua_pushundefined, 505
lua_rawaequal, 505
lua_rawset2, 505
lua_rawsetikey, 505
lua_rawsetilstring, 505
lua_rawsetinumber, 506
lua_rawsetistring, 506
lua_rawsetstringboolean, 506
lua_rawsetstringnumber, 506
lua_rawsetstringstring, 506
lua_regnext, 507
lua_sdelete, 507
lua_seqgeti, 507
lua_seqgetinumber, 507
lua_seqinsert, 498, 508
lua_seqnext, 507, 508
lua_seqrawget, 508
lua_seqrawget2, 509
lua_seqrawgeti, 508
lua_seqrawset, 509
lua_seqrawsetilstring, 509
lua_seqseti, 509
lua_seqsetinumber, 510
lua_seqsetistring, 510
lua_sinsert, 510
lua_sinsertlstring, 510
lua_sinsertnumber, 510
lua_sinsertstring, 510
lua_srawget, 511
lua_srawset, 511
lua_toboolean, 511
lua_toint32_t, 511

lua_usnext, 512
luaL_checkint32_t, 512
luaL_getudata, 512

Calculus, 278
Differentiation, 280, 288
Extrema, 284, 285
Fresnel Integral, 281
Integration, 281, 282, 283, 287
Interpolation, 279, 280, 283, 284, 285,

286
Spline, 279, 285
Summation, 281
Zeros, 287, 288

Cantor Sets
(please see Sets), 92

Captures, 74
case Statement, 47, 116

Fall Through, 116
of Clause, 116
onsuccess Clause, 116
then Clause, 116

clear Statement, 44, 58, 164, 184
cls Statement, 43
Codepages

1252, 216
850, 216

Command Line Switches, 521
Command Line Usage, 519
Comments, 50
Complex Numbers, 44, 55, 66, 187, 261,
265, 484

Imaginary Unit, 526
Operators, 65
Polar Form, 267
Printing Values Close to Zero, 398

Conditions, 47, 113
case Statement, 116
Evaluation Rules, 113, 115, 117
if Operator, 115
if Statement, 113

Configuration, 396, 517, 522, 523
Complex Number Output, 522
Debugging Information, 397
Number of Digits on Output, 397
Pair Output, 522
Procedure Output, 522
Prompt, 43, 397
Sequence Output, 522
Set Output, 522
Table Output, 397, 517, 522

agenaagenaagenaagena >> 553

Console, 32, 81, 158, 193, 196, 209,
216, 337, 383, 388, 448, 460, 500, 518,
520, 522

cls Statement, 43
Command Line Switches, 521
Command Line Usage, 51, 519
Configuring the Output, 522
restart Statement, 43
Running a Script, 520

Constants
Eps, 526
EulerGamma, 526
Exp (e), 526
fail, 80
false, 79
Golden Number, 274, 526
I, 526
infinity, 526
null, 80
Pi, 526
Pi2, 526
PiO2, 526
PiO4, 526
radians, 526
true, 79
undefined, 526

CORDIC, 467
Coroutines, 404
create Statement, 84, 85, 86, 87, 97,
101
CSV Files, 172

skycrane.readcsv, 421
utils.readcsv, 412
utils.writecsv, 416

DDDD

Data Types
Bags/Multisets, 247
Boolean, 79
Complex Numbers, 65
Lightuserdata, 109
Linked Lists, 247, 477
Number, 60
Pair, 102
Register, 109
Sequence, 95
Set, 92
String, 68
Table, 81, 86

Thread, 109
Userdata, 109
User-defined, 96, 102, 145, 159

Database, 346, 432
dBASE III-Compatibility, 346

Date & Time, 204, 271, 275, 381, 382,
389, 392, 409, 424, 425, 428

Moon Phase, 429
Moonrise & Moonset, 429
Setting System Clock, 391
Sunrise & Sunset, 430

dBASE Files, 172
xbase Package, 346
xbase.readdbf, 352

Debugging, 405
dec Statement, 64
Default Input File

Files, 329
delete Statement, 85, 98, 99, 107
Dictionaries, 86
do/as Loops, 48, 118
do/od Loops, 119
DOS, 34, 36, 41, 43, 197, 216, 276, 379,
380, 385, 388, 389, 392, 393, 457, 523,
527

EEEE

eComStation, 14, 23, 34, 41, 43, 170,
196, 216, 276, 337, 356, 362, 379, 380,
381, 382, 384, 385, 386, 387, 388, 389,
391, 392, 393, 483, 484, 523, 526
Endianness, 344, 345, 383, 408
enum Statement, 58
Environment

Reading the Environment of a
Procedure, 150

See also `System Variables/_G`, 149
Setting an Environment for a Procedure,

149
Errors

Catching Errors, 140, 141, 194, 210
Issuing Errors, 138, 186
try/catch Statement, 141

Escape Sequences, 69, 525

554 Index

FFFF

File System Access
Changing Directories, 380
Current Working Directory, 380
Directories, 381, 385, 389, 390
Drives, 382
Files, 383, 384, 389, 390, 391

Files
Attributes, 383, 385
Binary Files, 339
Changing Time Stamp, 384
Closing Files, 328, 340
Compressed Files, 362
Copying Files, 384, 420
CSV Files, 172, 416, 421
DBF Files, 346
Default Input File, 329
End Of File, 328, 340
Existence, 383
File Descriptor, 328
File Handles, 327, 329
Flushing Files, 343
Getting and Setting File Positions, 328,

331, 334, 336, 340, 343
INI Files, 415, 417
Locking Files, 330, 336, 340, 344
Moving Files, 389, 421
Opening Files, 329, 331, 340, 341
Reading Files, 330, 333, 334, 341, 342,

343
Removing Files, 390
Rewinding Files, 334
Searching in Files, 329
Size, 328, 331
Streams, 327
Symbolic Links, 390, 391
UNIX Text Files, 170
utils.readcsv, 412
utils.readxml, 416
utils.writecsv, 416
utils.writexml, 418
Writing Files, 336, 344, 345
XML, 418
xml.readxml, 357

for/as Loops, 125
for/downto Loops, 121
for/in Loops, 121
for/to Loops, 47, 119
for/until Loops, 125
for/while Loops, 48, 124

Functions & Operators
-, 60, 65, 255, 291
!, 60, 66
$, 88, 90
%, 60, 62, 256
-%, 255
&, 60, 212
&&, 63, 256
*, 60, 65, 255, 291
*%, 255
**, 60, 62, 65, 256
/, 60, 65, 255
/%, 255
:, 102
:-, 60, 96, 137, 138
::, 60, 96, 137, 138
@, 88, 90
\, 60, 255
^, 60, 65, 256
^^, 60, 63, 256
||, 63, 256
~~, 60, 63, 256
~=, 60, 234, 238, 243, 246, 474
+, 60, 65, 255, 290
+%, 255
<, 60, 66, 79
<<<, 257
<=, 60, 66, 79
<>, 60, 65, 66, 79, 87, 94, 98, 103,

106, 235, 239, 243, 246, 474
=, 60, 65, 66, 79, 87, 94, 98, 103, 106,

234, 238, 243, 245, 474
==, 60, 79, 87, 94, 98, 103, 106, 234,

238, 243, 246, 474
>, 60, 66, 79
->, 60
>=, 60, 66, 79
>>>, 257
abs, 65, 71, 181, 213, 257, 291
ads.clean, 434
ads.closebase, 434
ads.comment, 434
ads.createbase, 435
ads.createseq, 436
ads.desc, 436
ads.expand, 436
ads.free, 436
ads.getall, 436
ads.getkeys, 437
ads.getvalues, 437
ads.index, 437
ads.indices, 437

agenaagenaagenaagena >> 555

ads.invalids, 437
ads.iterate, 437
ads.lock, 438
ads.openbase, 438
ads.openfiles, 438
ads.peek, 438
ads.rawsearch, 439
ads.readbase, 439
ads.remove, 439
ads.retrieve, 439
ads.sizeof, 440
ads.sync, 440
ads.unlock, 440
ads.writebase, 440
alternate, 181
and, 60, 79
approx, 257
arccos, 65, 257
arccosh, 257
arccot, 258
arccoth, 258
arccsc, 258
arccsch, 258
arcsec, 258
arcsech, 258
arcsin, 65, 258
arcsinh, 258
arctan, 65, 258
arctan2, 259
arctanh, 259
argerror, 181
argument, 259
assigned, 181
assume, 140, 181
astro.cdate, 428
astro.dectodms, 428
astro.dmstodec, 428
astro.isleapyear, 428
astro.jdate, 428
astro.moon, 429
astro.moonphase, 429
astro.moonriseset, 429
astro.sun, 430
astro.sunriseset, 430
atendof, 60, 71, 73, 212
augment, 182
bags.attrib, 251
bags.bag, 251
bags.bagtoset, 251
bags.include, 251
bags.minclude, 251
bags.remove, 251

bea, 259
besselj, 259
bessely, 259
beta, 182, 259
binio.close, 340
binio.eof, 340
binio.filepos, 340
binio.length, 340
binio.lock, 340
binio.open, 341
binio.readbytes, 341
binio.readchar, 342
binio.readlong, 342
binio.readnumber, 342
binio.readshortstring, 342
binio.readstring, 343
binio.rewind, 343
binio.seek, 343
binio.sync, 343
binio.toend, 343
binio.unlock, 344
binio.writebytes, 344
binio.writechar, 344
binio.writelong, 344
binio.writenumber, 345
binio.writeshortstring, 345
binio.writestring, 345
binomial, 259
bintersect, 182, 244
bisequal, 182, 244
bminus, 183, 244
bottom, 99, 107, 183
bye, 183
cabs, 260
calc.Chi, 279
calc.Ci, 279
calc.clampedspline, 279
calc.clampedsplinecoeffs, 280
calc.dawson, 280
calc.diff, 280
calc.dilog, 280
calc.Ei, 281
calc.fprod, 281
calc.fresnelc, 281
calc.fresnels, 281
calc.fsum, 281
calc.gtrap, 281
calc.intde, 282
calc.intdei, 282
calc.intdeo, 282
calc.integral, 283
calc.interp, 283

556 Index

calc.linterp, 284
calc.maximum, 284
calc.minimum, 285
calc.nakspline, 285
calc.naksplinecoeffs, 286
calc.neville, 286
calc.newtoncoeffs, 286
calc.polyfit, 286
calc.polygen, 287
calc.Psi, 287
calc.Shi, 287
calc.Si, 287
calc.simaptive, 287
calc.Ssi, 288
calc.xpdiff, 288
calc.zero, 288
cbrt, 260
ceil, 260
char, 71
checkoptions, 183
checktype, 184
clear, 184
clock.add, 426
clock.adjust, 426
clock.sgstr, 427
clock.sub, 426
clock.tm, 427
clock.todec, 427
clock.totm, 427
columns, 184
conjugate, 260
copy, 88, 94, 99, 107, 185, 231, 237,

245
cordic.carccos, 467
cordic.carcsin, 467
cordic.carctan2, 467
cordic.carctanh, 467
cordic.ccbrt, 467
cordic.ccos, 467
cordic.ccosh, 468
cordic.cexp, 468
cordic.chypot, 468
cordic.cln, 468
cordic.csin, 468
cordic.csinh, 468
cordic.csqrt, 468
cordic.ctan, 468
cordic.ctanh, 468
coroutine.resume, 404
coroutine.running, 404
coroutine.setup, 404
coroutine.status, 404

coroutine.wrap, 404
coroutine.yield, 404
cos, 65, 260
cosh, 65, 260
cosxx, 260
cot, 261
coth, 261
countitems, 185, 231, 240, 471
csc, 261
csch, 261
debug.debug, 405
debug.getfenv, 405
debug.gethook, 405
debug.getinfo, 405
debug.getlocal, 406
debug.getmetatable, 406
debug.getregistry, 406
debug.getupvalue, 406
debug.setfenv, 406
debug.sethook, 407
debug.setlocal, 407
debug.setmetatable, 407
debug.setupvalue, 407
debug.system, 408
debug.traceback, 408
dimension, 185, 232
divs.denom, 465
divs.divs, 465
divs.equals, 465
divs.numer, 465
divs.todec, 466
divs.todiv, 466
drem, 261
duplicates, 185, 244, 471
entier, 65, 261
environ.anames, 394
environ.attrib, 394
environ.gc, 395
environ.getfenv, 150, 396
environ.globals, 133, 396
environ.isselfref, 396
environ.kernel, 63, 81, 396
environ.pointer, 398
environ.setfenv, 149, 398
environ.used, 398
environ.userinfo, 398
erf, 261
erfc, 262
error, 186
even, 262
exp, 65, 262
expx2, 262

agenaagenaagenaagena >> 557

fact, 262
filled, 87, 94, 99, 107, 186, 232, 237,

240, 472
finite, 133, 262
flip, 262
float, 263
fma, 263
frac, 263
fractals.albea, 457
fractals.alcos, 457
fractals.alcosxx, 458
fractals.alsin, 458
fractals.amarkmandel, 457
fractals.anewton, 458
fractals.draw, 460
fractals.lbea, 458
fractals.mandel, 458
fractals.mandelbrot, 459
fractals.mandelbrotfast, 459
fractals.mandelbrottrig, 459
fractals.markmandel, 459
fractals.newton, 459
frexp, 263
gamma, 263
gdi.arc, 444
gdi.arcfilled, 445
gdi.autoflush, 445
gdi.background, 445
gdi.circle, 445
gdi.circlefilled, 445
gdi.clearpalette, 445
gdi.close, 445
gdi.dash, 445
gdi.ellipse, 446
gdi.ellipsefilled, 446
gdi.flush, 446
gdi.fontsize, 446
gdi.hasoption, 446
gdi.initpalette, 446
gdi.ink, 446
gdi.lastaccessed, 446
gdi.line, 446
gdi.mouse, 447
gdi.open, 447
gdi.options, 447
gdi.plot, 450
gdi.plotfn, 450
gdi.point, 449
gdi.pointplot, 449
gdi.rectangle, 452
gdi.rectanglefilled, 452
gdi.reset, 453

gdi.resetpalette, 453
gdi.setarc, 453
gdi.setarcfilled, 453
gdi.setcircle, 453
gdi.setcirclefilled, 453
gdi.setellipse, 453
gdi.setellipsefilled, 453
gdi.setinfo, 454
gdi.setline, 454
gdi.setoptions, 454
gdi.setpoint, 454
gdi.setrectangle, 454
gdi.setrectanglefilled, 455
gdi.settriangle, 455
gdi.settrianglefilled, 455
gdi.structure, 455
gdi.system, 455
gdi.text, 455
gdi.thickness, 456
gdi.triangle, 456
gdi.trianglefilled, 456
gdi.useink, 456
getbit, 186
getentry, 83, 99, 107, 186, 232, 240,

241, 471, 472
gethigh, 64, 263
getlow, 64, 263
getmetatable, 100, 104, 108, 186
gettype, 96, 100, 103, 104, 187
gzip.close, 362
gzip.flush, 362
gzip.lines, 362
gzip.open, 362
gzip.read, 363
gzip.seek, 363
gzip.write, 363
has, 187
hashes.collisions, 477
hashes.djb, 477
hashes.djb2, 478
hashes.fnv, 478
hashes.jen, 478
hashes.md5, 478
hashes.oaat, 478
hashes.pl, 479
hashes.raw, 479
hashes.sax, 479
hashes.sdbm, 479
hashes.sth, 480
heaviside, 263
hypot, 264
ilog2, 264

558 Index

in, 60, 71, 72, 79, 87, 94, 99, 104, 107,
212, 235, 239, 243, 246, 475

instr, 72, 75, 213
int, 264
intersect, 60, 87, 94, 99, 107, 235, 239,

243, 475
io.anykey, 171, 327
io.close, 169, 172, 327, 328, 332
io.eof, 328
io.fileno, 328
io.filepos, 328
io.filesize, 328
io.getclip, 328
io.getkey, 171, 329
io.infile, 329
io.input, 329
io.isfdesc, 329
io.isopen, 329
io.lines, 169, 330, 332
io.lock, 330
io.move, 331
io.nlines, 331
io.open, 168, 327, 331
io.output, 332
io.pcall, 332
io.popen, 171, 332
io.putclip, 333
io.read, 168, 170, 171, 327, 333
io.readfile, 333
io.readlines, 334
io.rewind, 334
io.seek, 334
io.setvbuf, 335
io.skiplines, 335
io.sync, 335, 336
io.tmpfile, 336
io.toend, 336
io.unlock, 336
io.write, 169, 336
io.writefile, 338
io.writeline, 169, 336
iqr, 264
irem, 264
isboolean, 187
iscomplex, 187, 261, 265
isequal, 187
isint, 187, 265
isnegative, 188, 265
isnegint, 188, 265
isnonneg, 188, 265
isnonnegint, 188, 265
isnumber, 188, 265

isnumeric, 188, 266
ispair, 188
isposint, 188, 265, 266
ispositive, 189, 266
isreg, 189
isseq, 189
isstring, 189
isstructure, 189
istable, 189
join, 88, 99, 213, 232, 241
ldexp, 266
left, 102, 104, 189
linalg.add, 291
linalg.augment, 291
linalg.backsub, 291
linalg.backsubs, 292
linalg.checkmatrix, 292
linalg.checksquare, 292
linalg.checkvector, 292
linalg.coldim, 292
linalg.column, 292
linalg.crossprod, 293
linalg.det, 293
linalg.diagonal, 293
linalg.dim, 293
linalg.dotprod, 293
linalg.forsub, 293
linalg.getdiagonal, 294
linalg.gsolve, 294
linalg.hilbert, 294
linalg.identity, 294
linalg.inverse, 294
linalg.isantisymmetric, 294
linalg.isdiagonal, 294
linalg.isidentity, 295
linalg.ismatrix, 295
linalg.issquare, 295
linalg.issymmetric, 295
linalg.isvector, 295
linalg.ludecomp, 295
linalg.maeq, 296
linalg.matrix, 295
linalg.meeq, 296
linalg.mmap, 296, 300
linalg.mmul, 296
linalg.mulrow, 296
linalg.mulrowadd, 296
linalg.mzip, 296, 297
linalg.norm, 297
linalg.rowdim, 297
linalg.rref, 297
linalg.scalarmul, 298

agenaagenaagenaagena >> 559

linalg.scale, 298
linalg.stack, 298
linalg.sub, 299
linalg.swapcol, 298
linalg.swaprow, 298
linalg.trace, 299
linalg.transpose, 299
linalg.vaeq, 299
linalg.vector, 299
linalg.veeq, 300
linalg.vmap, 300
linalg.vzip, 300
linalg.zero, 300
llist.append, 247
llist.iterate, 248
llist.list, 248
llist.listtotable, 248
llist.prepend, 248
llist.purge, 249
llist.put, 249
llist.replicate, 249
ln, 65, 266
lngamma, 65, 266
load, 189
loadfile, 190
loadstring, 190
log, 266
log10, 267
log2, 267
lower, 71, 213
map, 99, 107, 190, 214, 232, 237, 241,

245, 472
mapm Package Functions, 276
math.arccosh, 270
math.ceillog2, 270
math.ceilpow2, 270
math.convertbase, 270
math.copysign, 270
math.dd, 271
math.dms, 271
math.expminusone, 271
math.fpbtoint, 272
math.fraction, 271
math.gcd, 272
math.inttofpb, 272
math.isordered, 272
math.isprime, 272
math.lcm, 272
math.lnplusone, 272
math.log2exp, 273
math.max, 273
math.min, 273

math.morton, 273
math.ndigits, 273
math.nextafter, 273
math.nextprime, 274
math.norm, 274
math.prevprime, 274
math.random, 274
math.randomseed, 274
math.splitdms, 275
math.todecimal, 275
math.toradians, 275
math.tosgesim, 275
math.tworaised, 275
max, 190
mdf, 267
min, 190
minus, 60, 88, 94, 99, 107, 235, 239,

244, 475
modf, 267
nan, 267
net.accept, 369
net.address, 370
net.admin Table, 369
net.bind, 370
net.block, 370
net.close, 370
net.closewinsock, 370
net.connect, 371
net.listen, 371
net.lookup, 372
net.open, 372
net.opensockets, 372
net.openwinsock, 373
net.receive, 373
net.remoteaddress, 374
net.send, 374
net.shutdown, 375
net.smallping, 375
net.survey, 376
net.wget, 376
next, 191
not, 60, 80, 87
nreg, 191
nseq, 192
numeric, 267
ops, 143, 192
or, 60, 79
os.battery, 379
os.beep, 379
os.cdrom, 379
os.chdir, 380
os.computername, 380

560 Index

os.cpuinfo, 380
os.cpuload, 381
os.curdir, 381
os.curdrive, 381
os.date, 381
os.datetosecs, 382
os.difftime, 382
os.drives, 382
os.drivestat, 382
os.endian, 383
os.environ, 383
os.execute, 383
os.exists, 383
os.exit, 383
os.fattrib, 383
os.fcopy, 384
os.freemem, 385
os.fstat, 385
os.getenv, 386
os.isANSI, 386
os.ismounted, 386
os.isremovable, 386
os.isUNIX, 387
os.isvaliddrive, 387
os.list, 387
os.listcore, 387
os.login, 388
os.memstate, 388
os.mkdir, 389
os.mousebuttons, 389
os.move, 389
os.now, 389
os.pid, 390
os.readlink, 390
os.remove, 390
os.rmdir, 390
os.screensize, 390
os.secstodate, 391
os.setenv, 391
os.setlocale, 391
os.settime, 391
os.symlink, 391
os.system, 392
os.time, 392
os.tmpname, 393
os.uptime, 393
os.wait, 393
package.checkclib, 400
package.loadclib, 400
package.loaded, 400
package.readlibbed, 400
pop, 101

print, 42, 193
printf, 193
proot, 267
protect, 140, 194
purge, 89, 194, 472
put, 89, 195
qsadd, 88, 195, 232, 241, 291
rawequal, 195
rawget, 195
rawset, 195
read, 196
readlib, 36, 400
recip, 268
recurse, 197
remove, 198, 232, 237, 241, 472
replace, 71, 73, 214
restart, 198
right, 102, 104, 199
root, 268
roundf, 268
rtable.defaults, 157, 401
rtable.rdelete, 158, 401
rtable.remember, 155, 198, 401
rtable.rget, 158, 401, 402
rtable.rinit, 158, 402
rtable.rmode, 158, 402
rtable.roinit, 158, 402
rtable.rset, 158, 403
run, 199
sadd, 88, 199, 233, 241
save, 200
sec, 268
sech, 268
select, 200, 233, 238, 241, 472
selectremove, 201, 233, 238, 241, 473
seq, 95
setbit, 201
sethigh, 64, 268
setlow, 64, 268
setmetatable, 100, 104, 108, 159, 202
settype, 96, 100, 102, 104, 145, 202
shift, 63, 257
sign, 65, 269
sin, 65, 269
sinh, 65, 269
size, 71, 88, 94, 99, 107, 202, 214, 233,

238, 242, 245, 473
skycrane.bagtable, 419
skycrane.counter, 419
skycrane.dice, 420
skycrane.enclose, 420
skycrane.fcopy, 420

agenaagenaagenaagena >> 561

skycrane.getlocales, 420
skycrane.iterate, 420
skycrane.move, 421
skycrane.readcsv, 421
skycrane.removedquotes, 421
skycrane.scribe, 421
skycrane.sorted, 423
skycrane.stopwatch, 423
skycrane.tee, 423
skycrane.tocomma, 424
skycrane.todate, 424
skycrane.trimpath, 424
sort, 88, 99, 107, 203, 233, 242, 473
sorted, 203, 233, 242, 473
split, 71, 212
sqrt, 65, 269
stats.acf, 302
stats.acv, 302
stats.ad, 302
stats.amean, 303
stats.cdf, 304
stats.chauvenet, 304
stats.colnorm, 305
stats.countentries, 305
stats.cumsum, 305
stats.dbscan, 306
stats.ema, 306
stats.extrema, 307
stats.fprod, 307
stats.fsum, 308
stats.gema, 308
stats.gini, 309
stats.gmean, 309
stats.gsma, 310
stats.gsmm, 310
stats.herfindahl, 310
stats.hmean, 310
stats.ios, 311
stats.iqr, 311
stats.issorted, 312
stats.kosumdata, 312
stats.mad, 312
stats.mean, 313
stats.meanmed, 313
stats.median, 313
stats.minmax, 313
stats.mode, 314
stats.moment, 314
stats.nde, 314
stats.ndf, 314
stats.neighbours, 315
stats.numbcomb, 315

stats.numbperm, 315
stats.obcount, 315
stats.obpart, 316
stats.pdf, 317
stats.percentile, 318
stats.prange, 318
stats.qmean, 318
stats.quartiles, 318
stats.rownorm, 319
stats.scale, 319
stats.sd, 319
stats.skewness, 320
stats.sma, 320
stats.smallest, 321
stats.smm, 321
stats.sorted, 322
stats.ssd, 322
stats.sum, 323
stats.sumdata, 323
stats.tovals, 324
stats.trimmean, 324
stats.var, 324
stats.zscore, 325
strings.align, 215
strings.capitalise, 215
strings.diamap, 216
strings.dleven, 216
strings.dump, 216
strings.fields, 216, 225
strings.find, 73, 74, 217
strings.format, 217
strings.glob, 217
strings.gmatch, 218
strings.gmatches, 218
strings.gsub, 218
strings.hits, 219
strings.include, 219
strings.isabbrev, 220
strings.isalpha, 220
strings.isalphanumeric, 220
strings.isalphaspace, 220
strings.isalphaspec, 221
strings.isblank, 221
strings.iscenumeric, 221
strings.isending, 221
strings.isfloat, 221
strings.isisoalpha, 222
strings.isisolower, 222
strings.isisoprint, 222
strings.isisospace, 222
strings.isisoupper, 222
strings.islatin, 222

562 Index

strings.islatinnumeric, 223
strings.isloweralpha, 223
strings.islowerlatin, 223
strings.ismagic, 223
strings.isnumber, 223
strings.isnumberspace, 223
strings.isnumeric, 223
strings.isolower, 224
strings.isoupper, 224
strings.isspace, 224
strings.isspec, 224
strings.isupperalpha, 224
strings.isupperlatin, 224
strings.isutf8, 225
strings.ljustify, 225
strings.lrtrim, 225
strings.ltrim, 225
strings.match, 75, 225
strings.mfind, 226
strings.remove, 226
strings.repeat, 226
strings.reverse, 226
strings.rjustify, 226
strings.rtrim, 227
strings.separate, 227
strings.tobytes, 227
strings.tochars, 227
strings.tolatin, 227
strings.toutf8, 228
strings.transform, 228
strings.utf8size, 228
strings.words, 228
subs, 203, 233, 242, 473
subset, 60, 79, 87, 94, 99, 108, 235,

239, 244, 475
tables.allocate, 236
tables.entries, 236
tables.getsize, 236
tables.indices, 236
tables.maxn, 236
tan, 65, 269
tanh, 65, 269
time, 204
tonumber, 214
top, 99, 107, 204
toreg, 204
toseq, 204
toset, 204, 205
tostring, 215
totable, 205
trim, 71, 215
type, 99, 104, 107, 137, 206, 245

typeof, 96, 99, 104, 137, 206, 238, 242,
245

unassigned, 206
union, 60, 87, 94, 100, 108, 235, 239,

244, 475
unique, 88, 99, 107, 206, 234, 242, 473
unpack, 99, 107, 207
upper, 71, 215
utils.calendar, 409
utils.checkdate, 409
utils.decodeb64, 409
utils.decodexml, 409
utils.encodeb64, 411
utils.encodexml, 411
utils.findfiles, 411
utils.readini, 415
utils.readxml, 416
utils.singlesubs, 416
utils.writecsv, 416
utils.writeini, 417
utils.writexml, 418
values, 207, 234, 242, 473
whereis, 207
with, 36, 207, 400
write, 209
writeline, 209
xbase.attrib, 346
xbase.close, 347
xbase.field, 347
xbase.fields, 347
xbase.filepos, 347
xbase.header, 347
xbase.ismarked, 347
xbase.isopen, 348
xbase.isvoid, 348
xbase.lock, 348
xbase.new, 348, 349
xbase.open, 351
xbase.purge, 351
xbase.readdbf, 352
xbase.readvalue, 352
xbase.record, 352
xbase.records, 352
xbase.sync, 353
xbase.unlock, 353
xbase.wipe, 353
xbase.writeboolean, 353
xbase.writedate, 353
xbase.writedouble, 354
xbase.writefloat, 354
xbase.writenumber, 354
xbase.writestring, 355

agenaagenaagenaagena >> 563

xdf, 270
xml.close, 357
xml.decode, 356
xml.decodexml, 357
xml.getbase, 357
xml.getcallbacks, 357
xml.new, 357
xml.parse, 358
xml.pos, 358
xml.readxml, 357
xml.setbase, 358
xml.setencoding, 358
xor, 79
xpcall, 210, 408
xsubset, 60, 79, 87, 94, 235, 239, 244,

475
zip, 99, 107, 210, 234, 242, 474

GGGG

Garbage Collection, 44, 59, 163, 184,
199, 277, 395, 401, 515
Global Environment, 35, 186
Graphics, 441

Arc, 444, 445, 453
Background Colour, 445
Circle, 445, 453
Colour Palette, 445, 446, 453
Colours, 442, 444, 446, 456
Ellipse, 446, 453
File Formats, 447
Flushing, 445, 446
Font, 446, 455
Line, 446, 454
Line Dash, 445
Line Thickness, 456
Plotting, 441, 443, 449
Point, 449, 454
Rectangle, 452, 454, 455
Triangle, 455, 456

HHHH

Haiku, 35, 36, 41, 43, 276, 380, 385,
388, 389, 392, 393, 523
Hardware

Battery Status, 379
Clock, 393
CPU, 380
Drives, 379, 381, 382, 386, 387

Endianness, 380, 383, 408
Keyboard, 170, 171, 327, 329
Memory, 385, 388
Mouse, 389
Screen, 390
Sound, 379
USB, 469

Hashes
Bob Jenkins' Hash, 478
Daniel J. Bernstein Hash, 477, 478
Fowler-Noll-Vo Hash, 478
MD5 Hash, 478
ndbm Hash, 479
One-at-a-Time Hash, 478
Shift-Add-XOR Hash, 479

Home Directory, 517

IIII

I/O, 168, 326, 339
Applications, 171, 172, 332, 383
Base64, 409, 411
Buffering, 335
Closing Files, 328
CSV Files, 172, 421
dBASE III Files, 346
Flushing, 336
INI Files, 415, 417
io Library, 326
Keyboard, 170, 327, 333, 336
Locks, 330
Opening Files, 327
Output, 193, 336, 421
Text Files, 168, 169, 333, 334
Windows Clipboard, 328, 333
XML Files, 172, 357, 409, 411, 416

if Operator, 115
if Statement, 47, 113

elif Clause, 113, 114
else Clause, 113, 114
onsuccess Clause, 113, 114, 115

import/alias Statement, 51
inc Statement, 64
infinity, 526
INI

Reading & Writing Initialisation Files, 172
Initialisation, 35, 36, 153, 193, 199, 208,
521, 523
Input

(please see I/O), 168

564 Index

Input Conventions, 41
insert Statement, 45, 84, 98, 99
Installation

DOS, 34
Haiku, 35
Linux, 31
Mac OS X, 35
OS/2 Warp 4, 34
Solaris 10 & OpenSolaris, 31
UNIX Dependencies, 31
Windows Binary Installer, 32
Windows Portable Edition, 33

Internet
(please see Network), 364

ISO 8859/1 Latin-1, 222
Iterator, 124, 166, 419, 420

KKKK

Keywords, 56

LLLL

LANs
(please see Network), 364

Latin-1/15
(please see Strings), 215

Libraries
ads Library, 432
astro Library, 428
bags Library, 250
binio Library, 339
calc Library, 278
clock Library, 425
cordic Library, 467
coroutine Library, 404
debug Library, 405
divs Library, 463
environ Library, 394
fractals Library, 457
gdi Library, 441
Initialisation, 51
io Library, 326
libusb Binding, 469
linalg Library, 289
llist Library, 247, 477
mapm Library, 276
net Library, 364
os Library, 378

rtable Library, 401
skycrane Library, 419
stats Library, 301
strings Library, 215
tables Library, 236
utils Library, 409
xBase Library, 346
xml Library, 356

library.agn, 36, 193, 216, 518, 522
Licence, 548
Linear Algebra, 289

Back Substitution, 290, 294
Backward Substitution, 293
Cross Product, 290, 293
Determinant, 293
Diagonal, 293, 294
Equality Check, 296, 299, 300
Forwardward Substitution, 291
Gaussian Elimination, 291, 293, 294
Hilbert Matrix, 294
Identity Matrix, 294
Inverse Matrix, 294
LU Decomposition, 295
Matrix, 295
Matrix Multiplication, 296
Norm, 297
Normalisation, 298
Reduced Row Echelon Form, 297
Scalar Multiplication, 298
Solving Linear Equations, 295
Trace, 299
Transpose, 299
Vector, 299
Vector Dot Product, 293
Zero Vector, 300

Linked Lists, 173, 247, 477
Linux, 31, 216, 276, 327, 329, 346, 362,
364, 387, 441, 457, 523, 527, 546
Locale, 391, 420
Loops, 47, 117, 132, 146, 148

break Statement, 49, 120, 126
Control Variables, 121, 122
Counting Backwards, 120
do/as Loops, 48, 118
do/od Loops, 119
do/until Loops, 118
for/as Loops, 49, 125
for/downto Loops, 121
for/in Loops, 121
for/to Loops, 119
for/until Loops, 49, 125

agenaagenaagenaagena >> 565

for/while Loops, 124
Interruption, 138
Iteration Over Procedures, 124
Iteration Over Sequences, 122
Iteration Over Sets, 123
Iteration Over Strings, 123
Iteration Over Tables, 121
Key ~ Value Pairs, 121
keys Keyword, 122
redo Statement, 127
relaunch Statement, 127
Round-Off Errors, 121
skip Statement, 48, 126
to/do Loops, 121
while Loops, 117

Lua, 23

MMMM

Mac, 35, 36, 41, 43, 276, 329, 346, 362,
364, 380, 385, 388, 389, 392, 393, 441,
457, 461, 521, 523, 527, 546
Maple V Release 3, 26
Mapping & Zipping, 90, 190, 210, 214,
232, 234, 237, 241, 242, 245, 296, 297,
300, 474
Matrices, 232, 289, 295
Memory, 385, 398
Metamethods, 158, 186, 195, 202, 515,
516

Protecting, 163
Weak References, 164

Multisets, 55, 250, 419

NNNN

Names, 56
nargs, 135
Network, 364

Accepting Connections, 365, 369
Administrative Information, 369
Bi-directional Connections, 367
Binding Sockets, 365, 370
Black and White Lists, 368, 369, 371
Blocking Mode, 370
Closing Connections, 365, 370
Connecting to a Server, 366, 371
Creating Sockets, 364, 372
HTTP, 376

Listening for Incoming Connections,
365, 372

Lookups, 372
Maximum Number of Sockets, 369
Ping, 375
Receiving Data, 365, 373
Sending Data, 366, 374
Socket Activities, 376
Socket Status Information, 366, 372
Sockets, 364
Windows & Winsock, 370, 373

null, 44, 55, 59, 79, 121
Numbers, 42, 55, 60, 63, 65, 137, 170,
188, 206, 215, 217, 265, 266

Abbreviations, 61
Binary, 61
Conversion to String, 215
Decimal Comma, 424
Hexadecimal, 61
Octal, 61
Scientific Notation, 61

OOOO

Opening Files
Files, 329

OpenSolaris, 31, 387
Operating System Access

os Library, 378
Waiting, 393

Operators
Binary, 515
Logical, 80
Unary, 62, 66, 515

OS/2, 385
(please see eComStation), 34

Output
Formatting, 193, 217
printf Function, 193, 217
Printing Results, 41, 42, 148, 193
Printing Tables, 81, 193
Writing to Console or File, 209, 423
Writing to CSV Files, 416
Writing to DBF Files, 353
Writing to XML Files, 418

PPPP

Packages, 150, 151

566 Index

Agena Environment, 394
Algebra, 253, 276
Analysis, 278
Arbitrary Precision, 276
Astronomy, 428
Bags, 250
Basic Library, 179
Binary I/O, 339
Calculus, 278
Clock, 425
Coroutines, 404
Databases, 346, 432
Fractals, 457
Fractions, 463
Graphics, 441
gzip Compression, 362
I/O, 326
Initialisation, 51, 400
Initialisation Message, 153
Initialisation Procedure, 154
Linear Algebra, 289
Linked Lists, 247, 477
Modules, 400
Multisets, 250
Networking via IPv4, 364
Operating System, 378
readlib Function, 400
Registers, 471
Remember Tables, 401
Sequences, 240
Sets, 237, 245
Sexagesimals, 425
Statistics, 301
Strings, 211
Tables, 231
Utilities, I, 409
Utilities, II, 419
with Function, 153, 207
XML Parser, 356

Pairs, 47, 55, 60, 102, 136, 137, 158,
183, 188

Assignment, 47, 102
Colon Operator, 102
Deep Copying, 245
Indexing, 102
left & right Operators, 102
Operators & Functions, 104, 108
Size, 245
Type, 245
User-defined Type, 245

pop Statement, 98, 99, 100, 107
Precedence, 60, 66

Associativity, 60
Procedures, 49, 55, 124, 131, 137, 145

Arguments, 132, 134, 136
Attributes, 395
Closures, 166
Double Colon Notation, 137, 139
Error Handling, 137, 186, 194
Exception Handling, 140, 194, 210
Extending Built-in Functions, 163, 165
Global Variables, 134, 396
Iterator Functions, 124, 166
Local Variables, 132, 146, 406
Loops, 148
Metamethods, 158, 406
Multiple Returns, 142
nargs, 135
Number of Arguments Passed, 135
Optional Arguments, 134, 136, 183
Parameters, 131, 134
Predefined Results, 157
Protected Calls, 140
Remember Tables, 154
Returning Procedures, 144
Returns, 49, 131, 144
Sandboxes, 149
Scoping Rules, 146
Shortcut Definition, 50, 145
Summary, 168
Type Checking, 137, 139, 140, 146
User Information, 398
varargs System Table, 135, 136
Variable Number of Arguments, 135,

145
Programmes, 50

Running, 50, 189, 199
Saving, 50

RRRR

Registers, 104, 189
Creation, 191
Deletion, 473
Entries, 473
Equality, 474
Indexing, 472
Inequality, 474
nreg Function, 191
Numeric Registers, 191
Set Operations, 475
Size, 473
Subset Check, 475

agenaagenaagenaagena >> 567

Regular Expressions, Lua-style
Examples, 74

Remember Tables, 154
Functions, 158, 401, 402
Read-Only, 156
Standard, 155

Replacing
within Strings, 214, 218, 220, 226
within Structures, 90, 194, 195, 232, 233,

237, 241, 242, 472, 473
restart Statement, 43, 198, 397
return Statement, 131
rotate Statement, 101

SSSS

Sandboxes, 149
Scope, 146, 147, 165, 166

Block, 146
scope Keyword, 147, 165

Searching
in Files, 329
in Strings, 71, 72, 73, 74, 212, 213, 219,

220, 225, 226, 228
in Structures, 87, 90, 94, 99, 104, 107,

185, 187, 197, 198, 200, 201, 207,
217, 218, 233, 236, 238, 239, 241,
243, 246, 471, 472, 473, 475

Sequences, 46, 55, 87, 89, 95, 101, 122,
137, 158, 170, 189

Assignment, 46, 95
Attributes, 395
bottom Operator, 100
Counting Items, 185, 305
create Statement, 97, 101
Creation, 192
Deep Copying, 99, 103, 107
delete Statement, 97
Deletion, 206, 242
Duplicate Entries, 206
Entries, 143, 192, 207, 242
Equality, 243
Indexing, 95, 241
Indices, 207
Inequality, 243
insert Statement, 97
Insertion and Deletion, 97
nseq Function, 192
Numeric Sequences, 192
Operators & Functions, 100

pop Statement, 98, 100
Read-Only, 162
Self-Reference, 98
seq Operator, 95
Set Operations, 243, 244
Size, 99, 107, 202, 242
Sorting, 99, 107, 203, 312
Subset Check, 244
Substitution, 203
top Operator, 100
Weak Ones, 164

Sets, 46, 55, 87, 92, 101, 123, 137, 158,
170

Assignment, 46, 92
Attributes, 394, 395
Bags, 250
Counting Items, 185, 231
create Statement, 93
Deep Copying, 94, 237
delete Statement, 93
insert Statement, 93
Multisets, 250
Operators, 94
Read-Only, 163
Self-Reference, 94
Size, 94, 202, 238
Substitution, 203

Short-Circuit Evaluation, 80
Size

Files, 331
Sockets

(please see Network), 364
Solaris, 31, 43, 216, 276, 327, 329, 346,
362, 364, 441, 457, 484, 523, 527, 546
Sorting, 203, 322

Check, 312
Destructive, 203, 233, 242
Non-destructive, 203, 242, 322, 423
Quicksort, 322

Sound, 379
Sparc, 26, 31, 445
Stack Programming, 100

bottom Operator, 100
duplicate Topmost Item, 101
exchange Topmost Items, 101
insert Statement, 100
pop Operator, 101
pop Statement, 100
rotate Statement, 101
top Operator, 100

568 Index

Statements
Assignment, 56
break Jump Control, 126
case Condition, 116
clear Deletion, 58
create dict Initialisation, 86, 101
create sequence Initialisation, 97, 101
create set Initialisation, 93, 101
create table Initialisation, 85, 101
dec Decrementation, 64
delete Data Removal, 85, 93, 98
div Division, 65
do/as Loop, 118
do/od Loop, 118
do/until Loop, 118
duplicate Sequence Elements, 101
enum Enumeration, 58
exchange Sequence Elements, 101
for/as Loop, 125
for/in Loop, 121, 122, 123, 124
for/to Loop, 119
for/until Loop, 125
for/while Loop, 124
if Condition, 113
inc Incrementation, 64
insert Data Entry, 84, 93, 98
insert Stack Item Entry, 100
local Declaration, 132
mul Multiplication, 65
pop Stack Item Deletion, 100
redo Jump Control, 127
relaunch Jump Control, 126
rotate Structure Elements, 101
scope Statement, 147
skip Jump Control, 126
try/catch Error Interception, 141
when Clause, 126
while Loop, 117

Statistics, 301
Absolute Deviation, 302
Autocorrelation, 302
Clusters, 306
Combinations, 259, 315
Cumulative Density Function, 304
Cumulative Sum, 305
Exponential Moving Average, 306, 308
Geometric Mean, 309
Harmonic Mean, 310
Herfindahl-Hirschman index, 310
Interquartile Range, 311
Local Extrema, 307
Mean, 313, 324

Mean Deviation, 302
Median, 313
Median Absolute Deviation, 312
Mode, 314
Moment, 314
Neighbourhoods, 315
Normalisation, 305, 319
Observation, 315
Outlier, 304, 318
Percentile, 318
Permutations, 315
Probability Density Function, 317
Quadratic Mean, 318
Sample Standard Deviation, 322
Simple Moving Average, 310, 320
Simple Moving Median, 310, 321
Skewness, 320
Standard Deviation, 319
Standard Normal Distribution, 317
Standard Score, 325
Summation Function, 195, 199, 202,

232, 233, 312, 323
Variance, 324
Volatility, 311
Z-Score, 325

stdin, stdout, stderr, 171, 327
Streams

stdin, stdout, stderr, 171
Strings, 44, 55, 68, 123, 137, 160, 189,
206, 211

Alignment, 215, 225, 226
ASCII Code, 71, 72, 171, 181, 213, 227,

329
Captures, 230
Character Classes, 229
Checks, 73, 220, 221, 222, 223, 224,

225
Concatenation, 44, 60, 88, 212, 213,

220, 226, 232, 241, 515
Conversion to Number, 214
Counting, 219, 228
Damerau-Levenshtein, 216
Deletion, 226
Diacritics, 212
Diacritics and Ligatures, 216
Empty Strings, 68
Escape Sequences, 69, 525
Formatting, 217
Insertion, 220
ISO 8859/1 Latin-1, 222, 224, 227, 228
Lower & Upper Case, 72, 212, 213, 215,

223, 224

agenaagenaagenaagena >> 569

Mapping a Function, 214, 228
Multiline Strings, 68
Operators, 71
Pattern Items, 230
Pattern Matching, 74, 218, 225, 229
Repetition, 226
Search & Replace Functions, 44, 71, 72,

73, 78, 212, 213, 214, 216, 217,
218, 220, 221, 225, 226, 227, 416

Size, 72, 214, 228
Special Characters, 221, 224
Splitting into Characters, 204, 205
Splitting into Words, 71, 212, 227
strings Library, 215
Substrings, 44
Trimming, 71, 215, 225, 227
UTF-8, 225, 227, 228

Structures, 55
Read-Only, 162
Recursive Descent, 187, 197
Weak Ones, 164

Substrings, 44
Sun Microsystems, 26
System Information, 388, 389, 390, 392
System Settings, 81, 396, 517, 522
System Variables, 35, 386, 517

_G, 151, 186, 198, 518
_origG, 198
_PROMPT, 518
_RELEASE, 197
AGENAPATH, 32, 34, 35, 196
ans, 43
environ.buffersize, 341
environ.homedir, 36, 198, 517
environ.kernel/debug, 397
environ.kernel/digits, 397
environ.kernel/emptyline, 397
environ.kernel/gui, 397
environ.kernel/libnamereset, 397
environ.kernel/longtable, 397
environ.kernel/promptnewline, 397
environ.kernel/signeddigits, 398
environ.kernel/zeroedcomplex, 398
environ.withprotected, 208
environ.withverbose, 208
Getting Environment Variables, 383
io.stderr, 171
io.stdin, 171
io.stdout, 171
lasterror, 140, 194

libname, 35, 36, 152, 196, 197, 199,
208, 397, 517, 521, 524

mainlibname, 35, 36, 196, 199, 208,
397, 517

Setting Environment Variables, 391

TTTT

Tables, 45, 55, 81, 87, 89, 91, 101, 121,
137, 151, 154, 158, 170, 173, 189, 231

Arrays, 81
Assignment, 45, 81, 86, 236, 476
Attributes, 394
bottom Operator, 100
Counting Items, 185, 231, 305
create Statement, 84, 101
Cycles, 92
Deep Copying, 91, 231
delete Statement, 85
Deletion, 85, 89, 90, 194, 206, 234, 472
Dictionaries, 86
Duplicate Entries, 185, 206, 471
Empty Tables, 84
Entries, 90, 143, 192, 207, 232, 236
Equality, 234
Functions, 90, 198, 200, 203
Holes, 85, 89, 236, 501
Holes, Removing, 206, 234
Indexing, 45, 82, 83, 232
Indices, 207, 236, 399
Inequality, 235
insert Statement, 84
Insertion, 84, 89, 90, 195, 236
Key ~ Value Pairs, 86
Linked Lists, 173
Nested Tables, 82
Operators, 88
pop Statement, 100
Read-Only, 162
References, 91, 173, 396
Self-Reference, 92
Set Operations, 235
Size, 85, 202, 233, 236, 501
Sorting, 88, 203, 312
Sparse Tables, 185
Subset Check, 235
Substitution, 203
tables Library, 236
top Operator, 100
Weak Ones, 164

570 Index

TCP
(please see Network), 364

Threads, 404
TI-30, 271, 275
Tokens, 56, 70
try/catch Statement, 141
Types, 55, 104, 109, 137, 139, 184, 187,
202, 206, 489

Double Colon Notation, 139
Lightuserdata, 109
Threads, 109
Userdata, 109
User-Defined, 96, 102, 145

UUUU

Unassignment, 44
clear Statement, 58, 184

undefined, 526
UNIX, 36, 41, 43, 50, 196, 207, 330, 332,
340, 348, 379, 380, 385, 387, 388, 389,
392, 393, 400, 438, 445, 450, 521, 523
UTF-8

(please see Strings), 215

VVVV

Values
Assigned Names, 181, 206
Comparisons, 195, 234, 238, 243, 245,

246, 257, 474
Defining new Variables within

Procedures, 151
Reading Values from File, 196
Reading Values within Procedures, 151
Saving Values to File, 200

Vectors, 289, 299

WWWW

while Loops, 48, 117
Windows, 32, 36, 41, 43, 50, 51, 196,
207, 216, 276, 327, 329, 330, 333, 340,
346, 348, 362, 364, 379, 380, 382, 384,
385, 387, 388, 389, 390, 392, 393, 400,
438, 441, 445, 450, 457, 461, 523, 527,
546

Clipboard, 328, 333

XXXX

xBASE Files, 346
XML

Dealing with SOAP Messages, 150
expat Binding, 356
Reading XML Streams, 172, 356, 357,

409, 416
Writing XML Streams, 172, 411, 418

agenaagenaagenaagena >> 571

