#!/usr/bin/perl -w
# OOopict.pl
# (c) Copyright 2009 by H. Moeller (mollerh@math.uni-muenster.de).
# Version 1.6 for OpenOffice.org Draw , Apache OpenOffice Draw or LibreOffice Draw 
# with Perl 5.16, and with the LaTeX package 'pict2e' from 2008 
# or with 'pict2e' (2003) and 'ebezier'.
# This program may be distributed and/or modified under the conditions of the 
# LaTeX Project Public License, either version 1.3 of this license or 
# (at your option) any later version.
# The latest version of this license is in http://www.latex-project.org/lppl.txt.
# This program has the LPPL maintenance status "maintained by the author".
#
use POSIX('ceil','floor');
#________________________________________________________
# Definable by the user:
# Unitlength in pt:
$ul = 1.0;
# If your package pict2e is from 2008 or later (else: $pictnew = 0):
$pictnew = 1;
# Fill factor (for laser printer; for filling up to 360% zoom: $fillf=5)
$fillf = 10;
# Point factor (for points on dotted lines and curves):
$pointf = 0.3;
#________________________________________________________
# Constants:
# Constants in dotted figures:
$uli = sp(4 / $ul);
$ule = sp(0.8 / $ul);
$ulb = sp(1.2 / $ul);
# Color names:
$black = "0.0030.0030.003";
$navy = "0.0030.0030.503";
$green = "0.0030.5030.003";
$teal = "0.0030.5030.503";
$maroon = "0.5030.0030.003";
$purple = "0.5030.0030.503";
$olive = "0.5030.5030.003";
$blue = "0.0030.0031.000";
$lime = "0.0031.0000.003";
$cyan = "0.0031.0001.000";
$red = "1.0000.0030.003";
$magenta = "1.0000.0031.000";
#________________________________________________________
# Further Constants:
#Conversion factor to pt:
$cpt = 0.02845276;
# Greatest integer of Perl
$gi = 2147483647;
#________________________________________________________
@lines = <>;
do {
  $_ = $lines[$i++];
  if ((/ l  /o) or (/ ct /o) or (/ p[cs ][\se]/o)) {
    s/\d+ lw \d+ lj //go;
    s/ m //go;
    if (/ c /o) {
      s/(\d\.\d+) (\d\.\d+) (\d\.\d+) c //o;
      $c=$1.$2.$3." ";
    }
    $t="";
    $l="";
    $tflag=0;
    $fflag=0;
    while ($_ !~ (/p[cs ][\se]/o)) {
      if (/ ct /o) {
        $tflag=1;
        s/ ct / /go;
        /(.*)/o;
        $t.=$1;
      }
      elsif (/ l /o) {
        s/ l  / /go;
        s/ l / /o;
        /(.*)/o;
        $l.=$1;
      }
      $_ = $lines[$i++];
    }
    $fflag=($_ !~ (/p /o));
    if (/ ct /o) {
      $tflag=1;
      s/ ct / /go;
      /(.*\d)/o;
      $t.=$1;
    }
    elsif (/ l /o) {
      s/ l  / /go;
      s/ l / /o;
      /(.*\d)/o;
      $l.=$1;
    }
    if ($tflag and $fflag) {
      $curve[++$#curve] = $c.$t;
    }
    elsif ($fflag) {
      $polygon[++$#polygon] = $c.$l;
    }
  }
}
until $i == $#lines;
#
$sflag = 1;
$lt = 8;
$coun = 0;
$xtex = "";
$mtex = "";
$btex = "\\documentclass{article}\n";
if (not $pictnew) {
  $btex .= "\\usepackage{ebezier}\n";
}
#________________________________________________________
# Lines and polygons
$cflag = 1;
foreach (@polygon) {
  @po = split;
  $p0 = $po[0];
  $pon = $#po;
  if ($pon == 12) {$rec = abs($po[2] - $po[4]) + abs($po[3] - $po[5]) + 
    abs($po[6] - $po[8]) + abs($po[7] -$po[9]) + abs($po[10]- $po[12]) < 1.0E-4;
  }
  for (my $j = 1; $j <= $pon; $j++) {
    $po[$j] *= (-1)**($j+1)*$cpt;
  }
  if ($cflag) {
    $xtex .= "%Lines, arrows, polygons and quadratic B".chr(142)."zier curves\n";
    $cflag = 0;
  }
  if (($p0 ne $blue) and ($p0 ne $green)) {
    for (my $i = 1; $i <= $pon - 1; $i += 2) {
      bound($po[$i],$po[$i + 1]);
    }
  }
  if (($p0 eq $black) or ($p0 eq $lime) or ($p0 eq $maroon)
    or ($p0 eq $purple)) {
    if ($pon == 12 and $rec) {
      for (my $h = 3; $h <= 7; $h += 2) {
        lin($p0,$po[$h],$po[$h+1],$po[$h+2],$po[$h+3]);
      }
      lin($p0,$po[9],$po[10],$po[3],$po[4]);
    }
    else {
      for (my $i = 1; $i <= $pon - 3; $i += 2) {
        lin($p0,$po[$i],$po[$i+1],$po[$i+2],$po[$i+3]);
      }
    }
  }
  if (($p0 eq $teal) or ($p0 eq $navy)) {
    $xtex .= "%Arrow\n";
    $dx = $po[3] - $po[1];
    $dy = $po[4] - $po[2];
    $roo = sqrt($dx**2+$dy**2);
    $co = $dx / $roo;
    $si = $dy / $roo;
    $pxh = $po[3] - 4.8 * $co / $ul;
    $pyh = $po[4] - 4.8 * $si / $ul;
    $px2 = $pxh - 2.4 * $si / $ul;
    $py2 = $pyh + 2.4 * $co / $ul;
    $px3 = $pxh + 2.4 * $si / $ul;
    $py3 = $pyh - 2.4 * $co / $ul;
    bound($px2,$py2);
    bound($px3,$py3);
    $len = abs($dx);
    if ($len > 1.0E-3) {
      @p = best(abs($dy / $dx), 1000);
      $psx = $p[1] * ($dx <=> 0);
      $psy = $p[0] * ($dy <=> 0);
      $len = sp(abs($len - 4 * $len / ($roo * $ul)));
    }
    else {
      $psx = 0;
      $psy = ($dy <=> 0);
      $len = sp(abs(abs($dy) - 4 / $ul));
    }
    if ($p0 eq $teal) {
      $xb = sp($po[1]);
      $yb = sp($po[2]);
      if ($lt != 8) {
        $xtex .= "\\linethickness{0.8pt}\n";
        $lt = 8;
      }
      $xtex .= "\\put(".$xb.",".$yb."){\\line(".$psx.",".$psy."){".$len."}}\n";
    }
    else {
      $xe = $po[3] - $uli * $dx / $roo;
      $ye = $po[4] - $uli * $dy / $roo;
      lin($p0,$po[1],$po[2],$xe,$ye);
    }
    if ($lt != 12) {
      $xtex .= "\\linethickness{1.2pt}\n";
      $lt = 12;
    }
    $xtex .= "\\put(".sp($po[3]).",".sp($po[4])."){\\vector(".$psx.",".$psy."){0}}\n";
  }
  if (($p0 eq $red) or ($p0 eq $maroon) or ($p0 eq $olive)
    or ($p0 eq $purple) or ($p0 eq $magenta)) {
    if ($pon == 8) {
      tri($p0,$po[1],$po[2],$po[3],$po[4],$po[5],$po[6]);
    }
    elsif ($pon == 10) {
      ($p0,$u1,$v1,$u2,$v2,$u3,$v3,$u4,$v4,$u5,$v5) = @po;
      tri($p0,$u1,$v1,$u2,$v2,$u3,$v3);
      tri($p0,$u1,$v1,$u3,$v3,$u4,$v4);
    }
    elsif ($pon == 12) {
      ($p0,$u0,$v0,$u1,$v1,$u2,$v2,$u3,$v3,$u4,$v4,$u5,$v5) = @po;
      if ($rec) {
        rect($p0,$u1,$v1,$u2,$v2,$u3,$v3,$u4,$v4);
      }
      else {
        tri($p0,$u0,$v0,$u1,$v1,$u2,$v2);
        tri($p0,$u0,$v0,$u2,$v2,$u3,$v3);
        tri($p0,$u0,$v0,$u3,$v3,$u4,$v4);
      }
    }
    elsif ($pon > 12) {
      for (my $j = 3; $j <= $pon - 5; $j += 2) {
        tri($p0,$po[1],$po[2],$po[$j],$po[$j + 1],$po[$j + 2],$po[$j + 3]);
      }
    }
  }
  elsif ($p0 eq $cyan) {
# Text marker
    $coun++;
    $bo3 = $po[1] + ($po[3] - $po[1]) / $ul;
    $bo4 = $po[2] + ($po[4] - $po[2]) / $ul;
    bound($po[1],$po[2]);
    bound($bo3,$bo4);
    $po1 = sp($po[1]);
    $po2 = sp($po[2]);
    $mtex .= "\\put(".$po1.",".$po2."){".$coun."}\n";
  }
  elsif (($p0 eq $blue) or ($p0 eq $green)) {
      $xtex .= "%Quadratic B".chr(142)."zier curve\n";
      qbez($p0,$po[1],$po[2],$po[3],$po[4],$po[5],$po[6]);
  }
}
# Curves
$cflag = 1;
foreach (@curve) {
  @co = split;
  $c0 = $co[0];
  $con = $#co;
  if (($c0 eq $black) or ($c0 eq $lime)) {
    for (my $j = 1; $j <= $con; $j++) {
      $co[$j] *= (-1)**($j+1)*$cpt;
    }
    if ($cflag) {
      $xtex .= "%Cubic B".chr(142)."zier curves\n";
      $cflag = 0;
    }
    for (my $j = 3; $j <= $con - 5; $j += 6) {
      cbez($c0,$co[$j-2],$co[$j-1],$co[$j],$co[$j+1],$co[$j+2],$co[$j+3],
      $co[$j+4],$co[$j+5]);
    }
  }
}
#________________________________________________________
# Frame
if ($xtex . $mtex  ne "") {
  $xtex = $btex."\\usepackage[pdftex,pstarrows]{pict2e}\n\n".
  "\\begin{document}\n\n".
  "\\setlength{\\unitlength}{".$ul."pt}\n".
  "\\begin{picture}(".ceil(($xmax - $xmin)).",".
  ceil(($ymax - $ymin)).")(".floor($xmin).",".floor($ymin).")\n".
  "\\linethickness{0.8pt}\n".$xtex;
  $xtex .= $mtex."\\end{picture}\n\n\\end{document}";
}
print $xtex."\n";
#________________________________________________________
# Best pair for the slope of a line or an arrow
sub best {
  my ($x,$lsc) = @_;
  if ($x > 1000) {
    return (1,0);
  }
  elsif ($x < 0.001) {
    return (0,1);
  }
  else {
    if ($x =~ (/^\d+$/)) {
      return ($x,1);
    }
    else {
      if ($x < 1.0) {
        $num1 = floor($x * $gi);
        $den1 = $gi;
      }
      else {
        $num1 = $gi;
        $den1 = floor($gi / $x);
      }
      $r0 = $num1;
      $r1 = $den1;
      $q1 = 1;
      @li = (0);
      while ($r1 != 0) {
        $q1 = floor($r0 / $r1);
        $r2 = ($r0 % $r1);
        $r0 = $r1;
        $r1 = $r2;
        $li[++$#li] = $q1;
      }
      $num1 /= $r0;
      $den1 /= $r0;
      if ($num1 <= $lsc and $den1 <= $lsc) {
        return ($num1,$den1);
      }
      else {
        $n = $#li;
        @num = (1,$li[1]);
        @den = (0,1);
        $bnum = $li[1];
        $bden = 1;
        $i = 2;
        $numh = 0;
        $denh = 0;
        while (($numh <= $lsc and $denh <= $lsc) and $i <= $n) {
          $c = ($li[$i] >> 1);
          if (($li[$i] % 2) == 1) {
            $c++;
          }
          else {
            $j = 1;
            while (($i - $j >= 1 and $i + $j <= $n) and $li[$i - $j] == $li[$i + $j]) {
              $j++;
            }
            $dj = $i - $j;
            $sj = $i + $j;
            if (($dj >= 1 and $sj <= $n) and $li[$dj] != $li[$sj])  {
              $c += (($j + (($li[$sj] < $li[$dj]) ? 0 : 1)) % 2);
            }
            elsif ($dj == 0 and $sj <= $n) {
              $c += ($j % 2);
            }
            elsif ($dj >= 1 and $sj == $n + 1) {
              $c += (($j + 1) % 2);
            }
            elsif (($dj == 0 and $sj == $n + 1) or ($dj == 2 and
            $sj == $n and $li[1] == 1 and $li[2] + 1 == $li[$n]) or
            ($dj == 1 and $sj == $n - 1 and $li[$n] == 1
            and $li[$n - 1] + 1 == $li[1])) {
              $c++;
            }
          }
          $k = $c;
          while ($k <= $li[$i]) {
            $numh = $k * $num[$i - 1] + $num[$i - 2];
            $denh = $k * $den[$i - 1] + $den[$i - 2];
            if ($numh > $lsc or $denh > $lsc) {
              last;
            }
            $bnum = $numh;
            $bden = $denh;
            if ($k == $li[$i]) {
              $num[$i] = $numh;
              $den[$i] = $denh;
            }
            $k++;
          }
          $i++;
        }
        return ($bnum,$bden);
      }
    }
  }
}
#________________________________________________________
# Lines
sub lin {
  my ($c,$xb,$yb,$xe,$ye) = @_;
  if (($c eq $black) or ($c eq $maroon) or ($c eq $purple)) {
    $dx = $xe - $xb;
    $dy = $ye - $yb;
    $le = abs($dx);
    if ($le > 1.0E-3) {
      if ($pictnew) {
        @p = best(abs($dy / $dx), 16383);
      }
      else {
        @p = best(abs($dy / $dx), 1000);
      }
      $psx = $p[1] * ($dx <=> 0);
      $psy = $p[0] * ($dy <=> 0);
    }
    else {
      $psx = 0;
      $psy = ($dy <=> 0);
      $le = abs($dy);
    }
    $xbu = sp($xb);
    $ybu = sp($yb);
    $leu = sp($le);
    if ($lt != 8) {
      $xtex .= "\\linethickness{0.8pt}\n";
      $lt = 8;
    }
    $xtex .= "\\put(".$xbu.",".$ybu."){\\line(".$psx.",".$psy."){".$leu."}}\n";
  }
  elsif (($c eq $lime) or ($c eq $navy)) {
# Dotted line
    $dx = $xe - $xb;
    $dy = $ye - $yb;
    $le = floor($pointf * $ul * (sqrt($dx**2 + $dy**2))) + 1;
    if ($le > 1) {
      $xbu = sp($xb - $ulb / 2);
      $ybu = sp($yb);
      $xiu = sp($dx / ($le - 1));
      $yiu = sp($dy / ($le - 1));
      if ($lt != 12) {
        $xtex .= "\\linethickness{1.2pt}\n";
        $lt = 12;
      }
      $xtex .= "\\multiput(".$xbu.",".$ybu.")(".$xiu.",".$yiu;
      $xtex .= "){".$le."}{\\line(1,0){".$ulb."}}\n";
    }
  }
}
#________________________________________________________
# Triangles
sub tri {
my ($q0,$qx1,$qy1,$qx2,$qy2,$qx3,$qy3) = @_;
  $qx1 *= $ul;
  $qy1 *= $ul;
  $qx2 *= $ul;
  $qy2 *= $ul;
  $qx3 *= $ul;
  $qy3 *= $ul;
  if ($q0 eq $red) {
# Filled triangle
    %ha = ($qx1,$qy1,$qx2+1e-07,$qy2+1e-07,$qx3+2e-07,$qy3+2e-07);
    @hb = ();
    @hc = ();
    foreach (sort { $ha{$a} <=> $ha{$b} } keys %ha) {
      $hb[++$#hb] = $_;
      $hc[++$#hc] = $ha{$_};
    }
    ($qx1,$qx2,$qx3) = @hb;
    ($qy1,$qy2,$qy3) = @hc;
    $lin = floor(($qy3 - $qy1) * $fillf);
    $xtex .= "%Filled triangle\n";
    if ($lt != 1) {
      $xtex .= "\\linethickness{0.1pt}\n";
      $lt = 1;
    }
    $si = ($qy3 - $qy1) * $qx2 - ($qx3 - $qx1) * $qy2 - $qx1 * $qy3 + $qx3 * $qy1 <=> 0;
    $dex = ($qx3 - $qx1) / ($qy3 - $qy1) / $fillf;
    $d1 = $qy2 - $qy1;
    $d2 = $qy3 - $qy2;
    if ($d1 >= 1.0E-3) {
      $fx1 = ($qx2 - $qx1) / $d1;
      $sx1 = $qx1 - $qy1 * $fx1;
    }
    if ($d2 >= 1.0E-3) {
      $fx2 = ($qx3 - $qx2) / $d2;
      $sx2 = $qx2 - $qy2 * $fx2;
    }
    for ($k = 1; $k <= $lin; $k++) {
      $xb = $qx1 + $k * $dex;
      $yb = $qy1 + $k / $fillf;
      if ($yb <= $qy2) {
        if ($d1 >= 1.0E-3) {
          $leu = sp((abs($sx1 + $yb * $fx1 - $xb) + 0.5)/ $ul);
        }
        else {
          $leu = sp((abs($qx2 - $qx1) + 0.5)/ $ul);
        }
      }
      else {
        if ($d2 >= 1.0E-3) {
          $leu = sp((abs($sx2 + $yb * $fx2 - $xb) + 0.5)/ $ul);
        }
        else {
          $leu = sp((abs($qx3 - $qx2) + 0.5)/ $ul);
        }
      }
      if ($si > 0) {
        $xbu = sp($xb / $ul);
      }
      else {
        $xbu = sp($xb / $ul);
      }
      $ybu = sp($yb / $ul);
      $xtex .= "\\put(".$xbu.",".$ybu."){\\line(".$si.",0){".$leu."}}\n";
    }
  }
  elsif (($q0 eq $purple) or ($q0 eq $magenta)) {
# Dotted triangle
    %ha = ($qx1,$qy1,$qx2+1e-07,$qy2+1e-07,$qx3+2e-07,$qy3+2e-07);
    @hb = ();
    @hc = ();
    foreach (sort { $ha{$a} <=> $ha{$b} } keys %ha) {
      $hb[++$#hb] = $_;
      $hc[++$#hc] = $ha{$_};
    }
    ($qx1,$qx2,$qx3) = @hb;
    ($qy1,$qy2,$qy3) = @hc;
    $xtex .= "%Dotted triangle\n";
    if ($lt != 8) {
      $xtex .= "\\linethickness{0.8pt}\n";
      $lt = 8;
    }
    $si = ($qy3 - $qy1) * $qx2 - ($qx3 - $qx1) * $qy2 - $qx1 * $qy3 + $qx3 * $qy1 <=> 0;
    $dy1 = 2 * ceil($qy1 / 2);
    $dy3 = 2 * floor($qy3 / 2);
    $lin = $dy3 - $dy1;
    $dex = ($qx3 - $qx1) / ($qy3 - $qy1);
    $xbh = $qx1 + ($dy1 - $qy1 - 2.0) * $dex;
    $dex = 2 * $dex;
    $d1 = $qy2 - $qy1;
    $d2 = $qy3 - $qy2;
    if ($d1 >= 1.0E-3) {
      $fx1 = ($qx2 - $qx1) / $d1;
      $sx1 = $qx1 + ($dy1 - $qy1) * $fx1;
    }
    if ($d2 >= 1.0E-3) {
      $fx2 = ($qx3 - $qx2) / $d2;
      $sx2 = $qx2 + ($dy1 - $qy2) * $fx2;
    }
    for ($k = 0; $k <= $lin; $k += 2) {
      $qy = $dy1 + $k;
      $xbh = $xbh + $dex;
      ($si > 0) ? ($xb = $xbh) : ($xe = $xbh);
      if ($qy <= $qy2) {
        ($d1 >= 1.0E-3) ? ($xeh = $sx1 + $k * $fx1) : ($xeh = $qx1);
      }
      else {
        ($d2 >= 1.0E-3) ? ($xeh = $sx2 + $k * $fx2) : ($xeh = $qx2);
      }
      ($si > 0) ? ($xe = $xeh) : ($xb = $xeh);
      $xb = 2 * ceil($xb / 2);
      $xbd = $xb + (($xb + $qy) % 4);
      ($xe >= $xbd) ? ($num = floor(($xe - $xbd) / 4) + 1) : ($num = 0);
      $xbu = sp($xbd / $ul - $ule / 2);
      $qyu = sp($qy / $ul);
      $xtex .= "\\multiput(".$xbu.",".$qyu.")(".$uli.",0){".$num;
      $xtex .= "}{\\line(1,0){".$ule."}}\n";
    }
  }
  elsif (($q0 eq $maroon) or ($q0 eq $olive)) {
# Hatched triangle
    $xtex .= "%Hatched triangle\n";
    if ($lt != 8) {
      $xtex .= "\\linethickness{0.8pt}\n";
      $lt = 8;
    }
    $d1 = $qx1 - $qy1;
    $d2 = $qx2 - $qy2;
    $d3 = $qx3 - $qy3;
    $qd1 = $d1;
    $qd2 = $d2;
    $qd3 = $d3;
    %ha = ($qx1,$qd1,$qx2+1e-07,$qd2+1e-07,$qx3+2e-07,$qd3+2e-07);
    @hb = ();
    foreach (sort { $ha{$a} <=> $ha{$b} } keys %ha) {
      $hb[++$#hb] = $_;
    }
    ($qx1,$qx2,$qx3) = @hb;
    %ha = ($qy1,$qd1,$qy2+1e-07,$qd2+1e-07,$qy3+2e-07,$qd3+2e-07);
    @hb = ();
    @hc = ();
    foreach (sort { $ha{$a} <=> $ha{$b} } keys %ha) {
      $hb[++$#hb] = $_;
      $hc[++$#hc] = $ha{$_};
    }
    ($qy1,$qy2,$qy3) = @hb;
    ($d1,$d2,$d3) = @hc;
    $si = (-$qy3 + $qy1) * $qx2 + ($qx3 - $qx1) * $qy2 + $qx1 * $qy3 - $qx3 * $qy1 <=> 0;
    $p1 = 4 * ceil($d1 / 4);
    $p2 = 4 * floor($d2 / 4);
    $p3 = 4 * floor($d3 / 4);
    $fx1 = ($qx1 - $qx3) / ($d3 - $d1);
    $sx1 = $qx3 + $fx1 * $d3;
    $fy1 = ($qy1 - $qy3) / ($d3 - $d1);
    $sy1 = $qy3 + $fy1 * $d3;
    $d21 = $d2 - $d1;
    $d32 = $d3 - $d2;
    if ($d21 >= 1.0E-3) {
      $fx2 = ($qx1 - $qx2) / $d21;
      $sx2 = $qx2 + $fx2 * $d2;
    }
    if ($d32 >= 1.0E-3) {
      $fx3 = ($qx2 - $qx3) / $d32;
      $sx3 = $qx3 + $fx3 * $d3;
    }
    for ($k = $p1; $k <= $p3; $k += 4) {
      $xbk = $sx1 - $k * $fx1;
      $ybk = $sy1 - $k * $fy1;
      if ($k <= $p2) {
        ($d21 < 1.0E-3) ? ($le = abs($qx2 - $qx1)) : ($le = abs($sx2 - $k * $fx2 - $xbk));
      }
      else {
        ($d32 < 1.0E-3) ? ($le = abs($qx3 - $qx2)) : ($le = abs($sx3 - $k * $fx3 - $xbk));
      }
      $xbk = sp($xbk / $ul);
      $ybk = sp($ybk / $ul);
      $le = sp($le / $ul);
      $xtex .= "\\put(".$xbk.",".$ybk."){\\line(".$si.",".$si."){".$le."}}\n";
    }
  }
}
#________________________________________________________
# Rectangles
sub rect {
  my ($q0,$x1,$y1,$x2,$y2,$x3,$y3,$x4,$y4) = @_;
  $dx = abs($x2 - $x1);
  $dx = ($dx < 1.0E-6) ? abs($x3 -$x2) : $dx;
  $dx = $dx * $ul;
  $xb = ($x1 < $x2) ? (($x1 < $x3) ? $x1 : $x3) : (($x2 < $x3) ? $x2 : $x3);
  $xb = $xb * $ul;
  $dy = abs($y2 - $y1);
  $dy = ($dy < 1.0E-6) ? abs($y3 -$y2) : $dy;
  $dy = $dy * $ul;
  $yb = ($y1 < $y2) ? (($y1 < $y3) ? $y1 : $y3) : (($y2 < $y3) ? $y2 : $y3);
  $yb = $yb * $ul;
  $xe = $xb + $dx;
  $ye = $yb + $dy;
# Filled rectangle
  if ($q0 eq $red) {
    $xtex .= "%Filled rectangle\n";
    if ($lt != 1) {
      $xtex .= "\\linethickness{0.1pt}\n";
      $lt = 1;
    }
    $xbu = sp($xb / $ul);
    $ybu = sp($yb / $ul);
    if ($dy <= $dx) {
      $lin = floor($fillf * $dy);
      $dxu = sp($dx / $ul);
      $ybi = sp(1.0 / ($fillf * $ul));
      $xtex .= "\\multiput(".$xbu.",".$ybu.")(0,".$ybi."){".$lin;
      $xtex .= "}{\\line(1,0){".$dxu."}}\n";
    }
    else {
      $lin = floor($fillf * $dx);
      $dyu = sp($dy / $ul);
      $xbi = sp(1.0 / ($fillf * $ul));
      $xtex .= "\\multiput(".$xbu.",".$ybu.")(".$xbi.",0){".$lin;
      $xtex .= "}{\\line(0,1){".$dyu."}}\n";
    }
  }
# Dotted rectangle
  elsif (($q0 eq $purple) or ($q0 eq $magenta)) {
    $xtex .= "%Dotted rectangle\n";
    if ($lt != 8) {
      $xtex .= "\\linethickness{0.8pt}\n";
      $lt = 8;
    }
    $xbb = 2 * ceil($xb / 2);
    $ybb = 2 * ceil($yb / 2);
    for ($k = 0; $k <= 2; $k += 2) {
      $ybd = $ybb + $k;
      $xbd = $xbb + (($xbb + $ybd) % 4);
      $numx = floor(($xe - 0.13 - $xbd) / 4) + 1;
      $numy = floor(($ye - 0.13 - $ybd) / 4) + 1;
      $xbu = sp($xbd / $ul - $ule / 2);
      $ybu = sp($ybd / $ul);
      $xtex .= "\\multiput(".$xbu.",".$ybu.")(".$uli.",0){".$numx."}\n";
      $xtex .= "{\\begin{picture}(0,0)\\multiput(0,0)(0,".$uli."){";
      $xtex .= $numy."}\n{\\line(1,0){".$ule."}}\\end{picture}}\n";
    }
  }
# Hatched rectangle
  elsif (($q0 eq $maroon) or ($q0 eq $olive)) {
    $xtex .= "%Hatched rectangle\n";
    if ($lt != 8) {
      $xtex .= "\\linethickness{0.8pt}\n";
      $lt = 8;
    }
    $p1 = 4 * ceil(($xb - $ye) / 4);
    if ($dx >= $dy) {
      $p2 = 4 * floor(($xb - $yb) / 4) + 4;
      $p3 = 4 * floor(($xe - $ye) / 4) + 4;
      $xp = $yb + $p2;
      $yp = $yb;
      $lp = $dy;
      $ip1 = 4;
      $ip2 = 0;
    }
    else {
      $p3 = 4 * floor(($xb - $yb) / 4) + 4;
      $p2 = 4 * floor(($xe - $ye) / 4) + 4;
      $xp = $xb;
      $yp = $xb - $p2;
      $lp = $dx;
      $ip1 = 0;
      $ip2 = -4;
    }
    $p4 = 4 * floor(($xe - $yb) / 4);
    for ($k = $p1; $k <= $p2 - 4; $k += 4) {
      $xbu = sp($xb / $ul);
      $ybu = sp(($xb - $k) / $ul);
      $le = sp(($ye - $xb + $k) / $ul);
      $xtex .= "\\put(".$xbu.",".$ybu."){\\line(1,1){".$le."}}\n";
    }
    $np = ($p3 - $p2) / 4;
    if ($p3 > $p2) {
        $xpu = sp($xp / $ul);
        $ypu = sp($yp / $ul);
        $ip1u = sp($ip1 / $ul);
        $ip2u = sp($ip2 / $ul);
        $lpu = sp($lp / $ul - 0.1);
        $xtex .= "\\multiput(".$xpu.",".$ypu.")(".$ip1u.",".$ip2u;
        $xtex .= "){".$np."}{\\line(1,1){".$lpu."}}\n";
    }
    for ($k = $p3; $k <= $p4; $k += 4) {
      $xbu = sp(($yb + $k) / $ul);
      $ybu = sp($yb / $ul);
      $leu = sp(($xe - $yb - $k) / $ul);
      $xtex .= "\\put(".$xbu.",".$ybu."){\\line(1,1){".$leu."}}\n";
    }
  }
}
#________________________________________________________
# Quadratic Bézier curves
sub qbez {
  my ($q0,$x1,$y1,$x2,$y2,$x3,$y3) = @_;
  my $xb = $x1;
  my $yb = $y1;
  my $len = 0.0;
  for ($t = 0.02; $t <= 1.0; $t += 0.02) {
    bound($xb,$yb);
    $s = 1.0 - $t;
    $xe = $s * ($s * $x1 + $t * $x2) + $t * ($s * $x2 + $t * $x3);
    $ye = $s * ($s * $y1 + $t * $y2) + $t * ($s * $y2 + $t * $y3);
    $len += sqrt(($xe - $xb)**2 + ($ye - $yb)**2);
    $xb = $xe;
    $yb = $ye;
  }
  bound($x3,$y3);
  $x1 = sp($x1);
  $y1 = sp($y1);
  $x2 = sp($x2);
  $y2 = sp($y2);
  $x3 = sp($x3);
  $y3 = sp($y3);
  if ($q0 eq $green) {
    $le = floor($pointf * $ul * $len);
    if ($lt != 12) {
      $xtex .= "\\linethickness{1.2pt}\n";
      $lt = 12;
    }
    if ($pictnew) {
      $xtex .= "\\qbezier[";
    }
    else {
      $xtex .= "\\Qbezier[";
    }
    $xtex .= $le."](".$x1.",".$y1.")(".$x2.",".$y2.")(".$x3.",".$y3.")\n";
  }
  elsif ($q0 eq $blue) {
    if ($lt != 8) {
      $xtex .= "\\linethickness{0.8pt}\n";
      $lt = 8;
    }
    $xtex .= "\\qbezier(".$x1.",".$y1.")(".$x2.",".$y2;
    $xtex .= ")(".$x3.",".$y3.")\n";
  }
}
#________________________________________________________
# Cubic Bézier curves
sub cbez {
  my ($q0,$x1,$y1,$x2,$y2,$x3,$y3,$x4,$y4) = @_;
  my $xb = $x1;
  my $yb = $y1;
  if ($q0 eq $black) {
    for ($t = 0.02; $t <= 1.0; $t += 0.02) {
      bound($xb,$yb);
      $s = 1.0 - $t;
      $u1 = $s * $x1 + $t * $x2;
      $v1 = $s * $y1 + $t * $y2;
      $u2 = $s * $x2 + $t * $x3;
      $v2 = $s * $y2 + $t * $y3;
      $u3 = $s * $x3 + $t * $x4;
      $v3 = $s * $y3 + $t * $y4;
      $xe = $s * ($s * $u1 + $t * $u2) + $t * ($s * $u2 + $t * $u3);
      $ye = $s * ($s * $v1 + $t * $v2) + $t * ($s * $v2 + $t * $v3);
      $xb = $xe;
      $yb = $ye;
    }
    bound($x4,$y4);
    $x1 = sp($x1);
    $y1 = sp($y1);
    $x2 = sp($x2);
    $y2 = sp($y2);
    $x3 = sp($x3);
    $y3 = sp($y3);
    $x4 = sp($x4);
    $y4 = sp($y4);
    if ($lt != 8) {
      $xtex .= "\\linethickness{0.8pt}\n";
      $lt = 8;
    }
    $xtex .= "\\cbezier(".$x1.",".$y1.")(".$x2.",".$y2.")(".$x3.",".$y3.")(".$x4.",".$y4.")\n";
  }
  elsif ($q0 eq $lime) {
    if ($lt != 12) {
      $xtex .= "\\linethickness{1.2pt}\n";
      $lt = 12;
    }
    my $len = 0.0;
    for ($t1 = 0.02; $t1 <= 1.0; $t1 += 0.02) {
      bound($xb,$yb);
      $s1 = 1.0 - $t1;
      $u1 = $s1 * $x1 + $t1 * $x2;
      $v1 = $s1 * $y1 + $t1 * $y2;
      $u2 = $s1 * $x2 + $t1 * $x3;
      $v2 = $s1 * $y2 + $t1 * $y3;
      $u3 = $s1 * $x3 + $t1 * $x4;
      $v3 = $s1 * $y3 + $t1 * $y4;
      $xe = $s1 * ($s1 * $u1 + $t1 * $u2) + $t1 * ($s1 * $u2 + $t1 * $u3);
      $ye = $s1 * ($s1 * $v1 + $t1 * $v2) + $t1 * ($s1 * $v2 + $t1 * $v3);
      $len += sqrt(($xe - $xb)**2 + ($ye - $yb)**2);
      $xb = $xe;
      $yb = $ye;
    }
    bound($x4,$y4);
    $le = floor($pointf * $ul * $len);
    $dflag = 0;
    if ($le >= 4) {
      @px = ();
      @py = ();
      @qx = ();
      @qy = ();
      @r = ();
      @de = ();
      @xh = ();
      @yh = ();
      for (my $k = 0; $k <= 4; $k++) {
        $tk = $k / 4;
        $sk = 1.0 - $tk;
        $px[++$#px]=$sk**3*$x1+3*$sk**2*$tk*$x2+3*$sk*$tk**2*$x3+$tk**3*$x4;
        $py[++$#py]=$sk**3*$y1+3*$sk**2*$tk*$y2+3*$sk*$tk**2*$y3+$tk**3*$y4;
        $qx[++$#qx]=3.0*(-$sk**2*$x1+$sk*(1-3*$tk)*$x2+$tk*(2-3*$tk)*$x3+
        $tk**2*$x4);
        $qy[++$#qy]=3.0*(-$sk**2*$y1+$sk*(1-3*$tk)*$y2+$tk*(2-3*$tk)*$y3+
        $tk**2*$y4);
        $r[++$#r] = $px[$k] * $qy[$k] - $py[$k] * $qx[$k];
      }
      for (my $i = 0; $i <=3; $i++) {
        $det = $qx[$i] * $qy[$i+1] - $qy[$i]*$qx[$i+1];
        if (abs($det) < 1.0E-10) {
          last;
        }
        $de[++$#de] = $det;
        $xh[++$#xh] = ($qx[$i] * $r[$i+1] - $r[$i]*$qx[$i+1]) / $det;
        $yh[++$#yh] = ($qy[$i] * $r[$i+1] - $r[$i]*$qy[$i+1]) / $det;
      }
      if ($#de == 3) {
        $le = ceil($le / 4);
        for (my $i = 0; $i <=3; $i++) {
          $x1 = sp($px[$i]);
          $y1 = sp($py[$i]);
          $x2 = sp($xh[$i]);
          $y2 = sp($yh[$i]);
          $x3 = sp($px[$i+1]);
          $y3 = sp($py[$i+1]);
          if ($pictnew) {
            $xtex .= "\\qbezier[";
          }
          else {
            $xtex .= "\\Qbezier[";
          }
          $xtex .= $le."](".$x1.",".$y1.")(".$x2.",".$y2.")(".$x3.",".$y3.")\n";
        }
        $dflag = 1;
      }
    }
    if (not $dflag) {
      $xb = $x1;
      $yb = $y1;
      $le = 1/ceil($pointf * $ul * $len);
      $xc = sp($xb - $ulb / 2);
      $yc = sp($yb);
      for ($t = $le; $t <= 1.0 + $le; $t += $le) {
        $xtex .= "\\put(".$xc.",".$yc."){\\line(1,0){".$ulb."}}\n";
        $s = 1.0 - $t;
        $u1 = $s * $x1 + $t * $x2;
        $v1 = $s * $y1 + $t * $y2;
        $u2 = $s * $x2 + $t * $x3;
        $v2 = $s * $y2 + $t * $y3;
        $u3 = $s * $x3 + $t * $x4;
        $v3 = $s * $y3 + $t * $y4;
        $xe = $s * ($s * $u1 + $t * $u2) + $t * ($s * $u2 + $t * $u3);
        $ye = $s * ($s * $v1 + $t * $v2) + $t * ($s * $v2 + $t * $v3);
        $xb = $xe;
        $yb = $ye;
        $xc = sp($xb - $ulb / 2);
        $yc = sp($yb);
      }
      $xc = sp($x4 - $ulb / 2);
      $yc = sp($y4);
      $xtex .= "\\put(".$xc.",".$yc."){\\line(1,0){".$ulb."}}\n";
    }
  }
}
#________________________________________________________
# Bounding box
sub bound {
  my ($xn,$yn) = @_;
  if ($sflag) {
    $xmin = $xn;
    $xmax = $xn;
    $ymin = $yn;
    $ymax = $yn;
    $sflag = 0;
  }
  else {
    if ($xn < $xmin) {$xmin = $xn} elsif ($xmax < $xn) {$xmax = $xn}
    if ($yn < $ymin) {$ymin = $yn} elsif ($ymax < $yn) {$ymax = $yn}
  }
}
#________________________________________________________
# Sprintf
sub sp {
  my $x = shift;
  return sprintf("%.3f",$x) + 0;
}
#________________________________________________________
