
Security Extension Server Design

Draft Version 3.0

David P. Wiggins
X Consortium, Inc.

December 23, 2008

Abstract

This paper describes the implementation strategy used to implement
various pieces of the SECURITY Extension.



Copyright c©1996 X Consortium, Inc. All Rights Reserved.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OF OR OTHER DEALINGS IN THE SOFT-
WARE.

Except as contained in this notice, the name of the X Consortium shall not be
used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from the X Consortium.

2



1 GenerateAuthorization Request

The major steps taken to execute this request are as follows.

Sanity check arguments. The interesting one is the group, which must be
checked by some other module(s), initially just the embedding extension. Use
a new callback for this. The callback functions will be passed a small structure
containing the group ID and a Boolean value which is initially false. If any of
the callbacks recognize the ID, they should set the boolean to true. If after the
callbacks have been called the boolean is false, return an error, since nobody
recognized it.

Use the existing Xkey library function XkeyGenerateAuthorization to generate
the new authorization.

Use the existing os layer function AddAuthorization to add the new authoriza-
tion to the server’s internal database.

Use the existing os layer function AuthorizationToID to retrieve the authoriza-
tion ID that the os layer assigned to the new authorization.

Change the os layer to use authorization IDs allocated from the server’s ID range
via FakeClientID(0) instead of using a simple incrementing integer. This lets us
use the resource database to attach additional information to an authorization
without needing any changes to os data structures.

Add the authorization ID as a server resource. The structure for an authoriza-
tion resource will contain the timeout, trust-level, and group sent in the request,
a reference count of how many clients are connected with this authorization, a
timer pointer, and time-remaining counter.

Return the authorization ID and generated auth data to the client.

2 Client connection

The Security extension needs to be aware of new client connections primarily
so that it copy the trust-level of the authorization that was used to the client
structure. The trust-level is needed in the client structure because it will be
accessed frequently to make access control decisions for the client. We will use
the existing ClientStateCallback to catch new client connections.

We also need to copy the authorization ID into the client structure. The autho-
rization ID is already stored in an os private hung from the client, and we will
add a new os function AuthorizationIDOfClient to retrieve it. However, when
a client disconnects, this os private is already gone before ClientStateCallbacks
are called. We need the authorization ID at client disconnect time for reasons

3



described below.

Now that we know what needs to be done and why, let’s walk through the
sequnce of events.

When a new client connects, get the authorization ID with AuthorizationIDOf-
Client, store it in the client, then pass that ID to LookupIDByType to find the
authorization. If we get a non-NULL pointer back, this is a generated authoriza-
tion, not one of the predefined ones in the server’s authority file. In this case,
increment the authorization’s reference count. If the reference count is now 1,
cancel the timer for this authorization using the trivial new os layer function
TimerCancel. Lastly, copy the trust-level of this authorization into the client
structure so that it can be reached quickly for future access control decisions.

The embedding extension can determine the group to use for a new client in
the same way that we determined the trust level: get the authorization ID, look
it up, and if that succeeds, pluck the group out of the returned authorization
structure.

3 Client disconnection

Use the existing ClientStateCallback to catch client disconnections. If the client
was using a generated authorization, decrement its reference count. If the ref-
erence count is now zero, use the existing os layer function TimerSet to start
a timer to count down the timeout period for this authorization. Record the
timer ID for this authorization. When the timer fires, the authorization should
be freed, removing all traces of it from the server.

There is a slight complication regarding the timeout because the timer interface
in the server allows for 32 bits worth of milliseconds, while the timeout specified
in GenerateAuthorization has 32 bits worth of seconds. To handle this, if the
specified time is more than the timer interface can handle, the maximum possible
timeout will be set, and time-remaining counter for this authorization will be
used to track the leftover part. When the timer fires, it should first check to see
if there is any leftover time to wait. If there is, it should set another timer to
the minimum of (the maximum possible timeout) and the time remaining, and
not do the revocation yet.

4 Resource ID security

To implement the restriction that untrusted clients cannot access resources of
trusted clients, we add two new functions to dix: SecurityLookupIDByType and

4



SecurityLookupIDByClass. Hereafter we will use SecurityLookupID to refer
to both functions. In addition to the parameters of the existing LookupID
functions, these functions also take a pointer to the client doing the lookup,
and an access mode that conveys a high-level idea of what the client intends
to do with the resource (currently just read, write, destroy, and unknown).
Passing NullClient for the client turns off access checks. SecurityLookupID
can return NULL for two reasons: the resource doesn’t exist, or it does but
the client isn’t allowed to access it. The caller cannot tell the difference. Most
places in dix call these new lookup functions instead of the old LookupID, which
continue to do no access checking. Extension “Proc” functions should probably
use SecurityLookupID, not LookupID. Ddxen can continue to use LookupID.

Inside SecurityLookupID, the function client− >CheckAccess is called passing
the client, resource id, resource type/class, resource value, and access mode.
CheckAccess returns the resource value if access is allowed, else it returns NULL.
The entire resource ID security policy of the Security extension can be replaced
by plugging in your own access decision function here. This in combination with
the access mode parameter should be enough to implement a more traditional
DAC (discretionary access control) policy.

Since we need client and access mode information to do access controlled re-
source lookups, we add (and use) several other macros and functions that par-
allel existing ones with the addition of the missing information. The list in-
cludes SECURITY VERIFY GC, SECURITY VERIFY DRAWABLE, SECU-
RITY VERIFY GEOMETRABLE, SecurityLookupWindow, SecurityLookup-
Drawable, and dixChangeGC. The dixChangeGC interface is worth mentioning
because in addition to a client parameter, we introduce a pointer-to-union pa-
rameter that should let us eliminate the warnings that some compilers give when
you assign small integers to pointers, as the DoChangeGC interface required.
For more details, see the comment preceding dixChangeGC in dix/gc.c.

If XCSECURITY is not defined (the Security extension is not being built), the
server uses essentially the same code as before for resource lookups.

5 Extension security

A new field in the ExtensionEntry structure, Bool secure, tells whether the
extension is considered secure. It is initialized to FALSE by AddExtension.
The following new dix function can be used to set the secure field:

void DeclareExtensionSecurity(char *extname, Bool secure)

The name of the extension and the desired value of the secure field are passed. If
an extension is secure, a call to this function with secure = TRUE will typically

5



appear right after the call to AddExtension. DeclareExtensionSecurity should
be called during server reset. It should not be called after the first client has
connected. Passing the name of an extension that has not been initialized has
no effect (the secure value will not be remembered in case the extension is later
initialized).

For untrusted clients, ProcListExtensions omits extensions that have secure =
FALSE, and ProcQueryExtension reports that such extensions don’t exist.

To prevent untrusted clients from using extensions by guessing their major op-
code, one of two new Proc vectors are used by untusted clients, Untrused-
ProcVector and SwappedUntrustedProcVector. These have the same contents
as ProcVector and SwappedProcVector respectively for the first 128 entries.
Entries 128 through 255 are initialized to ProcBadRequest. If DeclareExten-
sionSecurity is called with secure = TRUE, that extension’s dispatch function
is plugged into the appropriate entry so that the extension can be used. If De-
clareExtensionSecurity is called with secure = FALSE, the appropriate entry is
reset to ProcBadRequest.

Now we can explain why DeclareExtensionSecurity should not be called after the
first client connects. In some cases, the Record extension gives clients a private
copy of the proc vector, which it then changes to intercept certain requests.
Changing entries in UntrusedProcVector and SwappedUntrustedProcVector will
have no effect on these copied proc vectors. If we get to the point of needing an
extension request to control which extensions are secure, we’ll need to invent a
way to get those copied proc vectors changed.

6


