
Qt

Cross-platform C++ GUI Application Framework

Technical Overview

© 1999 Trolltech AS

2 Qt – A Technical Overview

Contents

Introduction.. 3

Architecture.. 4

Cross-Platform Development... 4

Layered versus Emulating Architectures ... 4

Native-API Emulation Libraries .. 7

Performance ... 7

API design.. 8

Signals and Slots .. 8

Internationalization .. 9

Graphical User Interfaces ...11

Basic Concepts... 11

User Interface Composition ...11

Custom Widget Classes ...11

Layout Management ..13

Graphics..15

Device Independent Graphics ..15

Special Paint Devices... 15

The 2D Graphics API... 15

Image Handling.. 17

3D Graphics ... 17

Tool Classes ..19

Operating System Services ..19

Text Classes ... 20

Collection Classes.. 21

Appendix 1: Widget Set...22

Ready-made Dialogs.. 24

Appendix 2: Complete API Class List ...25

Qt – A Technical Overview 3

Introduction
Software producers have for many years had to face the problem of how to target

a market consisting of a diversity of operating systems and window systems. There

are no indications that this situation is about to change. It is now seen that the early

nineties’ rumors of the impending death of Unix were very much exaggerated. The

current boom of Linux, and its positioning as a competitor on the desktop, makes it

clear that the software market will continue to consist of many different platforms

in the foreseeable future.

A major challenge in targeting multiple platforms is the cost of developing and

maintaining an application for several different platforms. Because of the inherent

differences between the platforms, the porting of an application to a new platform

will in practice often involve redesign and re-implementation.

This white paper presents Qt, a software development application framework that

solves many of the greatest challenges of cross-platform application development and

maintenance. It explains the principles of how software developers can use Qt to

create single code base applications for end-users on different platforms.

Qt is a product of Trolltech. It has been on the market since 1995, and is used by

leading companies like HP, IBM, Intel, Siemens, Xerox, etc. Qt is particularly widely

used on Linux, where it forms the basis of the popular KDE desktop environment.

A detailed presentation of all the functionality provided by Qt is outside the scope of

this document. Further technical information is available in:

 • The Qt Reference Documentation. Available on-line at www.trolltech.com/qt.

 • Programming with Qt, by Matthias Kalle Dalheimer. O’Reilly, 1999.

Qt is a continuously evolving toolkit. This document presents the main features of the

current version of Qt. At the time of writing, this is version 2.0.

Further information about Qt is available at the Trolltech web site:

www.trolltech.com

Qt is a trademark of Trolltech AS.

All other company and product names are trademarks or registered trademarks of their respective owners.

4 Qt – A Technical Overview

Architecture
Qt is a cross-platform C++ application framework. It is implemented as a class

library and provides a rich API (Application Programmer’s Interface) to application

developers. Qt provides a wide spectrum of generally useful functionality, but the

main focus is on the GUI (Graphical User Interface). Thus, for application developers

Qt replaces Motif, MFC, and/or other GUI toolkits.

Cross-Platform Development
Qt is cross-platform, in the sense that the Qt class library is implemented for several

different operating and window systems. The API is identical for all platforms.

This means that an application written with Qt on one platform can be made to

run on another by simply recompiling it on the new platform, and linking it with

the Qt library for that platform. Thus, with Qt, software producers can develop

and maintain an application for multiple platforms by developing and maintaining a

single application source code base.

Qt is currently implemented for two main groups of operating systems:

 • Unix: This covers Linux, HP-UX, Sun Solaris, Digital Unix, SGI Irix, IBM

AIX, SCO Unix, and several BSD variants. The Qt library is implemented

using the X11 libraries, and uses the X Window system.

 • Windows: Covers Windows 95, 98, and NT. The Qt library is implemented

using the Windows GDI API, and uses the Microsoft Windows window system.

Implementations for other operating and window systems are planned.

The Qt library code is designed to be extremely portable. All major hardware archi-

tectures for the various operating systems are supported, including 64 bit systems.

The Unix / X11 implementation is successfully employed in commercial use on not

only the operating systems mentioned above, but also on real-time operating systems

like QNX and VxWorks. It is also being used on OS/2 Warp using the XFree86

X server.

Layered versus Emulating Architectures
When designing a cross-platform library like Qt, one can take two fundamentally

different approaches. Either, one can choose to build a wrapper API on top of the

native GUI components (widgets), i.e. MFC on Windows and Motif on Unix – a

layered architecture. Or, one can choose to build a toolkit directly on top of the

Application

The Qt API:

Qt/Windows Qt/X11

Xlib

X11 Server

GDI

Windows

Qt – A Technical Overview 5

lowest level provided by the platforms, e.g. the GDI on Windows and Xlib on Unix.

The cross-platform library must then implement all the necessary widgets using its

own API, and emulate the look and feel of the underlying platform. Hence, this is

called an emulating architecture.

This kind of emulating libraries should not be confused with the libraries that emulate

one native API on top of another, e.g. an MFC emulator for Unix / X11. This is a

very different architecture, and will be discussed later.

In the cross-platform GUI library industry, the pros and cons of the two types

of architecture has been discussed for years. Initially, the layered architecture was

generally perceived to be preferable. Hence, when this industry boomed for the fi rst

time in the late eighties, most products were layered. However, the nineties have seen

many of these products fail, being no longer maintained nor supported.

Qt is designed with an emulating architecture. In the following, the main issues in

the layered vs. emulating architecture discussion will be presented, together with the

reasons why the emulating solution was chosen for Qt.

Look and Feel

The main argument in favor of the layered approach is that it is the only way

to achieve exact conformance with the native look and feel. An emulating toolkit

must, as the name implies, emulate the native GUI elements, and this emulation will

unavoidably be imperfect. The strength of this argument builds on two assumptions:

 • Users will resent applications with even the slightest variations in look and feel.

 • The emulating toolkit’s task of keeping up with the changes and developments

in the OS’s native look and feel is insurmountable.

However, though these assumptions were relevant 5 to 10 years ago, the situation

is now different. At that time, there were many contenders for the position as the

standard GUI: Windows, OS/2 Presentation Manager, Macintosh, Motif, and others.

The ensuing “religious wars” made users extremely sensitive on look and feel issues.

Today, this battle is no longer the order of the day, and with the introduction of

Java and other technologies, a diffusion of the strict look and feel standards has

taken place. Microsoft itself introduces minor changes in their products’ look and feel

with every major version of Windows and Microsoft Offi ce. Since applications do

not keep up with this development (not even Microsoft’s own; compare for example

the look and feel of the menus and fi le dialogs of “Notepad” and “Word”), users

Application

Qt

Xlib

Motif

Xt

Xlib

Application

Layered Toolkit

6 Qt – A Technical Overview

have become accustomed to slight deviations in look and feel between applications.

Though not desirable, such deviations are no longer perceived to be anything like a

show-stopper for an application.

The second argument is also becoming increasingly irrelevant. The late eighties and

early nineties was a time of rapid development of look and feel, and major changes

like the change from Windows 3.1 to Windows 95 took place. Keeping an emulation

toolkit up to date in this period would have been a diffi cult task indeed. However,

in the later years the pace of native look and feel development has slowed down

considerably. For example, no Windows version since Windows 95 has introduced

anything more than minor extensions and variations, as mentioned above. It seems

highly probable that this trend will continue, because of the sheer number of users

that by now have been trained in, and become accustomed to, the industry-standard

look and feels. Thus, it is now feasible to keep an emulating toolkit quite well

up-to-date.

When considering the look and feel argument, it should also be noted that even

a layered toolkit will be forced to resort to emulation if it wants to provide GUI

elements that are not offered by the native GUI. The alternative is to be a so-called

least common denominator toolkit, which is not a satisfactory solution. Furthermore,

custom GUI elements must also use emulation, even in a layered toolkit.

Qt solves the look and feel issue by doing close emulation of the native look and

feel standard. All visual elements in Qt are implemented with a dynamic look and

feel. This means that they will present themselves to the user (slightly) differently

depending on the application’s currently selected look and feel style, or “theme”. A

Qt-based application can employ any look and feel style on any platform, and the

style can even be changed at run-time. Qt provides the following default styles:

 • Motif style: Emulates the classic Motif look and feel. This is the default style of

Qt-based applications running under X11.

 • CDE style: A variation of the Motif style which emulates the lighter Motif look

and feel that has become popular in the recent years.

 • Windows style: closely emulates the Windows look and feel. This is the default

style of Qt-based applications running under Windows.

In addition, an API is provided for implementing custom styles. This means that

for applications that have special demands regarding visual appearance, e.g. a kiosk

application, it is straightforward for the programmer to implement a custom look

and feel. All visual elements in Qt will then present themselves using this custom

look and feel style.

In contrast, a layered architecture cannot provide the option of using a non-native

style, and it cannot let the programmer defi ne custom styles.

Performance

It is diffi cult to make a general conclusion about the performance of the two types of

cross-platform toolkit architecture. Proponents of the emulating approach will argue

that an application built with a layered toolkit will be excessively bulky since it

must include not only the toolkit itself, but also all the layers below. Proponents

of the layered approach will on the other hand contend that applications built with

Qt – A Technical Overview 7

emulating toolkits become bulky since they must include a replacement for the native

GUI functionality already installed on the target system.

As for execution speed, the emulating approach has some advantages. Firstly, GUI

function calls pass through fewer layers. Secondly, it avoids the typical bulkiness and

sluggishness of the native GUI libraries (e.g. Motif and MFC).

Qt is a relatively lightweight library. This is particularly important in situations where

memory resources are scarce. For example, for an embedded Unix system, a Qt-

based application will typically be much less resource-demanding than an equivalent

application built with a layered toolkit + Motif + Xt (or even just Motif + Xt).

Maintenance

The implementation of a layered toolkit is tightly bound to the native GUI API

of each of the supported platforms. This creates a maintenance load on the toolkit

developers whenever new versions of the native GUI APIs are released. An emulat-

ing toolkit like Qt, on the other hand, uses only a small set of platform functions:

basic graphics and user input routines. Furthermore, these functions are on a lower

level which is less likely to undergo version changes. Qt is also designed so that large

parts of its implementation (including the widget set and tool classes) are platform

independent, relying only on the platform-dependent Qt kernel.

Native-API Emulation Libraries
Another possible design for a cross-platform library is to emulate the native API of

one platform on another. This is the architecture chosen by for example the Unix /

X11 MFC emulation libraries. The goal of this design is to allow a legacy application

(built using the native API) to be quickly made to run on another platform, by

avoiding the need to re-implement it using the special API of the cross-platform

toolkit.

Qt does not use this design, for several reasons:

 • It is really a special kind of layered design, with all the disadvantages of

that architecture discussed above. The performance problem is likely to be

particularly serious, because yet another layer is introduced.

 • Application programmers often fi nd the existing native APIs, such as Motif

and MFC, to be complex and cumbersome to use. Qt is designed to offer the

application programmers an intuitive and truly object-oriented API.

 • Real-world native applications are seldom well-behaved, in the sense that they

depend on undocumented quirks of the native API, they bypass the native API

to achieve special effects by accessing the lower layers directly, etc. Attempting

to emulate the native API close enough to handle such code is extremely

diffi cult.

Performance
Run-time effi ciency and performance is a central design goal of the Qt implementa-

tion. For example, Qt’s graphics drawing functionality is hand-optimized for speed,

using internally implemented algorithms instead of the native drawing engine func-

8 Qt – A Technical Overview

tions in such cases where experiments have determined that the latter is slower.

One of the techniques used in Qt for improving application performance is reference-

counted, copy-on-write sharing. This means that many classes are implemented so

that copies of the same object will share the same data in memory. This saves

unnecessary copying of the data, and it reduces the memory demands of the applica-

tion as a whole. This technique is especially effective when applied to classes that

contain large data amounts, such as pixmaps and images, and when applied to classes

that are frequently used, such as strings. All such classes in Qt use sharing.

API design
Some important design goals of Qt are:

 • Effective use of object-oriented principles. For example, all widget classes

(both ready-made and custom) inherit from the same basic QWidget class.

Thus, all widgets have a large set of common, immediately usable functions.

 • Qt is not a “least common denominator” toolkit. Qt provides features not found

in all the supported window systems, by implementing them internally for

platforms lacking them. For example, Qt lets applications draw rotated and

transformed text. Of the platforms currently supported by Qt, only Windows

NT provides this functionality natively, but Qt implements it internally for

Windows 95/98 and X11.

 • Run-time fl exibility. Qt-based applications do not depend on any external,

static resource fi les or similar. All aspects of the GUI can be changed or added

at run-time.

Signals and Slots
In object-oriented software development, it is desirable to structure the application

code in independent, reusable components. This principle is known as component

programming. Qt offers assistance to the application programmers for this task, in the

form of a special inter-object communication mechanism called signals and slots. It

allows objects to emit anonymous signals that cause slot functions in other objects

to be executed. It is a form of inter-object communication mechanism not unlike

Motif callbacks and MFC message maps, but with some important advantages that

will be discussed below.

The signal / slot mechanism consists of the following constructs:

 • A class may defi ne any of its (otherwise normal) member functions to be slots.

 • A class may defi ne that it is able to emit certain signals. Signals have a name

and a parameter list, like member functions.

 • A signal of one object may be connected to a slot of another object.

 • An object may at any time choose to emit a signal.

The resulting operation of these constructs is that every time an object emits a

signal, the slot function of the object(s) it has been connected to will be executed

immediately. Parameter values are passed from the emitting object to the slot func-

Qt – A Technical Overview 9

tions. Thus, emitting a signal is like a function call, but with the very important dif-

ference that the emitting (calling) object does not need to know which slot functions

(if any) of which objects (if any) will be executed. This makes it possible to design

very application-independent, reusable classes.

A signal may be connected to any number of slot functions, and a slot function

may have any number of signals connected to it. Connections can be established

and removed at run-time. Any number and types of parameters may be passed with

the signal, just as with a normal function call. The signal-slot mechanism provides

full parameter type safety; if an application tries to connect a signal to a slot with

mismatching parameter types, a warning message is issued and the connection is

ignored. Superfl uous signal parameters are silently ignored; for example a signal

with an integer parameter followed by a string parameter may be connected to slot

functions that take either no parameters, or only an integer parameter, or an integer

parameter followed by a string parameter.

Qt’s signal-slot mechanism replaces the traditional callback mechanisms of older

toolkits. An important advantage of the signal-slot mechanism is that it is type-safe:

Mismatches between the parameter types of the signal and the slot are handled

gracefully. Such mismatches in callback functions invariably lead to run-time failures

(segmentation faults) and hard application termination.

The typical use of the signal-slot mechanism is best illustrated by an example.

Assume an application design calls for a dialog box that gets closed when the

user clicks its “OK” button. Using Qt, the programmer will implement this using

the classes QDialog and QPushButton. The QPushButton class has a signal called

clicked() that gets emitted when the user operates the button. The QDialog class

has a slot function called accept() that closes the dialog. Thus, the programmer can

achieve the desired functionality by simply connecting the clicked() signal of the

QPushButton object to the accept() slot of the QDialog object.

Internationalization
Qt is designed to allow applications to use any language and character set.

Unicode

Qt allows applications to use international (i.e. non-ASCII) character sets. For text

operations, Qt provides the QString class, which contains a text string in the 16 bit

Unicode standard encoding. Qt is 16 bit clean throughout: the Qt kernel uses the

QString class for all internal text operations, and it is used in all API functions that

take or return text parameters. This includes all text labels of widgets, e.g. the labels

on push buttons, menu items, etc.

A note about performance: QString is highly optimized, and in our tests of moving

real-world applications from 8 bit to 16 bit strings, no signifi cant performance

penalty was observed. This is to be expected, since text manipulation is not among

the most demanding tasks performed by typical GUI applications.

Qt supports keyboard input and screen output of Unicode text, as provided by the

underlying window system. Screen output requires the appropriate font(s) to be

installed. These fonts need not be Unicode encoded; Qt provides codecs between

Unicode and many of the common font encodings. Custom codecs can also be added.

10 Qt – A Technical Overview

All application text I/O, e.g. to/from fi les, may be passed through a text codec, which

translates between the preferred local format and the Unicode standard format used

internally. Codecs for a number of commonly used locales are provided, as well as an

API for implementation of custom codecs.

Localization

Qt provides support for creating localized applications, i.e. applications that can

choose at run-time what language to display all the user-visible texts in. The choice

may be made automatically based on the user’s locale setting, or explicitly by the

application (e.g. by presenting the user with a language selection dialog on start-up).

Building a Qt-application that is prepared for localization is straightforward: The

programmer simply passes all user-visible texts through Qt’s tr() (“translate”) func-

tion before passing them to Qt for display. For example, the non-localized application

code to make a push button display the text label “proceed” would be:

myPushButton->setText(“Proceed”);

While the localization-prepared version would be:

myPushButton->setText(tr(“Proceed”));

The function tr() will do a lookup in the currently selected translation table, and

return the text string (translation) corresponding to the argument.

A handy aspect of the tr() function is that if no translation table is installed, it

will simply return its argument. This means that a localization-prepared application

will run just fi ne even if the translation tables are not present; its behavior will be

the same as if it were not localization-prepared. This is practical during application

development (when translation tables have not been produced yet), or for releasing

the fi rst version(s) of an application which is planned to be localized in later versions.

Qt provides tools which assist the application developers in building and maintaining

the translation tables. One tool searches the application source code for strings

that need translation, and produces a formatted text fi le with empty areas where

the application translators will simply fi ll in the required translations. Another tool

converts these text fi les to the binary, hashed translation table fi les that are used by

Qt for lookup at run-time. A third tool assists in merging existing translation fi les

when the application has been extended or modifi ed so that new strings that need

translation have been added.

Qt – A Technical Overview 11

Graphical User Interfaces

Basic Concepts
Qt’s graphical user interface elements are called widgets. Push buttons, scroll bars,

and menus are examples of widgets. To the programmer, a widget is an object

(instance) of a C++ widget class. For example, a push button is created by making

an object of the QPushButton class. All widget classes inherit (directly or indirectly)

from the fundamental widget class QWidget.

Many GUI toolkits operate with two different types of GUI elements: controls are

the basic elements like buttons and scroll bars, while containers are the elements that

contain the controls, like dialogs and application windows. Qt is more fl exible: there

is no fundamental difference between containers and controls; any widget may func-

tion as the one or the other. Containment is expressed in a parent-child relationship:

A widget that contains other widgets is called the parent of the contained widgets.

A widget class provides an API to access the contents of the widget. For example,

the QPopupMenu widget class provides an insertItem() method that adds a new

item to the menu. Qt’s signal/slot mechanism is typically used for the interface to

the run-time behavior of the widget; e.g. QPopupMenu will emit a certain signal

whenever a menu item has been selected. Note that the QPopupMenu signal is

emitted independently of how the menu item got selected, i.e. either by mouse click,

by keyboard accelerator, or programmatically from another part of the application.

This makes it easier to ensure internal consistency in the application.

User Interface Composition
Making a normal application window is straightforward. The application programmer

starts by creating an object of a suitable container widget class. Then, the various

controls are added to this widget, by creating widget objects as children of the

container widget. The precise graphical layout of the child widgets will typically be

taken care of by a layout manager (more about this below). Lastly, the application

programmer implements the functionality of the window by connecting the child

widgets’ signals and slots to each other, and to the application code.

Qt provides a large set of ready-to-use widget classes to build user interfaces from.

This includes classes for all the common GUI controls typically found in modern

user interfaces, such as buttons, scroll bars, tool bars, explorer-style hierarchical list

views, etc. Thus, normal user interfaces can be constructed rapidly by composing

standard widgets as described above. A complete listing of the standard widget

classes is given in Appendix 1.

Custom Widget Classes
A central design feature of Qt’s widget system is extensibility. This is important,

since experience shows that a fi xed set of static widget classes cannot cover all the

requirements of a real-world application. GUI toolkit designers can try to foresee

the various demands that applications may have, and try to provide the necessary

functionality in the widget classes (indeed, Qt’s standard widget classes are designed

like this), but that can never be a satisfactory replacement for enabling the application

12 Qt – A Technical Overview

developers to easily customize the widget classes or to design their own widget

classes from scratch.

Qt is designed to make it very easy for the application programmers to create custom

widget classes. The application programmer simply makes a new C++ class that

inherits QWidget (directly or indirectly). There are no resource fi les to be edited,

or mandatory methods to implement (except for the constructor, as the C++ syntax

demands). Depending on what the widget shall do, the programmer can choose to

implement any of QWidget’s virtual methods, in order to receive events, etc.

Custom widgets have several powerful uses:

Application Data Presentation

Custom widget classes can be used to implement applications’ fundamental and

unique graphical interfaces, e.g. a process control application’s graphs of data

samples, a word processor’s WYSIWYG window, or a network management applica-

tion’s visual presentation of the network topology. The custom widget class will

employ Qt’s graphics API for the presentation, and the event system to implement

user navigation and data manipulation.

Qt provides some widget classes that are particularly suited for use as the basis for

implementing these kinds of widgets:

 • QScrollView provides subclasses with a framework for building widget classes

that display just a part of a potentially much larger virtual canvas area. Scroll

bars are automatically provided as necessary. The contents may consist of

directly drawn graphics and/or child widgets. For example, a network manage-

ment application may use direct graphics to draw a representation of the

network topology, and let the network nodes be represented by push button

widgets that the user can click to get a pop-up window with the current status

of that node.

 • QTableView provides a framework for building widgets that display data in

tabular (spread sheet style) format.

Tuning the Behavior of Standard Controls

Often, an application needs a GUI control that is almost, but not quite, the same as

one of the standard controls. For example, an application may require a spin box

widget that operates on dates instead of integers, or a slider widget that will jump

to a predefi ned value when the user presses a function key. By making a custom

widget class that inherits from the standard widget class, the application programmer

has almost unlimited power to modify its behavior to fi t the application requirements.

This is because all key methods in the widget classes are C++ virtual functions,

so the custom widget class can re-implement them, thus overriding the original

implementation.

Custom Controls

Sometimes, applications will require some new kinds of basic user interaction ele-

ments. For example, a word processor may require a ruler for letting the user specify

the tab stops in a word processor. By creating a custom widget class, the application

programmers can achieve precisely the desired behavior. All the functionality of Qt

that is used to implement its standard widget classes is also available to the custom

Qt – A Technical Overview 13

widget class programmers.

Naturally, control widget classes may also be implemented with the help of child

widgets. For example, Qt’s combo box widget class is implemented using a line edit

widget and a pop-up menu widget.

Layout Management
When implementing the visual appearance of a GUI, one of the main tasks is

to decide the positions and sizes of the child widgets within their parent’s area.

Although it is possible to hard-code static coordinate values for all widgets, this

approach is usually not satisfactory for anything but the simplest applications, for

the following reasons

 • Most applications will want to allow the user to resize the application window

while still keeping the window contents. This will fail if the coordinates are

static.

 • For localized applications, or other applications where the contents of other-

wise static widgets can change dynamically at run time, suitable coordinate

values cannot be known in advance.

 • Similarly, applications that want to honor the user’s preferred font setting

cannot in advance know how much space is required to display its widgets

using that font.

 • It is a time-consuming and tedious task for the programmer to tune the widgets’

positions and sizes so that they align and give the desired aesthetic impression.

Maintenance is also demanding, since the whole layout must be manually re-

implemented whenever widgets are added or removed.

To let Qt-based applications overcome all the above problems, Qt provides a mecha-

nism for automatic widget layout management. An API is provided so that a widget

may create a layout manager object, which will then take care of assigning positions

and sizes to the child widgets. The layout manager does this by dividing the widgets’

available area into virtual cells (as many as there are child widgets), and placing

one child widget in each cell. When the widget gets resized, or a child widget’s size

requirements change, the layout manager will automatically recalculate the layout,

and move and resize all the child widgets to fi t.

Qt provides two basic layout manager classes (custom layout manager classes may

also be added):

 • QBoxLayout divides the available space into a stack of cells (horizontal or

vertical).

 • QGridLayout divides the available space into an n x m grid of cells.

Instead of a child widget, a cell may contain another layout manager object, which

in turn manages other child widgets. Thus, by building a nested structure of layout

managers, automatic layout of even very complex user interfaces can be readily

achieved.

Each widget class specifi es its own layout requirements:

14 Qt – A Technical Overview

 • A widget may specify a preferred size for itself

 • A widget may specify a minimum size it needs to display itself in a satisfactory

manner. For example, a push button will in this way ask to not be made so

small that it cannot paint its label and the surrounding button frame.

 • A widget may specify that it should not be stretched out more than its preferred

size, or that it should be stretched in only one direction. For example, a vertical

scroll bar will specify that it can be stretched vertically, but not horizontally,

since the latter would ruin its visual appearance.

Naturally, all of Qt’s standard widgets will for all of these constraints provide

sensible default values, calculated at run-time depending on the widgets’ current

contents. If the contents of a widget change while the program is running, the layout

will be automatically recalculated to fi t the new size of the widget.

The layout algorithm may be tuned as follows:

 • A stretch factor can be assigned to each cell to determine what ratio of the

available, superfl uous space the layout manager will assign to it.

 • The widths of the blank borders around and between the cells can be changed.

Extra blank space (stretching or non-stretching) may be added.

 • The alignment (left/right/ top/bottom/center) of the child widget within the cell

may be specifi ed.

 • The maximum and/or minimum size of the child widget may be set explicitly.

Qt – A Technical Overview 15

Graphics
Qt provides much 2D graphics functionality. The basic graphics API in Qt is the

QPainter class. This class provides a high-level drawing engine with commands for

drawing lines, polygons, ellipses, splines, images, etc.

Device Independent Graphics
Qt supports graphics drawing to screen (i.e. widgets), printers, pixmaps and pictures

(known as a meta-fi le in Windows terminology). The intrinsic differences between

these devices are hidden from the application programmer; in Qt, they are all

paint devices. A QPainter operates on a paint device, and the application using the

QPainter need not be concerned about whether this QPainter is currently drawing

on a widget or on a printer; the drawing API is totally device independent. This is

practical for many tasks, for example may applications use the same drawing routine

for screen output as for print output. This is done by simply making the drawing

routine take the QPainter as a parameter, and then passing one opened on a widget for

screen drawing, and one opened on a printer for printer drawing.

Special Paint Devices
In addition to widgets and printers, Qt supports drawing to the following special

devices (as always, through a QPainter):

QPixmap

A pixmap is an off-screen memory frame area, i.e. a two-dimensional array of pixel

values. If an application is going to display complex static graphics on screen, it

makes sense to draw the graphics into a pixmap, and then just draw the pixmap

to screen later. This technique, known as double-buffering, is more effi cient since

the complex drawing need only be performed once. It can also be used to eliminate

screen fl icker. Qt provides fast bitblt (bit block transfer) operations for moving pixels

between widgets and pixmaps.

Pixmaps are also handy for storing graphics to fi le for later retrieval, or other transfer

of image data.

QPicture

A picture is a stored sequence of drawing operations. Pictures are very handy for stor-

ing graphics for re-display at a different magnifi cation level, for instance. Zooming in

on a pixmap will only magnify the individual pixels, but zooming in on a picture will

recreate the drawing as if it had been drawn at that scale originally.

The 2D Graphics API
QPainter is implemented using the drawing operations of the underlying window

system, e.g. Xlib on Unix / X11 and Windows GDI on Windows. Features lacking

in the underlying system (e.g. drawing transformations on Windows 95/98 and X11

) are implemented in Qt itself.

16 Qt – A Technical Overview

Color handling

Qt provides a separate class for specifying color for drawing operations. Colors can

be specifi ed as RGB or HSV values, or as a name from the web standard (e.g.

“steelblue”, “green4”, etc.). On systems with limited color ranges (e.g. 8 bit displays)

Qt automatically handles the allocation of colors in the system palette, so Qt-based

programs need not do anything special to be prepared for running on such systems.

The Drawing Style

For specifying the desired graphics attributes of lines, polygon outlines, etc., Qt

provides the QPen class. The color, line width, and stipple pattern can be set.

For the fi lling style of polygons, ellipses etc., Qt provides the QBrush class. With

this, the fi ll color and fi ll pattern can be specifi ed. A set of predefi ned patterns are

available; a custom fi ll pattern (specifi ed as a pixmap) can also be set.

Transformations

QPainter provides full support for transformations, i.e. scaling, rotating, etc. A

QPainter’s world transformation specifi es how the world coordinates (i.e. the param-

eter values given to e.g. the drawRect() method) will be transformed into logical

coordinates. The view transformation specifi es how these logical coordinates in turn

will be transformed into the physical coordinates of the paint device.

For the world transform, Qt supports a general transformation matrix. That is, all

forms of coordinate translation, scaling, rotation and shearing can be performed. A

separate transformation matrix class is provided, but QPainter also has convenience

functions for specifying the most common transformations directly.

For the view transform, Qt allows setting the origin and extent of the drawing

window and the drawing viewport. The drawing viewport determines the logical

coordinate system, and specifying this to e.g. 1000 x 1000 gives the application

programmer a 1000 x 1000 drawing area independently of the size of the underlying

physical device. The drawing window, on the other hand, determines the rectangle of

the physical device that the logical coordinates will be mapped down into.

All drawing operations provided by QPainter may also be performed with world

and/or view transformation applied, including text and pixmap drawing.

Clipping

QPainter allows clipping to a rectangle or a more general region composed of a set of

rectangles, polygons, ellipses, and bitmaps. The composition can be made as unions,

intersections and/or subtractions.

Text Drawing and Fonts

QPainter provides two text drawing methods: A simple function for drawing a given

text at a given x,y coordinate, and a more complex function allowing the specifi cation

of

 • A rectangle Qt should fi t the text into

 • How Qt should align the text within the rectangle (top, bottom, fl ush left,

center, fl ush right)

Qt – A Technical Overview 17

 • Whether Qt should break the text into lines to fi t the width of the rectangle

A separate class, QFont, is provided for specifying the font. All the fonts installed

in the underlying window system may be used for text drawing in Qt. A font may

be selected by specifying any or all of its name, size, weight (bold), slant (italic),

and character set. Qt will provide the closest matching available font. Font sizes

can be given as logical (dpi) or pixel sizes. A number of international character sets

are supported, including ISO_8859-1 - ISO_8859-15 (Latin1-Latin9), KOI8R, and

Japanese and various other Asian character sets.

Image Handling
Qt supports input, output, and manipulation of images in several formats, including

PNG, BMP (Windows bitmap), XBM (X11 bitmap), XPM (X11 pixmap), PNM

(P1-P6), and optionally GIF (note that including GIF support may require patent

licensing from Unisys). All image formats are supported on all platforms, e.g.

BMP on both Windows and Unix. Image formats are auto-detected on reading. The

Qt ImageIO Extension library adds support for the JPEG format, and also allows

application programmers to add support for custom formats. The image formats

added with the ImageIO Extension become fully integrated with Qt’s image handling

system, just like the internally supported formats.

Once read into an application, an image is stored in a QImage object. This class

provides an API that allows manipulating the image data in a hardware-independent

manner. This means applications using QImage for image manipulation can easily be

designed to function independently of the screen depth and byte-ordering (endianess)

properties of the hardware they run on. QImage also provides direct access to the

image data (memory block), for speed-critical operations.

QImage supports images of 32, 8, or 1 bits depth. Images with other depths are

automatically converted to the next higher supported depth. For 8 or 1 bit deep

images, a color palette is provided, which also may be manipulated. Depth conver-

sion methods are provided, including optional dithering when converting to a lower

depth.

For each pixel in a 32 bit deep QImage, an 8 bit value is stored for each of the red,

green, blue and alpha components. The optional alpha component may be used for

custom image operations relating to image transparency, blending, etc.

Qt also supports reading of animation image formats, with asynchronous (e.g. frame-

by-frame) reading for interleaved reading and display. The QMovie class provides

easy handling of animations.

3D Graphics
Qt does not itself offer 3D graphics functionality, but integration with 3rd party 3D

libraries is provided.

It should be noted that these integration packages do not depend on special support

within Qt itself; the ordinary Qt API provides the necessary general low-level access

functions. Thus, it is possible for application programmers to build custom integra-

tion packages to other libraries.

18 Qt – A Technical Overview

OpenGL

Integration with OpenGL is provided by the Qt OpenGL Extension library. It allows

the application developers to build data display widgets where the contents are

drawn using the native OpenGL library instead of Qt’s 2D graphics code. The Qt

OpenGL Extension also provides a platform-independent C++ wrapper API around

the platform-specifi c C APIs GLX and WGL.

HOOPS

HOOPS is a high-level, cross-platform, object oriented graphics subsystem that

simplifi es the design, development and maintenance of high-performance, interactive

2D and 3D graphics applications. It is a product of Tech Soft America, who offers

a HOOPS-Qt integration package.

Qt – A Technical Overview 19

Tool Classes
Qt is more than a GUI toolkit; it is an application framework. In addition to the

GUI functionality, Qt provides the application developers with a comprehensive set

of generally useful tool classes.

Some of Qt’s tool classes provide similar functionality to the C++ standard library

and the STL. However, Qt’s tool classes are preferable for most Qt-based applica-

tions, for the following reasons:

 • Portability: The Qt classes are portable to a wide range of platforms and

compilers. Many of these platforms lack a functional and standard-conformant

STL implementation. By using the Qt classes, the application programmers are

relieved from relating to such portability issues.

 • Cross-platform data exchange: Qt’s classes for data I/O provide platform-

and architecture-independence, so that even binary data can be successfully

exchanged between one platform and another. This is not the case with the

standard I/O.

 • Internationalization: Qt’s classes for text handling and I/O are Unicode-based

and thus fully prepared for internationalization. Again, this is not the case with

the standard classes.

However, application developers may freely choose to use the standard library and/or

the STL instead of, or in combination with, the Qt tool classes; they may coexist

in the same application without problems, and data conversion between the tool sets

is straightforward.

Operating System Services
The task of making an application truly portable involves more than giving it a

cross-platform GUI. Real-world applications will always need to access various

operating system services, which typically have different, incompatible APIs on the

different operating systems. Qt provides OS-independent encapsulations of the most

commonly used OS services. Thus, by using the Qt API instead of the native OS API,

Qt-based applications can be immediately re-compiled and successfully executed on

new platforms. This relieves the programmer from maintaining large amounts of

different, conditionally compiled (#ifdef’ed) code for the various platforms. It has the

added advantage of providing the programmer with a clean, object-oriented C++ API

to the OS services, instead of the native C API.

Files and Directories

Qt provides an API that allows Qt-based applications to query and manipulate the

fi les and directories of the local fi le system in an OS-independent manner. Files and

directories may be created, deleted, renamed, their access rights may be queried and

modifi ed, etc. The programmer is relieved from having to relate to such platform-

specifi c details as that the directory separator character in paths is “/” on Unix

systems, and “\” on Windows.

20 Qt – A Technical Overview

Times and Dates

Classes for querying the system date and time are provided. Dates and times may

be operated on with millisecond resolution. The time span between two different

dates/times can be computed. Conversion to and from various date formats (Grego-

rian, Julian, seconds since the 1.1.1970 epoch, etc.) are provided. Naturally, Qt’s time

and date handling is Y2K safe.

Low-level I/O

Qt provides an API for OS-independent fi le I/O. The fi le I/O class is a specialization

of Qt’s general I/O device encapsulation class. It provides low-level I/O, i.e. reading

and writing of raw blocks of bytes. Another specialization class provides I/O to a

memory area. Custom encapsulations of other I/O devices may be added in the same

way. Thus, an application may use the same code for doing I/O to fi les, memory

buffers, and custom devices.

High-level I/O

Qt provides OS-independent, high-level, stream-based I/O. Both binary and text

streams are provided. The streams use Qt’s low-level I/O system, so they may be read

from and written to fi les, memory buffers, and custom devices.

All the fundamental types (various precisions of integers and fl oating point values)

and text strings may be read and written. The stream format is independent of the

OS and the CPU byte-ordering (endianess), so the streams written on one OS /

architecture may be read on any other.

Most of Qt’s non-widget classes provide functionality for serializing their data to and

from a binary stream, so they can effi ciently be stored for later retrieval.

The text stream can be set to use a specifi c encoding / codec in order to read or write

text in a format compatible with non-Qt applications.

Text Classes
Qt provides a powerful string class for all kinds of text operations. It operates with

16 bit Unicode characters, but for non-international applications, it provides seamless

integration with the traditional C “char*” string through automatic conversions.

QString uses sharing, meaning that copies of a QString object will share the same

string data in memory. The application programmer need not be concerned about the

data sharing; if the application modifi es the contents of one of the copied objects,

QString automatically makes a deep copy of the string data, so that the contents of

the other copies remain unchanged. Sharing saves much memory and unnecessary

copying.

QString provides all the usual string class functionality, like searching, replacing,

conversion to and from integer / fl oating-point values and various textual represen-

tations, comparison operators, truncation, insertion, etc. It automatically allocates

enough memory space for the contents, so the programmer is relieved from managing

this.

For advanced text searching, Qt provides a regular expression class. Strings can be

matched against regular expressions, and the position and length of the match is

Qt – A Technical Overview 21

returned, so it is straightforward to implement e.g. regular expression search and

replace functionality.

For easy manipulation of non-internationalized text and classic C strings, in cases

where the conversion to and from QString’s 16 bit representation could become an

performance issue, Qt includes the QCString class which provides most of the same

functionality as QString.

Collection Classes
Qt includes a full set of generic, template-based collection classes. These allow the

programmer to easily make e.g. a stack class that operates on any Qt or programmer-

defi ned class. These are the major collection classes provided:

 • Array: Provides an ordered list of objects, with constant-time indexed access.

 • Dictionary: Stores a key value along with each object, and provides fast

(hashed) lookup based on the key values.

 • Cache: A Dictionary with a programmer-defi ned limit to the total number

and/or cost of stored objects. When the limit is exceeded, the least recently

accessed objects are discarded from the collection.

 • Map: A sorted list stored in a tree structure for effi cient searching.

 • List: Provides a double-linked list. For convenience, specialized List classes are

provided for commonly used collection types, e.g. Sorted List and String List.

 • Queue: A fi rst-in, fi rst-out List.

 • Stack: A last-in, fi rst-out List.

For all collection classes, corresponding Iterator classes are provided. The Iterators

allow traversal of the entire collection independently of the collection’s normal

access method.

22 Qt – A Technical Overview

Appendix 1: Widget Set
This is a list of the most important widget classes provided in Qt.

QButtonGroup For placing groups of button widgets together, with a frame around and

a header text. Typically used for logical grouping of radio buttons and

check boxes.

QCheckBox A button for displaying a nonexclusive switch, with an explanatory label.

The label may be a text or a pixmap. Supports both binary on/off mode

and tri-state on/grayed-out/off mode.

QComboBox Allows selection of one from of a set of items, which may be simple texts

or pixmaps. Only the currently selected item is ordinarily displayed; the

set of items is displayed in a pop-up menu. The user may optionally enter

new text items by editing in the current item fi eld.

QDialog For building dialogs. Provides both modal and non-modal dialog seman-

tics.

QHeader Provides column headers for tabular data displays. The user can drag the

column separators to change the column width.

QLabel For displaying static information (in the sense that the user cannot inter-

act with the widget). The data can be a simple text string, a rich text, a

pixmap, or a movie.

QLCDNumber Displays numeric or restricted textual data in LCD panel style.

QLineEdit Provides display and user editing of a single line of simple text. Supports

native window system cut and paste and drag and drop.

QListBox Allows selection of one or optionally several items from an item set.

The items may be simple texts, pixmaps, or custom items (implemented

as a subclass of QListBoxItem that takes care of the drawing of the

item). Ordinarily, all items are displayed, unless they are too many or too

wide to fi t in the widget’s available space, in which case scroll bars are

automatically provided.

QListView For display and user navigation in tree-structured lists, in the style of

e.g. Windows Explorer. Both “Directory Tree” and “Directory List”

display styles are supported. The user may expand and collapse branches.

User selection of one or optionally several items is supported. Two

types of items are provided by default: QListViewItem accepts a set of

simple text strings, where each string is displayed in a separate column.

QCheckListItem accepts a text string, and displays it with a radio button

or a check box, to allow the user to tick off any number of items.

Custom item types may be added by sub-classing QListViewItem or

QCheckListItem.

QMainWindow A top level application window in “offi ce suite” style. Supports a menu

bar, tool bars, and a status bar, all of which may be turned on and off at

run time. The tool bars may be docked at any side of the window. Tool

tips and What’s This? help may also be added.

Qt – A Technical Overview 23

QMenuBar Displays a menu bar at the top of a window. Menu bar items are QPopup-

Menu objects, and may be presented as simple text strings, pixmaps, or a

combination. Keyboard accelerators are supported.

QMultiLineEdit Provides display and user editing of a multiple lines of simple text.

Supports native window system cut and paste and drag and drop.

QPopupMenu For displaying a pop-up or pull-down menu. Typically used in menu

bars or as the right-mouse-button menu over other widgets. Items may be

simple text strings, pixmaps, or a combination. Keyboard accelerators are

supported. Checking (on/off) of menu bar items is optionally supported.

QProgressBar Displays visual feedback on the progress of a lengthy operation, e.g.

network downloading of large amounts of data.

QPushButton The basic button. The button label may be a simple text string or

a pixmap. Supports both normal single-shot mode, and toggle (click-

on/click-off) mode.

QRadioButton A button for displaying an exclusive option, with an explanatory label.

The label may be a text or a pixmap. Supports both binary on/off mode

and tri-state on/grayed-out/off mode.

QScrollBar For letting the user scroll the contents of other widgets, when the contents

is too large to fi t in the available area. Both horizontal and vertical scroll

bars are supported.

QScrollView For building data display widgets that display just a part of a potentially

very large virtual canvas.

QSlider Lets the user specify a numeric value by dragging a caret along a groove.

Vertical and horizontal modes supported.

QSpinBox Lets the user specify a numeric value either stepping using the up- and

down-buttons, or by entering it directly in the value fi eld. Optional textual

prefi x and/or suffi x are supported.

QSplitter Splits an area between two or more widgets with dividing lines. The splits

may be horizontal or vertical. Allows the user to drag the dividing lines to

change the ratio of the area allocated to each widget.

QStatusBar A message area, typically used at the bottom of the main window in

offi ce-style applications. Supports both temporary and permanent mes-

sages.

QTabBar A row of tabs, for letting the user select which of a set of virtual pages

to display. Supports both rounded and trapeze tab look, and looks suitable

for placing both above and below the virtual pages.

QTabDialog Used for creating “Preferences...” style dialogs. Provides a QTabWidget,

an “OK” push button, and optional “Apply”, “Cancel”, “Defaults”, and

“Help” buttons. The button labels may be customized.

QTableView For creating tabular (spreadsheet style) data display widgets.

QTabWidget Contains a stack of one or more virtual pages (i.e. programmer-provided

24 Qt – A Technical Overview

widgets), and lets the user select which one should be displayed by

selecting the corresponding tab.

QTextBrowser Displays a rich text. Automatically provides scroll bars as needed. Sup-

ports basic hypertext navigation facilities (forward, back, home) and

anchors.

QTextView Displays rich text, i.e. text containing XML-style formatting.

QToolBar Provides a tool bar, typically used for short-hand access to frequently

used functions in offi ce-style applications.

QToolButton A button designed to be used in tool bars. Supports text and/or icon label.

QToolTip For giving the user pop-up tool tips (balloon help). Allows tool tip texts

to be registered for any widget, or part of a widget (static or dynamic).

When the user lets the mouse cursor rest on a widget for a certain time,

the widget’s tool tip text gets displayed.

QWhatsThis For giving the user “What’s This?” help. Allows help texts to be regis-

tered for any widget. When started, the What’s This help will change the

mouse cursor to a question mark, and will display the help text for the

widget the user clicks on.

QWizard Used for creating “Wizard” style dialogs, i.e. a dialog for leading the user

through a process consisting of a number of steps, e.g. a software installa-

tion process. Each step is presented as a separate page, i.e. a programmer-

provided widget. Provides “Back”, “Next”, “Finish”, “Cancel” and “Help

push buttons, as appropriate.

Ready-made Dialogs
Qt provides a number of ready-made dialog widgets for common tasks.

QColorDialog Lets the user select a color, either by dragging a cursor around on a

spectrum area, or by entering RGB or HSV values directly. Provides

48 predefi ned basic colors, and up to 16 user-defi ned custom colors, for

quick selection.

QFileDialog Lets the user select a fi le or directory. Optionally allows multiple selec-

tions. Provides convenience functions for “Open” (single or multiple),

“Save As”, and “Find Directory” dialogs. Supports fi le fi lters, e.g. “All

C++ Files (*.cpp)”.

QFontDialog Lets the user select a font. All fonts provided by the underlying window

system are available for selection. By selecting from option lists, the user

may select the font name, style (bold/italic/underline/strikeout), size, and

script (character set). A sample display of the currently selected font is

provided.

Qt – A Technical Overview 25

Appendix 2: Complete API Class List

*Part of the Qt OpenGL, Image I/O, or Motif/Xt Extensions

QAccel

QApplication

QArray

QAsciiCache

QAsciiCacheIterator

QAsciiDict

QAsciiDictIterator

QAsyncIO

QBitArray

QBitmap

QBitVal

QBoxLayout

QBrush

QBuffer

QButton

QButtonGroup

QCache

QCacheIterator

QCDEStyle

QChar

QCheckBox

QCheckListItem

QChildEvent

QClipboard

QCloseEvent

QCollection

QColor

QColorDialog

QColorGroup

QComboBox

QCommonStyle

QConnection

QConstString

QCString

QCursor

QCustomEvent

QDataPump

QDataSink

QDataSource

QDataStream

QDate

QDateTime

QDialog

QDict

QDictIterator

QDir

QDoubleValidator

QDragEnterEvent

QDragLeaveEvent

QDragMoveEvent

QDragObject

QDropEvent

QDropSite

QEvent

QFile

QFileDialog

QFileIconProvider

QFileInfo

QFocusData

QFocusEvent

QFont

QFontDialog

QFontInfo

QFontMetrics

QFrame

QGArray

QGCache

QGCacheIterator

QGDict

QGDictIterator

QGL*

QGLayoutIterator

QGLContext*

QGLFormat*

QGList

QGListIterator

QGLWidget*

QGrid

QGridLayout

QGroupBox

QHBox

QHBoxLayout

QHButtonGroup

QHeader

QHGroupBox

QHideEvent

QIconSet

QImage

QImageConsumer

QImageDecoder

QImageDrag

QImageFormat

QImageFormatType

QImageIO

QIntCache

QIntCacheIterator

QIntDict

QIntDictIterator

QIntValidator

QIODevice

QIODeviceSource

QKeyEvent

QLabel

QLayout

QLayoutItem

QLayoutIterator

QLCDNumber

QLineEdit

QList

QListBox

QListBoxItem

QListBoxPixmap

QListBoxText

QListIterator

QListView

QListViewItem

QListViewItemIterator

QLNode

QMainWindow

QMap

QMapConstIterator

QMapIterator

QMenuBar

QMenuData

QMessageBox

QMimeSource

QMimeSourceFactory

QMotifStyle

QMouseEvent

QMoveEvent

QMovie

QMultiLineEdit

QNPInstance*

QNPlugin*

QNPStream*

QNPWidget*

QObject

QPaintDevice

QPaintDeviceMetrics

QPainter

QPaintEvent

QPalette

QPen

QPicture

QPixmap

QPixmapCache

QPlatinumStyle

QPNGImagePacker

QPoint

QPointArray

QPopupMenu

QPrinter

QProgressBar

QProgressDialog

QPtrDict

QPtrDictIterator

QPushButton

QQueue

QRadioButton

QRangeControl

QRect

QRegExp

QRegion

QResizeEvent

QScrollBar

QScrollView

QSemiModal

QSessionManager

QShared

QShowEvent

QSignal

QSignalMapper

QSimpleRichText

QSize

QSizeGrip

QSizePolicy

QSlider

QSocketNotifi er

QSortedList

QSpacerItem

QSpinBox

QSplitter

QStack

QStatusBar

QStoredDrag

QStrIList

QString

QStringList

QStrList

QStyle

QStyleSheet

QStyleSheetItem

Qt

QTab

QTabBar

QTabDialog

QTableView

QTabWidget

QTextBrowser

QTextCodec

QTextDecoder

QTextDrag

QTextEncoder

QTextIStream

QTextOStream

QTextStream

QTextView

QTime

QTimer

QTimerEvent

QToolBar

QToolButton

QToolTip

QToolTipGroup

QTranslator

QUriDrag

QValidator

QValueList

QValueListConstIt-

erator

QValueListIterator

QVBox

QVBoxLayout

QVButtonGroup

QVGroupBox

QWhatsThis

QWheelEvent

QWidget

QWidgetItem

QWidgetStack

QWindowsStyle

QWizard

QWMatrix

QXtApplication*

QXtWidget*

