begin
theorem
canceled;
theorem Th2:
theorem Th3:
theorem Th4:
theorem
theorem
theorem Th7:
begin
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem
theorem
begin
theorem Th16:
theorem Th17:
theorem Th18:
theorem Th19:
theorem Th20:
theorem
theorem Th22:
theorem Th23:
for
p being non
NAT -defined autonomic FinPartState of
for
s1,
s2 being
State of
SCMPDS st
p c= s1 &
p c= s2 holds
for
i being
Element of
NAT holds
(
IC (Comput ((ProgramPart s1),s1,i)) = IC (Comput ((ProgramPart s2),s2,i)) &
CurInstr (
(ProgramPart (Comput ((ProgramPart s1),s1,i))),
(Comput ((ProgramPart s1),s1,i)))
= CurInstr (
(ProgramPart (Comput ((ProgramPart s2),s2,i))),
(Comput ((ProgramPart s2),s2,i))) )
theorem
for
p being non
NAT -defined autonomic FinPartState of
for
s1,
s2 being
State of
SCMPDS st
p c= s1 &
p c= s2 holds
for
i being
Element of
NAT for
k1,
k2 being
Integer for
a,
b being
Int_position st
CurInstr (
(ProgramPart (Comput ((ProgramPart s1),s1,i))),
(Comput ((ProgramPart s1),s1,i)))
= (
a,
k1)
:= (
b,
k2) &
a in dom p &
DataLoc (
((Comput ((ProgramPart s1),s1,i)) . a),
k1)
in dom p holds
(Comput ((ProgramPart s1),s1,i)) . (DataLoc (((Comput ((ProgramPart s1),s1,i)) . b),k2)) = (Comput ((ProgramPart s2),s2,i)) . (DataLoc (((Comput ((ProgramPart s2),s2,i)) . b),k2))
theorem
for
p being non
NAT -defined autonomic FinPartState of
for
s1,
s2 being
State of
SCMPDS st
p c= s1 &
p c= s2 holds
for
i being
Element of
NAT for
k1,
k2 being
Integer for
a,
b being
Int_position st
CurInstr (
(ProgramPart (Comput ((ProgramPart s1),s1,i))),
(Comput ((ProgramPart s1),s1,i)))
= AddTo (
a,
k1,
b,
k2) &
a in dom p &
DataLoc (
((Comput ((ProgramPart s1),s1,i)) . a),
k1)
in dom p holds
(Comput ((ProgramPart s1),s1,i)) . (DataLoc (((Comput ((ProgramPart s1),s1,i)) . b),k2)) = (Comput ((ProgramPart s2),s2,i)) . (DataLoc (((Comput ((ProgramPart s2),s2,i)) . b),k2))
theorem
for
p being non
NAT -defined autonomic FinPartState of
for
s1,
s2 being
State of
SCMPDS st
p c= s1 &
p c= s2 holds
for
i being
Element of
NAT for
k1,
k2 being
Integer for
a,
b being
Int_position st
CurInstr (
(ProgramPart (Comput ((ProgramPart s1),s1,i))),
(Comput ((ProgramPart s1),s1,i)))
= SubFrom (
a,
k1,
b,
k2) &
a in dom p &
DataLoc (
((Comput ((ProgramPart s1),s1,i)) . a),
k1)
in dom p holds
(Comput ((ProgramPart s1),s1,i)) . (DataLoc (((Comput ((ProgramPart s1),s1,i)) . b),k2)) = (Comput ((ProgramPart s2),s2,i)) . (DataLoc (((Comput ((ProgramPart s2),s2,i)) . b),k2))
theorem
for
p being non
NAT -defined autonomic FinPartState of
for
s1,
s2 being
State of
SCMPDS st
p c= s1 &
p c= s2 holds
for
i being
Element of
NAT for
k1,
k2 being
Integer for
a,
b being
Int_position st
CurInstr (
(ProgramPart (Comput ((ProgramPart s1),s1,i))),
(Comput ((ProgramPart s1),s1,i)))
= MultBy (
a,
k1,
b,
k2) &
a in dom p &
DataLoc (
((Comput ((ProgramPart s1),s1,i)) . a),
k1)
in dom p holds
((Comput ((ProgramPart s1),s1,i)) . (DataLoc (((Comput ((ProgramPart s1),s1,i)) . a),k1))) * ((Comput ((ProgramPart s1),s1,i)) . (DataLoc (((Comput ((ProgramPart s1),s1,i)) . b),k2))) = ((Comput ((ProgramPart s2),s2,i)) . (DataLoc (((Comput ((ProgramPart s2),s2,i)) . a),k1))) * ((Comput ((ProgramPart s2),s2,i)) . (DataLoc (((Comput ((ProgramPart s2),s2,i)) . b),k2)))
theorem
for
p being non
NAT -defined autonomic FinPartState of
for
s1,
s2 being
State of
SCMPDS st
p c= s1 &
p c= s2 holds
for
i,
m being
Element of
NAT for
a being
Int_position for
k1,
k2 being
Integer st
CurInstr (
(ProgramPart (Comput ((ProgramPart s1),s1,i))),
(Comput ((ProgramPart s1),s1,i)))
= (
a,
k1)
<>0_goto k2 &
m = IC (Comput ((ProgramPart s1),s1,i)) &
m + k2 >= 0 &
k2 <> 1 holds
(
(Comput ((ProgramPart s1),s1,i)) . (DataLoc (((Comput ((ProgramPart s1),s1,i)) . a),k1)) = 0 iff
(Comput ((ProgramPart s2),s2,i)) . (DataLoc (((Comput ((ProgramPart s2),s2,i)) . a),k1)) = 0 )
theorem
for
p being non
NAT -defined autonomic FinPartState of
for
s1,
s2 being
State of
SCMPDS st
p c= s1 &
p c= s2 holds
for
i,
m being
Element of
NAT for
a being
Int_position for
k1,
k2 being
Integer st
CurInstr (
(ProgramPart (Comput ((ProgramPart s1),s1,i))),
(Comput ((ProgramPart s1),s1,i)))
= (
a,
k1)
<=0_goto k2 &
m = IC (Comput ((ProgramPart s1),s1,i)) &
m + k2 >= 0 &
k2 <> 1 holds
(
(Comput ((ProgramPart s1),s1,i)) . (DataLoc (((Comput ((ProgramPart s1),s1,i)) . a),k1)) > 0 iff
(Comput ((ProgramPart s2),s2,i)) . (DataLoc (((Comput ((ProgramPart s2),s2,i)) . a),k1)) > 0 )
theorem
for
p being non
NAT -defined autonomic FinPartState of
for
s1,
s2 being
State of
SCMPDS st
p c= s1 &
p c= s2 holds
for
i,
m being
Element of
NAT for
a being
Int_position for
k1,
k2 being
Integer st
CurInstr (
(ProgramPart (Comput ((ProgramPart s1),s1,i))),
(Comput ((ProgramPart s1),s1,i)))
= (
a,
k1)
>=0_goto k2 &
m = IC (Comput ((ProgramPart s1),s1,i)) &
m + k2 >= 0 &
k2 <> 1 holds
(
(Comput ((ProgramPart s1),s1,i)) . (DataLoc (((Comput ((ProgramPart s1),s1,i)) . a),k1)) < 0 iff
(Comput ((ProgramPart s2),s2,i)) . (DataLoc (((Comput ((ProgramPart s2),s2,i)) . a),k1)) < 0 )