
Double Buffer Extension Library

Protocol Version 1.0

X Consortium Standard

Ian Elliott
Hewlett-Packard Company

David P. Wiggins
X Consortium, Inc.

December 23, 2008

Double Buffer Extension Specification 2

Copyright c©1989 X Consortium, Inc. and Digital Equipment Corporation.

Copyright c©1992 X Consortium, Inc. and Intergraph Corporation.

Copyright c©1993 X Consortium, Inc. and Silicon Graphics, Inc.

Copyright c©1994, 1995 X Consortium, Inc. and Hewlett-Packard Company.

Permission to use, copy, modify, and distribute this documentation for any
purpose and without fee is hereby granted, provided that the above copyright
notice and this permission notice appear in all copies. Digital Equipment
Corporation, Intergraph Corporation, Silicon Graphics, Hewlett-Packard, and
the X Consortium make no representations about the suitability for any
purpose of the information in this document. This documentation is provided
“as is” without express or implied warranty.

Double Buffer Extension Specification 3

1 Introduction

The Double Buffer Extension (DBE) provides a standard way to utilize
double-buffering within the framework of the X Window System.
Double-buffering uses two buffers, called front and back, which hold images.
The front buffer is visible to the user; the back buffer is not. Successive
frames of an animation are rendered into the back buffer while the previously
rendered frame is displayed in the front buffer. When a new frame is ready,
the back and front buffers swap roles, making the new frame visible. Ideally,
this exchange appears to happen instantaneously to the user and with no
visual artifacts. Thus, only completely rendered images are presented to the
user, and they remain visible during the entire time it takes to render a new
frame. The result is a flicker-free animation.

2 Goals

This extension should enable clients to:

• Allocate and deallocate double-buffering for a window.

• Draw to and read from the front and back buffers associated with a
window.

• Swap the front and back buffers associated with a window.

• Specify a wide range of actions to be taken when a window is swapped.
This includes explicit, simple swap actions (defined below), and more
complex actions (for example, clearing ancillary buffers) that can be put
together within explicit “begin” and “end” requests (defined below).

• Request that the front and back buffers associated with multiple
double-buffered windows be swapped simultaneously.

In addition, the extension should:

• Allow multiple clients to use double-buffering on the same window.

• Support a range of implementation methods that can capitalize on
existing hardware features.

• Add no new event types.

• Be reasonably easy to integrate with a variety of direct graphics
hardware access (DGHA) architectures.

Double Buffer Extension Specification 4

3 Concepts

Normal windows are created using the core CreateWindow request, which
allocates a set of window attributes and, for InputOutput windows, a front
buffer, into which an image can be drawn. The contents of this buffer will be
displayed when the window is visible.

This extension enables applications to use double-buffering with a window.
This involves creating a second buffer, called a back buffer, and associating
one or more back buffer names (XIDs) with the window for use when referring
to (that is, drawing to or reading from) the window’s back buffer. The back
buffer name is a DRAWABLE of type BACKBUFFER.

DBE provides a relative double-buffering model. One XID, the window,
always refers to the front buffer. One or more other XIDs, the back buffer
names, always refer to the back buffer. After a buffer swap, the window
continues to refer to the (new) front buffer, and the back buffer name
continues to refer to the (new) back buffer. Thus, applications and toolkits
that want to just render to the back buffer always use the back buffer name
for all drawing requests to the window. Portions of an application that want
to render to the front buffer always use the window XID for all drawing
requests to the window.

Multiple clients and toolkits can all use double-buffering on the same window.
DBE does not provide a request for querying whether a window has
double-buffering support, and if so, what the back buffer name is. Given the
asynchronous nature of the X Window System, this would cause race
conditions. Instead, DBE allows multiple back buffer names to exist for the
same window; they all refer to the same physical back buffer. The first time a
back buffer name is allocated for a window, the window becomes
double-buffered and the back buffer name is associated with the window.
Subsequently, the window already is a double-buffered window, and nothing
about the window changes when a new back buffer name is allocated, except
that the new back buffer name is associated with the window. The window
remains double-buffered until either the window is destroyed or until all of the
back buffer names for the window are deallocated.

In general, both the front and back buffers are treated the same. In
particular, here are some important characteristics:

• Only one buffer per window can be visible at a time (the front buffer).

• Both buffers associated with a window have the same visual type, depth,
width, height, and shape as the window.

• Both buffers associated with a window are “visible” (or “obscured”) in

Double Buffer Extension Specification 5

the same way. When an Expose event is generated for a window, both
buffers should be considered to be damaged in the exposed area.
Damage that occurs to either buffer will result in an Expose event on
the window. When a double-buffered window is exposed, both buffers
are tiled with the window background, exactly as stated by the core
protocol. Even though the back buffer is not visible, terms such as
obscure apply to the back buffer as well as to the front buffer.

• It is acceptable at any time to pass a BACKBUFFER in any request,
notably any core or extension drawing request, that expects a
DRAWABLE. This enables an application to draw directly into
BACKBUFFERs in the same fashion as it would draw into any other
DRAWABLE.

• It is an error (Window) to pass a BACKBUFFER in a core request that
expects a Window.

• A BACKBUFFER will never be sent by core X in a reply, event, or
error where a Window is specified.

• If core X11 backing-store and save-under applies to a double-buffered
window, it applies to both buffers equally.

• If the core ClearArea request is executed on a double-buffered window,
the same area in both the front and back buffers is cleared.

The effect of passing a window to a request that accepts a DRAWABLE is
unchanged by this extension. The window and front buffer are synonomous
with each other. This includes obeying the GetImage semantics and the
subwindow-mode semantics if a core graphics context is involved. Regardless
of whether the window was explicitly passed in a GetImage request, or
implicitly referenced (that is, one of the window’s ancestors was passed in the
request), the front (that is, visible) buffer is always referenced. Thus,
DBE-näıve screen dump clients will always get the front buffer. GetImage on
a back buffer returns undefined image contents for any obscured regions of the
back buffer that fall within the image.

Drawing to a back buffer always uses the clip region that would be used to
draw to the front buffer with a GC subwindow-mode of ClipByChildren. If
an ancestor of a double-buffered window is drawn to with a core GC having a
subwindow-mode of IncludeInferiors, the effect on the double-buffered
window’s back buffer depends on the depth of the double-buffered window
and the ancestor. If the depths are the same, the contents of the back buffer
of the double-buffered window are not changed. If the depths are different,
the contents of the back buffer of the double-buffered window are undefined
for the pixels that the IncludeInferiors drawing touched.

Double Buffer Extension Specification 6

DBE adds no new events. DBE does not extend the semantics of any existing
events with the exception of adding a new DRAWABLE type called
BACKBUFFER. If events, replies, or errors that contain a DRAWABLE (for
example, GraphicsExpose) are generated in response to a request, the
DRAWABLE returned will be the one specified in the request.

DBE advertises which visuals support double-buffering.

DBE does not include any timing or synchronization facilities. Applications
that need such facilities (for example, to maintain a constant frame rate)
should investigate the Synchronization Extension, an X Consortium standard.

3.1 Window Management Operations

The basic philosophy of DBE is that both buffers are treated the same by core
X window management operations.

When the core DestroyWindow is executed on a double-buffered window, both
buffers associated with the window are destroyed, and all back buffer names
associated with the window are freed.

If the core ConfigureWindow request changes the size of a window, both
buffers assume the new size. If the window’s size increases, the effect on the
buffers depends on whether the implementation honors bit gravity for buffers.
If bit gravity is implemented, then the contents of both buffers are moved in
accordance with the window’s bit gravity (see the core ConfigureWindow
request), and the remaining areas are tiled with the window background. If
bit gravity is not implemented, then the entire unobscured region of both
buffers is tiled with the window background. In either case, Expose events are
generated for the region that is tiled with the window background.

If the core GetGeometry request is executed on a BACKBUFFER, the
returned x, y, and border-width will be zero.

If the Shape extension ShapeRectangles, ShapeMask, ShapeCombine, or
ShapeOffset request is executed on a double-buffered window, both buffers
are reshaped to match the new window shape. The region difference is the
following:

D = newshape− oldshape

It is tiled with the window background in both buffers, and Expose events are
generated for D.

Double Buffer Extension Specification 7

3.2 Complex Swap Actions

DBE has no explicit knowledge of ancillary buffers (for example, depth buffers
or alpha buffers), and only has a limited set of defined swap actions. Some
applications may need a richer set of swap actions than DBE provides. Some
DBE implementations have knowledge of ancillary buffers, and/or can provide
a rich set of swap actions. Instead of continually extending DBE to increase
its set of swap actions, DBE provides a flexible “idiom” mechanism. If an
application’s needs are served by the defined swap actions, it should use them;
otherwise, it should use the following method of expressing a complex swap
action as an idiom. Following this policy will ensure the best possible
performance across a wide variety of implementations.

As suggested by the term “idiom,” a complex swap action should be expressed
as a group/series of requests. Taken together, this group of requests may be
combined into an atomic operation by the implementation, in order to
maximize performance. The set of idioms actually recognized for optimization
is implementation dependent. To help with idiom expression and
interpretation, an idiom must be surrounded by two protocol requests:
DBEBeginIdiom and DBEEndIdiom. Unless this begin-end pair surrounds the
idiom, it may not be recognized by a given implementation, and performance
will suffer.

For example, if an application wants to swap buffers for two windows, and use
core X to clear only certain planes of the back buffers, the application would
issue the following protocol requests as a group, and in the following order:

• DBEBeginIdiom request.

• DBESwapBuffers request with XIDs for two windows, each of which uses
a swap action of Untouched.

• Core X PolyFillRectangle request to the back buffer of one window.

• Core X PolyFillRectangle request to the back buffer of the other
window.

• DBEEndIdiom request.

The DBEBeginIdiom and DBEEndIdiom requests do not perform any actions
themselves. They are treated as markers by implementations that can
combine certain groups/series of requests as idioms, and are ignored by other
implementations or for nonrecognized groups/series of requests. If these
requests are sent out of order, or are mismatched, no errors are sent, and the
requests are executed as usual, though performance may suffer.

Double Buffer Extension Specification 8

An idiom need not include a DBESwapBuffers request. For example, if a swap
action of Copied is desired, but only some of the planes should be copied, a
core X CopyArea request may be used instead of DBESwapBuffers. If
DBESwapBuffers is included in an idiom, it should immediately follow the
DBEBeginIdiom request. Also, when the DBESwapBuffers is included in an
idiom, that request’s swap action will still be valid, and if the swap action
might overlap with another request, then the final result of the idiom must be
as if the separate requests were executed serially. For example, if the specified
swap action is Untouched, and if a PolyFillRectangle using a client clip
rectangle is done to the window’s back buffer after the DBESwapBuffers
request, then the contents of the new back buffer (after the idiom) will be the
same as if the idiom was not recognized by the implementation.

It is highly recommended that Application Programming Interface (API)
providers define, and application developers use, “convenience” functions that
allow client applications to call one procedure that encapsulates common
idioms. These functions will generate the DBEBeginIdiom request, the idiom
requests, and DBEEndIdiom request. Usage of these functions will ensure best
possible performance across a wide variety of implementations.

4 C Language Binding

The header for this extension is <X11/extensions/Xdbe.h>. All identifier
names provided by this header begin with Xdbe.

4.1 Types

The type XdbeBackBuffer is a Drawable.

The type XdbeSwapAction can be one of the constants XdbeUndefined,
XdbeBackground, XdbeUntouched, or XdbeCopied.

4.2 C Functions

The C functions provide direct access to the protocol and add no additional
semantics. For complete details on the effects of these functions, refer to the
appropriate protocol request, which can be derived by replacing Xdbe at the
start of the function name with DBE. All functions that have return type
Status will return nonzero for success and zero for failure.

Double Buffer Extension Specification 9

Status
XdbeQueryExtension (Display * dpy, int * major version return,
int * minor version return)

XdbeQueryExtension sets major version return and minor version return to
the major and minor DBE protocol version supported by the server. If the
DBE library is compatible with the version returned by the server, it returns
nonzero. If dpy does not support the DBE extension, or if there was an error
during communication with the server, or if the server and library protocol
versions are incompatible, it returns zero. No other Xdbe functions may be
called before this function. If a client violates this rule, the effects of all
subsequent Xdbe calls that it makes are undefined.

XdbeScreenVisualInfo *
XdbeGetVisualInfo (Display * dpy, Drawable * screen specifiers, int *
num screens)

XdbeGetVisualInfo returns information about which visuals support double
buffering. The argument num screens specifies how many elements there are
in the screen specifiers list. Each drawable in screen specifiers designates a
screen for which the supported visuals are being requested. If num screens is
zero, information for all screens is requested. In this case, upon return from
this function, num screens will be set to the number of screens that were
found. If an error occurs, this function returns NULL; otherwise, it returns a
pointer to a list of XdbeScreenVisualInfo structures of length num screens.
The nth element in the returned list corresponds to the nth drawable in the
screen specifiers list, unless num screens was passed in with the value zero, in
which case the nth element in the returned list corresponds to the nth screen
of the server, starting with screen zero.

The XdbeScreenVisualInfo structure has the following fields:

int count number of items in visinfo
XdbeVisualInfo * visinfo list of visuals and depths for this screen

The XdbeVisualInfo structure has the following fields:

VisualID visual one visual ID that supports double-buffering
int depth depth of visual in bits
int perflevel performance level of visual

Double Buffer Extension Specification 10

void
XdbeFreeVisualInfo (XdbeScreenVisualInfo * visual info)

XdbeFreeVisualInfo frees the list of XdbeScreenVisualInfo returned by
XdbeGetVisualInfo.

XdbeBackBuffer
XdbeAllocateBackBufferName (Display * dpy, Window window,
XdbeSwapAction swap action)

XdbeAllocateBackBufferName returns a drawable ID used to refer to the
back buffer of the specified window. The swap action is a hint to indicate the
swap action that will likely be used in subsequent calls to XdbeSwapBuffers.
The actual swap action used in calls to XdbeSwapBuffers does not have to be
the same as the swap action passed to this function, though clients are
encouraged to provide accurate information whenever possible.

Status
XdbeDeallocateBackBufferName (Display * dpy, XdbeBackBuffer buffer)

XdbeDeallocateBackBufferName frees the specified drawable ID, buffer, that
was obtained via XdbeAllocateBackBufferName. The buffer must be a valid
name for the back buffer of a window, or an XdbeBadBuffer error results.

Status
XdbeSwapBuffers (Display * dpy, XdbeSwapInfo * swap info,
int num windows)

XdbeSwapBuffers swaps the front and back buffers for a list of windows. The
argument num windows specifies how many windows are to have their buffers
swapped; it is the number of elements in the swap info array. The argument
swap info specifies the information needed per window to do the swap.

The XdbeSwapInfo structure has the following fields:

Window swap window window for which to swap buffers
XdbeSwapAction swap action swap action to use for this swap window

Status
XdbeBeginIdiom (Display * dpy)

XdbeBeginIdiom marks the beginning of an idiom sequence. See section 3.2
for a complete discussion of idioms.

Double Buffer Extension Specification 11

Status
XdbeEndIdiom (Display * dpy)

XdbeEndIdiom marks the end of an idiom sequence.

XdbeBackBufferAttributes *
XdbeGetBackBufferAttributes (Display * dpy, XdbeBackBuffer buffer)

XdbeGetBackBufferAttributes returns the attributes associated with the
specified buffer.

The XdbeBackBufferAttributes structure has the following fields:

Window window window that buffer belongs to

If buffer is not a valid XdbeBackBuffer, window is set to None.

The returned XdbeBackBufferAttributes structure can be freed with the
Xlib function XFree.

4.3 Errors

The XdbeBufferError structure has the following fields:

int type
Display * display Display the event was read from
XdbeBackBuffer buffer resource id
unsigned long serial serial number of failed request
unsigned char error code error base + XdbeBadBuffer
unsigned char request code Major op-code of failed request
unsigned char minor code Minor op-code of failed request

Double Buffer Extension Specification 12

5 Acknowledgements

We wish to thank the following individuals who have contributed their time
and talent toward shaping the DBE specification:

T. Alex Chen, IBM; Peter Daifuku, Silicon Graphics, Inc.; Ian Elliott,
Hewlett-Packard Company; Stephen Gildea, X Consortium, Inc.; Jim Graham,
Sun; Larry Hare, AGE Logic; Jay Hersh, X Consortium, Inc.; Daryl Huff,
Sun; Deron Dann Johnson, Sun; Louis Khouw, Sun; Mark Kilgard, Silicon
Graphics, Inc.; Rob Lembree, Digital Equipment Corporation; Alan Ricker,
Metheus; Michael Rosenblum, Digital Equipment Corporation; Bob Scheifler,
X Consortium, Inc.; Larry Seiler, Digital Equipment Corporation; Jeanne
Sparlin Smith, IBM; Jeff Stevenson, Hewlett-Packard Company; Walter
Strand, Metheus; Ken Tidwell, Hewlett-Packard Company; and David P.
Wiggins, X Consortium, Inc.

Mark provided the impetus to start the DBE project. Ian wrote the first draft
of the specification. David served as architect.

6 References

Jeffrey Friedberg, Larry Seiler, and Jeff Vroom, “Multi-buffering Extension
Specification Version 3.3.”

Tim Glauert, Dave Carver, Jim Gettys, and David P. Wiggins, “X
Synchronization Extension Version 3.0.”

