Har bour Cui de

ARRAY()

Create an uninitialized array of specified length

Synt ax
ARRAY(<nEl ements> [, <nElenments>...]) --> aArray
Argunment s

<nEl enents> is the nunber of elenents in the specified dinmension
Ret ur ns
<aArray> an array of specified dinensions.

Descri ption

This function returns an uninitialized array with the length of <nEl enments>.

Nested arrays are uninitialized within the sane array pointer reference if

additi onal paranmeters are specified. Establishing a nenory variable with the sanme
nane as the array may destroy the original array and rel ease the entire contents of
the array. This depends, of course, on the data storage type of either the array
or the variable with the sane nanme as the array.

Exanpl es
FUNCTI ON Mai n()
LOCAL aArray: =Array(10)
LOCAL x: =1
FOR x:=1 to LEN(aArray)
aArray[x]: =Array(x)
NEXT
Return Nil
St at us
Ready
Conpl i ance
This function is CA-CLIPPER Conpliant in all Cases, except that arrays in
Har bour can have an unlinited nunber of dinensions, while dipper has a limt of
4096 array el enents
Fil es
Library is vm
See Al so:

AADD()

AA

Dynanically add an elenment to an array
Synt ax
AADD(<aArray>[, <xValue>]) --> Value
Argunment s
<aArray> The nane of an array
<xValue> Elenment to add to array <aArray>

Ret ur ns

<Val ue> if specified <xValue> <xValue> will return , otherwise this function
returns a NI L val ue.

Descri ption

This function dynamically increases the length of the array named <aArray> by
one el enent and stores the value of <xValue> to that newly created el enent.

<xVal ue> may be an array reference pointer, which in turn may be stored to an
array's subscript position.

Exanpl es

LOCAL aArray: ={}

AADD(aArray, 10)

FOR x:=1 to 10
AADD(aArr ay, X)

NEXT
St at us
Ready
Files
Li brary is vm
See Al so:
Al NS

ASI ZE()

AS| ZE()

Adj ust the size of an array
Synt ax
ASI ZE(<aArray>, <nlLen>) --> aTarget
Argunment s
<aArray> Nane of array to be dynanmically altered
<nLen> Numeric val ue representing the new size of <aArray>
Ret ur ns
<aTarget> an array pointer reference to .
Descri ption

This function will dynam cally increase or decrease the size of <aArray> by
adjusting the length of the array to <nLen> subscript positions.

If the length of the array <aArray> is shortened, those fornmer subscript
positions are lost. If the length of the array is Ilengthened a NIL value is
assigned to the new subscript position.

Exanpl es
aArray :={ 1} /1l Result: aArray is { 1}
ASI ZE(aArray, 3) /! Result: aArray is { 1, NIL, NL}
AS| ZE(aArray, 1) /1 Result: aArray is { 1}
St at us
Ready
Conpl i ance

If HB_COWPAT_C53 is defined, the function generates an Error, else it wll
return the array itself.

Files
Li brary is vm
See Al so:
AADD()

ATAI L()

Returns the rightnost el enent of an array
Synt ax
ATAIL(<aArray>) --> El enment
Argunment s
<aArray> is the array.
Ret ur ns
<El ement > the expression of the last elenment in the array.
Descri ption
This function return the value of the last element in the array naned

<aArray>. This function does not alter the size of the array or any of the
subscri pt val ues.

Exanpl es
LOCAL array:= {"Harbour", "is", "Supreme", "Power"}
? ATAI L(aArray)
St at us
Ready
Conpl i ance
This function is CA dipper conpliant
Files
Library is vm
See Al so:
LENC)
ARRAY
ASI ZE

AADD()

Al NS()

Insert a NIL value at an array subscript position.
Synt ax
Al NS(<aArray>, <nPos>) --> aTarget
Argunment s
<aArray> Array nane.
<nPos> Subscript position in <aArray>
Ret ur ns
<aTarget> an array pointer reference.
Descri ption

This function inserts a NIL value in the array nanmed <aArray> at the <nPos>th
position.

Al array elenents starting with the <nPos>th position will be shifted down

one subscript position in the array list and the last itemin the array will be
renoved conpletely. In other words, if an array elenent were to be inserted at the
fifth subscript position, the elenment previously in the fifth position would now
be | ocated at the sixth position. The length of the array <aArray> wll remain
unchanged.

Exanpl es

LOCAL aArray:={"Harbour","is","Power!","111"}
Al NS(aArray, 4)

St at us

Ready
Conpl i ance

This function is CA dipper conpliant
Files

Library is vm

See Al so:

ADEL ()

Del ete an elenent forman array.

Synt ax
ADEL (<aArray>, <nPos>) --> aTar get

Argunment s
<aArray> Nane of array fromwhich an elenent is to be renopved.
<nPos> Subscript of the el enent to be renoved.

Ret ur ns

<aTarget> an array pointer reference.
Descri ption

This function deletes the el enent found at <nPos> subscript position in the

array <aArray>. Al elenments in the array <aArray> bel ow the given subscri pt
position <nPos> wi |l nove up one position in the array. In other words, what was
formerly the sixth subscript position wll become the fifth subscript position. The
length of the array <aArray> will remain unchanged, as the last elenent in the array
will beconme a NIL data type.

Exanpl es

LOCAL aArray
aArray := { "Harbour","is","Power" } /!l Result: aArray is

ADEL(aArray, 2) /1l Result: aArray is
St at us
Ready
Conpl i ance
This function is CA dipper conpliant
Files
Li brary is vm
See Al so:

ACOPY|
Al NS

AFILLL()

AFI LL()

Fill an array with a specified val ue
Synt ax
AFI LL(<aArray>, <xValue>, [<nStart>], [<nCount>]) --> aTarget
Argunment s
<aArray> Nane of array to be filled.
<xVal ue> Expression to be globally filled in <aArray>
<nStart> Subscript starting position

<nCount > Nunber of subscript to be filled

Ret ur ns
<aTarget> an array pointer.
Descri ption
This function will fill each elenent of an array named <aArray> with the

val ue <xValue>. If specified, <nStart> denotes the beginning elenent to be filled
and the array elements will continue to be filled for <nCount> positions. |If Not
specified, the value of <nStart> will be 1, and the value of <nCount> will be the
value of LEN(<aArray>); thus, all subscript positions in the array <aArray> wll
be filled with the value of <xVal ue>.

This function will work on only a single dinmension of <aArray>. If there are
array pointer references within a subscript <aArray>, those values will be |ost,
since this function will overwite those values w th new val ues.

Exanpl es

LOCAL aTest:={Ni |, 0,1, 2}
Afill (aTest, 5)

St at us
Ready
Conpl i ance
This function is CA dipper conpliant
Files
Li brary is vm
See Al so:

AADD()
AEVAL

DBSTRUCT()
ARRAY/

ASCAN()

Scan array elenents for a specified condition
Synt ax
ASCAN(<aTarget>, <xSearch>, [<nStart>], [<nCount>]) --> nStoppedAt
Argunment s

<aTar get > Name of array to be scanned.
<xSear ch> Expression to search for in <aTarget>
<nStart> Begi nni ng subscript position at which to start the search
<nCount > Nurmber of elenents to scan with <aTarget>.

Ret ur ns
<nSt oppedAt> A nuneric val ue of subscript position where <xSearch> was
f ound.

Descri ption

This function scan the content of array nanmed <aTarget> for the value of
<xSearch>. The return value is the position in the array <aTarget> in which
<xSearch> was found. If it was not found, the return value will be O.

I f specified, the beginning subscript position at which to start scanning may
be set with the val ue passed as <nStart>. The default is 1

If specified, the nunber of array elenents to scan nmay be set with the val ue
passed as <nCount>. The default is the nunber of elenents in the array <aTarget>.

I f <xSearch> is a code block, the operation of the function is slightly
different. Each array subscript pointer reference is passed to the code block to

be eval uated. The scanning routine wll continue until the value obtained fromthe
code block is a logical true (.T.) or until the end of the array has been reached.

Exanpl es

aDir:=Directory("*.prg")
AScan(aDir,,,{|x,y| x[1]="Test.prg"})

St at us
Ready
Conpl i ance

This function is not CA-Cipper conpatible. Cipper ASCAN() is affected by the
SET EXACT OV OFF Condition

Files
Library is vm
See Al so:
AEVAL

AEVAL()

Eval uated the subscript elenment of an array
Synt ax
AEVAL (<aArray>, <bBlock> [<nStart>], [<nCount>]) --> aArray
Argunment s
<aArray> |s the array to be eval uated.
<bBl ock> 1s a code block to evaluate for each el ement processed.
<nStart> The beginning array elenent to eval uate.

<nCount > The nunber of elenents to process.

Ret ur ns
<aArray> an array pointer reference.
Descri ption
This function will evaluate and process the subscript elements in <aArray>. A

code bl ock passed as <bBl ock> defines the operation to be executed on each el ement
of the array. All elenents in <aArray> will be evaluated unless specified by a

begi nni ng subscript position in <nStart> for <nCount> el enments.

Two paraneters are passed to the code bl ock <bBl ock>. The individual elenments
in an array are the first parameter and the subscript position is the second.

AEVAL() does not replace a FOR ..NEXT | oop for processing arrays. If an array
is an autononous unit, AEVAL() is appropriate. If the array is to be altered or

el ements are to be reevaluated, a FOR .. NEXT |oop is nore appropriate.

St at us

Ready
Conpl i ance
This function is CA dipper conpliant
Files
Library is vm
See Al so:
EVAL

DBEVAL

ACOPY()

Copy el enments fromone array to anot her
Synt ax

ACOPY(<aSource>, <aTarget>, [<nStart>], [<nCount>], [<nTargetPos>])
--> aTar get

Argunment s
<aSource> is the array to copy elenents from
<aTarget> 1is the array to copy elenents to.
<nStart> i s the beginning subscript position to copy from <aSource>
<nCount> the nunber of subscript elenents to copy from <aSource>.

<nTarget Pos> the starting subscript position in <aTarget> to copy el enents
to.

Ret ur ns
<aTarget> an array pointer reference
Descri ption

This function copies array el enents from <aSource> to <aTarget>. <nStart> is
t he begi nning el enent to be copied from<aSource>, the default is 1

<nCount> is the nunber of elenents to be copied from<aSource>, the default
is the entire array.

<nTarget Pos> is the subscript nunmber in the target array, <aTarget>, to which
array elenents are to be copied; the default is 1

This function will copy all data types in <aSource> to <aTarget>

If an array element in <aSource> is a pointer reference to another array,

that array pointer will be copied to <aTarget>; not all subdinensions wll be
copied fromone array to the next. This nust be acconplished via the ACLONE()
function.

Note |If array <aSource> is larger then <aTarget>, array elenents will start

copyi ng at <nTarget Pos> and continue copying until the end of array <aTarget> is
reached. The ACOPY() function doesn't append subscript positions to the target
array, the size of the target array <aTarget> renains constant.

Exanpl es
LOCAL nCount := 2, nStart := 1, aOne, aTwo
aOne := {"HABOUR'," is ", "PONER"}

aTwo := {"CLIPPER'," was ","POAER'}
ACOPY(aOne, aTwo, nStart, nCount)

St at us

Ready
Conpl i ance

This function is CA dipper conpliant
Files

Library is vm

See Al so:

ACLONE()

Duplicate a nultidinensional array
Synt ax
ACLONE(<aSource>) --> aDuplicate
Argunment s
<aSource> Nane of the array to be cl oned.
Ret ur ns

<aDuplicate> A new array pointer reference conplete with nested array
val ues.

Descri ption

This function nakes a conplete copy of the array expressed as <aSource> and
return a cloned set of array values. This provides a conplete set of arrays val ues
for all dinmensions within the original array <aSource>

Exanpl es

LOCAL aOne, aTwo

alne := {"Harbour"," is ","PONER'"}

aTwo : = ACLONE(aOne) /! Result: aTwo is {1, 2, 3}

aOne[1] := "The Harbour Conpiler" /1 Result: aOne is {99, 2, 3}
/1 aTwo is still {1, 2, 3}

St at us
Ready
Conpl i ance
Clipper will return NIL if the paraneter is not an array.
Files
Li brary is vm
See Al so:

COPY
DEL

Al NS()
ASI ZE()

> >

ASORT()

Sort an array

Synt ax
ASORT(<aArray>, [<nStart>], [<nCount>], [<bSort>]) --> aArray
Argunment s

<aArray> Array to be sorted.
<nStart> The first element to start the sort from default is 1.

<nCount > Nunber of elements starting from<nStart> to sort, default is all
el enent s.

<bSort> Code block for sorting order, default is ascending order {| x, y | X
<y }. The code bl ock should accept two paranmeters and nust return .T. if the sort
isin order, .F. if not.

Ret ur ns

<aArray> reference to the now sorted or N L if the passed <aArray> i s not
an array.

Descri ption

ASORT() sort all or part of a given array. If <bSort> is onmtted, the

function expect <aArray> to be one dinensional array containing single data type
(one of: Character, Date, Logical, Numeric) and sort this array in ascending order:
Character are sorted by their ASCIlI value, Dates are sorted chronol ogically,
Logical put .F. values before .T., Nuneric are sorted by their val ue.

If <bSort> is specified, it is used to handle the sorting order. Wth each

time the block is evaluate, two array elenments are passed to the code bl ock, and
<bSort> rmust return a logical value that state if those elements are in order (.T.)
or not (.F.). Using this block you can sort multidinmensional array, descending
orders or even (but why would you want to do that) sort array that contain
different data type.

Exanpl es
/1 sort nuneric values in ascending order
ASORT({ 3, 1, 4, 42, 5, 91}) /1l result: { 1, 3, 4, 5, 9, 42}
/1 sort character strings in descending |exical order
aKeys :={ "Crl", "At", "Delete"
bSort := {| x, y | UPPER(x) > UPPER(vy) }
ASORT(aKeys,,, bSort) /1 result: { "Delete", "Ctrl", "At" }

/1 sort two-dinensional array according to 2nd el enent of each pair
aPair := { {"Sun",8}, {"Mn",1}, {"Tue",57}, {"Wed",-6} }

ASORT(aPair,,, {| x, y | x[2] <y[2] })

/] result: { {"wed",-6}, {"Mn",1}, {"Sun",8}, {"Tue",57} }
St at us

Ready
Conpl i ance

Codebl ock calling frequency and order differs fromdipper, since Harbour
uses a different (faster) sorting algorithm (quicksort).

Files
Library is vm
See Al so:

Bl N2W()

Convert unsigned short encoded bytes into Harbour numneric

Synt ax
BI N2W <cBuffer>) --> nNunber
Argunment s

<cBuffer> is a character string that contain 16 bit encoded unsi gned short
i nteger (least significant byte first). The first two bytes are taken into
account, the rest if any are ignored.

Ret ur ns
BIN2W) return nuneric integer (or O if <cBuffer> is not a string).
Descri ption

BIN2W) is one of the |low |level binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.

Bl N2W) take two bytes of encoded 16 bit unsigned short integer and convert it into
standard Harbour numeric val ue.

You m ght ask what is the need for such functions, well, first of all it

allow you to read/wite information fronfto a binary file (like extracting

i nformati on from DBF header), it is also a useful way to share information from
source other than Harbour (C for instance).

BIN2W) is the opposite of W2BI N()
Exanpl es

/1 Show header |ength of a DBF
FUNCTI ON nai n()
LOCAL nHandl e, cBuffer := space(2)
nHandl e : = fopen("test.dbf")
| F nHandle > 0
fseek(nHandle, 8)
fread(nHandl e, @Buffer, 2)
? "Length of DBF header in bytes:", BIN2W cBuffer)
fcl ose(nHandl e)
ELSE
? "Can not open file"
ENDI F
RETURN NI L

St at us

Ready
Conpl i ance

BI N2W) works exactly like CA-Clipper's BIN2W)
Files

Library is rtl

See Al so:

Bl N2|
Bl N2L
Bl N2U

| 2Bl N()
L2BI N()
W2BI N()

Bl N2 ()

Convert signed short encoded bytes into Harbour nuneric

Synt ax
BI N2l (<cBuffer>) --> nNunber
Argunment s

<cBuffer> is a character string that contain 16 bit encoded signed short
i nteger (least significant byte first). The first two bytes are taken into
account, the rest if any are ignored.

Ret ur ns
BIN2I () return nuneric integer (or O if <cBuffer> is not a string).
Descri ption

BIN2I () is one of the |low |level binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.
BIN2I () take two bytes of encoded 16 bit signed short integer and convert it into
standard Harbour numeric val ue.

You m ght ask what is the need for such functions, well, first of all it

allow you to read/wite information fronfto a binary file (like extracting

i nformati on from DBF header), it is also a useful way to share information from
source other than Harbour (C for instance).

BIN2I () is the opposite of 12BIN()

Exanpl es

/1 Show DBF | ast update date
FUNCTI ON mai n()
LOCAL nHandl e, cYear, chMonth, cDay
nHandl e : = fopen("test.dbf")
IF nHandle > 0O
fseek(nHandle, 1)
cYear := cMonth := cDay : =
fread(nHandle, @Year , 1
fread(nHandle, @Month, 1
1
c

)
)
Year), BIN2I(chMonth), BIN2I(cDay)

fread(nHandl e, @Day |,
? "Last update:", BIN2I(
fcl ose(nHandl e)
ELSE
? "Can not open file"
ENDI F
RETURN NI L

St at us

Ready
Conpl i ance

BI N2I () works exactly like CA-Clipper's BIN2I()
Files

Library is rtl
See Al so:

Bl N2L()

Convert signed | ong encoded bytes into Harbour numeric

Synt ax
BI N2L(<cBuffer>) --> nNunber
Argunment s

<cBuffer> 1is a character string that contain 32 bit encoded signed | ong
integer (least significant byte first). The first four bytes are taken into
account, the rest if any are ignored.

Ret ur ns
BIN2L() return nuneric integer (or O if <cBuffer> is not a string).
Descri ption

BIN2L() is one of the low |level binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.
BIN2L() take four bytes of encoded 32 bit signed long integer and convert it into
standard Harbour numeric val ue.

You m ght ask what is the need for such functions, well, first of all it

allow you to read/wite information fronfto a binary file (like extracting

i nformati on from DBF header), it is also a useful way to share information from
source other than Harbour (C for instance).

BIN2L() is the opposite of L2BIN()

Exanpl es

/1 Show nunber of records in DBF
FUNCTI ON mai n()
LOCAL nHandl e, cBuffer := space(4)
nHandl e : = fopen("test.dbf")
| F nHandle > 0
fseek(nHandle, 4)
fread(nHandl e, @Buffer, 4)
? "Number of records in file:", BIN2L(cBuffer)
fcl ose(nHandl e)
ELSE
? "Can not open file"
ENDI F
RETURN NI L

St at us

Ready
Conpl i ance

BI N2L() works exactly like CA-Clipper's BIN2L()
Files

Library is rtl
See Al so:

Bl N2U()

Convert unsigned | ong encoded bytes into Harbour nuneric

Synt ax
BI N2U(<cBuffer>) --> nNunber
Argunment s

<cBuffer> is a character string that contain 32 bit encoded unsi gned | ong
integer (least significant byte first). The first four bytes are taken into
account, the rest if any are ignored.

Ret ur ns
BIN2U() return nuneric integer (or 0 if <cBuffer> is not a string).

Descri ption

BIN2U() is one of the |low |level binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.

BI N2U() take four bytes of encoded 32 bit unsigned |long integer and convert it into
standard Harbour numeric val ue.

You m ght ask what is the need for such functions, well, first of all it

allow you to read/wite information fronfto a binary file (like extracting

i nformati on from DBF header), it is also a useful way to share information from
source other than Harbour (C for instance).

BIN2U() is the opposite of U2BI N()

Exanpl es

/1 Show nunber of records in DBF
FUNCTI ON mai n()
LOCAL nHandl e, cBuffer := space(4)
nHandl e : = fopen("test.dbf")
| F nHandle > 0
fseek(nHandle, 4)
fread(nHandl e, @Buffer, 4)
? "Number of records in file:", BIN2U(cBuffer)
fcl ose(nHandl e)
ELSE
? "Can not open file"
ENDI F
RETURN NI L

St at us
Ready

Conpl i ance
BIN2U() is an XBase++ conpatibility function and does not exist as a standard
CA-dipper 5.x function. This function is only visible if source/rtl/bi nnumc was
conpiled wth the HB_COWAT_XPP fl ag.

Fil es
Library is rtl

See Al so:

| 2BI N()

Convert Harbour nuneric into signed short encoded bytes

Synt ax
| 2BI N(<nNumber>) --> cBuffer
Argunment s

<nNunber> 1is a nuneric value to convert (decinal digits are ignored).
Ret ur ns

I2BIN() return two bytes character string that contain 16 bit encoded signed
short integer (least significant byte first).

Descri ption

I2BIN() is one of the low level binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.
| 2BIN() take a nuneric integer value and convert it into two bytes of encoded 16
bit signed short integer.

You might ask what is the need for such functions, well, first of all it

allow you to read/wite information fromto a binary file (like extracting
information from DBF header), it is also a useful way to share information from
source other than Harbour (C for instance).

I2BIN() is the opposite of BIN2I()

Exanpl es

/1l Update DBF "l ast update" date
#i nclude "fileio.ch"
FUNCTI ON mai n()
LOCAL nHandl e, cYear, cMonth, cDay
use test
? "Original update date is:", lupdate()
cl ose
nHandl e : = fopen("test.dbf", FO READWRI TE)
| F nHandle > 0
fseek(nHandle, 1,)

cYear = 12BIN(68)
chMbnth := 12BIN(8)
cDay = 12BINC 1)

fwite(nHandle, cYear , 1)
fwite(nHandl e, chMonth, 1)
fwite(nHandle, cbDay , 1)
fclose(nHandle)
use test
? "New update date is:", |update()
cl ose

ELSE
? "Can not open file"

ENDI F

RETURN NI L

/1 wite only the first byte

St at us
Ready
Conpl i ance
I 2BI N() works exactly like CA-Clipper's |2BIN)
Files
Library is rtl
See Al so:

L2BI N()
W2BI N()

U2BI N
FVWRI TE

W2BI N()

Convert Harbour numeric into unsigned short encoded bytes

Synt ax
VBl N(<nNunber>) --> cBuffer
Argunment s

<nNunber> 1is a nuneric value to convert (decinal digits are ignored).
Ret ur ns

VW2BIN() return two bytes character string that contain 16 bit encoded
unsi gned short integer (least significant byte first).

Descri ption

W2BIN() is one of the low |evel binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.
WBI N() take a nuneric integer value and convert it into two bytes of encoded 16
bit unsigned short integer.

You might ask what is the need for such functions, well, first of all it

allow you to read/wite information fromto a binary file (like extracting
information from DBF header), it is also a useful way to share information from
source other than Harbour (C for instance).

VW2BIN() is the opposite of Bl N2W)

St at us
Ready

Conpl i ance
W2BIN() is an XBase++ conpatibility function and does not exist as a standard
CA-dipper 5.x function. This function is only visible if source/rtl/binnumc was
conpiled wth the HB_COWAT_XPP fl ag.

Files
Library is rtl

See Al so:

L2BI N()

Convert Harbour nuneric into signed | ong encoded bytes

Synt ax
L2BI N(<nNumber>) --> cBuffer
Argunment s

<nNunber> 1is a nuneric value to convert (decinal digits are ignored).
Ret ur ns

L2BIN() return four bytes character string that contain 32 bit encoded
signed long integer (least significant byte first).

Descri ption
L2BIN() is one of the low | evel binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.
L2BI N() take a nuneric integer value and convert it into four bytes of encoded 32
bit signed long integer.
You might ask what is the need for such functions, well, first of all it
allow you to read/wite information fromto a binary file (like extracting
information from DBF header), it is also a useful way to share information from
source other than Harbour (C for instance).
L2BIN() is the opposite of BIN2L()

St at us
Ready

Conpl i ance
L2BI N() works exactly like CA-Cipper's L2BI N()

Fil es
Library is rtl

See Al so:

U2BI N()

Convert Harbour numeric into unsigned | ong encoded bytes

Synt ax
U2BI N(<nNunmber>) --> cBuffer
Argunment s

<nNunber> 1is a nuneric value to convert (decinal digits are ignored).
Ret ur ns

U2BIN() return four bytes character string that contain 32 bit encoded
unsi gned long integer (least significant byte first).

Descri ption

U2BIN() is one of the low level binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.
U2BI N() take a numeric integer value and convert it into four bytes of encoded 32
bit unsigned I ong integer.

You might ask what is the need for such functions, well, first of all it
allow you to read/wite information fromto a binary file (like extracting
information from DBF header), it is also a useful way to share information from
source other than Harbour (C for instance).
U2BIN() is the opposite of BIN2U()

St at us
Ready

Conpl i ance
U2BIN() is an XBase++ conpatibility function and does not exist as a standard
CA-dipper 5.x function. This function is only visible if source/rtl/binnumc was
conpiled wth the HB_COWAT_XPP fl ag.

Files
Library is rtl

See Al so:

ORI)

Converts double to integer val ues.
Synt ax
WORD(<nDoubl e>) --> <nlnteger>
Argunment s
<nDoubl e> is a nuneric double val ue.
Ret ur ns
WORD() return an integer in the range +-32767
Descri ption

This function converts double values to integers to use wthin the CALL
command

St at us
Ready
Conpl i ance

The Cipper NG states that WORD() wi
paraneter list, otherwise it wll

Fil es

[l only work when used in CALL conmands
return NIL, in Harbour it will work anywhere.

Library is rtl
See Al so:
ARRAY

DBEDI T() *

Browse records in a table
Synt ax

DBEDI T([<nTop>], [<nLeft>], [<nBottonP], [<nRight>], [<acColums>], [<xUserFunc>],
[<xCol umSayPi ct ures>], [<xCol ummHeaders>], [<xHeadi ngSepar ators>],
[<xCol umSepar at ors>], [<xFootingSeparators>], [<xColumFootings>]) --> I

Argunent s

<nTop> coordinate for top row display. could range fromO to MAXRON),
default is O.

<nLeft> coordinate for left columm display. could range fromO to MAXCOL(),
default is O.

<nBottonr> coordinate for bottomrow display. could range fromO to
MAXROW), default is MAXROW).

<nRi ght> coordinate for right colum display. could range fromO to
MAXCOL(), default is MAXCOL().

<acColumms> is an array of character expressions that contain database
fields nanmes or expressions to display in each colum. |If not specified, the
default is to display all fields fromthe database in the current work area

<xUser Func> is a name of a user defined function or a code block that would

be called every tine unrecogni zed key is been pressed or when there are no keys
waiting to be processed and DBEDI T() goes into idle nobde. If <xUserFunc> is a
character string, it nmust contain root nane of a valid user define function without
parent heses. Both the user define function or the code bl ock should accept two

par ameters: nMde, nCurrent Col um. Both should return a numeric val ue that
correspond to one of the expected return codes (see table below for a list of nMWde
and return codes).

<xCol umSayPi ctures> is an optional picture. If 1is a character string, al
colums woul d used this value as a picture string. |If <xColumSayPictures> is an
array, each elenment should be a character string that correspond to a picture
string for the colum with the sane index. Look at the help for @..SAY to get
nore information about picture val ues.

<xCol umHeader s> contain the header titles for each colum, if this is a

character string, all colums would have that same header, if this is an array,
each elenment is a character string that contain the header title for one col um.
Header may be split to nore than one line by placing semcolon (;) in places where
you want to break line. If omtted, the default value for each colum header is
taken from <acColumms> or field nanme if <acCol unms> was not specified.

<xHeadi ngSeparators> is an array that contain characters that draw the |ines
separating the headers and the fields data. Instead of an array you can use a
character string that would be used to display the sane line for all fields.
Default value is a double Iine.

<xCol umSeparators> is an array that contain characters that draw the lines
separating displayed colums. Instead of an array you can use a character string
that would be used to display the sanme line for all fields. Default value is a
single |ine.

<xFooti ngSeparators> is an array that contain characters that draw the |ines
separating the fields data area and the footing area. |Instead of an array you can
use a character string that would be wused to display the sane Iine for all footers.
Default is to have to no footing separators.

<xCol umFooti ngs> contain the footing to be displayed at the bottom of each
colum, if this is a character string, all colums would have that same footer, if
this is an array, each elenment is a character string that contain the footer for
one colum. Footer may be split to nore than one line by placing semcolon (;) in
pl aces where you want to break line. If omtted, no footer are displayed.

Ret ur ns

DBEDI T() return .F. if there is no database in use or if the nunber of
colums to display is zero, else DBEDIT() return .T.

Descri ption

DBEDI T() display and edit records fromone or nore work areas in a grid on
screen. Each colum is defined by el ement from <acColumms> and is the equival ent
of one field. Each row is equival ent of one database record.

Fol owi ng are active keys that handl ed by DBEDI T():

Key [Meani ng

Lef t IMove one columm to the left (previous field)
Ri ght Move one columm to the right (next field)
Up [Move up one row (previous record)

Down Move down one row (next record)

Page- Up Move to the previous screen

Page- Down Move to the next screen

Ctrl Page- Up Move to the top of the file

Ctrl Page- Down Move to the end of the file

Hone Move to the | eftnost visible colum

End Move to the rightnost visible colum

Ctrl Left Pan one colum to the left

Ctrl Ri ght Pan one columm to the right

Ctrl Home Move to the |eftnost col um

Ctrl End Move to the rightnost colum

When <xUserFunc> is omtted, two nore keys are active:

Key Meani ng
Esc [Ter m nat e BROWSE()
Ent er [Ter m nat e BROWSE()

When DBEDI T() execute <xUserFunc> it pass the follow ng argunents: nMde and
the index of current record in <acColumms>. |f <acColumms> is onmitted, the index
nunber is the FIELD() nunber of the open database structure.

DBEDI T() nMbde coul d be one of the follow ng:

Dbedit.ch Meani ng
DE | DLE DBEDI T() is idle, all novenent keys have been handl ed.
DE_HI TTOP Attenpt to cursor past top of file.
DE_HI TBOTTOM Attenpt to cursor past bottomof file.
DE_EMPTY No records in work area, database is enpty.
DE_EXCEPT Key exception.
The user define function or code block nmust return a value that tell DBEDI T()

what to do next.

User function return codes:

The user function is called once in each of the follow ng cases: - The

dat abase is enpty. - The user try to nove past top of file or past bottomfi
Key exception, the uses had pressed a key that is not handled by DBEDI T(). -
keyboard buffer is enpty or a screen refresh had just occurred DBED T() is a
conpatibility function, it is superseded by the TBrowse class and there for not
recommended for new applications.

Exanpl es

le. -
The

/1 Browse a file using default val ues
USE Test
DBEDI T()

St at us
Started
Conpl i ance
<xUser Func> can take a code bl ock value, this is a Harbour extension.

CA-Clipper will throw an error if there's no database open, Harbour would
return . F.

CA-Clipper is buggy and will throw an error if the nunber of colums zero,
Har bour would return .F.

The CA-Cipper 5.2 NG state that the return value is NIL, this is wong and
shoul d be read | ogical.

There is an undocunented result code (3) fromthe user defined function in

Cipper (both 87 and 5.x). This is an Append Mdde which: "split the screen to
all ow data to be appended in wi ndowed area". This nbde is not supported by Harbour.

Files
Header files are dbedit.ch, inkey.ch Library is rtl

See Al so:

@ . . SAY
BROWGE

BROWSE()

Browse a database file

Synt ax

BROWBE([<nTop>, <nlLeft>,

Argunment s

<nBot t onv,

<nRight>]) --> 1Ck

<nTop> coordinate for top row displ ay.

<nLeft> coordinate for
<nBotton®> coordi nate for

<nRi ght> coordinate for

left colum display.
bot t om row di spl ay.

right columm displ ay.

Ret ur ns
BROWNSE() return .F. if there is no database open in this work area, else it
return . T.
Descri ption
BROABE() is a general purpose database browser, w thout any thinking you can
browse a file using the foll ow ng keys:
Key Meani ng
Left Move one columm to the left (previous field)
Ri ght Move one columm to the right (next field)
Up [Move up one row (previous record)
Down Move down one row (next record)
Page- Up Move to the previous screen
Page- Down Move to the next screen
Ctr|1 Page- Up IMove to the top of the file

Ct r| Page- Down

IMove to the end of the file

Hore Move to the | eftnmost visible colum
End Move to the rightnost visible colum
Ctrl Left Pan one columm to the left

Ctrl Right Pan one columm to the right

Ctrl Hone Move to the |eftnpst col um

Ctrl End Move to the rightnost colum

Esc [Ter m nat e BROWSE()

On top of the screen you see a status line with the follow ng indication:

Record ###] #i#tt Current record number / Total number of records.
knone> [There are no records, the file is enpty.

Knew> ou are in append node at the bottomof file.
<Del et ed> Current record is deleted.

Kbof > ou are at the top of file.

You shoul d pass whole four valid coordinate, if |less than four paraneters are
passed to BROABE() the coordinate are default to: 1, 0, MAXRON), MAXCOL().

Exanpl es

/1 this one shows you how to browse around
USE Around
BROWSE()
St at us
Started
Files
Library is rtl

See Al so:

DBEDI T() *
ARRAY

TBr owseDB()

Create a new TBrowse object to be used with database file
Synt ax
TBrowseDB([<nTop>], [<nLeft>], [<nBottomp], [<nRight>]) --> oBrowse
Argunment s
<nTop> coordinate for top row displ ay.
<nLeft> coordinate for left columm display.
<nBottont coordinate for bottom row display.
<nRi ght> coordinate for right colum display.
Ret ur ns

TBrowseDB() return new TBrowse object with the specified coordinate and a
defaul t : Ski pBl ock, :GoTopBl ock and : GoBottonBl ock to browse a database file.

Descri ption
TBrowseDB() is a quick way to create a TBrowse object along with the mininal
support needed to browse a database. Note that the returned TBrowse object contain
no TBCol uim obj ects and you need to add colum for each field by your self.
Exanpl es

for a good exanple, |look at the source code for BROASE() function
at source/rtl/browse. prg

St at us
Started
Conpl i ance
TBrowseDB() works exactly like CA-Cipper's TBrowseDB().
Files
Library is rtl
See Al so:

dbSki pper ()

Hel per function to skip a database
Synt ax
dbSki pper (<nRecs>) --> nSki pped
Argunment s

<nRecs> is the nunber of records to skip relative to current record
Positive nunber would try to nove the record pointer forward, while a negative
nunber would try to nove the record pointer back <nRecs> records.

Ret ur ns

dbSki pper() return the nunber of actual record skipped.
Descri ption

dbSki pper() is a hel per function used in browse nechanismto skip a nunber of
records while giving the caller indication about the actual records skipped.

Exanpl es

/1 open a file and find if we've got enough records in it
USE Mont hSal es
| F dbSki pper(100) == 100
? "Good work! You can party now'
ELSE

? "Too bad, you should really work harder”
ENDI F
CLCSE

St at us
Ready
Conpl i ance

dbSki pper () is an XBase++ conpatibility function and does not exist as a
standard CA-Clipper 5.x function

This function is only visible if source/rtl/browdb. prg was conpiled wth the
HB_COWPAT_XPP fl ag.

Fil es
Library is rtl
See Al so:

DBSKI P()
ARRAY

CLASS

Define a Cass for bject
Synt ax

Oiented Progranmi ng

[CREATE] CLASS <O assNane> [<FROM | NHERI T> <Super d ass1> [, <Super d assN>]]

[STATI C]
Argunment s

<d assNanme> Name of the class to define. By tradition, Harbour classes

start with "T" to

<Super d assl...n>
supports Miltiple

function. It will

Descri ption
CLASS creates a cl

avoid collisions with user- created cl asses.

The Parent class(es) to use for inheritance. Harbour
I nheritance.

therefore not be avail abl e outside the current nodul e.

ass fromwhich you can create objects. The CLASS conmand

begi ns the class specification, in which the DATA elenents (also known as instance
vari abl es) and METHODS of the «class are named. The foll owi ng scopi ng commands nmay
al so appear. They control the default scope of DATA and METHOD commands that foll ow

t hem

EXPORTED:
VI SI BLE:
HI DDEN:
PROTECTED:

The cl ass specification ends with the END CLASS conmand.

Cl asses can inherit fromnultiple <Superd asses>, and the chain of
i nheritance can extend to nany | evels.

A programuses a Cass by calling the Cass Constructor, usually the New()
met hod, to create an object. That object is usually assigned to a variable, which

is used to access the DATA el enents and et hods.

Har bour's OOP syntax and inplenentation supports Scoping (Protect, Hi dden and

Readonly) and Delegating, and is largely conpatible with Cass(y)(tn)
Topd ass(tm and Visual Objects(tm.

Exanpl es

CLASS TBCol um

DATA Bl ock /1 Code block to retrieve data for the colum
DATA Car go /1 User-definable variable
DATA Col orBl ock // Code bl ock that determ nes color of data itens
DATA Col Sep /1 Col um separator character
DATA Def Col or /1 Array of numeric indexes into the color table
DATA Footi ng /1 Colum footing
DATA Foot Sep /1 Footing separator character
DATA Headi ng /1 Col um headi ng
DATA HeadSep /! Headi ng separator character
DATA W dth /1 Colum display wdth
DATA Col Pos /1 Tenporary colum position on screen
METHOD New() /1 Constructor
ENDCLASS
St at us
Ready
Conpl i ance

CLASS i s a Harbour extension.

Pl at f or ns
Al |
See Al so:

Td ass()
ARRAY/

DATA
METHOD

DATA

Alternate syntax for VAR instance variable for the objects.
Synt ax

DATA <Dat aNanel> [, <DataNaneN>] [AS <type>] [INT <uVal ue>]
[[EXPORTED | VISIBLE] | [PROTECTED] | [H DDEN]] [READONLY | RO

Argunent s
<Dat aNanel> Nanme of the DATA

<type> Optional data type specification fromthe follow ng: Character
Nurmeric, Date, Logical, Codeblock, NI

<uVal ue> Optional initial value when creating a new object.
outside of the class. WVISIBLE is a synonym for EXPORTED
within this class and its subcl asses.
defined, and is not inherited by the subclasses.
cl ause, assignnent is only permtted fromthe current class and its subcl asses.
If specified with the PROTECTED cl ause, assignnent is only permitted fromthe
current class. RO is a synonymfor READONLY.

Descri ption
DATA el enents can al so be thought of as the "properties" of an object. They
can be of any data type, including codeblock. Once an object has been created, the
DATA el enents are referenced wth the colon (:) as in MQObject: Heading : = "Last
nane". Usually a class al so defines nethods to mani pul ate the DATA.
You can use the "AS <type>" clause to enforce that the DATA is naintained as
a certain type. herwse it will take on the type of whatever value is first
assigned to it.

Use the "INIT <uVal ue>" clause to initialize that DATA to <uVal ue> whenever a
new obj ect is created.

VAR can be a synonym for DATA, or it can use a slightly different syntax for
conpatibility with other dialects.

CLASS TBCol um

DATA Bl ock /1 Code block to retrieve data for the colum
DATA Car go /1 User-definable variable
DATA Col orBl ock // Code bl ock that determ nes color of data itens
DATA Col Sep /1 Col um separator character
DATA Def Col or /1 Array of numeric indexes into the color table
DATA Footi ng /1 Colum footing
DATA Foot Sep /1 Footing separator character
DATA Headi ng /1 Col um headi ng
DATA HeadSep /! Headi ng separator character
DATA W dth /1 Colum display wdth
DATA Col Pos /1 Tenporary colum position on screen
METHOD New() /1 Constructor
ENDCLASS
St at us
Ready
Conpl i ance
DATA i s a Harbour extension
Pl at f or ns

Al'l

See Al so:

RRAY!
CLASS
METHOD
CLASSDATA
ARRAY

>

CLASSDATA

Define a CLASSDATA variable for a class (NOT for an Object!)

Synt ax
CLASSDATA <Dat aNanel> [, <Dat aNameN>] [AS <type>] [INT <uVal ue>]
Argunment s
<Dat aNanel> Nanme of the DATA
<type> Optional data type specification fromthe follow ng: Character,
Nureric, Date, Logical, Codeblock, NI
<uVal ue> Optional initial value at program startup
Descri ption

CLASSDATA vari abl es can al so be thought of as the "properties" of an entire

cl ass. Each CLASSDATA exists only once, no nmatter how nany objects are created. A
common usage is for a counter that is incremented whenever an object is created and
decrenented when one is destroyed, thus nonitoring the nunmber of objects in
exi stance for this class.

You can use the "AS <type>" clause to enforce that the CLASSDATA is

mai ntained as a certain type. Oherwise it will take on the type of whatever val ue
is first assigned to it. Use the "INIT <uVal ue>" clause to initialize that DATA to
<uVal ue> whenever the class is first used.

Exanpl es

CLASS TW ndow
DATA hwhd, nd dProc
CLASSDATA | Regi stered AS LOd CAL
ENDCLASS
St at us
Ready
Conpl i ance
CLASSDATA i s a Harbour extension.
Pl at f or ns
Al l
See Al so:

ARRAY
CLASS
METHCD
DATA

VETHOD

Declare a METHOD for a class in the class header

Synt ax

METHOD <Met hodNane>([<params,...>]) [CONSTRUCTOR]

METHOD <Met hodNane>([<parans,...>]) |INLINE <Code,...>

METHOD <Met hodNane>([<parans,...>]) BLOCK <CodeBl ock>

METHOD <Met hodNane>([<paramns,...>]) EXTERN <FuncNane>([<args,...>])
METHOD <Met hodNane>([<parans,...>]) SETGET

METHOD <Met hodNane>([<params,...>]) VIRTUAL

METHOD <Met hodNane>([<paranmr]) OPERATOR <op>

METHOD <Met hodNane>([<parans,...>]) CLASS <C assNane>

Ar gurrent S
<Met hodName> Nanme of the nethod to define

<parans,...> Optional paraneter |ist
Descri ption

Met hods are "class functions" which do the work of the class. Al nethods
nust be defined in the cl ass header between the CLASS and ENDCLASS comrands.

the body of a nethod is not fully defined here, the full body is witten bel ow the

ENDCLASS command using this syntax:
METHOD <Met hodNane>([<parans,...>]) CLASS <C assNane>

Met hods can reference the current object with the keyword "Self:" or its
shorthand version "::"

CLAUSES:
CONSTRUCTOR Defines a special method Cass Constructor nethod, wused to

create objects. This is usually the New() method. Constructors always return the

new obj ect.

I NLI NE Fast and easy to code, INLINE lets you define the code for the

met hod i mredi ately within the definition of the Cass. Any net hods not decl ared
I NLI NE or BLOCK rust be fully defined after the ENDCLASS conmand. The <Code,...>

followi ng I NLINE receives a paraneter of Self. If you need to receive nore
paraneters, use the BLOCK cl ause instead.

BLOCK Use this clause when you want to declare fast 'inline' nethods
that need paraneters. The first paraneter to <CodeBl ock> nust be Self, as in:
METHOD <Met hodNane> BLOCK {| Sel f, <argl>, <arg2>, ...,<argN>|...}

EXTERN If an external function does what the nmethod needs, wuse this
clause to make an optim zed call to that function directly.

SETCGET For cal cul ated Data. The nanme of the nethod can be manipul ated
like a Data elenent to Set or Get a val ue.

VI RTUAL Met hods that do nothing. Useful for Base classes where the child
class will define the nethod' s behavior, or when you are first creating and

testing a d ass.

OPERATOR Operator Overloading for classes. See exanple Tests/TestQp.prg
for details.

CLASS <Cl assNane> Use this syntax only for defining a full method after the
ENDCLASS conmand.

Exanpl es
CLASS TW ndow

DATA hwhd, nd dProc
METHOD New() CONSTRUCTOR

METHOD Capture() INLINE SetCapture(::hWd)
METHOD End() BLOCK { | Self, IEnd | If(IEnd := ::1Valid(),;
.. Post Msg(WM CLCSE),), |End }

METHOD Er aseBkGnd(hDC)
METHOD cTitle(cNewTitle) SETGET

METHOD O ose() VI RTUAL
ENDCLASS

METHOD New() CLASS TW ndow
| ocal nVar, cStr
<code> ...

... <code> ...
RETURN Sel f

Tests

Test Op. prg

St at us
Ready
Conpl i ance
METHOD i s a Harbour extension.
Pl at f or ns
Al |
See Al so:

Td ass()
ARRAY

DATA
CLASS

IVESSAGE

Route a nethod call to another Method
Synt ax

MESSAGE <MessageNane> METHOD <Met hodNanme>([<parans,...>])
MESSAGE <MessageNane>() METHOD <Met hodNanme>([<parans,...>])

Argunment s

<MessageNanme> The pseudo-nmethod nane to define

<Met hodNane> The nmethod to create and call when <MessageNane> is invoked.
<parans,...> Optional paraneter list for the method
Descri ption

The MESSAGE conmand is a seldomused feature that lets you re-route a call to
a method with a different nanme. This can be necessary if a nmethod nane conflicts
with a public function that needs to be called fromw thin the class nethods.

For exanple, your app may have a public function called BeginPaint() that is

used in painting windows. It would also be natural to have a W ndow cl ass net hod
called :BeginPaint() that the application can call. But within the class nethod you
woul d not be able to call the public function because internally nethods are based
on static functions (which hide public functions of the sane nane).

The MESSAGE conmand | ets you create the true nethod with a different name

(::xBeginPaint()), yet still allow the ::BeginPaint() syntax to call
::xBeginPaint(). This is then free to call the public function BeginPaint().

Exanpl es
CLASS TW ndow
DATA hwhd, nd dProc
METHOD New() CONSTRUCTOR

MESSAGE Begi nPai nt METHOD xBegi nPai nt ()
ENDCLASS

St at us

Ready
Conpl i ance

MESSACE is a Harbour extension.
Pl at f or ms

Al l

See Al so:

METHCD
DATA
CLASS
ARRAY

ERROR HANDLER

Designate a nethod as an error handler for the class
Synt ax
ERRCR HANDLER <Met hodName>([<parans,...>])
Argunment s
<Met hodNanme> Nane of the method to define
<parans,...> Optional parameter |ist
Descri ption

ERROR HANDLER nanes the nethod that should handle errors for the class being
defi ned.

Exanpl es
CLASS TW ndow
ERROR HANDLER M/Err Handl er ()
ENDCLASS
St at us
Ready
Conpl i ance
ERRCR HANDLER i s a Har bour extension.
Pl at f or s
All
See Al so:

ARRAY

ON _ERROR
CLASS
METHCD
DATA

ON ERROR

Designate a nethod as an error handler for the class

Synt ax

ON ERROR <Met hodNanme>([<parans,...>])
Argunment s

<Met hodNane> Nane of the nethod to define

<parans,...> Optional parameter |ist
Descri ption

ON ERROR i s a synonym for ERROR HANDLER. It nanes the nethod that should
handl e errors for the class being defined.

Exanpl es

CLASS TW ndow
ON ERROR MErrHandl er ()
ENDCLASS

St at us
Ready
Conpl i ance
ON ERROR is a Harbour extension.
Pl at f or s
All
See Al so:

ARRAY/

ERROR HANDLER
CLASS

METHCD

DATA

ENDCLASS

End the decl aration of a class.
Synt ax

ENDCLASS
Descri ption

ENDCLASS nar ks the end of a class declaration. It
class nethods that are not | NLI NE.

Exanpl es
CLASS TW ndow

DATA hwhd, nd dProc
ENDCLASS

St at us
Ready
Conpl i ance
ON ERROR is a Harbour extension.
Pl at f or s
All
See Al so:

ARRAY
CLASS
METHCD
DATA

is usually followed by the

Converts a agte to the day of week

Synt ax
CDOW <dDat e>) --> cDay
Argunment s
<dDate> Any date expression
Ret ur ns
<cDay> The current day of week.
Descri ption
This function returns a character string of the day of the week, froma date
expression <dDate> passed to it. |If a NULL date is passed to the function, the
val ue of the function wll be a NULL byte.
Exanpl es
? CDOW DATE())

i f CDOWN DATE()+10) =="SUNDAY"
? "This is a sunny day."
Endi f
St at us
Ready
Conpl i ance
This function is Ca-dipper conpliant.
Pl at f or ns
All
Files
Library is rtl

See Al so:

DAY()
DON)
DATE()
CMONTH()

CMONTH()

Return the nane of the nonth.

Synt ax
CMONTH(<dDate>) --> cMonth
Argunment s
<dDate> Any date expression.
Ret ur ns
<cMbnth> The current nonth nane
Descri ption
This function returns the name of the nmonth (January, February,etc.) froma
dat e expression <dDate> passed to it. |If a NULL date is passed to the function,
the value of the function wll be a NULL byte.
Exanpl es
? CMONTH(DATE())
i f CMONTH(DATE() +10) =="Mar ch"
? "Have you done your system BACKUP?"
Endi f
St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Pl at f or ns
All
Files

Library is rtl
See Al so:

ATE
H

HeRzeE

DATE(

Return the Current OS Date
Synt ax
DATE() --> dCurDate
Argunent s

Ret ur ns
<dCur Dat e> Current system date.
Descri ption
This function returns the current system date.
Exanpl es
? Date()
Tests
? "Today is ",Day(date())," of ",cMnth(date())," of ", Year(date())
St at us

Ready
Conpl i ance
This function is Ca-dipper Conpliant
Pl at f or ms
All
Files
Library is rtl
See Al so:

CMONTH

CT

Converts a character string to a date expression

Synt ax
CTOD(<cDateString>) --> dDate

Argunment s
<cDateString> A character date in fornmat 'nmnif dd/yy'

Ret ur ns
<dDate> A date expression

Descri ption
This function converts a date that has been entered as a character expression
to a date expression. The character expression will be in the form"M DI YY"
(based on the default value in SET DATE) or in the appropriate format specified by

the SET DATE TO command. If an inproper character string is passed to the
function,an enpty date value will be returned.

Exanpl es

2 CTOD(' 12/ 21/ 00")
St at us

Ready
Conpl i ance

This function is Ca-Cdipper conpliant
Pl at f or ms

Al l
Files

Library is rtl

See Al so:

SET DATE

DATE()
DTOS

DAY()

Return the nuneric day of the nonth.
Synt ax
DAY(<cDate>) --> nMonth
Argunment s
<cDate> Any valid date expression.
Ret ur ns
<nMont h> Numeric value of the day of nonth.
Descri ption
This function returns the numeric value of the day of month froma date.
Exanpl es

2 Day(DATE())
? Day(DATE() +6325)

St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Pl at f or ms
Al l
Files
Library is rtl
See Al so:

ATE
H
CMONTH

i

DAYS()

Convert el apsed seconds into days

Synt ax

DAYS(<nSecs>) --> nDay
Argunment s

<nSecs> The nunber of seconds
Ret ur ns

<nDay> The nunber of days
Descri ption

This function converts <nSecs> seconds to the equival ent nunber of days;
86399 seconds represents one day, 0 seconds being m dnight.

Exanpl es

? DAYS(2434234)
? "Has been passed ", DAYS(63251),' since nidnight

St at us
Ready
Conpl i ance
This function is Ca-dipper conpliant
Pl at f or ns
Al |
Files
Library is rtl
See Al so:

SECONDS
SECS

ELAPTI ME()

Val ue for the day of week.

Synt ax

DOW <dDat e>) --> nDay
Argunment s

<dDate> Any valid date expression
Ret ur ns

<nDay> The current day nunber
Descri ption

This function returns the nunber representing the day of the week for the
dat e expressed as <dDat e>.

Exanpl es

2 DOW DATE())
2 DOW DATE() - 6584)

St at us
Ready
Conpl i ance
This function is Ca-dipper conpliant
Pl at f or ns
Al |
Files
Library is rtl
See Al so:

DTO()

Date to character conversion

Synt ax

DTOC(<dDat eString>) --> cDate
Argunment s

<dDateString> Any date
Ret ur ns

<dDat e> Character represention of date
Descri ption

This function converts any date expression (a field or variable) expressed as
<dDateString> to a character expression in the default format "MM DD YY'. The date
format expressed by this function is controled in part by the date fornat specified
in the SET DATE conmand
Exanpl es
? DTOC(Date())
St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Pl at f or ns
All
Fil es
Library is rtl
See Al so:

SET DATE
DATE
DTCS

DTOS()

Date to string conversion

Synt ax

DTOS(<dDat eString>) --> cDate
Argunment s

<dDateString> Any date
Ret ur ns

<dDate> String notation of the date
Descri ption

This function returns the value of <dDateString> as a character string in the
format of YYYYMVDD. |If the value of <dDateString>is an enpty date, this function
will return eight blank spaces.

Exanpl es
? DTOS(Date())
St at us
Ready
Conpl i ance
This function is Ca-dipper conpliant
Pl at f or ns
Al |
Files
Library is rtl
See Al so:

;

DATE
as

g

ELAPTI ME()
tine.

Cal cul ates el apte
Synt ax
ELAPTI ME(<cSt art Ti ne>, <cEndTi ne>) --> cDiference
Argunment s

<cStartTine> Start in tine as a string fornat <cEndTi mne> End tinme as a
string format

Ret ur ns
<cDi ference> Di fference between the tines

Descri ption
This function returns a string that shows the difference between the starting
time represented as <cStartTine> and the ending tine as <cEndTime>. If the stating

time is greater then the ending tinme, the function will assunme that the date
changed once.

Exanpl es
Static cStartTine
Init Proc Startup
cStartTime: =Ti ne()

Exit Proc StartExit
? "You used this program by", ELAPTI ME(cStartTine, Ti ne())

St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Pl at f or ms
All
Files
Library is rtl
See Al so:

MONTH()

Converts a date expression to a nonth val ue

Synt ax
MONTH(<dDat e>) --> nMonth
Argunment s
<dDate> Any valid date expression
Ret ur ns
<nMont h> Correspondi ng nunber of the nonth in the year, ranging fromO to 12
Descri ption

This function returns a number that represents the nonth of a given date
expression <dDate>. If a NULL date (CTOD('')) is passed to the function, the val ue
of the function will be O.
Exanpl es
? Mont h(DATE())
St at us
Ready
Conpl i ance
This function is Ca-dipper conpliant
Pl at f or ns
All
Files
Library is rtl

See Al so:

CDON().
DON).
YEAR

CMONTH()

SECONDS()

Returns the number of el apsed seconds past nidnight.
Synt ax
SECONDS() --> nSeconds
Argunment s

Ret ur ns
<nSeconds> Nunber of seconds since nidnight

Descri ption
This function returns a nunmeric val ue representing the nunber of el apsed
seconds based on the current systemtine. The systemtine is considered to start

at 0 (mdnight);it continues up to 86399 seconds. The value of the return expression
is displayed in both seconds and hundredths of seconds.

Exanpl es
? Seconds()
St at us
Ready
Conpl i ance
This function is Ca-dipper conpliant
Pl at f or ns
Al
Files
Library is rtl
See Al so:
TI ME

SECS()

Return the nunber of seconds fromthe system date

Synt ax
SECS(<cTime>) --> nSeconds
Argunment s
<cTine> Character expression in a time string format
Ret ur ns
<nSeconds> Nunber of seconds
Descri ption

This function returns a nurmeric value that is a nunber of elapsed seconds
from m dni ght based on a tine string given as <cTi nme>.

Exanpl es

St at us
Ready
Conpl i ance
This function is Ca-dipper conpliant
Pl at f or ns
Al |
Files
Library is rtl
See Al so:

SECONDS

ELAPTI ME()
T ME

TI VE()

Returns the systemtine as a string
Synt ax
TIME() --> cTine
Argunment s

Ret ur ns
<cTine> Character string representing tine
Descri ption

This function returns the systemtine represented as a character expression
in the format of HH. MM SS

Exanpl es
? Tine()
St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Pl at f or ms
All
Files
Library is rtl
See Al so:

DATE()
SECONDS

YEAR()

Converts the year portion of a date into a nuneric val ue

Synt ax
YEAR(<cDat e>) --> nYear

Argunment s
<dDate> Any valid date expression

Ret ur ns
<nYear> The year portion of the date.

Descri ption
This function returns the nunmeric value for the year in <dDate>. This val ue
will always be a four-digit nunber and is not affected by the setting of the SET
CENTURY and SET DATE commands. Addition ally, an enpty date expression passed to

this function will yield a zero val ue.

? Year (date())
? year (CTOD(" 01/ 25/ 3251"))

St at us
Ready
Conpl i ance
This function is Ca-dipper conpliant
Pl at f or ns
Al |
Files
Library is rtl
See Al so:
DAY()

MONTH()

dbCopySt ruct (

Creafe a new dat abase based on current database structure
Synt ax
__dbCopyStruct(<cFileNane>, [<aFieldList>]) --> NL
Argunment s

<cFil eNane> is the nane of the new database file to create. (.dbf) is the
default extension if none is given.

<aFieldList> is an array where each elenent is a field nane. Nanes could be
speci fied as uppercase or | owercase.

Ret ur ns
__dbCopyStruct () always return NIL.
Descri ption

__dbCopyStruct() create a new enpty database file with a structure that is

based on the currently open database in this work-area. If <aFieldList>is enpty,
the newly created file would have the sane structure as the currently open

dat abase. Else, the new file would contain only fields that exactly natch

<aFi el dLi st >.

__dbCopyStruct() can be use to create a sub-set of the currently open
dat abase, based on a given field I|ist.

COPY STRUCTURE conmand is preprocessed into _ dbCopyStruct() function during
conpile tine.

Exanpl es

// Create a new file that contain the sane structure
USE TEST
__dbCopyStruct ("M/Copy. DBF")

/'l Create a new file that contain part of the original structure
LOCAL alLi st
USE TEST
aList := { "NAME" }
__dbCopyStruct("Onl yNane. DBF", aList)
St at us
Ready
Conpl i ance
__dbCopyStruct () works exactly like CA-Clipper's _ dbCopyStruct ()

Pl at f or ns

Al l
Files
Li brary is rdd
See Al so:

COPY STRUCTURE

COPY STRUCTURE EXTENDED
DBCREATE

DBSTRUCT()

__dbCopyXSt ruct ()

__dbCreate()
__dbStructFilter()

COPY STRUCTURE

Create a new dat abase based on current database structure
Synt ax
COPY STRUCTURE TO <xcFil eName> [FI ELDS <field,...>]
Argunment s

TO <xcFileNanme> is the name of the new database file to create.
(.dbf) is the default extension if none is given. It can be specified as a literal
file name or as a character expression enclosed in parentheses.

FIELDS <field,...>is an optional list of field nanes to copy from
the currently open database in the specified order, the default is all fields.
Names coul d be specified as uppercase or | owercase.

Descri ption

COPY STRUCTURE create a new enpty database file with a structure that is
based on the currently open database in this work-area.

COPY STRUCTURE can be use to create a sub-set of the currently open database,
based on a given field |ist.

COPY STRUCTURE conmand is preprocessed into _ dbCopyStruct() function during
conpile tinme.

Exanpl es

// Create a new file that contains the sanme structure
USE TEST
COPY STRUCTURE TO MyCopy

/] Create a new file that contains part of the original structure
USE TEST
COPY STRUCTURE TO SonePart FIELDS nane, address

St at us
Ready
Conpl i ance
COPY STRUCTURE works exactly as in CA-Cipper
Pl at f or s
All
See Al so:

COPY STRUCTURE EXTENDED

DBCREATE()

DBSTRUCT ()
__dbCopyStruct ()

dbCopy XSt r uct ()

dbCreat e()
__dbStructFilter()

dbCopy XSt ruct ()

Copy current database structure into a definition file
Synt ax
__dbCopyXStruct(<cFileName>) --> | Success
Argunment s

<cFileNane> is the nane of target definition file to create. (.dbf) is the
default extension if none is given

Ret ur ns
__dbCopyXStruct() return (.F.) if no database is USED in the current
work-area, (.T.) on success, or a run-time error if the file create operation had
failed.

Descri ption

__dbCopyXStruct() create a new database nanmed <cFil eNane> with a pre-defined
structure (also called "structure extended file"):

Fi el d nane Type Lengt h Deci mal s
FI ELD_NAME C 10 0
FI ELD_TYPE C 1 0
Fl ELD_LEN g D
I ELD_DEC g 0

Each record in the new file contains information about one field in the

original file. CREATE FROM could be used to create a database fromthe structure
extended file.

For prehistoric conpatibility reasons, Character fields which are |onger than
255 characters are treated in a special way by witing part of the length in the
FI ELD DEC according to the followng formula (this is done internally):

FI ELD- >FI ELD_DEC
FI ELD->FI ELD_LEN

int(nLength / 256)
(nLength % 256)

Later if you want to calculate the length of a field you can use the
followi ng fornul a:

nLength := I F(FI ELD->FI ELD_TYPE == "C'

FI ELD- >FI ELD DEC * 256 + Fl ELD->FI ELD LEN, ;
FI ELD- >FI ELD_LEN)

COPY STRUCTURE EXTENDED conmand is preprocessed into _ dbCopyXStruct()
function during conpile tine.

Exanpl es
/1 Open a database, then copy its structure to a new file,
/1 Open the new file and list all its records
USE Test

__dbCopyXStruct("TestStru")
USE Test Stru
LI ST

St at us
Ready
Conpl i ance

__dbCopyXStruct() works exactly like CA-dipper's _ dbCopyXStruct ()
Pl at f or ns

Al l
Files

Library is rdd
See Al so:

COPY_ STRUCTURE
COPY STRUCTURE EXTENDED
CREATE
CREATE FROM
DBCREATE
DBSTRUCT()
dbCopySt ruct ()
dbCr eat e()

COPY STRUCTURE EXTENDED

Copy current database structure into a definition file
Synt ax
COPY STRUCTURE EXTENDED TO <xcFi | eName>
Argunment s
TO <xcFileName> The nane of the target definition file to create
(.dbf) is the default extension if none is given. It can be specified as alitera

file name or as a character expression enclosed in parentheses.

Descri ption

COPY STRUCTURE EXTENDED create a new dat abase nanmed <cFil eName> with a
pre-defined structure (also called "structure extended file"):

Fi el d name Type Length Deci mal s
FI ELD_NAME C 10 0
FI ELD_TYPE C 1 0
FI ELD_LEN N 3 0
FI ELD _DEC N 3 0

Each record in the new file contains information about one field in the
original file. CREATE FROM coul d be used to create a database fromthe structure
extended file.

For prehistoric conpatibility reasons, Character fields which are |onger than
255 characters are treated in a special way by witing part of the length in the

FI ELD DEC according to the followmng forrmula (this is done internally):

FI ELD- >FI ELD_DEC :
FI ELD- >FI ELD_LEN :

int(nLength / 256)
(nLength % 256)

Later if you want to calculate the length of a field you can use the
foll owi ng formla:

nLength := I I F(FIELD->FI ELD TYPE == "C", :
FI ELD- >FI ELD_DEC * 256 + FIELD->FI ELD_LEN, ;
FI ELD- >FI ELD_LEN)

COPY STRUCTURE EXTENDED command is preprocessed into _ dbCopyXStruct()
function during conmpile tine.

Exanpl es
/1 Open a database, then copy its structure to a new file
/1 Open the new file and list all its records
USE Test

COPY STRUCTURE EXTENDED TO Test Stru

USE Test Stru

LI ST
St at us

Ready

Conpl i ance

COPY STRUCTURE EXTENDED wor ks exactly as in CA-Clipper
Pl at f or ns

Al'l

See Al so:

COPY STRUCTURE

CREATE

CREATE FROM

DBCREATE

DBSTRUCT()
dbCopySt ruct ()
dbCopy XSt ruct ()

dbCreat e()

dbCreate()

Creaie structure extended file or use one to create new file
Synt ax

__dbCreate(<cFil eNane>, [<cFileFronr], [<cRDDNane>], [<I|New>],
[<cAlias>]) --> | Used

Argunment s

<cFileName> is the target file nane to create and then open. (.dbf) is the
default extension if none is given.

<cFileFronr is an optional structure extended file nane from which the

target file <cFileName> is going to be built. If omtted, a new enpty structure

extended file with the nane <cFileNane> is created and opened in the current
wor k- ar ea

<cRDDNane> is RDD nane to create target with. If omtted, the default RDD is
used.

<I New> is an optional |ogical expression, (.T.) opens the target file name
<cFil eNane> in the next avail able unused work-area and nakes it the current

work-area. (.F.) opens the target file in the current work-area. Default value is

(.F.). The value of <INew> is ignored if <cFileFrom is not specified.

<cAlias> 1is an optional alias to USE the target file with. If not specified,
alias is based on the root nane of <cFileNanme>.

Ret ur ns
dbCreate() returns (.T.) if there is database USED in the current

work-area (this mght be the newy selected work-area), or (.F.) if there is no
dat abase USED. Note that on success a (.T.) would be returned, but on failure you

probably end up with a run-time error and not a (.F.) val ue.
Descri ption
__dbCreate() works in two nodes dependi ng on the val ue of <cFil eFronp:

1) If <cFileFronr is enpty or not specified a new enpty structure

extended file with the nane <cFileNanme> is created and then opened in the current

work-area (<INew> is ignored). The new file has the follow ng structure:

Fi el d nane Type Lengt h Deci mal s
FI ELD_NAME C 10 0
FI ELD_TYPE C 1 0
Fl ELD_LEN g D
I ELD_DEC g 0

The CREATE command is preprocessed into the _ dbCopyStruct() function during
conpile time and uses this node.

2) If <cFileFronm> is specified, it is opened and assuned to be a

structure extended file where each record contains at least the following fields
(in no particular order): FIELD NAME, FIELD TYPE, FIELD LEN and FlI ELD DEC. Any
other field is ignored. Fromthis information the file <cFileNanme> is then created
and opened in the current or new work-area (according to <INew>), if this is a new

work-area it beconmes the current.

For prehistoric conpatibility reasons, structure extended file Character

fields which are | onger than 255 characters should be treated in a special way by
witing part of the length in the FIELD DEC according to the follow ng formla:

FI ELD- >FI ELD_DEC
FI ELD->FI ELD_LEN

int(nLength / 256)
(nLength % 256)

CREATE FROM comand is preprocessed into _ dbCopyStruct () function

conpile time and use this node

Exanpl es

// CREATE a new structure extended file,

append sone records and

/1 then CREATE FROMthis file a new database file

__dbCreate("tenplate")
DBAPPEND()

FI ELD- >FI ELD_NAME : = " CHANNEL"

FI ELD- >FI ELD_TYPE : = "N'

FIELD->FI ELD_LEN := 2

FIELD >FIELD DEC := 0

DBAPPEND)

FI ELD- >FI ELD_NAVE : = " PROGRAM'

FI ELD- >FI ELD_TYPE : = "C'

FI ELD->FI ELD_LEN := 20
FIELD->FIELD_ DEC := 0

DBAPPEND)

FI ELD- >FI ELD_NAVE : = " REVI EW

FI ELD- >FI ELD_TYPE : = "C' /1 th
FI ELD- >FI ELD_LEN : = 232 /1 1000 % 256
FIELD- >FI ELD DEC := 3 /1 10

DBCL OSEAREA()
__dbCreate("TV_Cuide", "tenplate")

St at us

Ready
Conpl i ance
__dbCreate() works exactly as in CA-Cipper
Pl at f or ms
Al l
Files
Li brary is rdd
See Al so:

COPY STRUCTURE

COPY STRUCTURE EXTENDED
CREATE

CREATE FROM

DBCREATE

DBSTRUCT ()
__dbCopySt ruct ()
__dbCopyXSt ruct ()

00 / 256

is field is 1000 char |ong

232
3

during

CREATE

Create enpty structure extended file

Synt ax

CREATE <xcFi | eName> [VI A <xcRDDNane>] [ALIAS <xcAli as>]

Argunment s

<xcFi | eName>

default extension if none is given
a character expression enclosed in

VI A <xcRDDName> is RDD name to create target with.
RDD i s used.

def aul t

It can be speci

expression encl osed in parentheses.

ALI AS <xcAlias> is an optional

not specified,

Descri ption

CREATE a new enpty structure extended file with the nane <cFil eName>

alias is based on the root

is the target file name to create and then open

It can be specified as
par ent heses.

fied as literal nanme or

literal

If omtted,

as a

(. dbf)

is the
file nanme or

t he

char act er

alias to USE the target file with. If

nanme of

<xcFi | eName>.

and t hen

as

open it in the current work-area. The new file has the follow ng structure:
Fi el d name Type Length Deci mal s
FI ELD_NAME c 10 0
FI ELD_TYPE IC [0
FI ELD_LEN N 3 0
FI ELD_DEC N g 0

CREATE conmmand is preprocessed into _ dbCopyStruct() function during

time and use this node.

Exanpl es

// CREATE a new structure extended file,

/1 then CREATE FROM this file a new database file

CREATE tenpl ate
APPEND BLANK

FI ELD- >FI ELD_NAME :
FI ELD- >FI ELD_TYPE

FI ELD- >FI ELD_LEN
FI ELD- >FI ELD_DEC
APPEND BLANK

FI ELD- >FI ELD_NAME
FI ELD- >FI ELD_TYPE

FI ELD->FI ELD_LEN
FI ELD- >FI ELD _DEC
APPEND BLANK

FI ELD- >FI ELD_NAME :
FI ELD- >FI ELD_TYPE

FI ELD- >FI ELD_LEN
FI ELD- >FI ELD_DEC
CLOSE

" CHANNEL"
"N

[l this
/1 1000
/1 1000

CREATE TV_Gui de FROM tenpl ate

St at us
Ready
Conpl i ance

field is 1000 char
% 256 232
| 256 3

CREATE works exactly as in CA-Cipper

Pl at f or ns
Al l

| ong

append sone records and

conpile

See Al so:

COPY STRUCTURE
COPY STRUCTURE EXTENDED
CREATE FROM
DBCREATE
DBSTRUCT()
dbCopySt ruct ()
dbCopy XSt ruct ()
dbCr eat e()

CREATE FROM

Create new database file froma structure extended file
Synt ax

CREATE <xcFi | eName> FROM <xcFi | eFronr [VI A <xcRDDNane>] [NEW
[ALI AS <xcAl i as>]

Argunment s
<xcFileNane> is the target file nane to create and then open. (.dbf) is the
default extension if none is given. It can be specified as literal file nane or as

a character expression enclosed in parentheses.

FROM <xcFileFronp is a structure extended file nanme from which the
target file <xcFileNanme> is going to be built. It can be specified as literal file
name or as a character expression enclosed in parentheses.

VI A <xcRDDNanme> is RDD nane to create target with. If omtted, the
default RDD is used. It can be specified as literal name or as a character
expression encl osed in parent heses.

NEWL/ b> open the target file nane <xcFileNane> in the next available
unused work-area and making it the current work-area. If omtted open the target
file in current work-area.

ALIAS <xcAlias> is an optional alias to USE the target file with. If
not specified, alias is based on the root nane of <xcFil eNane>.

Descri ption

CREATE FROM open a structure extended file <xcFil eFronr where each record

contain at least the following fields (in no particular order): FIELD NAME

FIELD TYPE, FIELD LEN and FIELD DEC. Any other field is ignored. Fromthis
information the file <xcFileName> is then created and opened in the current or new
wor k-area (according to the NEWclause), if this is a new work-area it becones the
current.

For prehistoric conpatibility reasons, structure extended file Character
fields which are | onger than 255 characters should be treated in a special way by
witing part of the length in the FIELD DEC according to the follow ng fornul a:

FI ELD- >FI ELD_DEC :

) int(nLength / 256)
FI ELD- >FI ELD_LEN :

(nLength % 256)

CREATE FROM conmmand i s preprocessed into _ dbCopyStruct() function during
conpile time and uses this node.

Exanpl es
See exanpl e in the CREATE conmand
St at us
Ready
Conpl i ance
CREATE FROM wor ks exactly as in CA-C i pper
Pl at f or ms
Al l
See Al so:

COPY STRUCTURE

COPY STRUCTURE EXTENDED
CREATE

DBCREATE()

DBSTRUCT ()
__dbCopySt ruct ()

dbCopy XSt r uct ()

dbCreat e()

FLEDI T() *

Filter a database structure array

Synt ax
__FLEDIT(<aStruct>, [<aFieldList>]) --> aStructFiltered
Argunment s
<aStruct> 1is a multidinensiona
is usually the output from DBSTRUCT(), where each
structure:

<aFi el dLi st >
speci fied as uppercase or

Ret ur ns

__FLEDI T()
sane structure as the origi
list of fields in <aFi el dLi
reference to the origina

Descri ption

__FLEDIT() can be use to create a sub-set of a database structure,

given field list.

is an array where each el ement

return a new nul tidi mensi ona

ower case.

nal <aStruct>,
st> |If
<aStruct> array.

array where each el enent
but the array is
<aFieldList> is enpty,

array with database fields structure, which
array el ement

has the fol |l ow ng

is a field nane. Nanes coul d be

isin the
built according to the
__FLEDIT() return

based on a

Note that field names in <aStruct> MJST be specified in uppercase or else no
mat ch woul d found
SET EXACT has no effect on the return val ue.
__FLEDIT() is a conpatibility function and it is synonym for
__dbStructFilter() which does exactly the sane.
Exanpl es
LOCAL aStruct, aList, aRet
aStruct :={ { "CODE", "N', 4, 0}, ;
{ "NAME", "C', 10, O}, ;
{ "PHONE"', "C', 13, 0}, ;
{ "1Q, "N, 3, 0} }
aList :={ "I1Q", "NAME"
aRet := _FLEDIT(aStruct, aList
/o {"1rqQ, "N, 3, 0}, { "NAME", "C', 10, O } }
aRet := _FLEDIT(aStruct, {})
? aRet == aStruct // .T.
aList :={ "iqg", "NOTEX ST" }
aRet := FLEDIT(aStruct, aList)
Mg, "N, 3, 0})
aList :={ "NOTEX ST"
aRet := FLEDIT(aStruct, aList) 11 {}
/]l Create a new file that contain part of the original structure

LOCAL aStruct, aList, aRet
USE TEST

aStruct := DBSTRUCT()
aList := " NAMVE"

DBCREATE(" Onl yNane. DBF",
St at us

Ready
Conpl i ance

CA-d i pper has interna
nane it _ dbStructFilter().

FLEDI T(aStruct, aList))

undocurnent ed function named _ FLEDI T(),

The new nane gives a better

i n Harbour we
description of what this

function does. In Harbour _ FLEDIT() sinply <calls _ dbStructFilter() and therefor
the later is the recoomended function to use.

This function is only visible if source/rdd/ dbstrux.prg was conpiled wth the
HB_C52_UNDOC f I ag.

Pl at f or s

All
Files

Header file is dbstruct.ch Library is rdd
See Al so:

DBCREATE
DBSTRUCT()
__dbCopySt ruct ()
__dbStructFilter()

dbStructFilter()

Filter a database structure array
Synt ax
__dbStructFilter(<aStruct>, [<aFieldList>]) --> aStructFiltered
Argunment s

<aStruct> is a multidinmensional array with database fields structure, which
is usually the output from DBSTRUCT(), where each array elenent has the follow ng
structure:

<aFieldList> is an array where each elenment is a field nanme. Nanes coul d be
speci fied as uppercase or | owercase.

Ret ur ns

__dbStructFilter() return a new nultidinmensional array where each elenent is

in the same structure as the original <aStruct>, but the array is built according
to the list of fields in <aFieldList> |If <aFieldList>is enpty, _ dbStructFilter()
return reference to the original <aStruct> array.

Descri ption

__dbStructFilter() can be use to create a sub-set of a database structure,
based on a given field |ist.

Note that field nanes in <aStruct> MJST be specified in uppercase or else no
mat ch woul d be found.

SET EXACT has no effect on the return val ue.

Exanpl es
LOCAL aStruct, aList, aRet
astruct :={ { "CODE', "N', 4, 0}, ;
{ "NAME", "C', 10, O}, ;
{ "PHONE', "C', 13, 0}, ;
{ "1qQ, "N, 3, 01} }
aList :={ "1Q", "NAWE"
aRet := _dbStructFilter(aStruct, aList)
[{"1Q, "N, 3 01}, { "NAw', "C', 10, 0} }
aRet := _dbStructFilter(aStruct, {})
? aRet == aStruct // .T.

aList :={ "iq", "NOTEXI ST" }
aRet := dbStructFilter(aStruct, aList)
M {"rQ, "N, 3 0} }

aList := { "NOTEX ST"
aRet := dbStructFilter(aStruct, aList) 11 {}

/]l Create a new file that contain part of the original structure
LOCAL aStruct, aList, aRet

USE TEST
aStruct := DBSTRUCT()
aList := { "NAME"
DBCREATE("Onl yNane. DBF', _ dbStructFilter(aStruct, aList))
St at us
Ready
Conpl i ance

__dbStructFilter() is a Harbour extension. CA-Cipper has an internal
undocunented function naned _ FLEDI T() that does exactly the sane thing. The new
name gives a better description of what this function does.

Pl at f or ns

All
Fil es

Header file is dbstruct.ch Library is rdd
See Al so:

DBCREATE

DBSTRUCT()
dbCopySt ruct ()

FLEDI T()*

DI SKSPACE()

CGet the anpbunt of space available on a disk

Synt ax
DI SKSPACE([<nDrive>]) --> nDiskbytes

Argunment s
<nDrive> The nunber of the drive you are requesting info on where 1 = A 2
B, etc. For O or no paraneter, DiskSpace will operate on the current drive.
default is O

Ret ur ns

<nDi skBytes> The nunber of bytes on the requested disk that match the
requested type.

Descri ption

By default, this function will return the nunber of bytes of free space on
the current drive that is available to the user requesting the infornation

If information is requested on a disk that is not available, a runtine error

2018 will be raised.

Exanpl es
? "You can use : " +Str(DiskSpace()) + " bytes " +
Note: See tests\tstdspac.prg for another exanple
St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Pl at f or ns
Dos, W n32, OS5/ 2
Files

Library is rtl Header is fileio.ch

The

HB_ DI SKSPACE()

CGet the anpunt of space available on a disk
Synt ax
HB DI SKSPACE([<cDrive>] [, <nType>]) --> nDi skbytes
Argunment s
<cDrive> The drive letter you are requesting info on. The default is A
<nType> The type of space being requested. The default is HB DI SK _AVAI L.
Ret ur ns

<nDi skBytes> The nunber of bytes on the requested disk that match the
requested type.

Descri ption

By default, this function will return the nunber of bytes of free space on
the current drive that is available to the user requesting the information.

There are 4 types of information avail abl e:

HB_FS_AVAI L The anopunt of space available to the user naking the request.
This value could be less than HB_FS FREE if disk quotas are supported by the O S
in use at runtine, and disk quotas are in effect. Oherwise, the value wll be
equal to that returned for HB_FS FREE

HB FS FREE The actual anmount of free diskspace on the drive.

HB FS USED The nunber of bytes in use on the disk.

HB_FS TOTAL The total amount of space allocated for the user if disk
gquotas are in effect, otherw se, the actual size of the drive.

If information is requested on a disk that is not available, a runtine error
2018 will be raised.

Exanpl es

? "You can use : " +Str(HB _DiskSpace()) + " bytes " +;
"Qut of a total of " + Str(HB DiskSpace('C.',HB FS TOTAL))

Note: See tests\tstdspac.prg for another exanple
St at us
Ready
Conpl i ance
CA-Clipper will return an integer value which Iimts it's usefulness to
drives less than 2 gigabytes. The Harbour version will return a floating point
value with O decinmals if the disk is > 2 gigabytes. <nType> is a Harbour extension.
Pl at f or ns
Dos, W n32, OGS/ 2, Uni x
Files

Library is rtl Header is fileio.ch

Dir()*

Di splay listings of files

Synt ax
_Dir([<cFileMask>]) --> NL
Argunment s

<cFi |l emMask> File mask to include in the function return. It could contain
path and standard wildcard characters as supported by your OS (like * and ?). If
<cFi | eMask> contains no path, then SET DEFAULT path is used to display files in the

mask.
Ret ur ns
_Dbir() always returns N L.
Descri ption
If no <cFileMask> is given, _ Dir() displays information about all *.dbf in

the SET DEFAULT path. This information contains: file nanme, nunber of records,
| ast update date and the size of each file.

If <cFileMask> is given, __Dir() list all files that match the nask wth the
followi ng details: Nane, Extension, Size, Date.

DIR command is preprocessed into __Dir() function during conpile tine.

_Dir() i
return al

Exanpl es

S a conpatibility function, it is superseded by DI RECTORY() which
| the information in a nultidinensional array.

_Dr() /1 information for all DBF files in current directory
_Dir("*.dbf") /1 list all DBF file in current directory
/1 list all PRGfiles in Harbour Run-Tine library
/1 for DOS conpatible operating systens
r("c:\harbour\source\rtl*.prg")
ist all files in the public section on a Unix |ike machine
("/pub")
St at us
Ready
Conpl i ance

DBF i nformation: CA-Cipper displays 8.3 file names, Harbour displays the
first 15 characters of a long file nane if avail able.

File listing: To format file nanes di spl ayed we use sonmething like: PadR(
Name, 8) + " " + PadR(Ext, 3) CA-Cipper use 8.3 file nane, with Harbour it
woul d probably cut 1long file names to feet this tenplate.

Fil es
Library is rtl
See Al so:

ADI R()
ARRAY

SET DEFAULT
DR

D R

Display listings of files
Synt ax
DI R [<cFi | eMask>]
Argunent s

<cFil eMask> File mask to include in the function return. It could contain
path and standard wildcard characters as supported by your OS (like * and ?).

| f

<cFi | eMask> contains no path, then SET DEFAULT path is used to display files in the

mask.
Descri ption
If no <cFileMask> is given, _ Dir() display information about all *.dbf in

the SET DEFAULT path, this information contain: file name, nunber of records,
update date and the size of each file.

If <cFileMask> is given, __Dir() list all files that match the nask wth the
followi ng details: Name, Extension, Size, Date.

DIR command is preprocessed into _ Dir() function during conpile tine.

_Dir() is a conpatibility function, it is superseded by DI RECTORY() which
returns all the information in a nultidinmensional array.

Exanpl es
DR /1 information for all DBF files in current directory
dir "* dbf" /1 list all DBF file in current directory
/1 list all PRGfiles in Harbour Run-Tine library
/1 for DOS conpatible operating systens
Dir "c:\harbour\source\rtl*. prg"
/1 list all files in the public section on a Unix |ike nachine
Dir "/pub"
St at us
Ready
Conpl i ance

DBF i nformation: CA-Cipper displays 8.3 file nanes, Harbour displays the
first 15 characters of a long file nane if avail able.

File listing: To format file nanes di spl ayed we use sonething like: PadR(

Name, 8) + " " + PadR(Ext, 3) CA-Cipper use 8.3 file nane, with Harbour it

woul d probably cut long file names to feet this tenplate.
See Al so:

ADI R()
ARRAY/
SET DEFAULT

_Dr(Q)*

| ast

ADI R()

Fill pre-defined arrays with file/directory information
Synt ax

ADI R([<cFil eMask>], [<aNane>], [<aSize>], [<aDate>],
[<aTinme>], [<aAttr>]) -> nDirEnries

Argunment s

<cFil eMask> File mask to include in the function return. It could contain

path and standard wi | dcard characters as supported by your OS (like * and ?). If
you omt <cFileMask> or if <cFileMask> contains no path, then the path from SET
DEFAULT i s used.

<aNane> Array to fill with file nane of files that neet <cFileMask>. Each

element is a Character string and include the file nane and extension without the
path. The nane is the long file name as reported by the OGS and not necessarily the
8. 3 uppercase nane.

<aSize> Array to fill with file size of files that neet <cFil eMask>. Each
element is a Nuneric integer for the file size in Bytes. Directories are always
zero in size.

<aDate> Array to fill with file last nodification date of files that neet
<cFi | eMask>. Each elenent is of type Date.

<aTine> Array to fill with file last nodification tine of files that neet
<cFi | eMask>. Each elenment is a Character string in the format HH nm ss.

<aAttr> Array to fill with attribute of files that neet <cFileMask>. Each
element is a Character string, see DIRECTORY() for information about attribute
values. If you pass array to <aAttr>, the function is going to return files with
normal, hidden, systemand directory attributes. If <aAttr> is not specified or
with type other than Array, only files with normal attribute would return.

Ret ur ns
ADIR() return the nunber of file entries that neet <cFil eMask>
Descri ption

ADI R() return the nunber of files and/or directories that natch a specified
skeleton, it also fill a series of given arrays with the nanme, size, date, tine
and attribute of those files. The passed arrays should pre-initialized to the
proper size, see exanple below. In order to include hidden, systemor directories
<aAttr> must be specified.

ADIR() is a conpatibility function, it is superseded by D RECTORY() which
returns all the information in a multidinensional array.

Exanpl es
LOCAL aNane, aSize, aDate, aTinme, aAttr, nLen, i
nLen := ADIR("*.JPG') /1 Nunber of JPG files in this directory
IF nLen > 0
aNanme := Array(nLen) /1 make roomto store the infornmation
aSize := Array(nLen)
aDate := Array(nLen)
aTime := Array(nLen)
aAttr := Array(nLen)
FORi = 1 TO nLen
? aNane[i], aSize[i], aDate[i], aTine[i], aAttr[i]
NEXT
ELSE
? "This directory is clean fromsnut"
ENDI F
St at us
Ready

Conpl i ance

<aNane> is going to be fill with long file nane and not necessarily the 8.3
upper case nane.

Fil es
Library is rtl
See Al so:

SET DEFAULT

ERRORSYS()

Install default error handl er

Synt ax
ERRORSYS() --> NIL

Argunment s

Ret ur ns
ERRORSYS() always return NI L.

Descri ption
ERRORSYS() is called upon startup by Harbour and install the default error
handl er. Normally you should not call this function directly, instead use
ERRORBLOCK() to install your own error handler.

St at us
Ready

Conpl i ance
ERRORSYS() works exactly like CA-dipper's ERRORSYS().

Files
Library is rtl

See Al so:
ARRAY

FOPEN()

Open a file.
Synt ax
FOPEN(<cFile>, [<nMode>]) --> nHandle
Argunment s

<cFile> Nanme of file to open

<nMode> Dos file open node.

Ret ur ns
<nHandl e> A file handl e.
Descri ption

This function opens a file expressed as <cFile> and returns a file handle to

be used with other lowlevel file functions. The value of <nMbdde> represents the
status of the file to be opened; the default value is 0. The file open nbdes are as
fol | ows:

If there is an error in opening a file, a -1 will be returned by the

function. Files handles may be in the range of 0 to 65535. The status of the SET
DEFAULT TO and SET PATH TO conmands has no effect on this function. Directory nanes
and paths must be specified along with the file that is to be opened.

If an error has occured, see the returns values from FERROR() for possible
reasons for the error.

Exanpl es

IF (nH =FOPEN(' X. TXT',66) < O
? '"File can't be opened'
ENDI F

St at us

Ready
This function is CA-dipper conpliant

Fil es
Library is rtl Header 1is fileio.ch
See Al so:

FCREATE
FERROR
FCLOSE

FCREATE()

Creates a file.

Synt ax
FCREATE(<cFile>, [<nAttribute>]) --> nHandle

Argunment s
<cFile> is the nane of the file to create.
<nAttribute> Nuneric code for the file attributes.

Ret ur ns
<nHandl| e> Nureric file handle to be used in other operations.

Descri ption
This function creates a newfile with a filename of <cFile> The default
val ue of <nAttribute>is 0 and is used to set the attribute byte for the file
being created by this function. The return value will be a file handle that is
associated with the newfile. This nunber will be between zero to 65, 535,

inclusive. |If an error occurs, the return value of this function wll be -1.

If the file <cFile> already exists, the existing file will be truncated to a
file length of O bytes.

If specified, the follow ng table shows the value for <nAttribute> and their
rel ated nmeaning to the file <cFile> being created by this function

Exanpl es
| F (nh: =FCREATE(" TEST. TXT") <0

? "Cannot create file"
ENDI F

St at us

Ready
Conpl i ance

This function is CA-Cipper conpliant.
Files

Library is rtl Header is fileio.ch
See Al so:

FREAD(

Reads a speC|Pied nunmber of bytes froma file.

Synt ax

FREAD(<nHandl e>, @xcBuffer>, <nBytes>) --> nBytes
Argunment s

<nHandl| e> Dos file handle

<cBuf f er Var > Char acter expression passed by reference.

<nByt es> Nunmber of bytes to read.
Ret ur ns

<nByt es> the nunber of bytes successfully read fromthe file. <nHandl e>
Descri ption

This function reads the characters froma file whose file handle is <nHandl e>
into a character nenory variabl e expressed as <cBuffer>. The function returns the
nunber of bytes successfully read into <cBuffer>.

The val ue of <nHandle> is obtained fromeither a call to the FOPEN() or the
FCREATE() function.

The <cBuffer> expression is passed by reference and nust be defined before
this function is called. It also nmust be at |least the sane |ength as <nBytes>.

<nBytes> is the nunber of bytes to read, starting at the current file pointer
position. If this function is successful in reading the characters fromthe file,
the I ength of <cBuffer> or the nunber of bytes specified in <nBytes> will be the
val ue returned. The current file pointer advances the nunber of bytes read with
each successive read. The return value is the nunber of bytes successfully read
fromthe file. If a 0 is returned, or if the nunber of bytes read matches neither
the I ength of <cBuffer> nor the specified value in <nBytes> an end-of-file
condition has been reached.

Exanpl es
cBuf f er : =SPACE(500)
| F (nH =FOPEN(' X. TXT)) >0
FREAD(Hh, @Buf f er, 500)
? cbuffer

ENDI F
FCLOSE(nH)

St at us
Ready
Conpl i ance

This function is CA-Cipper conpliant, but also extends the possible buffer
size to strings greater than 65K (depending on platforn).

Fil es
Library is Rt
See Al so:

FWRI TE()

Wites characters to a file.
Synt ax
FWRI TE(<nHandl e>, <cBuffer>, [<nBytes>]) --> nBytesWitten
Argunment s
<nHandl e> DCS fil e handl e nunber.
<cBuf f er > Character expression to be witten.
<nByt es> The nunber of bytes to wite.
Ret ur ns
<nBytesWitten> the nunber of bytes successfully witten.
Descri ption
This function wites the contents of <cBuffer> to the file designated by its

file handl e <nHandl e>. |f used, <nBytes> is the nunber of bytes in <cBuffer>to
wite.

The returned value is the nunber of bytes successfully witten to the DGCS

file. If the returned value is 0, an error has occurred (unless this is intended).
A successful wite occurs when the nunber returned by FWRITE() is equal to either
LEN(<cBuffer>) or <nBytes>.

The val ue of <cBuffer> is the string or variable to be witten to the open
DOS fil e <nHandl e>.

The val ue of <nBytes> is the nunber of bytes to wite out to the file. The

disk wite begins with the current file position in <nHandle>. If this variable is
not used, the entire contents of <cBuffer>is witten to the file. To truncate a
file. acall of FM\RITE(nHandle, "", 0) is needed.

Exanpl es
nHandl e: =FCREATE(' X. t xt")
FOR X:=1 to 10
FWRI TE(nHandl e, STR(x))
NEXT
FCLOSE(nHandl e)
St at us
Ready

Conpl i ance

This function is not CA-Cipper conpatile since it can wites strings
great her the 64K

Fil es
Library is Rt
See Al so:

FERROR()

Reports the error status of lowlevel file functions
Synt ax
FERROR() --> <nError Code>
Ret ur ns
<nError Code> Value of the DCOS error |last encountered by a lowlevel file
function.
FERROR() Return Val ues
Er ror Veani ng
0 Successful
7 File not found
¢ Pat h not found
n Too many files open
3 JAccess deni ed
6 nval i d handl e
B nsufficient memory
5 nvalid drive specified
9 IAttempted to wite to a wite-protected di sk
D1 Drive not ready
P3 Dat a CRC error
P9 Wite fault
30 Read fault
B2 Shar i ng vi ol ation
B3 [ock Violation
Descri ption
After every lowlevel file function,this function will return a value that
provi des additional informationon the status of the last lowlevel file
functions's performance.|f the FERROR() function returns a 0, no error was
detected.Below is a table of possibles values returned by the FERROR() function.
Exanpl es
#i nclude "Fileio.ch"
/nf-landl e .= FCREATE(" Tenp.txt", FC_NORMNAL)
IF FERROR() !'= 0
? "Cannot create file, DOS error ", FERROR()
ENDI F
St at us
Ready
Conpl i ance
This function is CA-dipper conpatible
Files

Library is Rt
See Al so:

FCLOSE()

Cl oses an open file

Synt ax

FCLOSE(<nHandl e>) --> <I| Success>
Argunment s

<nHandl e> DOCS file handle
Ret ur ns

<l Success> Logical TRUE (.T.) or FALSE (.F.)
Descri ption

This function closes an open file with a dos file handle of <nHandl e> and
wites the associated DOS buffer to the disk. The <nHandl e> value is derived from
the FCREATE() or FOPEN() function.

Exanpl es

nHandl e: =FOPEN("' x. t xt")
? FSEEK(nHandl €0, 2)
FCLOSE(nHandl e)

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Library is Rt
See Al so:

FOPEN
FCREATE
FREA|
FWRI TE
FERROR

FERASE()

Erase a file fromdi sk

Synt ax

FERASE(<cFile>) --> nSuccess
Argunment s

<cFile> Nane of file to erase.
Ret ur ns

<nSuccess> 0 if successful, -1 if not
Descri ption

This function deletes the file specified in <cFile> fromthe disk. No

extensi ons are assuned. The drive and path ny be included in <cFile>; neither the
SET DEFAULT not the SET PATH conmand controls the performance of this function.If
the drive or path is not used, the function will look for the file only on the
currently selected direcytory on the |ogged drive.

If the function is able to successfully delete the file fromthe disk, the
val ue of the function will be 0; otherwise a -1 will be returned.|f not successfu
aditional information nmay be obtained by calling the FERROR() function
Note: Any file to be renoved by FERASE() nust still be cl osed.
| F (FERASE(" TEST. TXT") ==0)
? "File successfully erased"
ELSE
? "File can not be del et ed"
ENDI F
St at us
Ready
Conpl i ance
This function is CA-dipper Conpatible
Files
Library is Rt
See Al so:

FERROR|
FRENANE

FRENAVE()

Renanes a file
Synt ax
FRENAVE(<cO dFile>, <cNewrile>) --> nSuccess
Argunment s
<cAO dFile> dd filenarne to he changed
<cNewFi |l e> New fil enane
Ret ur ns

<nSuccess> |f sucessful, a O will he returned otherwise, a -1 will be
ret urned.

Descri ption

This function renames the specified file <cOdFile> to <cNewFile> A filenane
and/ or directory nane may be specified for either para- neter. However, if a path
is supplied as part of <cNewFile> and this path is different fromeither the path
specified in <cOdFile> or (if none is used) the current drive and directory, the
function wll not execute successfully.

Nei t her paraneter is subject to the control of the SET PATH TO or SET DEFAULT

TO comuands. In attenpting to locate the file to be renaned, this function wll
search the default drive and directory or the drive and path specified in
<cOdFile> 1t will not search directories naned by the SET PATH TO and SET DEFAULT
TO comands or by the DOS PATH st at enent.

If the file specified in <cNewrile> exists or the file is open, the function
will be unable to renane the file.If the function is unable to conplete its

operation,it will return a value of -1. If it is able to renanme the file, the
return value for the function wll be 0.A call to FERROR() function will give
additional infor- nmation about any error found.

Exanpl es

nResul t: =FRENAME(" x. t xt", " x1. txt")
I F nResult <0

? "File could not be renaned."
ENDI F

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Library is Rtl
See Al so:

FSEEK()

Positions the file pointer in a file.

Synt ax
FSEEK(<nHandl e>, <nOifset>, [<nOrigin>]) --> nPosition
Argunment s

<nHandl e> DOS file handl e.
<nOf fset> The nunber of bytes to nove.
<nOrigin> The relative position in the file.
Ret ur ns
<nPosition> the current position relative to begin-of-file
Descri ption
This function sets the file pointer in the file whose DOS file handle is
<nHandl e> and noves the file pointer by <expN2> bytes fromthe file position
designated by <nOrigin> The returned value is the relative position of the file

pointer to the beginning-of-file marker once the operation has been conpl et ed.

<nHandl e> is the file handl e nunber. It is obtained fromthe FOPEN() or
FCREATE() function.

The value of <nOfSet> is the nunber of bytes to nove the file pointer from
the position determ ned by <nOrigin> The value of <nOffset> may be a negative
nunber, suggesting backward novenent.

The val ue of <nOrigin> designates the starting point fromwhich the file
poi nter should he noved, as shown in the follow ng table:

If a value is not provided for <nOrigin> it defaults to O and noves the file
poi nter fromthe beginning of the file.

Exanpl es

/1 here is a function that read one text line froman open file

/1 nH = file handl e obtained from FOPEN()
/1 c¢cB = a string buffer passed-by-reference to hold the result
/1 nMaxLi ne = maxi num nunber of bytes to read

#define EOL HB OSNEW.I NE()
FUNCTI ON FREADI n(nH, c¢B, nMaxLine)
LOCAL cLi ne, nSavePos, nEol, nNunRead

cLine : = space(nMaxLi ne)

cB:=""

nSavePos : = FSEEK(nH, 0, FS_RELATIVE)

nNunRead : = FREAD(nH, @Line, nMaxLine)

IF (nEol := AT(EQOL, substr(cLine, 1, nNumRead))) ==
cB : = cLine

ELSE

cB := SUBSTR(cLine, 1, nEol - 1)
FSEEK(nH, nSavePos + nEol + 1, FS SET)
ENDI F
RETURN nNunRead !'= 0
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant.
Files

Library is rtl Header is fileio.ch

See Al so:

FCREATE
FERROR
FOPEN
FREA|

FREADSTR()
FVWRI TE

FI LE()

Tests for the existence of file(s)
Synt ax
FILE(<cFileSpec>) --> | Exists
Argunment s
<cFi | eSpec> Dos Skeleton or file nanme to find.
Ret ur ns
<|Exists> a logical true (.T.) if the file exists or logical false (.F.).
Descri ption

This function return a logical true (.T.) if the given filenane <cFileSpec>
exi st.

Dos skel etons synbols may be used in the filenane in <cFileSpec> as may the
drive and/or path nane. If a drive are not explicity specified, FILE() will first
search the current drive and directory, and will look for the file in the
directories specified by SET PATH TO and SET DEFAULT TO conmands. However, this
command does not | ook at the values in the DOS PATH conmand.

Exanpl es

e(' c:\ harbour\doc\conpiler.txt")
e(' c:/ harbour/doc/subcodes. txt")

St at us
Ready
Conpl i ance
This function is CA-Cipper conpatible
Files
Library is Rtl
See Al so:

SET PATH
SET DEFAULT

SET()

FREADSTR()

Reads a string froma file.

Synt ax

FREADSTR(<nHandl e>, <nBytes>) --> cString
Argunment s

<nHandl e> DOS file handl e nunber.

<nByt es> Number of bytes to read.
Ret ur ns

<cString> an characted expression

Descri ption

This function returns a character string of <nBytes> bytes froma file whose
DCS file handl e i s <nHandl e>.

The val ue of the file handle <nHandl e> is obtained fromeither the FOPEN() or
FCREATE() functions.

The val ue of <nBytes> is the nunmber of bytes to read fromthe file. The
returned string will be the nunmber of characters specified in <nBytes> or the
nunber of bytes read before an end-of-file charac- ter (ASCII 26) is found.

NOTE This function is simlar to the FREAD() function, except that it wll

not read binary characters that nay he required as part of a header of a file
construct. Characters Such as CHR(0) and CHR(26) nmay keep this function from
performng its intended operation. In this event, the FREAD() function should he
used in place of the FREADSTR() function.

Exanpl es

IF (nH:
cStr
? cStr
ENDI F
FCLOSE(nH)

FOPEN("x.txt")) >0
Freadstr (nH, 100)

St at us
Ready
Conpl i ance

This function is not CA-Cipper conpliant since may read strings greather the
65K dependi ng of platform

Fil es
Library is Rt
See Al so:

RENANE

Changes the nane of a specified file

Synt ax

RENAME <cd dFi |l e> TO <cNewFi | e>

Argunment s

<cA dFile> dd filenane

<cNewFi | e> New Fil enane

Descri ption

This command changes the nane of <cA dFile> to <cNewFile> Both <cddFile> and
<cNewFi | e> nust include a file extension. This command if not affected by the SET
PATH TO or SET DEFAULT TO commands; drive and directoy designaters nmust be specified
if either fileis in a directory other then the default drive and directory.

If <cNewFile> id currently open or if it previously exists, this conmand w |l
not performthe desired operation.

Exanpl es

RENAME c:\ aut oexec. bat to c:\autoexec.old

St at us

Ready

Conpl i ance

This command is CA-Clipper conpatible

Files

Library is Rt

See Al so:

CURDI R()
ERASE

| LE

:

=

ERASE

FRENANE

ERASE

Renmove a file from disk

Synt ax
ERASE <xcFil e>

Argunment s
<xcFile> Nanme of file to renove

Descri ption
This command renoves a file fromthe di sk. The use of a drive,directo- ry,and
wi | d-card skel eton operator is allowed for the root of the filenane.The file
extension is required. The SET DEFAULT and SET PATH commands do not affect this

conmand.

The file nust be considered closed by the operating systembefore it nmay be
del et ed.

Exanpl es

Er ase c:\ aut oexec. bat
Erase c:/tenp/read.txt

St at us
Ready
Conpl i ance
This command is CA-Clipper conpatible
See Al so:

CURDI R().

FI LE()
FERASE

DELETE FI LE

DELETE FI LE

Renmove a file from disk

Synt ax
DELETE FI LE <xcFil e>

Argunment s
<xcFile> Nanme of file to renove

Descri ption
This command renoves a file fromthe di sk. The use of a drive,directo- ry,and
wi | d-card skel eton operator is allowed for the root of the filenane.The file
extension is required. The SET DEFAULT and SET PATH commands do not affect this

conmand.

The file nust be considered closed by the operating systembefore it nmay be
del et ed.

Exanpl es

Er ase c:\ aut oexec. bat
Erase c:/tenp/read.txt

St at us
Ready
Conpl i ance
This command is CA-Clipper conpatible
See Al so:

CURDI R().

FI LE()
FERASE
ERASE

TYPEFI LE()

Show the content of a file on the console and/or printer
Synt ax
__TYPEFILE(<cFile> [<IPrint>]) --> NL
Argunment s

<cFile> is a nane of the file to display. If the file have an extension, it
nmust be specified (there is no default val ue).

<IPrint> is an optional |ogical value that specifies whether the output
should go only to the screen (.F.) or to both the screen and printer (.T.), the
default is (.F.).

Ret ur ns
__TYPEFILE() always return N L.
Descri ption

__TYPEFILE() function type the content of a text file on the screen wth an
option to send this information also to the printer. The file is displayed as is
w t hout any headi ngs or formating.

If <cFile> contain no path, _ TYPEFILE() try to find the file first in the
SET DEFAULT directory and then in search all of the SET PATH directories. If
<cFile> can not be found a run-tine error occur.

Use SET CONSOLE OFF to suppress screen output. You can pause the output using
Crl-S, press any key to resune.

__TYPEFILE() function is used in the preprocessing of the TYPE comand.
Exanpl es

The followi ng exanples assune a file name MyText.DAT exist in all
specified paths, a run-tine error would displayed if it does not

/1 display MyText.DAT file on screen
__TYPEFI LE("MText.DAT")

/1 display MyText.DAT file on screen and printer
__TYPEFI LE("MWText.DAT", .T.)

/1 display MyText.DAT file on printer only
SET CONSOLE OFF

__TYPEFILE("MyText.DAT", .T.)
SET CONSOLE ON

St at us
Ready
Conpl i ance
__TYPEFILE() works exactly like CA-Cipper's _ TYPEFILE()
Files
Library is Rtl
See Al so:

COPY FILE
SET DEFAULT
SET PATH
SET PRI NTER
TYPE

TYPE

Show the content of a file on the console, printer or file
Synt ax
TYPE <xcFile> [TO PRINTER] [TO FILE <xcDest Fi | e>]
Argunment s
<xcFile> 1is a nane of the file to display. If the file have an extension, it
nmust be specified (there is no default value). It can be specified as literal file

nane or as a character expression enclosed in parentheses.

the screen and printer.

given (.txt) is added to the output file nane. <xcDestFile> can be specified as
literal file nane or as a character expression enclosed in parentheses.
Descri ption

TYPE command type the content of a text file on the screen with an option to
send this information also to the printer or to an alternate file. The file is
di spl ayed as is without any headings or formating.

If <xcFile> contain no path, TYPE try to find the file first in the SET
DEFAULT directory and then in search all of the SET PATH directories. If <xcFile>
can not be found a run-tine error occur.

I f <xcDestFile> contain no path it is created in the SET DEFAULT directory.

Use SET CONSOLE OFF to suppress screen output. You can pause the output using
Crl-S, press any key to resune.

Exanpl es

The foll owi ng exanples assune a file name MyText.DAT exist in all
specified paths, a run-tine error would displayed if it does not

/1 display MyText.DAT file on screen
TYPE MyText . DAT

/1 display MyText.DAT file on screen and printer
TYPE MyText. DAT TO PRI NTER

/1 display MyText.DAT file on printer only
SET CONSOLE OFF

TYPE MyText.DAT TO PRI NTER

SET CONSOLE ON

/1 display MyText.DAT file on screen and into a file M/Report.txt
TYPE MyText.DAT TO FI LE MyReport

St at us
Ready

Conpl i ance
TYPE works exactly like CA-Cipper's TYPE
See Al so:

COPY FILE
SET DEFAULT
SET PATH
SET PRI NTER

__TYPEFI LE()

CURDI R()

Returns the current OS directory nane.

Synt ax

CURDI R([<cDrive>]) --> cPath
Argunment s

<cDir> OS drive letter
Ret ur ns

<cPath> Nane of directory
Descri ption

This function yields the nane of the current OS directory on a specified
drive.If <cDrive> is not speficied,the currently logged drive will be used.

This function should not return the leading and trailing (back)slashes.

If an error has been detected by the function,or the current OS directory is

the root,the value of the function will be a NULL byte.
Exanpl es
? Curdir()
St at us
Ready
Conpl i ance
This function is Ca-dipper Conpatible
Pl at f or ms
ALL
Fil es
Library is Rt
See Al so:

FI LE()

COPY FI LE
Copies a file.

Synt ax

COPY FILE <cfile> TO <cfil el>
Argunment s

<cFil e> Fil ename of source file <cFilel> Filenanme of target file
Descri ption

Thi s command nakes an exact copy of <cFile> and nanes it <cFilel> Both files

must have the file extension included; the drive and the directory nanes nust al so
be specified if they are different from the default drive and/or director.<cFilel>
also can refer to a OS device (e.g. LPT1).This comand does not obsert the SET PATH
TO or SET DEFAULT TO settings.

Exanpl es
COPY FI LE C:
COPY FI LE c:
St at us
Ready
Conpl i ance
This command is Ca-C ipper conpliant
See Al so:

ERASE
RENAME
FRENANE
FERASE

HARBOUR\ TESTS\ ADI RTEST. PRG t o C:\ TEMP\ ADI RTEST. PRG
har bour\ uti | s\ hbdoc\ gennf.prg to LPT1

—

HB_FEOF()
-file.

Check for end-o
Synt ax
HB_FEOF(<nHandl e>) --> || sEof
Argunment s
<nHandl e> The handl e of an open file.
Ret ur ns
<IIskof> .T. if the file handle is at end-of-file, otherwise .F
Descri ption
This function checks an open file handle to see if it is at EEOF.
If the file handle is mssing, not nuneric, or not open, then this function
returns . T. and sets the value returned by FERROR() to -1 (FS_ERROR) or a
C-conpi |l er dependent errno val ue (EBADF or EINVAL).
Exanpl es
nH =FOPEN(' FI LE. TXT")
? FREADSTR(nH, 80)

| F HB_FEOF(nH)
? "End-of -file reached.'

ELSE
? FREADSTR(nH, 80)
ENDI F
St at us
Ready
Conpl i ance
This function is a Harbour extension
Files
Library is rtl
See Al so:

FERROR|

DI RREMOVE()

Attenpt to renove an directory

Synt ax

DI RCHANCGE(<cDirectory>) --> nError
Argunment s

<cDirectory> The nane of the directory you want to renove.
Ret ur ns

<nError> O if directory was successfully renoved, otherw se the nunber of
the last error.

Descri ption
This function attenpt to renove the specified directory in <cDirectory> |If
this function fail, the it will return the last OS error code nunber. See FERROR()
function for the description of the error.
Exanpl es
cDir:= ".\Backup"
i f (DI RREMOVE(cDi r)==0)
? "Renmove of directory”",cDir, "was successfull"”
endi f
Test s
See exanpl es
St at us
Ready
Conpl i ance
This function is CA dipper 5.3 conpliant
Pl at f or ns
Al l
Files
Library is rtl

See Al so:

MAKEDI R()
DI RCHANGE

| SDI SK()

DI RCHANGE()

Changes the directory
Synt ax
DI RCHANCGE(<cDirectory>) --> nError
Argunment s
<cDirectory> The nane of the directory you want do change into.
Ret ur ns

<nError> O if directory was successfully changed, otherw se the nunber of
the last error.

Descri ption
This function attenpt to change the current directory to the one specidied in
<cDirectory>.If this function fail, the it will return the last OS error code
nunber. See FERROR() function for the description of the error.

Exanpl es

i f (DI RCHANGE("\tenp")==0)
? "Change to diretory was successful l"
endi f
Tests
See exanpl es
St at us
Ready
Conpl i ance
This function is CA dipper 5.3 conpliant
Pl at f or s
All
Files
Library is rtl
See Al so:

MAKEDI R()
DI RREMOVE

| SDI SK()

MAKEDI R()

Create a new directory
Synt ax
MAKEDI R(<cDirectory>) --> nError
Argunment s
<cDirectory> The nane of the directory you want to create.
Ret ur ns

<nError> O if directory was successfully changed, otherw se the nunber of
the last error.

Descri ption
This function attenpt to create a new directory with the nane contained in
<cDirectory>.If this function fail, the it will return the last OS error code
nunber. See FERROR() function for the description of the error

Exanpl es
cDir:= "Tenp"

I f (MAKEDI R(cDir)==0)
? "Directory ",cDir," successfully created
Endi f
Tests
See exanpl es
St at us
Ready
Conpl i ance
This function is CA dipper 5.3 conpliant
Pl at f or ms
Al l
Files
Library is rtl
See Al so:

DI RCHANGE
DI RREMOVE

| SDI SK()

| SDI SK()

Verify if a drive is ready

Synt ax
| SDI SK(<cDrive>) --> | Success
Argunment s
<cDrive> An valid Drive letter
Ret ur ns
<l Success> .T. is the drive is ready, otherw se .F.
Descri ption
This function attenpts to access a drive. If the access to the drive was
successfull, it will return true (.T.), otherwise false(.F.).This function is

usefull for backup function, so you can deternmine if the drive that will recieve
t he backup data is ready or not.

Exanpl es
| F | SDI SK("A")
? "Drive is ready "
Endi f
Tests
See Exanpl es
St at us
Ready
Conpl i ance
This function is CA dipper 5.3 conpliant
Pl at f or s
All
Files
Library is rtl
See Al so:

DI RCHANGE

MAKEDI R()
DI RREMOVE

PROCNANE()

CGets the name of the current function on the stack

Synt ax
PROCNAME(<nLevel >) --> <cProcNanme>

Argunment s
<nLevel > is the function |level required.

Ret ur ns
<cProcName> The nane of the function that it is being executed.

Descri ption
This function | ooks at the top of the stack and gets the current executed
function if no argunents are passed. OGtherwise it returns the name of the function
or procedure at <nlLevel >.

Exanpl es

See Test

Tests

This test will show the functions and procedures in stack
bef ore executing it.
function Test()
LOCAL n : =1
while 'Enpty(ProcName(n))
? ProcNane(n++)

end do
return ni
St at us
Ready
Conpl i ance
PROCNAME() is fully CA-Cipper conpliant.
Files
Library is vm
See Al so:
PROCLI NE

PROCFI LE

PROCLI NE()

CGets the |ine nunber of the current function on the stack.

Synt ax
PROCLI NE(<nLevel >) --> <nLi ne>
Argunment s
<nLevel > is the function |level required.
Ret ur ns
<nLine> The line nunber of the function that it is being executed.
Descri ption
This function | ooks at the top of the stack and gets the current [|ine nunber

of the executed function if no argunents are passed. Oherwise it returns the line
number of the function or procedure at <nLevel >.

Exanpl es

See Test

Test s
function Test()
? ProcLine(0)

? ProcNane(2)
return nil

St at us
Ready
Conpl i ance
PROCLINE() is fully CA-dipper conpliant.
Files
Library is vm
See Al so:

PROCNAME()
PROCFI LE

PROCFI LE()

This function allways returns an enpty string.

Synt ax

PROCFI LE(<xExp>) --> <cEnptyString>
Argunment s

<xExp> 1is any valid type.
Ret ur ns

<cEnptyString> Return an enpty string
Descri ption

This function is added to the RTL for full conpatibility. It always returns
an enpty string.

Exanpl es

? ProcFile()

Tests
function Test()
? ProcFile()
? ProcFile(NIL)
? ProcFile(2)
return nil

St at us
Ready
Conpl i ance
PROCFI LE() is fully CA-dipper conpliant.
Files
Library is vm
See Al so:

PROCNAME()
PROCLI NE

HB_PVALUE()

Retrieves the value of an argunent.
Synt ax
HB_PVALUE(<nArg>) --> <xExp>
Argunment s

Ret ur ns

<xExp> Returns the value stored by an argunent.
Descri ption

This function is useful to check the value stored in an argunent.
Exanpl es

See Test

Test s
function Test(nValue, cString)
if PCount() == 2
? hb_Pvalue(1), nValue
? hb_PValue(2), cString
endi f
return nil

St at us
Ready
Conpl i ance
HB PVALUE() is a new function and hence not CA-Cipper conpliant.
Files
Li brary is vm
See Al so:
PCOUNT

PCOUNT()

Retri eves the nunber of arguments passed to a function

Synt ax
PCOUNT() --> <nArgs>
Argunment s

Ret ur ns

<nArgs> A nunber that indicates the nunber of argunents passed to a function

or procedure.

Descri ption

This function is useful to check if a function or

requi red nunber of argunents.
Exanpl es

See Test

Tests

function Test(xExp)
if PCount() ==

? "This function needs a paraneter"”

el se
? xExp
endi f
return nil

St at us
Ready
Conpl i ance
PCOUNT() is fully CA-Cipper conpliant.
Files
Library is vm
See Al so:
HB_PVALUE()

pr ocedur e

has recei ved the

QI T()

Termi nat es an appl i cati on.
Synt ax

__QUIT() --> NIL
Argunment s

Ret ur ns

Descri ption
This function term nates the current application and returns to the system
Exanpl es

See Test

Tests

function EndApp(| YesNo)
if |YesNo

__Qit()
endi f
return nil

St at us
Ready
Conpl i ance
_ QUIT() is fully CA-Cipper conpliant.
Files
Library is vm
See Al so:
ARRAY

CLI PI NI T()

Initialize various Harbour sub-systens
Synt ax
CLIPINIT() --> NI'L
Argunment s

Ret ur ns
CLIPINIT() always return N L
Descri ption
CLIPINIT() is one of the pre-defined I NIT PROCEDURE and i s executed at
program startup. It declare an enpty MEWAR PUBLIC array called GetList that is

going to be used by the Get system It activates the default error handler, and (at
least for the nmonent) calls the function that sets the default help key.

St at us
Ready
Conpl i ance

It is said that CLIPINIT() should not call the function that sets the default
hel p key since CA-Clipper does it in sone other place.

Pl at f or ns
Al l
See Al so:

ARRAY

Set Hel PK()

Set FI as the default” hel p key

Synt ax
__SetHel pK() --> NIL
Argunment s
Ret ur ns
__SetHel pK() always return N L.
Descri ption
Set F1 to execute a function called HELP if such a function is linked into
t he program
St at us
Ready
Conpl i ance
__Set Hel pK() works exactly like CA-Cipper's __ SetHel pK()
Fil es
Library is vm
See Al so:
__XHELP()
SET KEY

SETKEY()

BREAK(
Exits froma BEA N SEQUENCE bl ock

Synt ax
BREAK(<xExp>) --> NIL
Argunment s

<xExp> is any valid expression. It is always required. If do not want to
pass any argument, just use N L.

Ret ur ns

Descri ption

This function passes control to the RECOVER statenment in a BEG N SEQUENCE
bl ock.

Exanpl es

Break(NIL)

St at us
Ready
Conpl i ance
BREAK() is fully CA-dipper conpliant.
Files
Library is vm
See Al so:
ARRAY

Calls a procedure or a function

Synt ax
DO(<xFuncProc> [, <xArgunents...>])

Argunment s
<xFuncProc> = Either a string with a function/procedure nane to be called or
a codebl ock to eval uate.
<xArgunments> = argunents passed to a called function/procedure or to a
codebl ock.

Ret ur ns

Descri ption

This function can be called either by the harbour conpiler or by user. The
conpi l er always passes the itemof |IT_SYMBOL type that stores the nane of

procedure specified in DO <proc> WTH ... statenent.
If called procedure/function doesn't exist then a runtime error s generated.
This function can be used as replacenent of macro operator. It is also used

internally to inplenent DO <proc> WTH <args...> 1|In this case <xFuncProc> is of
type HB_SYMB.

Exanpl es
cbCode ={|x| MyFunc(x)}
DO(cbCode, 1)
cFunction : = "MFunc"

xRet Val :=DQ(cFunction, 2)

ad style (slower):
DO &cFunction WTH 3

Files

Library is rtl

__VMVARLGET()
Retrive a local variable froma procedure |eve
Synt ax
__ VMWARLGET(<nProclLevel >, <nLocal >)
Argunment s

<nProcLevel > |Is the procedure |level, sane as used in ProcNane() and
ProcLine(), fromwhich a local variable containts is going to be retrieved.
<nLocal > 1Is the index of the local variable to retrieve.

Ret ur ns

Descri ption
This function is used fromthe debugger
Files

Library is vm

| NKEY()

Extracts the next key code from the Harbour keyboard buffer

Synt ax
I NKEY([<nTi meout>] [, <nEvents>]) --> nKey
Argunment s

<nTineout> 1is an optional timeout value in seconds, with a granularity of

1/10th of a second. If onmitted, INKEY() returns imrediately. If set to 0, |INKEY()
waits until an input event occurs. If set to any other value, INKEY() will return
ei ther when an input event occurs or when the tinmeout period has elapsed. If only
this paraneter is specified and it is not nuneric, it will be treated as if it were
0. But if both paraneters are specified and this paraneter is not nuneric, it wll
be treated as if it were not present.

<nBEvents> is an optional mask of input events that are to be enabled. If

omtted, defaults to hb_set.HB SET EVENTMASK. Valid input masks are in inkey.ch
and are explained below It is reconmended that the mask names be used rather than
their nunmeric values, in case the nuneric values change in future rel eases of
Harbour. To all ow nore than one type of input event, sinply add the various nask
nanes toget her.

nkey. ch Meani ng

NKEY_MOVE Mbuse notion events are all owed

NKEY_LDOWN [The nouse left click down event is allowed
NKEY_LUP [The nouse left click up event is allowed
NKEY_RDOWN [The nouse right click down event is allowed
NKEY_RUP [The nmouse right click up event is allowed
NKEY_KEYBOARD Al | keyboard events are all oned

NKEY_ALL Al | mouse and keyboard events are al |l owed

hb_set. HB_SET_EVENTNMASK.
Ret ur ns

-39 to 386 for keyboard events or the range 1001 to 1007 for npuse events. Muse
events and non-printabl e keyboard events are represented by the K <event> val ues
listed in inkey.ch. Keyboard event return codes in the range 32 through 127 are
equivalent to the printable ASCII character set. Keyboard event return codes in the
range 128 through 255 are assumed to be printable, but results may vary based on
hardware and nationality.

Descri ption

I NKEY() can be used to detect input events, such as keypress, nouse novenent,
or nmouse key clicks (up and/or down).

Exanpl es
/1 Wait for the user to press the Esc key
? "Please press the ESC key."
WHI LE INKEY(0.1) != K ESC
END
Tests

KEYBOARD "AB"; ? INKEY(), INKEY() ==> 65 66

St at us
Started

Conpl i ance

I NKEY() is conpliant with the dipper 5.3 INKEY() function with one

exception: The Harbour INKEY() function will raise an argument error if the first
parameter is less than or equal to 0 and the second paraneter (or the default mask)
is not valid, because otherwi se I NKEY would never return, because it was, in
effect, asked to wait forever for no events (Note: In Cipper, this also blocks SET

KEY events).

Fil es
Library is rtl
See Al so:

ARRAY/

KEYBQAR
DO NOT CALL THI'S FUNCTI ON DI RECTLY!

Synt ax

KEYBQARD <cStri ng>
CLEAR TYPEAHEAD

Argunent s
<cString> is the optional string to stuff into the Harbour keyboard buffer
after clearing it first. Note: The character ";" is converted to CHR(13) (this is
an undocunented CA-C i pper feature).

Ret ur ns

Descri ption

Cl ears the Harbour keyboard typeahead buffer and then inserts an optional
string into it.

Exanpl es

/1 Stuff an Enter key into the keyboard buffer
KEYBOARD CHR(13)

/1l Clear the keyboard buffer

CLEAR TYPEAHEAD

Test s
KEYBOARD CHR(13); ? INKEY() ==> 13
KEYBOARD ";" ? INKEY() ==> 13
KEYBOARD "HELLO'; CLEAR TYPEAHEAD; ? INKEY() ==> 0
St at us
Ready
Conpl i ance
__KEYBOARD() is conpliant with CA-Cipper 5.3
Files
Library is rtl
See Al so:
ARRAY

KEYBOARD

HB_KEYPUT()

Put an inkey code to the keyboard buffer.
Synt ax
HB_KEYPUT(<nl nkeyCode>)
Argunment s

<nl nkeyCode> is the inkey code, which should be inserted into the keyboard
buf f er.

Ret ur ns

Descri ption
Inserts an inkey code to the string buffer. The buffer is *not* <cleared in
this operation. This function allows to insert such inkey codes which are not in

the range of 0 to 255. To insert nore than one code, call the function repeatedly.
The zero code cannot be inserted.

Exanpl es
/1 Stuff an Alt+PgDn key into the keyboard buffer
HB_KEYPUT(K_ALT PGDN)
Tests
HB KEYPUT(K ALT PGDN) ; ? INKEY() ==> 417
HB KEYPUT(K F11) ; ? INKEY() ==> -40

St at us
Ready
Conpl i ance
HB_KEYPUT() is a Harbour extension
Files
Library is rtl
See Al so:

KEYBOARD
ARRAY

I NKEY()

NEXTKEY()

Get the next key code in the buffer w thout extracting it.
Synt ax
NEXTKEY() --> nKey
Argunment s
Ret ur ns
<nKey> The val ue of the next

Descri ption

Returns the val ue of the next
extracting it.

Exanpl es

key in the Harbour

key in the Harbour

keyboard buffer

/1 Use NEXTKEY() with INKEY() to change display characters, or by

/1 itself to exit the loop, so that the caller can detect the Esc.

LOCAL nKey, cChar := "+
VWH LE TRUE
?? cChar
nKey := NEXTKEY()
| F nKey == K_ESC
EXIT
ELSE
IF nKey '=0
cChar := CHR(nKey)
END I F
END | F
END WHI LE

Tests

KEYBOARD "AB"; ? NEXTKEY(), NEXTKEY() ==>

St at us
Ready
Conpl i ance

NEXTKEY()
Files
Library is rtl

See Al so:

I NKEY()
LASTKEY()

is conpliant with CA-Clipper 5.3

65 65

keyboard buffer.

wi t hout

LASTKEY()

Get the last key extracted fromthe keyboard buffer.
Synt ax
LASTKEY() --> nKey
Argunment s

Ret ur ns

<nKey> The | ast key extracted fromthe keyboard buffer
Descri ption

Returns the value of the last key exttracted fromthe Harbour keyboard buffer
Exanpl es

/1 Continue |ooping unless the ESC key was pressed in Mi nFunc()
VWH LE TRUE
Mai nFunc()
| F LASTKEY() == K_ESC
EXIT
ENDI F
END WH LE

Test s
KEYBOARD "AB"; ? INKEY(), LASTKEY() ==> 65 65

St at us
Ready
Conpl i ance
LASTKEY() is conpliant with CA-Cipper 5.3
Files
Library is rtl
See Al so:
I NKEY()

LASTKEY()

KEYBOARD

Stuffs the keyboard with a string.
Synt ax
KEYBQARD <cStri ng>
Argunment s

<cString> String to be processed, one character at a tine, by the Harbour
keyboard processor

Descri ption

This command stuffs the input buffer with <cString> The nunber of characters
that can be stuffed into the keyboard buffer is controlled by the SET TYPEAHEAD
command and may range fromO to 32,622, with each character appearing in the ASC
range of 0 to 255. None of the extended keys may be stuffed into the keyboard
buffer. |Issuing a KEYBOARD " " will clear the keyboard buffer.

Exanpl es
/] Stuff an Enter key into the keyboard buffer
KEYBQOARD CHR(13)
/1 Clear the keyboard buffer
CLEAR TYPEAHEAD
Tests

KEYBOARD CHR(13); ? INKEY() ==> 13
KEYBOARD "HELLO'; CLEAR TYPEAHEAD; ? I NKEY() ==> 0

St at us
Ready
Conpl i ance
__KEYBOARD() is conpliant with CA-Cipper 5.3
See Al so:

ARRAY
KEYBOARD()

READKEY() *

Fi nd out which key terninated a READ.
Synt ax
READKEY() --> nKeyCode
Argunment s

Ret ur ns

READKEY() returns a nuneric code representing the key that caused READ to
term nate.

Descri ption
READKEY() is used after a READ was terminated to determine the exit key

pressed. |If the GET buffer was updated during READ, 256 is added to the return
code.

READKEY() is a conpatibility function so try not to use it. READKEY() is
superseded by LASTKEY() which returns the I NKEY() code for that key. UPDATED)
could be used to find if the GET buffer was changed during the READ.

St at us
Ready
Conpl i ance
READKEY() is conpliant with CA-dipper 5.3
Files
Library is rtl
See Al so:
@. . Cet
I NKEY()
LASTKEY()

Returns the nouse cursor row position.
Synt ax
MRow() --> nMouseRow
Argunment s

Ret ur ns
<nMouseRow> The npbuse cursor row position.
Descri ption
This function returns the current nouse row cursor position. On graphical

systenms the val ue represents pixel rows. On character-based systens the val ue
represents character rows as in dipper.

Exanpl es
IF MRow() < 1

? "Mouse is on top row "
ENDI F

St at us
Ready
Conpl i ance

MROW) is conpliant with CA-Cipper 5.3, but has been extended to work on
graphi cal systens as well as character-based systens.

Fil es
Library is rtl
See Al so:

MCOL()

MCOL()

Ret urns the nouse cursor columm position
Synt ax
MCol () --> nMouseCol um
Argunment s

Ret ur ns
<nMouseCol um> The nouse cursor col um position
Descri ption
This function returns the colum position of the nouse cursor. On graphica

systenms the val ue represents pixels. On character-based systens the val ue
represents character columms as in Cipper

Exanpl es
|F Mol () < 1

? "Mouse is on left edge!"
ENDI F

St at us
Ready
Conpl i ance

MROW) is conpliant with CA-Cipper 5.3, but has been extended to work on
graphi cal systens as well as character-based systens.

Pl at f or ns
Al l
Fil es

Library is rtl
See Al so:

MRON().

Li cense
Har bour License

Descri ption

THE HARBOUR PRQIECT LI CENSE

This programis free software; you can redistribute it and/or nmodify it under the
terns of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any |ater version,
with one exception:

The exception is that if you link the Harbour Runtime Library (HRL) and/or the

Har bour Virtual Machine (HV) with other files to produce an executable, this does
not by itself cause the resulting executable to be covered by the GNU CGeneral
Public License. Your use of that executable is in no way restricted on account of
linking the HRL and/or HVM code into it.

This programis distributed in the hope that it will be useful, but WTHOUT
ANY WARRANTY; without even the inplied warranty of MERCHANTABILITY or

FI TNESS FOR A PARTI CULAR PURPCSE. See the GNU General Public License for nore
details.

You shoul d have received a copy of the GNU General Public License along with this

program if not, wite to the Free Software Foundation, Inc., 675 Mass Ave,
Canbridge, MA 02139, USA (or visit their web site at http://ww. gnu.org/).

See Al so:
OVERVI EW

ABS()

Return the absol ute value of a numnber.
Synt ax
ABS(<nNunber >) --> <nAbsNunber >
Argunment s
<nNunber > Any nunber.
Ret ur ns
<nAbsNunber> The absol ute nuneric val ue.
Descri ption

This function yields the absol ute value of the numeric value or expression
<nNunber >.

Exanpl es
Proc Main()

Local nNunber: =50
Local nNumber 1: =27
cls

gout (nNurber - nNurnber 1)

gout (nNurber 1- nNunber)

gout (ABS(nNunber - nNunber 1))
gout (ABSnNunber 1- nNurnber))
gout (ABS(-1 * 345))

St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant.
Pl at f or ms
All
Files
Library is rtl
See Al so:

EXP()

EXP()

Cal cul ates the value of e raised to the passed power.
Synt ax
EXP(<nNunber>) --> <nVal ue>
Argunment s
<nNunber> Any real nunber.
Ret ur ns
<nVal ue> The anti-Ilogarithm of <nNumber>
Descri ption

This function returns the value of e raised to the power of <nNunmber>. It is
the inverse of LOY).

Exanpl es

? EXP(45)

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant.
Pl at f or ns
All
Files
Library is rtl

See Al so:
LOE)

| NT()

Return the integer port of a nuneric val ue.

Synt ax
I NT(<nNunmber>) --> <nlnt Nunber >
Argunment s
<nNunber> Any nuneric val ue.
Ret ur ns
<nl nt Nunber> The integer portion of the nuneric val ue.
Descri ption
This function converts a nuneric expression to an integer. Al decimal digits

are truncated. This function does not round a value upward or downward; it nmerely
truncates a nunber at the decimal point.

Exanpl es

SET Decimal to 5
? INT(632512. 62541)
? INT(845414111. 91440)

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant.
Pl at f or ns
Al |
Files
Library is rtl
See Al so:
ROUND()

STRZE

L

Returns the natural |ogarithmof a nunber.

Synt ax
LOE <nNunber>) --> <nLog>
Argunment s
<nNunber> Any nuneric expression.
Ret ur ns
<nExponent> The natural |ogarithm of <nNunber>.
Descri ption
This function returns the natural |ogarithmof the nunber <nNumber>. |f

<nNunber> is 0 or less than 0, a nuneric overflow occurs, which is depicted on the
di spl ay device as a series of asterisks. This function is the inverse of EXP().

Exanpl es
? LOJ 632512)

St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant.
Pl at f or ms
All
Files
Library is rtl
See Al so:

EXP()

MAX()

Returns the maxi mum of two nunbers or dates.
Synt ax
MAX(<xVal ue>, <xVal uel>) --> <xMax>
Argunment s
<xVal ue> Any date or nuneric val ue.

<xVal uel> Any date or nuneric value (sane type as <xVal ue>).

Ret ur ns
<xMax> The larger nuneric (or |later date) val ue.
Descri ption
This function returns the larger of the two passed espressions. |If <xVal ue>
and <xVal uel> are nuneric data types, the value returned by this function will be

a nuneric data type as well and will be the larger of the two nunbers passed to it.
I f <xVal ue> and <xVal uel> are date data types, the return value will be a date data
type as well. It will be the later of the two dates passed to it.

Exanpl es
? MAX(214514214, 6251242142)
? MAX(CTOD(' 11/11/2000"), CTOX ' 21/06/2014")

St at us
Ready
Conpl i ance
This function is Ca-dipper conpliant.
Pl at f or ns
All
Files
Library is rtl

See Al so:
M N()

M N()

Det ermi nes the mi nunmum of two nunbers or dates.
Synt ax
M N(<xVal ue>, <xVal uel>) --> <xM n>
Argunment s
<xVal ue> Any date or nuneric val ue.
<xVal uel> Any date or nuneric val ue.
Ret ur ns
<xM n> The snaller nuneric (or earlier date) val ue.
Descri ption
This function returns the snaller of the two passed espressions. <xValue> and

<xVal uel> must be the same data type. If nuneric, the snaller nunber is returned.
If dates, the earlier date is returned.

Exanpl es

2 M N(214514214, 6251242142)
2 M N(CTOD(' 11/ 11/ 2000'), CTOD(' 21/ 06/ 2014")

St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant.
Pl at f or ms
All
Files
Library is rtl
See Al so:

MAX()

Return the nodul us of two nunbers.
Synt ax
MOD(<nNumber >, <nNunber 1>) --> <nRemai nder >
Argunment s
<nNunber > Nurmerator in a divisional expression.
<nNunber 1> Denominator in a divisional expression.
Ret ur ns
<nRenai nder> The renmi nder after the division operation.
Descri ption
This functuion returns the renmai nder of one nunber divided by anot her.
Exanpl es
? MOD(12, 8.521)

2 Mod(12, 0)
? Mod(62412. 5142, 4522114, 12014)

St at us
Ready
Conpl i ance
This Function is Ca-dipper conpliant.
Pl at f or ns
Al |
Files
Library is rtl
See Al so:
ARRAY

SQRT()

Cal cul ates the square root of a nunber.
Synt ax
SQRT(<nNunber>) --> <nSqgrt>
Argunment s
<nNunber> Any nuneric val ue.
Ret ur ns
<nSqgrt > The square root of <nunber>.
Descri ption
This function returns the square root of <nNunber>. The precision of this

eval uation is based solely on the settings of the SET DECIMAL TO command. Any
negative nunber passed as <nNunber> will always return a O.

Exanpl es

SET Decimal to 5

? SQRT(632512. 62541)

? SQRT(845414111. 91440)
St at us

Ready
Conpl i ance

This function is CA-dipper conpliant.
Pl at f or ms

Al l
Files

Library is rtl

See Al so:
ROUND()

ROUNIY()

Rounds of f a numeric expression

Synt ax
ROUND(<nNunber >, <nPl ace>) --> <nResult>
Argunment s

<nNunber> Any nuneric val ue.
<nPl ace> The nunber of places to round to.
Ret ur ns
<nResul t> The rounded nunber.
Descri ption
This function rounds off the value of <nNunmber> to the nunber of decim
pl aces specified by <nPlace>. If the value of <nPlace> is a negative nunber, the
function will attenpt to round <nNunber> in whole nunbers. Nunbers from5 through 9
will be rounded up, all others will be rounded down.

Exanpl es

? ROUND(632512. 62541, 5)
? ROUND(845414111. 91440, 3)

St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant.
Pl at f or ms
All
Files
Library is rtl
See Al so:

I NT()
STR()
VAL

SET FI XED

MEMOTRAN()

Converts hard and soft carriage returns within strings.
Synt ax

MEMOTRAN(<cString> <cHard>, <cSoft>) --> <cConvertedString>
Argunment s

<cString> is a string of chars to convert.

<cHard> is the character to replace hard returns with. If not specified
defaults to senicol on.

<cSoft> is the character to replace soft returns with. If not specified
defaults to single space.

Ret ur ns
<cConvertedString> Trasforned string.

Descri ption
Returns a string/meno with carriage return chars converted to specified
chars.

Exanpl es

? MEMOTRAN(DATA- >CNOTES)

Tests

@1, 1 SAY MEMOTRAN(Dat a->CNOTES)
wi Il display converted string starting on row two, colum two of the
current device.

St at us
Ready
Conpl i ance
MEMOTRAN() is fully CA-Cipper conpliant.
Files
Library is rtl
See Al so:
HARDCR

STRTRAN

HARDCRY()

Repl ace all soft carriage returns with hard carriages returns.
Synt ax
HARDCR(<cString>) --> <cConvertedString>
Argunment s
<cString> is a string of chars to convert.
Ret ur ns
<cConvertedString> Trasforned string.
Descri ption

Returns a string/menmo with soft carriage return chars converted to hard
carriage return chars.

Exanpl es
? HARDCR(Dat a- >CNOTES)

Tests

@1, 1 SAY HARDCR(Dat a->CNOTES)
wi Il display converted string starting on row two, colum two of the
current device.

St at us
Ready
Conpl i ance
HARDCR() is fully CA-Clipper conpliant.
Files
Library is rtl
See Al so:
MEMOTRAN

STRTRAN

ACHO CE()

Al l ows sel ection of an elenent froman array
Synt ax
ACHO CE(<nTop>, <nLeft>, <nBottonr, <nRi ght>, <acMenultens>, [<al Selableltenms>

<| Sel abl el tenms>], [<cUserFunction> | <bUserBl ock>], [<nlnitialltenp],
[<nW ndowRow>]) --> nPosition

Argunent s
<nTop> - topnost row used to display array (default O0)
<nLeft> - leftnost row used to display array (default 0)
<nBot t on® - bottommost row used to display array (default MAXROWN))
<nRi ght > - rightnost row used to display array (default MAXCOL())
<acMenul t ens> - the character array of itens fromwhich to sel ect
<al Sel ableltens> - an array of itens, either logical or character, which is
used to deternmine if a particular item may be selected. |If the type of a given
itemis character, it is macro evaluated, and the result is expected to be a
logical. A value of .T. neans that the itemmy be selected, .F. that it may not.
(See next argumnent: | Sel ectabl eltens)
<l Sel abl el t ens> - a logical value which is used to apply to all itens in
acMenultens. If .T., all itens may be selected; if .F., none nmay be sel ected
(See previous argunent: al Sel ectableltens) Default .T.
<cUser Functi on> - the nane of a function to be called which may affect
speci al processing of keystrokes. It is specified wthout parentheses or

paraneters. Wen it is called, it will be supplied with the paraneters: nhbde
nCur El enent, and nRowPos. Default NIL.

<bUser Bl ock> - a codebl ock to be called which nay affect special
processi ng of keystrokes. It should be specified in the form {]|nMde,
nCur El enenet, nRowPos| ; M/Func(nMode, nCurEl enmenet, nRowPos) }. Default N L.
<nlnitialltenpr - the nunber of the element to be highlighted as the
current itemwhen the array is initially displayed. 1 origin. Default 1
<nW ndowRow> - the nunmber of the wi ndow row on which the initial itemis
to be displayed. 0 origin. Default O.

Ret ur ns
<nPosition> - the nunber of the itemto be selected, or 0 if the selection
was abort ed.

Descri ption

Al l ows selection of an elenent froman array. Please see standard i pper
docunentation for ACHO CE for additional detail

Exanpl es
altems := { "One", "Two", "Three" }
nChoi ce : = ACHO CE(10, 10, 20, 20, altens)
| F nChoi ce ==
? "You did not choose an itent
ELSE

? "You chose elenent " + LTRIM STR(nChoice))
?? " which has a value of " + altens[nChoice]

ENDI F
Fil es
Library is rtl
See Al so:

MENU TO

At Pronpt ()

Di spf[ay a nenu itemon screen and define a nmessage
Synt ax

__AtPronpt(<nRow>, <nCol>, <cPronpt>, [<xMsg>]) --> .F.
Argunment s

<nRow> is the row nunber to display the nenu <cPronpt>. Value could range
fromzero to MAXROWN).

<nCol > is the colum nunber to display the nmenu <cPronpt>. Value could range
fromzero to MAXCOL().

<cPronpt> is the nenu itemcharacter string to display.

<xMsg> define a nessage to display each tine this nenu itemis highlighted.

<xMsg> coul d be a character string or code block that is evaluated to a character
string. If <xMsg> is not specified or got the wong type, an enpty string ("")

woul d be used.
Ret ur ns

__AtPronpt() always return .F.
Descri ption

Wth AtPronpt () you define and display a nenu item each call to

__AtPronpt() add another itemto the nmenu, to start the nmenu itself you should
call the _ MenuTo() function (MENU TO command). You can define any row and col umm
conbination and they will be displayed at the order of definition. After each call
to _ AtPronpt(), the cursor is placed one colum to the right of the |last text

di spl ayed, and ROW) and COL() are updated.

@ .. PROWT conmand is preprocessed into __ AtPronpt () function during conpile
time.

Exanpl es

/1 display a two line menu with status line at the bottom
/1 let the user select favorite day

SET MESSACGE TO 24 CENTER

@10, 2 PROWPT "Sunday" MESSAGE "This is the 1st itent
@11, 2 PROVPT "Monday" MESSAGE "Now we're on the 2nd itent
MENU TO nChoi ce

DO CASE
CASE nChoi ce == /1 user press Esc key
QT
CASE nChoi ce == /1 user select 1st menu item
? "CQuess you don't |ike Mondays"
CASE nChoi ce == /1 user select 2nd nmenu item
? "Just anot her day for sone"
ENDCASE
St at us
Ready
Conpl i ance

CA-Clipper array is limted to 4096 itens, and therefor 4096 nenu itenms are

the maxi mumthat could be defined per one nenu, Harbour does not have this limt

(not that you'll ever need that).
Files
Library is rtl
See Al so:

ACHO CE

MENU TO

SET MESSAGE
SET I NTENSI TY

SET W\RAP
MenuTo()

@ . . PROWPT

Display a menu item on screen and define a nessage
Synt ax
@ <nRow>, <nCol > PROVPT <cPronpt> [MESSAGE <xMsg>]
Argunment s

<nRow> is the row nunber to display the nenu <cPronpt>. Value could range
fromzero to MAXROWN).

<nCol > is the colum nunber to display the nmenu <cPronpt>. Value could range
fromzero to MAXCOL().

<cPronpt> is the nenu itemcharacter string to display.

<xMsg> define a nessage to display each tine this nenu itemis highlighted.
<xMsg> coul d be a character string or code block that is evaluated to a character
string. If <xMsg> is not specified or got the wong type, an enpty string ("")
woul d be used.

Ret ur ns
@..Pronpt always return .F.
Descri ption

Wth @..Pronmpt you define and display a nenu item each call to @..Pronpt

add another itemto the nmenu, to start the nenu itself you should call the
__MenuTo() function (MENU TO conmand). You can define any row and col um
conbination and they will be displayed at the order of definition. After each call
to @..Pronpt, the cursor is placed one colum to the right of the |ast text

di spl ayed, and ROW) and COL() are updated.

@ .. PROWT conmand is preprocessed into __ AtPronpt () function during conpile
time.

Exanpl es

/1 display a two line menu with status line at the bottom
/1 let the user select favorite day

SET MESSACGE TO 24 CENTER

@10, 2 PROWPT "Sunday" MESSAGE "This is the 1st itent
@11, 2 PROVPT "Monday" MESSAGE "Now we're on the 2nd itent
MENU TO nChoi ce

DO CASE
CASE nChoi ce == /1 user press Esc key
QT
CASE nChoi ce == /1 user select 1st menu item
? "CQuess you don't |ike Mondays"
CASE nChoi ce == /1 user select 2nd nmenu item
? "Just anot her day for sone"
ENDCASE
St at us
Ready
Conpl i ance

CA-Clipper array is limted to 4096 itens, and therefor 4096 nenu itenms are
the maxi mumthat could be defined per one nenu, Harbour does not have this limt
(not that you'll ever need that).

See Al so:

ACHO CE

MENU TO

SET MESSAGE
SET I NTENSI TY
SET WRAP

__MenuTo()

MenuTo()
I nvoked a menu defined by set of @..PROWT

Synt ax
__MenuTo(<bBl ock>, <cVariable>) --> nChoice
Argunment s
<bBl ock> is a set/get code block for variable naned <cVari abl e>.

<cVariable> is a character string that contain the nane of the variable to

hold the nenu choices, if this variable does not exist a PRI VATE variable with the

nanme <cVari abl e> would be created to hold the result.
Ret ur ns

__MenuTo() return the nunber of select nmenu item or O if there was no item
to select fromor if the user pressed the Esc key.

Descri ption

__MenuTo() invoked the nenu define by previous __ AtPronpt() call and display
a highlight bar that the user can nove to select an option fromthe nenu. If

<cVari abl e> does not exist or not visible, a PRIVATE variable naned <cVariable> is

created and hold the current nenu selection. If there is a variable naned
<cVariable> its value is used to select the first highlighted item

Menu pronpts and nessages are displayed in current Standard col or,
hi ghl i ght ed bar is displayed using current Enhanced col or.

Pressing the arrow keys nove the highlighted bar. Wien a nenu item is

hi ghl i ghted the nmessage associated with it is displayed on the line specified with

SET MESSAGE. |If SET WRAP is ON and the user press UP arrow while on the first

selection the last nenu itemis highlighted, if the user press Down arrow while on

the last item the first itemis highlighted.

Foll owi ng are active keys that handled by _ MenuTo():

key Meani ng

Up Vbve to previous item

Down Mbve to next item

Lef t Move to previous item

Ri ght Mbve to next item

Home Move to the first item

End Move to the last item

Page- Up Sel ect menu item return position

Page- Down Sel ect menu item return position

Ent er Sel ect menu item return position

Esc Abort sel ection, return O

First letter Sel ect next nenu with the same first letter,
eturn this item position.

upon exit the cursor is placed at MAXRON)-1, 0O _ MenuTo() can be nested
wi t hout | oosing the previous pronpts.

MENU TO comand is preprocessed into _ MenuTo() function during conpile tine.
Exanpl es
/1 display nmenu item on each screen corner and | et user select one
CLS

SET MESSAGE TO MAXROWN()/2 CENTER
SET W\RAP ON

@o, 0 PROVPT "
@O, MAXCOL() - 16 PROMPT "
@ MAXROW() - 1, MAXCOL() - 16 PROVPT "
@ MAXROW() - 1, 0 PROVPT "

MENU TO nChoi ce

SETPOS (MAXROW)/2, MAXCOL()/2 -

if nChoice == 0
?? "Esc was pressed"
el se

?? "Sel ected option is", nChoice

endi f

St at us
Ready
Conpl i ance

RLhE

Upper left"

Upper right"
Bottomright"

Bottom | eft"

10)

This conmmand is CA-Cipper conpliant

Fil es
Library is rtl

See Al so:

. PROVPT
ACHO CE

SET MESSAGE
SET | NTENSI TY
SET WRAP
__AtPronpt ()

MESSAGE "
MESSAGE "

MESSAGE
MESSAGE

e ™
Two "
"Thr ee"
" Four

MENU TO

I nvoked a nmenu defined by set of @..PROWT
Synt ax
MENU TO <cVari abl e>
Argunment s

<cVariable> is a character string that contain the nane of the variable to
hold the nenu choices, if this variable does not exist a PRI VATE variable with the
nane <cVari abl e> would be created to hold the result.

Ret ur ns
fromor if the user pressed the Esc key.

Descri ption
Menu To() invoked the nmenu define by previous _ AtPronpt() call and display a
hi ghl i ght bar that the user can nove to select an option fromthe nenu. If

<cVari abl e> does not exist or
created and hold the current
<cVariable>, its val ue

not visible, a PRIVATE variable naned <cVariable> is
nmenu selection. If there is a variable naned
is used to select the first highlighted item

Menu pronpts and nessages are displayed in current Standard col or,

hi ghl i ght ed bar

Pressing the arrow keys nove the highlighted bar.

i s displayed using current

hi ghl i ght ed the nmessage associated with it

SET MESSAGE. |If SET WRAP is ON and the user press UP arrow while on the first
selection the last nenu itemis highlighted, if the user press Down arrow while on
the last item the first itemis highlighted.

Foll owi ng are active keys that

Enhanced col or.

is displayed on the

When a nenu item is

handl ed by Menu To:

line specified with

key Meani ng

Up I Move to previous item

Down [Move to next item

Lef t | Move to previous item

Ri ght Move to next item

Home I Move to the first item

End I Move to the last item

Page- Up [Select menu item return position

Page- Down I Select menu item return position

Ent er Il Select menu item return position

Esc [Abort selection, return O

First letter [Select next menu with the sane first letter,
eturn this item position.

upon exit the cursor is placed at
| oosi ng the previous pronpts.

MENU TO comand is preprocessed into

__MenuTo() function during

MAXROAN()-1, O Menu To can be nested wi thout

conpile tine.

Exanpl es
/1 display nmenu item on each screen corner and | et user select one
CLS
SET MESSAGE TO MAXROW)/ 2 CENTER
SET WRAP ON
@0, 0 PROWPT "1. Upper left" MESSAGE " One "
@O0, MAXCOL()-16 PROWPT "2. Upper right" MESSAGE " Two "

@ MAXROW() - 1, MAXCOL() - 16 PROMPT " 3.

Bottomright"

MESSAGE " Thr ee"

@ MAXRON)-1,0 PROWT "4. Bottomleft" MESSAGE "Four
MENU TO nChoi ce
SETPGS (MAXRO/\()/Z MAXCOL()/2 - 10)
if nCh0| ce ==
?? "Esc was pressed
el se
?? "Sel ected option is", nChoice
endi f

St at us
Ready
Conpl i ance
This command is CA dipper conpliant

See Al so:

. PROVPT
ACHO CE
SET MESSAGE
SET I NTENSI TY
SET WRAP

__AtPronpt ()

O5()

Return the current operating system
Synt ax
os() --> <cQOperatingSyst enp
Ret ur ns
<cQper at i nSyst enp -> The Current operating system
Descri ption
This function will return the current operating system
Exanpl es
qout (O8())
St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpatible.
Pl at f or ms
All
Files

source/rtl/version.c

VERS| ON

Returns the HAAE%UR Version or the Harbour/ Conpiler Version
Synt ax

VERSION() --> <cReturn>
Argunment s

Ret ur ns

<cRet ur n> String containing the Harbour Version
Descri ption

This function returns the current Harbour Version

Exanpl es
QOUT(VERSI ON())

"Har bour Term nal: Standard stream consol e"

St at us
Started
Conpl i ance
This function is Ca-Cdipper conpatible.
Pl at f or s
All
Files
source/rtl/version.c Library is rtl
See Al so:

os()

GETENV()

bt ai ns system environnental settings.
Synt ax
GETENV(<cEnvi ronent >, <cDefaul tValue>) --> <cReturn>
Argunment s
<cEnviroment> Environental variable to obtain.
<cDef aul t Val ue> Optional value to return if <cEnvironnent> is not found.
Ret ur ns
<cRet ur n> Val ue of the Environnent Variable.
Descri ption
This function yields a string that is the value of the environment variable
<cEnviroment>, which is stored at the systemlevel with the Set conmand. If no
envi ronnent variable can be found, the value of the function will be
<cDefaultValue> if it is passed, else an enpty string.
Exanpl es
QOUT(GETENV(' PATH))
QOUT(GETENV(' CONFI G))
QOUT(GETENV(' HARBOURCMD , '-n -1 -es2'))
St at us
Ready
Conpl i ance

This command is Ca-Cipper conpliant. The <cDefaultValue> paraneter is a
Har bour extensi on.

Pl at f or ns
Al l
Fil es

source/rtl/gete.c Library is rtl

RUN()

Run an external program

Synt ax
__RUN(<cCommand>)
Argunment s

<cCommand> Command to execute.
Descri ption
This command runs an external program Please nmake sure that you have enough
free menory to be able to run the external program Do not use it to run Terninate
and Stay Resident programs (in case of DOS) since that causes several problens.

Note: This function is what the RUN command preprocesses into. It is
considered bad formto use this function directly. Use the RUN comand i nst ead.

Exanpl es

__Run("edit " + cMyTextFile) /1 Runs an external editor
__Run("conmand") /1 Gves a DOS shell (DOS only)

St at us
Ready
Conpl i ance
This function is Ca-dipper conpliant.
Pl at f or ns
All
Files
source/rtl/run.c Library is rtl
See Al so:
RUN

TONE()

Sound a tone with a specified frequency and duration.
Synt ax
TONE(<nFrequency>, <nDuration>) --> NL
Argunment s

<nFrequency> A non-negative nuneric value that specifies the frequency of
the tone in hertz.

<nDur ati on> A positive nuneric val ue which specifies the duration of the
tone in 1/18 of a second units.

Ret ur ns
TONE() always returns NIL.
Descri ption

TONE() is a sound function that could be used to irritate the end user, his
or her dog, and the surroundi ng nei ghborhood. The frequency is clanped to the
range 0 to 32767 Hz.

Exanpl es

If |Gk // Good Sound
TONE(500, 1)
TONE(4000, 1)
TONE(2500, 1)

El se // Bad Sound
TONE(300, 1)
TONE(499, 5)
TONE(700, 5)

Endl f

Tests

TONE(800, 1) /1l same as ? CHR(7)
TONE(32000, 200) /1 any dogs around yet?
TONE(130.80, 1) /1 nmusical note - C
TONE(400, 0) /'l short beep
TONE(700) /'l short beep
TONE(10, 18.2) /1 1 second del ay
TONE(-1) /1 1/18.2 second del ay
TONE() /1 1/18.2 second del ay

St at us
Started

Conpl i ance
TONE() works exactly like CA-Clipper's TONE().

Pl at f or ns
Al l

Fil es
Library is rtl

See Al so:
CHR()

SET BELL

RUN

Run an external program
Synt ax
RUN <cCommand>
Argunment s
<cComand> Conmand to execute.
Descri ption
This command runs an external program Please nmake sure that you have enough

free menory to be able to run the external program Do not use it to run Terninate
and Stay Resident programs (in case of DOS) since that causes several problens.

Exanpl es

Run "edit " + cMyTextFile /1 Runs an external editor
Run "conmand" /1 Gves a DOS shell (DOS only)

St at us
Ready
Conpl i ance
This command is Ca-Cipper conpliant.
Pl at f or ms
All
Files
source/rtl/run.c Library is rtl
See Al so:
RUN

| SAFFI RM)

Checks if passed char is an affirnmation char
Synt ax
| SAFFI RM <cChar>) --> <l TrueO Fal se>
Argunment s
<cChar> is a char or string of chars

Ret ur ns

<I TrueOrFal se> True if passed char is an affirmation char, otherw se fal se

Descri ption

This function is used to check if a user's input

t he nmegxxx nodul e used.
Exanpl es

[/ Wait until user enters Y
DO WHI LE ! | SAFFI RM cYesNo)
ACCEPT "Sure: " TO cYesNo

END DO
St at us
Ready
Conpl i ance
| SAFFIRM) is fully CA-dipper conpliant.
Files
Library is rtl
See Al so:
| SNEGATI VE()

NATI ONMSEH)

is true or

not

according to

| SNEGATI VE()

Checks if passed char is a negation char.
Synt ax
| SNEGATI VE(<cChar>) --> <l TrueOr Fal se>
Argunment s
<cChar> is a char or string of chars
Ret ur ns
<| TrueOrFal se> True if passed char is a negation char, otherw se false.

Descri ption

This function is used to check if a user's input is true or not according to
t he nmegxxx nodul e used.

Exanpl es

[/ Wait until user enters N
DO WHI LE ! | SNEGATI VE(cYesNo)
ACCEPT "Sure: " TO cYesNo

END DO
St at us
Ready
Conpl i ance
| SNEGATI VE() is fully CA-Clipper conpliant.
Files
Library is rtl
See Al so:
| SAFFI RM))

NATI ONMSEH)

NATI ONVBQ()

Returns international strings nessages.
Synt ax
NATI ONMSGE <nMsg>) --> <cMessage>
Argunment s
<nMsg> is the nessage nunber you want to get.

Ret ur ns

<cMessage> |If <nMsg> is a valid nessage selector, returns the nessage. If
<nMsg> is nil returns "lnvalid Argunent”, and if <nMsg> is any other type it
returns an enpty string.

Descri ption
NATI ONMSGE) returns international nessage descriptions.
Exanpl es
/! Displays "Sure Y/N. " and waits until user enters Y
/1 YINis the string for NATIONMBG 12) with default natnmsg nodul e.
DO WHI LE !'| SAFFI RM cYesNo)

ACCEPT "Sure " + NATIONMSE 12) + ": " TO cYesNo
END DO

St at us

d i pper
Conpl i ance

NATI ONMSGE) is fully CA-Cipper conpliant.
Files

Library is rtl

See Al so:

| SAFFI RM)
| SNEGATI VE()

obj HasDat a()

Det ermi ne whet her a synbol exist in object as DATA
Synt ax
__obj HasDat a(<oObj ect>, <cSynbol>) --> | Exi st
Argunment s
<oMbject> is an object to scan.
<cSynbol > is the nane of the symbol to | ook for.

Ret ur ns

__ObjHasData() return .T. if the given <cSynbol > exist as DATA (instance
vari able) in object <oObject), .F. if it does not exist.

Descri ption

__ObjHasData() is a low |l evel class support function that let you find out if
a synbol is an instance variable in a given object.

Exanpl es
oB := TBrowseNew(0, 0, 24, 79)
? __objHasData(oB, "nLeft") his should return . T.

/1t
? __objHasData(oB, "IBugFree") /1 hopefully this should be .F.
? __objHasData(oB, "Left") /1l .F. since this is a METHOD

St at us
Ready
Conpl i ance
__OobjHasData() is a Harbour extension.
Files
Library is rtl
See Al so:

__0obj Get Met hodLi st ()
__obj Get MsglLi st ()
obj HasMet hod()

obj HasMet hod()

Det ermi ne whet her a synbol ‘exi st in object as METHOD
Synt ax
__obj HasMet hod(<o(bj ect>, <cSynbol>) --> | Exi st
Argunment s
<oMbject> is an object to scan.
<cSynbol > is the nane of the symbol to | ook for.
Ret ur ns

__objHasMethod() return .T. if the given <cSynbol > exi st as METHOD (cl ass
function) in object <oGbject), .F. if it does not exist.

Descri ption

__ObjHasMethod() is a low |l evel class support function that let you find out
if a synbol is a class function in a given object.

Exanpl es
oB := TBrowseNew(0, 0, 24, 79)
? __obj HasMet hod(oB, "nLeft") .F. since this is a DATA

11
? __obj HasMet hod(oB, "Fi xBugs") /1 hopefully this should be .F.
? __obj HasMet hod(oB, "Left") /1 this should return . T.

St at us
Ready
Conpl i ance
__Obj HasMet hod() is a Harbour extension.
Files
Library is rtl
See Al so:

__0obj Get Met hodLi st ()
__obj Get MsgLi st ()
obj HasDat a()

obj Get MsgLi st (

Return names of all DATA or THOD for a given object

Synt ax

__obj Get MsgLi st(<oObject> [<IData>]) --> aNanes
Argunment s

<oMbject> is an object to scan.

<| Data> is an optional |ogical value that specifies the information to

return. A value of .T. instruct the function to return |list of all DATA nanes, .F.
return list of all METHOD nanes. Default value is .T.

Ret ur ns

__Obj Get MsgList() return an array of character stings with all DATA names or
all METHOD nanes for a given object. _ objGetMgList() would return an enpty array
{} if the given object does not contain the requested information.

Descri ption

___0Obj Get MsglLi st (
I

) is a lowlevel class support function that let you find all
i nstance variable or class functions nanes for a given object.

Exanpl es

/1 show i nformati on about TBrowse cl ass
oB := TBrowseNew(0, 0, 24, 79)

aDat a .= __ obj GetMsgList(oB, .T.)
aMethod := _ obj GetMsgList(oB, .F.)
FORi =1to len (abData)
? "DATA nanme:", aDatal i]
NEXT
FORi =1to len (aMethod)
? "METHOD nane:", aMethod[i]
NEXT
St at us
Ready
Conpl i ance
__Obj Get MsgList() is a Harbour extension.
Files

Library is rtl
See Al so:

__0obj Get Met hodLi st ()
__0bj Get Val ueli st ()
obj HasDat a()
obj HasMet hod()

obj Get Met hodLi st ()

Return names of all METHOD for a ‘gi ven obj ect

Synt ax
___Obj Get Met hodLi st (<oCbject>) --> aMet hodNanes
Argunment s
<oMbject> is an object to scan.
Ret ur ns
__Obj Get Met hodList() return an array of character stings with all METHOD
nanes for a given object. _ obj Get MethodList() would return an enpty array {} if
the given object does not contain any METHOD.
Descri ption
__Obj Get MethodList() is a low level class support function that let vyou find
all class functions nanes for a given object. It is equivalent to __ obj Get MsgLi st (
otbject, .F.).
Exanpl es

/1 show i nformati on about TBrowse cl ass
oB := TBrowseNew(0, 0, 24, 79)

aMethod := _ obj Get Met hodLi st(oB)
FORi =1to len (aMethod)
? "METHOD nane: ", aMethod[i]
NEXT
St at us
Ready
Conpl i ance
__0Obj Get Met hodLi st() is a Harbour extension.
Files
Library is rtl
See Al so:

obj Get MsgLi st ()

obj Get Val ueli st ()
__obj HasDat a()
__obj HasMet hod()

obj Get Val uelLi st ()

Return an array of DATA names and val ues for a given object

Synt ax

__Obj Get Val ueLi st(<oObj ect>, [<aExcept>]) --> aData
Argunment s

<oMbject> is an object to scan.

<aExcept> is an optional array wi th DATA names you want to exclude fromthe
scan.

Ret ur ns

__Obj GetValueList() return a 2D array that contain pairs of a DATA synbol
nane and the value of DATA. _ obj GetVal ueList() would return an enpty array {} if
the given object does not contain the requested information.

Descri ption

__ObjGetValueList() is a low |level class support function that return an
array with DATA names and val ue, each array elenment is a pair of: aData[i,

HB OO DATA SYMBOL] contain the synbol name aData] i, HB OO DATA VALUE] contain
t he val ue of DATA

Exanpl es

/1 show i nformati on about TBrowse cl ass
oB := TBrowseNew(0, 0, 24, 79)

aData := __obj GetVal ueList(oB)
FORi =1to len (abData)
? "DATA nane:", abDatal i, HB_OO DATA SYmMBOL], ;
" val ue=", aData[i, HB_OO DATA VALUE]
NEXT
St at us
Ready
Conpl i ance
__Obj GetVal ueList() is a Harbour extension.
Files

Header file is hboo.ch Library is rtl
See Al so:

__obj Get Met hodLi st ()
__obj Get MsgLi st ()
__obj HasDat a()
__obj HasMet hod()

bj Set Val ueli st ()

(bj Set Val ueli st

Set object with an array of DATA nanes and val ues
Synt ax
__Obj Set Val ueLi st(<oOhject>, <abData>) --> o(bject
Argunment s
<oMbject> is an object to set.

<aData> is a 2D array with a pair of instance variables and val ues for
setting those vari abl e.

Ret ur ns
_ Obj SetValueList() return a reference to <o(bj ect >.
Descri ption

__Obj SetVvalueList() is a low level class support function that let you set a
group of instance variables with values. each array elenent in <abData> is a pair

of: aData[i, HB OO DATA SYMBOL] which contain the variable name to set abData]
HB_ OO DATA VALUE] contain the new variabl e val ue.
Exanpl es

/1 set sone TBrowse instance variable
0B : = TBrowse(): New()
aData := array(4, 2)

aData] 1, HB_OO DATA SYMBOL] = "nTop"
aData[1, HB OO DATA VALUE =1
aData] 2, HB OO DATA SYMBOL] = "nLeft"
aData] 2, HB_OO DATA VALUE = 10
aData] 3, HB_OO DATA SYMBOL] = "nBottonf
aData] 3, HB_ OO DATA VALUE = 20
aData] 4, HB_OO DATA SYMBOL | = "nRight"
aData] 4, HB 0O DATA VALUE = 70
__Obj Set Val uelList(oB, aData)
? oB: nTop /11
? oB: nLeft /1 10
? oB:nBottom // 20
? oB: nRi ght /1 70
St at us
Ready
Conpl i ance
___Obj Set Val ueList() is a Harbour extension.
Files
Header file is hboo.ch Library is rtl
See Al so:

obj Get Val ueli st ()

obj AddMet hod()

Add a METHOD to an al ready ‘existing class
Synt ax
___Obj AddMet hod(<oObj ect >, <cMet hodNanme>, <nFuncPtr>) --> oQbject
Argunment s
<object> is the object to work on.
<cMet hodName> is the synbol name of the new METHOD to add.
<nFuncPtr> is a pointer to a function to associate with the method.
Ret ur ns
__Obj AddMet hod() return a reference to <oQbject >.
Descri ption
__obj AddMet hod() is a low I evel class support function that add a new METHOD
to an object. <oObject> is unchanged if a synbol with the nane <cMet hodNane>

al ready exist in <oObject>.

Note that <nFuncPtr> is a special pointer to a function that was created
using the @operator, see exanple bel ow

Exanpl es

/1l create a new THappy class and add a Snmile nethod
oHappy := Td ass(): New "THappy")
obj AddMet hod(oHappy, "Smile", @¥Smile())
H)

? oHappy:Smle(1) /1
? oHappy: Smile(2) 1)
? oHappy:Smile(3) /1 *SM LE*

STATI C FUNCTI ON MySmi I e(nType)
LOCAL cSnile

DO CASE
CASE nType ==
cSmle :=":)"
CASE nType == 2
cSmle :=";)"
CASE nType ==
cSmle := "*SMLE*"
ENDCASE

RETURN cSmi | e

St at us
Ready
Conpl i ance
__Obj AddMet hod() is a Harbour extension.
Files
Library is rtl
See Al so:

__obj AddI nline()
__obj AddDat a()

__obj Del Met hod()
__obj Get Met hodLi st ()
obj Get MsgLi st ()

obj HasMet hod()
__obj ModMet hod()

obJAddInIine

Add an INLINE to an al reatgy) exi sting class
Synt ax
__obj Addl nli ne(<oObj ect>, <clnlineName>, <blnline>) --> oObject
Argunment s
<object> is the object to work on.
<clnlineName> is the synbol nanme of the new I NLINE to add.
<blnline> is a code block to associate with the I NLINE nethod.
Ret ur ns
__OobjAddinline() return a reference to <oQbject >.
Descri ption
__objAddinline() is a low level class support function that add a new | NLI NE

nmet hod to an object. <oObject> is unchanged if a synmbol wth the name
<clnlineName> al ready exi st in <oQbject>.

Exanpl es

/1l create a new THappy class and add a Smile |INLI NE net hod

oHappy = Td ass(): Newm "THappy")
binline :={ | nType | { ":)", ";)", "*SMLE*" }[nType] }
__Obj Addl nl'ine(oHappy, "Smle", binline)
? oHappy: Snmile(1) 1)
? oHappy: Smile(2) I3
? oHappy: Smle(3) /1l *SM LE*
St at us
Ready
Conpl i ance
__objAddInline() is a Harbour extension.
Files
Library is rtl
See Al so:

obj AddDat a()

obj AddMet hod()
__objDellnline()
__obj Get Met hodLi st ()
__obj Get MsgLi st ()
ARRAY

obj Modl nl i ne()

obj AddDat a

Add a DATA to an already existing class

Synt ax

__obj AddDat a(<oObj ect>, <cDataNane>) --> oQbject
Argunment s

<object> is the object to work on.

<cDat aNane> is the synbol name of the new DATA to add.
Ret ur ns

__obj AddData() return a reference to <o(bject >.
Descri ption

__objAddData() is a low |l evel class support function that add a new DATA to
an object. <oQbject> is unchanged if a synmbol with the name <cDataNane> al ready
exi st in <o(bject>.

Exanpl es

/1 create a new THappy class and add a | Happy DATA
oHappy := Td ass(): New("THappy")
___0obj AddDat a(oHappy, "I Happy")
oHappy: | Happy := . T.
| F oHappy: | Happy
? "Happy, Happy, Joy, Joy !!!I"

ELSE
? "
ENDI F
St at us
Ready
Conpl i ance
__obj AddData() is a Harbour extension.
Files
Library is rtl
See Al so:

obj Addl nl i ne()

obj AddMet hod()
__obj Del Dat a()
__obj Get MsgLi st ()
__0bj Get Val ueli st ()
__obj HasDat a()

bj Set Val ueli st ()

obj ModMet hod()

Modi Ty (replace) a METHOD i'n an al ready existing class
Synt ax
__Obj ModMet hod(<oObj ect >, <cMet hodNanme>, <nFuncPtr>) --> oQbject
Argunment s
<object> is the object to work on.
<cMet hodName> is the synbol name of the METHOD to nodify.
<nFuncPtr> is a pointer to a new function to associate with the method.
Ret ur ns
__Obj ModMet hod() return a reference to <oQbject >.
Descri ption

__obj ModMet hod() is a low |l evel class support function that nodify a METHOD

in an object and replace it with a new function. <oCbject> is unchanged if a

synbol with the name <cMet hodNanme> does not exist in <oQObject> _ obj ModMethod() is
used in inheritance nmechani sm

Note that <nFuncPtr> is a special pointer to a function that was created
using the @operator, see exanple bel ow

Exanpl es

/1l create a new THappy class and add a Snile nethod
OoHappy := Td ass(): New("THappy")

___0bj AddMet hod(oHappy, "Smle", @¥Snile())

? oHappy: Snmile(1) 1)

? oHappy: Snmile(2) Il

/1l replace Smle nethod with a new function

___0obj AddMet hod(oHappy, "Snile", @ourSnile())

? oHappy: Smile(1) /1 *SM LE*

? oHappy: Smle(2) /1 *W NK*

STATI C FUNCTI ON MySmi | e(nType)
LOCAL cSmil e

DO CASE
CASE nType == 1
cSmle :=":)"
CASE nType ==
cSmle :=";)"
ENDCASE

RETURN cSmi |l e
STATI C FUNCTI ON Your Smi | e(nType)

LOCAL cSnil e
DO CASE
CASE nType == 1
cSmle := "*SM LE*"
CASE nType ==
cSmle := "*WNK*"
ENDCASE

RETURN cSni | e

St at us
Ready
Conpl i ance
__Obj ModMet hod() is a Harbour extension.
Files
Library is rtl
See Al so:

obj AddMet hod()

obj Del Met hod()

obj Get Met hodLi st ()

obj Get MsgLi st ()

obj HasMet hod()

obj Modl nl i ne

Modi Ty (replace) an INLINE nethod in an already existing class
Synt ax
__obj Modl nli ne(<oObj ect>, <clnlineNanme>, <blnline>) --> oObject
Argunment s
<object> is the object to work on.
<clnlineName> 1is the synmbol name of the INLINE nethod to nodify.
<blnline> is a new code block to associate with the I NLI NE net hod.

Ret ur ns

__objModinline() return a reference to <oQbject >.

Descri ption

__objMdInline() is a low level class support function that nodify an |INLINE

met hod in an object and replace it with a new code bl ock. <oCbject> is unchanged
if a synbol with the nane <clnlineNanme> does not exist in <oQbject>.
__objMdInline() is used in inheritance nechanism

Exanpl es
/1l create a new THappy class and add a Snile | NLI NE net hod
oHappy := Td ass(): New("THappy")
bMWinline :={ | nType | { ":)", ";)" }[nType] }
bYourinline := { | nType | { "*SMLE*", "*WNK*" }[nType] }
__obj AddI nl'i ne(oHappy, "Smle", bMyInline)
? oHappy:Smle(1) Il
? oHappy: Snmile(2) I3
/1 replace Smile inline nmethod with a new code bl ock
__obj Modl nl'i ne(oHappy, "Smile", bYourlnline)
? oHappy: Snmile(1) /1l *SM LE*
? oHappy: Smile(2) /1 *W NK*
St at us
Ready
Conpl i ance

__objModinline() is a Harbour extension.
Files
Library is rtl
See Al so:

__obj AddI nline()

__objDellnline()

__0obj Get Met hodLi st ()

__obj Get MsgLi st ()
obj HasMet hod()

obj Del Met hod()

Del ef'e a METHOD from cl ass
Synt ax
__obj Del Met hod(<oObj ect>, <cSynbol>) --> oQbject
Argunment s
<object> is the object to work on.

<cSynbol > is the synbol nane of METHOD or I NLINE nmethod to be del et ed
(renmoved) fromthe object.

Ret ur ns
__obj Del Method() return a reference to <oQbject >.
Descri ption

__obj Del Method() is a low I evel class support function that delete (renove) a
METHOD or an I NLINE nethod from an object. <oChject> is unchanged if a synbol with
t he nane <cSynbol > does not exist in <oCbject>.

__objDellnline() is exactly the sane as __ obj Del Met hod().

Exanpl es

/1l create a new THappy class and add a Snile nethod
OoHappy := Td ass(): New("THappy")

___0bj AddMet hod(oHappy, "Smile", @¥Snile())

? __obj HasMet hod(oHappy, "Snile") /1T

/1 renove Snile nethod

__obj Del Met hod(oHappy, "Snile")

? __obj HasMet hod(oHappy, "Snile") /Il .F.

STATI C FUNCTI ON MySri | e(nType)

LOCAL cSnile
DO CASE
CASE nType == 1
cSmle :=":)"
CASE nType == 2
cSmle :=";)"
ENDCASE

RETURN cSmi | e

St at us
Ready

Conpl i ance
__0obj Del Method() is a Harbour extension.
Files
Library is rtl
See Al so:

__obj AddI nline()
__obj AddMet hod()
__0obj Get Met hodLi st ()
__obj Get MsgLi st ()
obj HasMet hod()
obj Modl nli ne()
__obj ModMet hod()

obj Del I nl i ne()

Del efe a METHOD I NLI NE from cl ass
Synt ax
__objDellnline(<oObject> <cSynbol>) --> oObject
Argunment s
<object> is the object to work on.

<cSynbol > is the synbol nane of METHOD or I NLINE nmethod to be del et ed
(renmoved) fromthe object.

Ret ur ns
__objDel InMethod() return a reference to <oQbject >.
Descri ption
__objDel I nMethod() is a
a METHOD or an | NLI NE ne
wi th the nanme <cSynbol >

Exanpl es

| ow | evel class support function that delete (renove)
thod froman object. <object> is unchanged if a synbol
does not exist in <oQCbject>.

/1 create a new THappy class and add a Smile nethod
oHappy := Td ass(): New "THappy")

__0obj AddMet hod(oHappy, "Snmile", @¥Snile())

? __obj HasMet hod(oHappy, "Snile") /1 .T.

/1 renmove Snmile method

__obj Del I nMet hod(oHappy, "Smile")

? __obj HasMet hod(oHappy, "Snile") /Il .F.

STATI C FUNCTI ON MySmi I e(nType)
LOCAL cSnile

DO CASE
CASE nType ==
cSmle :=":)"
CASE nType ==
cSmile :=";)"
ENDCASE

RETURN cSni |l e

St at us
Ready

Conpl i ance
__obj Del Method() is a Harbour extension.
Files
Library is rtl
See Al so:

obj Addl nli ne()

obj AddMet hod()
__obj Get Met hodLi st ()
__obj Get MsgLi st ()
__obj HasMet hod()
__obj Modl nli ne()

obj ModMet hod()

obj Del Dat a()

Del efe a DATA (instance variable) fromclass
Synt ax
__obj Del Met hod(<oObj ect>, <cDataNane>) --> oQbj ect
Argunment s
<object> is the object to work on.

<cDat aNane> is the synbol nanme of DATA to be deleted (rempved) fromthe
obj ect.

Ret ur ns

__objDel Data() return a reference to <o(bj ect >.
Descri ption

__objDel Data() is a low |l evel class support function that delete (renove) a

DATA from an object. <oObject> is unchanged if a synbol w th the nane <cDat aName>
does not exist in <oQbject>.

Exanpl es

/1 create a new THappy class and add a | Happy DATA
OoHappy := Td ass(): New("THappy")

___0obj AddDat a(oHappy, "I Happy")

? __obj HasDat a(oHappy, "I Happy") /1 .T.

/'l renove | Happy DATA

__obj Del Dat a(oHappy, "I Happy")

? __obj HasDat a(oHappy, "I Happy") /Il .F.

St at us
Ready
Conpl i ance
__OobjDel Data() is a Harbour extension.
Files
Library is rtl
See Al so:

__obj AddDat a()
__obj Get MsgLi st ()
__0bj Get Val ueli st ()
__obj HasDat a()

bj Set Val ueli st ()

obj Deri vedFr om(

Det erni ne whether a class is derived from another class
Synt ax
__obj DerivedFron{ <oObject>, <xSuper>) --> |I|sParent
Argunment s
<object> is the object to check.

<xSuper> is the object that may be a parent. can be either an Object or a
Character string with the class nane.

Ret ur ns

__objDerivedFron() return a logical TRUE (.T.) if <oCbject> is derived from
<xSuper >.

Descri ption

__objDerivedFron() is a low |level class support function that check is one
class is a super class of the other, or in other words, does class <oCbject> a
child or descendant of <xSuper>.

Exanpl es
/Il Create three classes and check their rel ations
#i ncl ude "hbcl ass. ch"

FUNCTI ON nai n()
| ocal oSuper, oObject, oDress

oSuper := TMbod(): New()
oQbj ect : = THappy(): New()
oDress := TShirt(): New()

? __obj DerivedFron{ oOhject, oSuper)

? _ obj DerivedFron{ oSuper, o(bject)

? __ objDerivedFron{ oOhject, oDress)
RETURN NI L

~——
~——
mT-

CLASS TMbod
METHOD New() |NLINE Sel f
ENDCLASS

CLASS THappy FROM ThMbod

METHOD Snile() INLINE qout("*smile*")
ENDCLASS
CLASS TShirt

DATA Col or

DATA Si ze

METHOD New() | NLINE Sel f
ENDCLASS

St at us
Ready
Conpl i ance
__obj DerivedFron() is a Harbour extension.
Files
Library is rtl
See Al so:

__obj HasDat a()
__obj HasMet hod()

RDDLI ST()

Return an array of the avail abl e Repl aceabl e Dat abase Drivers
Synt ax
RDDLI ST([<nRDDType>]) --> aRDDLi st
Argunment s
<nRDDType> is an integer that represents the type of the RDD you wish to
list. The constants RDT_FULL and RDT_TRANSFER represent the two types of RDDs

currently avail abl e.

AA Q)nstant

Value — Meaning ..o
RDT_FULL
1 Full RDD i npl ementation RDT _TRANSFER 2 mport/Export only

drlver AA

RDT_FULL identifies full-featured RDDs that have all the capabilities
associ ated with an RDD

RDT_TRANSFER identifies RDDs of limted capability. They can only transfer
records between files. You cannot use these linted RDD drivers to open a file in
a work area. The SDF and DELIMdrivers are exanples of this type of RDD. They are

only used in the inplenentation of APPEND FROM and COPY TO with SDF or DELIM TED
files.

Ret ur ns

RDDLI ST() returns a one-di mensional array of the RDD nanes registered with
the application as <nRDDType>.

Descri ption

RDDLI ST() is an RDD function that returns a one-di nensional array that lists
the avail abl e RDDs.

If you do not supply <nRDDType>, all avail able RDDs, regardless of type, are
returned.

Exanpl es

In this exanple RDDLI ST() returns an array containing the
character strings, "DBF', "SDF", "DELIM, "DBFCDX', and "DBFNTX"

REQUEST DBFCDX
< statenents >

aRDDs : = RDDLI ST()
// Returns {"DBF", SDF", "DELIM, "DBFCDX", "DBFNTX" }

In this exanple, RDDLIST() returns an array containing the
character strings, "SDF" and "DELIM':

#i ncl ude "rddsys. ch"
. < statements >

al npExp : = RDDLI ST(RDT TRANSFER)

Test s

St at us
Ready

RDDNANVE()

Return the nanme of the currently active RDD
Synt ax
RDDNAME() --> cRDDNane
Argunment s

Ret ur ns
current or specified work area.
Descri ption

RDDNAME() is an RDD function that returns a character string, cRDDNane, the
nane of the active RDD in the current or specified work area.

You can specify a work area other than the currently active work area by
al i asing the function.

Exanpl es

USE Customer VI A "DBFNTX" NEW
USE Sal es VI A " DBFCDX" NEW

? RDDNAME() /1 Returns: DBFCDX
? Custoner->(RDDNAME()) /1l Returns: DBFNTX
? Sal es->(RDDNAME()) /1l Returns: DBFCDX
Test s
St at us
Ready
See Al so:

RDDL| ST

RDDSETDEFAULT()

Set or return the default RDD for the application
Synt ax

RDDSETDEFAULT([<cNewDef aul t RDD>])
--> cPrevi ousDef aul t RDD

<cNewDef aul t RDD> is a character string, the name of the RDD that is to be
made the new default RDD in the application.

Ret ur ns
RDDSETDEFAULT() returns a character string, cPreviousDefaul tRDD, the nane of

the previous default driver. The default driver is the driver that HARBOUR uses
if you do not explicitly specify an RDD with the WVIA clause of the USE comand.

Descri ption
RDDSETDEFAULT() is an RDD function that sets or returns the name of the
previous default RDD driver and, optionally, sets the current driver to the new

RDD driver specified by cNewDefaul tRDD. |f <cNewDefaultDriver> is not specified,
the current default driver nane is returned and continues to be the current default

driver.
This function replaces the DBSETDRI VER() functi on.

Exanpl es

I/ If the default driver is not DBFNTX, nmeke it the default

| F (RDDSETDEFAULT() != "DBFNTX"
cd dRdd : = RDDSETDEFAULT(" DBFNTX")
ENDI F
Test s
St at us
Ready
See Al so:

DBSETDRI VER()

RDDSETDEFAULT

Set or return the default RDD for the application
Synt ax

__RDDSETDEFAULT([<cNewDef aul t RDD>])
--> cPrevi ousDef aul t RDD

<cNewDef aul t RDD> is a character string, the name of the RDD that is to be
made the new default RDD in the application.

Ret ur ns

_ RDDSETDEFAULT() returns a character string, cPreviousDefaultRDD, the nane
of the previous default driver. The default driver is the driver that HARBOUR
uses if you do not explicitly specify an RDD with the WI A clause of the USE

conmand.
Descri ption
RDDSETDEFAULT() is an RDD function that sets or returns the nanme of the
previous default RDD driver and, optionally, sets the current driver to the new
RDD driver specified by cNewDefaul tRDD. |f <cNewDefaultDriver> 1is not specified,

the current default driver name is returned and continues to be the current default
driver.

This function replaces the DBSETDRI VER() functi on.
Exanpl es

/1 1f the default driver is not DBFNTX, nmake it the default

| F (__RDDSETDEFAULT() != "DBFNTX"
cO dRdd := _ RDDSETDEFAULT(" DBFNTX")
ENDI F
Test s
St at us
Ready
See Al so:

DBSETDRI VER()

DBEVAL

Performs a code bl ock operation on the current Database
Synt ax
DBEVAL(<bBl ock>,
[<bFor>], [<bWile>],
[<nNext >], [<nRecord>],
[<IRest>]) --> NL
Argunment s
<bBl ock> Qperation that is to be perforned
<bFor> Code bl ock for the For condition
<bWhi |l e> Code bl ock for the WH LE condition
<nNext > Number of NEXT records to process
<nRecord> Record nunber to work on exactly
<| Rest> Toggle to rewind record pointer
Ret ur ns
DBEVAL() always returns N L
Descri ption
Perforns a code bl ock operation on the current Database
Exanpl es

FUNCTI ON Mai n()
LOCAL nCount

USE Test

dbGoto(4)

? RecNo()

COUNT TO nCount

? RecNo(), nCount
COUNT TO nCount NEXT 10
? RecNo(), nCount

RETURN NI L

St at us

Started
Conpl i ance

DBEVAL is fully CA-Cipper conpliant.
Files

Li brary is rdd

See Al so:

EVAL

DBF()

Alias name of a work area
Synt ax
Dbf () --> <cWorkArea>
Ret ur ns
<cWor kArea> Nane of alias
Descri ption
This function returns the sane alias name ofthe currently selected work area.
Exanpl es
FUNCTI ON Mai n()
USE Test
select O
gQut (| F(DBF()=="","No Nane", DBF()))

Test - >(qQut (DBF())
gqQut (Alias(1))

RETURN NI L

St at us

Ready
Conpl i ance

DBF() is fully CA-Clipper conpliant.
Files

Li brary is rdd

See Al so:

ALl AS()

DBAPPEND)

Appends a new record to a database file.
Synt ax
DbAppend(<l Lock>]) --> NIL
Argunment s
<l Lock> Toggle to release record | ocks
Ret ur ns

DbAppend() always returns N L
Descri ption

This function add a new record to the end of the database in the selected or
aliased work area. Al fields in that database will be given enpty data val ues -
character fields wll be filled with blank spaces,date fields wth CTOD('//"),
nuneric fields with O,logical fields with .F., and nmeno fields wth NULL bytes. The
header of the database is not updated until the record is flushed fromthe buffer
and the contents are witten to the disk.

Under a networking environent, DBAPPEND() performs an additional operation: It
attrnps to lock the newy added record. If the database file is currently | ocked
or if a locking assignnent iif made to LASTREC()+1, NETERR() will return a | ogica
true (.T.) imediately after the DBAPPEND() function. This function does not

unl ock the | ocked records.

n

If <lLock> is passed a logical true (.T.) value, it wl
| ocks, which allows the application to nain- tain mult
appendi ng operation. The default for this paraneter is

Exanpl es

FUNCTI ON Mai n()

| release the record
i ple record [ocks during an
a logical false (.F.).

USE Test

| ocal cNanme="HARBOUR', nl d=10

Test - >(DbAppend())

Repl ace Test->Nane wit cNane,ld with nld
Use

RETURN NI L

St at us
Ready
Conpl i ance
DBAPPEND() is fully CA-Cipper conpliant.
Files
Li brary is rdd
See Al so:

DBUNL OCK()
DBUNLOCKALL ()

DBCLEARFI LTER()

Clears the current filter condiction in a work area
Synt ax
DbCl earFil Ter() -> NL
Ret ur ns
DbClearFil Ter() always returns NL
Descri ption

This function clears any active filter condiction for the current or selected
wor k ar ea.

Exanpl es
Function Mai n()
Use Test
Set Filter to Left(Test->Nane,2) == "An"
Dbedi t ()
Test->(DbClearFilter())
USE
Return Nil
St at us
Ready
Conpl i ance
DBCLEARFI LTER() is fully CA-Cdipper conpliant.
Files
Library is rdd
See Al so:

DBSETFI LTER()
DBFI LTER()

DBCLOSEALL()

Close all open files in all work areas.

Synt ax

DbCloseAll () -> NIL
Ret ur ns

DBCLOSEALL() always return N L
Descri ption

This function close all open databases and all associated indexes.In
addition, it closes all format files and noves the work area pointer to the first
position
Exanpl es
Function Main()
Use Test New
DbEdi t ()
Use Test1l New
DbEdi t ()
DbCl oseAl | ()
USE
Return Ni|
St at us
Ready
Conpl i ance
DBCLOSEALL() is fully CA-dipper conpliant.
Files
Library is rdd
See Al so:

DBUSEAREA()
DBCLOSEAREA()

DBCLOSEAREA()

Cl ose a database file in a work area.
Synt ax
DbCl oseArea() -> N L
Ret ur ns
DbCl oseArea() always returns NIL.
Descri ption

This function wll close any database open in the selected or aliased work
ar ea.

Exanpl es
Function Mai n()
Use Test
Dbedi t ()
Test - >(DbCl oseArea())
USE
Return Ni|
St at us
Ready
Conpl i ance
DBCLOSEAREA() is fully CA-Cipper conpliant.
Files
Li brary is rdd
See Al so:

DBUSEAREA()
DBCLOSEALL ()

DBCOMM T()

Updates all index and dat abase buffers for a given workarea
Synt ax
DBCOMM T() --> NIL
Ret ur ns
DBCOW T() always returns NIL.
Descri ption

This function updates all of the information for a give,selected, or active
wor kar ea. This operation includes all database and index buffers for that work area
only. This function does not update all open work areas.

Exanpl es

FUNCTI ON Mai n()
LOCAL cName: =SPACE(40)

LOCAL nld: =0
USE Test EXCLUSI VE NEW
/1

@10, 10 CGET cNane

@11, 10 CGET nld

READ

I/

| F UPDATED)
APPEND BLANK
REPLACE Tests->Nane W TH cNane
REPLACE Tests->Id WTH nld
Tests->(DBCOW T())

ENDI F

RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Li brary is rdd
See Al so:

DBCLOSEALL()
DBCOVM TALL()

DBUNL OCK()

Fl uer?(%E]ewnwenIﬁLLsP i i
y buffer and perforns a hard-disk wite
Synt ax
DBCOMM T() --> NIL
Ret ur ns
DBCOW T() always returns NIL.
Descri ption

This function performs a hard-disk wite for all work areas. Before the disk
wite is performed,all buffers are flushed. open work areas.

Exanpl es

FUNCTI ON Mai n()

LOCAL cNane: =SPACE(40)

LOCAL nl d: =0

USE Test EXCLUSI VE NEW

USE Testld New | NDEX Testid

1/

@10, 10 CGET cNane

@11, 10 GET nld

READ

I/

| F UPDATED)
APPEND BLANK
REPLACE Tests->Nane W TH cNane
REPLACE Tests->Id WTH nld
| F ! Test | d->(DBSEEK(nl d))

APPEND BLANK
REPLACE Tests->Id WTH nld

ENDI F

ENDI F

DBCOVM TALL()

RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant.
Files
Li brary is rdd
See Al so:

DBCLOSEALL()
DBCOVM T

DBUNL OCK()

DBCONTI NUE()

Resume a pendi ng LOCAT

Synt ax

__DbCONTINUE() -> NIL
Ret ur ns

__ DbCONTI NUE() Al ways return nil
Descri ption

__ DBCONTINUE i s a database comrand that searches fromthe current record
position for the next record neeting the nost recent LOCATE condition executed in

the current work area. It terminates when a match is found or end of file is
encountered. |If _ DBCONTINUE is successful, the matching record becones the
current record and FOUND() returns true (.T.); if unsuccessful, FOUND() returns
false (.F.).

Each work area may have an active LOCATE condition. 1In CA-Cipper, a LOCATE
condition renains pending until a new LOCATE condition is specified. No other
commands rel ease the condition.

Not es

Scope and WHI LE condition: Note that the scope and WHILE condition of the

initial LOCATE are ignored; only the FOR condition is used with CONTINUE. If you
are using a LOCATE with a WHILE condition and want to continue the search for a

mat chi ng record, use SKIP and then repeat the original LOCATE statenent addi ng REST
as the scope.

This exanpl e scans records in Sales.dbf for a particular
sal esman and di splays a running total sales anpunts:

LOCAL nRunTotal := 0

USE Sal es NEW

LOCATE FOR Sal es->Sal esman = " 1002"

DO VWH LE FOUNI)
? Sal es->Sal esnane, nRunTotal += Sal es->Anpunt
__ DBCONTI NUE()

ENDDO

Thi s exanpl e denonstrates how to continue if the pending
LOCATE scope contains a WHI LE condition:

LOCAL nRunTotal := 0
USE Sal es | NDEX Sal esman NEW
SEEK "1002"

LOCATE REST WH LE Sal es->Sal esman = "1002";
FOR Sal es- >Anpbunt > 5000
DO WH LE FOUNID()
? Sal es->Sal esnane, nRunTotal += Sal es->Anpunt
SKI P
LOCATE REST WHI LE Sal es->Sal esman = "1002";
FOR Sal es- >Anpunt > 5000

ENDDO
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant.
Files
Library is rdd
See Al so:
ECE().

FOUN

DBCREATE(

Creates an enpty database froma array.

Synt ax

DBCREATE(<cDat abase>, <aStruct>,[<cDriver>],[<l Open>],
[<cAlias>]) --> NIL

Argunment s
<cDat abase> Nanme of database to be create
<aStruct > Name of a nultidinensional array that contains the a database
structure

<cDriver> Nane of the RDD

<l OpenNew> 3-way toggle to Open the file in New or Current workarea:

| L [The file is not opened.
Tr ue t is opened in a New area.
Fal se t is opened in the current area.
<cAl i as> Name of database Alias
Ret ur ns
DBCREATE() al ways returns NI L.
Descri ption
This function creates the database file specified as <cDatabase> fromthe
mul tidi nensional array <aStruct>.1f no file extension is use with <cDatabase> the
. DBF extension is assumed. The array specified in <aStruct> nust follow a few
gui del i nes when being built prior to a call to DBCREATE():
- Al subscripts values in the second di nensi on nust be set to proper val ues
- The fourth subscript value in the second di mension - which contains the
deci mal val ue-nust he specified. even 1lkw nonnuneric fields.
- The second subscript value in the second di mensi on-which contains the field
data type-must contain a proper value: C, D, L, Mor N It is possible to use
additional letters (or clarity (e.g., 'Nuneric' for '"N): however, the first letter
of this array elenent nust be a proper val ue.
The DBCREATE() function does not use the decinmal field to calculate the
length of a character held |onger than 256. Values wup to the maximumlength of a
character field (which is 65,519 bytes) are stored directly in the database in the
length attribute if that database was created via this function. However, a file
containing fields longer than 256 bytes is not conpatible with any interpreter
The <cDriver> paraneter specifies the nane of the Replaceabl e Da- tabase
Driver to use to create the database. If it is not specified, then the Replaceable
Dat abase Driver in the current work area is tised. The <l OpenNew> paraneter
specifies if the already created database is to be opened, and where. |If NL, the
file is not opened. If True, it is opened in a New area, and if False it is opened
inthe current area (closing any file already occupying that area). The <cAlias>
paraneter specifies the alias nane for the new opened dat abase
Exanpl es
function main()
local nl, aStruct :={ { "CHARACTER', "C', 25, 0}, ;
{ "NUMERI C', "N', 8, 01}, ;
{ "DQOUBLE", "N, 8, 2}, ;
{ "DATE", "D', 8, 0}, ;
{ "LOG CAL", "L", 1, 0}, ;
{ "MEMOL", "M, 10, 0}, ;
{ "MEMR", "M, 10, 0} }

REQUEST DBFCDX

dbCreate("testdbf", aStruct, "DBFCDX', .t., "MALIAS")
RETURN NI L
St at us
Ready
Conpl i ance
This function is Not CA-Cipper conpliant
Files
Library is rdd Header is Dbstruct.ch
See Al so:

AFIl ELDS()
DBSTRUCT()

DBDELETE()

Marks records for deletion in a database.
Synt ax
DBDELETE() --> NIL
Ret ur ns
DBDELETE() always returns NIL.
Descri ption

This function narks a record for deletion in the selected or aliased work
area.|f the DELETED setting is on, the record wll still be visible until the
record pointer in that work area is noved to another record.

In a networking situation, this function requires that the record be |ocked
prior to issuing the DBDELETE() function.

Exanpl es

nl d: =10
USE Testld | NDEX Testld NEW
| F Test | d->(DBSEEK(nl d))

| F Test!ld->(RLOCK())

DBDELETE()
ENDI F
ENDI F
USE
St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Li brary is rdd
See Al so:

DBRECALL

DBFI LTER()

Return the filter expression in a work area
Synt ax
DBFI LTER() --> cFilter
Ret ur ns
DBFI LTER() returns the filter expression.
Descri ption

This function return the expression of the SET FILTER TO command for the
current or designated work area. If no filter condition is present,a NULL string
wi Il be returned.

Exanpl es

USE Test | NDEX Test NEW

SET FILTER TO Nane= "Har bour"
USE Testld | NDEX Testld NEW
SET FILTER TO Id = 1

SELECT Test

I/

? DBFI LTER()

? Test|d->(DBFI LTER())

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Li brary is rdd
See Al so:

DBGOBOTTOM)

Moves the record pointer to the bottom of the database.

Synt ax

DBGOBOTTOM) --> NIL
Ret ur ns

DBGOBOTTOM) al ways returns NI L.
Descri ption

This function noves the record pointer in the selected or aliased work area

to the end of the file. The position of the record pointer is affected by the
values in the index key or by an active FILTER condition. Gherwise,if no index is
active or if no filter condition is present,the value of the record pointer will be
LASTREC() .

Exanpl es

USE Tests
DBGOTOP()
? RECNO()
DBGOBOTTOM)
? RECNQ()
USE
St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Li brary is rdd
See Al so:

BOE()
ECE()
DBSKI P()

DBSEEK()
DBGOTOP

DBGOT(()

Position the record pointer to a specific |ocation.

Synt ax
DBGEOTQ(<xRecor dNunber>) --> N L
Argunment s
<xRecor dNunber> Record nunber or unique identity
Ret ur ns
DBGOTQ() always returns NIL.
Descri ption
This function places the record pointer,if working with a .DBF file, in

selected or aliased work area at the record nunber specified by
<xRecor dNunber >. The position if not affected by an active index or by any
enviromental SET condicti on.

I ssuing a DBGOTQ(RECNQ()) call in a network environent will refresh the

dat abase and i ndex buffers.This is the sane as a DBSKIP(0) call. The paraneter
<xRecor dNunber > may be sonething other than a record nunber.In sone data fornats,
for exanple, the value of <xRecordNumber> is a unique prinmary key while in other
formats, <xRecor dNunber> could be an array offset if the data set was an array.

Exanpl es

The foll owi ng exanpl e uses DBGOTQ() to iteratively process
every fourth record:

DBUSEAREA(.T., "DBFNTX', "Sales", "Sales", .T.)
/1
/1 toggle every fourth record
DO WHI LE ! EOF()
DBGOTQ(RECNQ() + 4)
Sal es->Group := "Bear"
ENDDO

St at us

Ready
This function is CA-Cipper conpliant.

Fil es
Library is rdd
See Al so:

BOF()
EOF()
DBGOTOP
DBGOBOT T
DBSEEK()
DBSKI P()

DBGOTOP()

Moves the record pointer to the bottom of the database.

Synt ax

DBGOTOP() --> NIL
Ret ur ns

DBGOTOP() always returns NI L.
Descri ption

This function noves the record pointer in the selected or aliased work area

to the top of the file. The position of the record pointer is affected by the
values in the index key or by an active FILTER condition. Gherwise,if no index is
active or if no filter condition is present,the value of RECNO() will be 1.

Exanpl es

USE Tests
DBGOTOP()

2 RECNQ()
DBGOBOTTOM)

2 RECNO()
USE

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Li brary is rdd
See Al so:

BOF()
EOF()
DBSKI P()

DBSEEK()
DBGOBOT T

DBRECALL ()

Recal I s a record previousy marked for deletion.

Synt ax

DBRECALL() --> NIL
Ret ur ns

DBRECALL() always returns NIL.
Descri ption

This function unmarks those records marked for deletion nd reactivates them
in the aliased or selected work area.|f a record is DELETED and the DELETED

setting is on, the record will still be visible for a DBRECALL() provided that the
dat abase record pointer has not been skipped.Once a record nmarked for deletion with

the DELETE setting ON has been skipped, it no | onger canbe brought back with
DBRECALL() .

Exanpl es
USE Test NEW
DBGOTQ(10)
DBDELETE()
? DELETED()

DBRECALL()
2 DELETED()
USE

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Li brary is rdd
See Al so:

DBDELETE()

DBRLOCK()

This function | ocks the record basedon identify
Synt ax
DBRLOCK([<xl dentity>]) --> | Success
Argunment s
<xldentity> Record indetifier
Ret ur ns
DBRLOCK() returns a logical true (.T.) if lock was successful
Descri ption
This function attenpts to lock a record which is indentified by <xldentity>

in the active data set.|f the lock is successful the function will return a
logical true (.T.) value;otherwise a logical false (.F.) will be returned.|f

<xldentity> is not passed it will be assumed to | ock the current active record/data
item
Exanpl es
FUNCTI ON Mai n()
LOCAL x: =0

USE Tests New
FOR x:=1 to reccount ()

| F ! DBRLOCK()
DBUNL OCK()
ENDI F
NEXT
USE
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Library is rdd
See Al so:
DBUNL OCK()
DBUNLOCKALL()
FLOCK

RLOCK

DBRLOCKLI ST()

This function return a list of records in the database work area
Synt ax
DBRLOCKLI ST() --> aRecordLocks
Ret ur ns
<aRecordList> is an array of |ock records
Descri ption

This function will return an array of |ocked records in a given and active
work area.|lf the return array is an enpty array (neaning no elenments in it),then
there are no | ocked record in that work area.

Exanpl es

FUNCTI ON Mai n()

LOCAL alLi st: ={}

LOCAL x: =0

USE Tests NEW

DBGOT((10)

RLOCK()

DBGOT((100)

RLOCK()

aLi st: =DBRLOCKLI ST()

FOR x:=1 TO LEN(aLi st)
? alist[x]

NEXT

USE

RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Li brary is rdd
See Al so:

RLOCK
DBRL OCK|

DBRUNL OCK()

DBRUNL OCK()

Unl ocks a record base on its indentifier

Synt ax
DBRUNLOCK([<xl dentity>]) --> NL
Argunment s
<xldentity> Record indentifier,tipicaly a record nunber
Ret ur ns
DBRUNLOCK() always returns NI L.
Descri ption

This function will attenpt to unlock the record specified as
<xldentity> which in a .DBF format is the record nunber.I|f not
current active record/data itemw |l be unlocked

Exanpl es

FUNCTI ON Mai n()
USE Tests New
DBGOT(Q(10)
I F RLOCK()
? Tests->ID
DBRUNL OCK()
ENDI F
USE
RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Li brary is rdd
See Al so:

RLOCK
DBRLOCK
DBRLOCKLI ST()

specified,themthe

DBSEEK()

Searches for a value based on an active index.
Synt ax
DBSEEK(<expKey>, [<l Soft Seek>],[<IFindLast>]) --> | Found
Argunment s
<expKey> Any expression
<l Sof t Seek> Toggl e SOFTSEEK conditi on

<| FindLast> is an optional |ogical value that set the current record
position to the last record if successful

Ret ur ns
DBSEEK() returns logical true (.T.) if found, otherw se fal se
Descri ption
This function searches for the first record in a database file whose index

key matches <expKey>. If the itemis found, the function will return a | ogical
true (.T.), the value of FOUND() will be a logical true (.T.), and the val ue of
EOF() will be a logical false (.F.). If no itemis found. then the function wll
return a logical false, the value of FOUND() will be a logical false (.F.), and
the value of EOF() will be a logical true (.T.).

This function always "rew nds" the database pointer and starts the search from
the top of the file.

If the SOFTSEEK flag is on or if <l SoftSeek> is set to a logical true (.T.)
the value of FOUND() will be a logical false and EOF() will he a logical false if
there is an itemin the index key with a greater value than the key expression

<expKey>; at this point the record pointer will position itself on that record.
However, if there Is no greater key in the index, EOF() will return a |ogical true
(.T.) value. If <l SoftSeek> is not passed, the function will look to the internal

status of SOFTSEEK before perform ng the operation. The default of <l SoftSeek> is a
| ogical false (.F.)

Exanpl es

FUNCTI ON Mai n()
USE Tests New | NDEX Tests
DBGOT(Q(10)
nl d: =Tests->nld
| F Test s->(DBSEEK(nl d))
| F RLOCK()
? Tests->Nanme
DBRUNL OCK()
ENDI F
ENDI F
USE
RETURN NI L

ACCEPT "Enpl oyee nanme: " TO cNane
| F (Enpl oyee- >(DBSEEK(cNane)))
Enpl oyee->(Vi ewRecor d())

ELSE
2 "Not found"

END
St at us

Started
Conpl i ance

DBSEEK() is Conpatible with CA-dipper 5.3
Files

Li brary is rdd

See Al so:
DBGOBOTTOM)

DBSEL ECTAREA()

Change to another work area

Synt ax
DBSELECTAREA(<xArea>) --> N L
Argunment s
<xArea> Alias or work area
Ret ur ns
DBSELECTAREA() always returns NI L.
Descri ption
This function noves the Harbour internal primary focus to the work area
designated by <xArea>. If <xArea> is nuneric, themit will select the nuneric work
area;if <xArea> is character,then it will select the work area with the alias nane.

DBSELECTAREA(QO) will select the next avaliable and unused work area. Up to

255 work areas are supported. Each work area has its own alias and record pointer,
as well as its own FOUND(), DBFI LTER(), DBRSELECT(), and DBRELATI ON() function

val ues.

Exanpl es

FUNCTI ON Mai n()
LOCAL nld
USE Tests NEW I NDEX Tests
USE Testsl NEW I NDEX Testsl
DBSELECTAREA(1)
nl d: =Tests->Id
DBSELECTAREA(2)
| F DBSEEK(nl d)
? Testsl->cNane
ENDI F
DBCLOSEALL()
RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-CLIPPER conpati bl e.
Files
Library is rdd
See Al so:

DBUSEAREA()
SELECT

DBSETDRI VER(

Est abl i shes the nane o? repl aceabl e daabas driver for a selected work area

Synt ax
DBSETDRI VER([<cDriver>]) --> cCurrentDriver
Argunment s
<cDriver> Optional database driver nane
Ret ur ns
DBSETDRI VER() returns the nane of active driver
Descri ption
This function returns the name of the current database driver for the
sel ected work area. The default will be "DBFNTX'. |f specified,<cDriver> contains
t he nane of the database driver that should be used to activate and nanage the work
area.|f the specified driver is not avaliable,this function will have no effect.
Exanpl es
DBSETDRI VER(" ADS")
St at us
Ready
Conpl i ance
This function is CA-Cipper conpatible
Files
Library is rdd
See Al so:

DBUSEAREA()

DBSKI P()

Moves the record pointer in the selected work area.
Synt ax
DBSKI P([<nRecords>]) --> NIL
Argunment s
<nRecords> Nunbers of records to nove record pointer.
Ret ur ns
DBSKI P() always returns N L.
Descri ption

This function noves the record pointer <nRecords> in the selected or aliased

wor k area. The default value for <nRecords> will be 1. A DBSKIP(0) will flush and
refresh the internal database bufer and nmake any changes nade to the record visible
wi t hout noving the record pointer in either direction.

Exanpl es

FUNCTI ON Mai n()

USE Tests NEW

DBGOTOP()

WHI LE ! EOF()
? Tests->|d, Tests->Name
DBSKI P()

ENDDO

USE

RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-CLIPPER conpati bl e
Files
Li brary is rdd
See Al so:

BOE()
DBGOBOT T
DBGOTOP

DBSEEK()
EOF()

DBSETFI LTER()

Establishes a filter condition for a work area.
Synt ax
DBSETFI LTER(<bCondi ti on>, [<cCondition>]) --> NL
Argunment s
<bCondi ti on> Code bl ock expression for filtered eval uation.

<cCondition> Optional character expression of code bl ock.

Ret ur ns
DBSETFI LTER() always returns NIL.
Descri ption

This function nasks a database so that only those records that neet the

condition prescribed by the expression in the code bl ock <bCondition> and
literally expressed as <cCondition> are visible. |If <cCondition> is not passed to
this function,then the DBFILTER() function will return an enpty string show ng no
filter in that work area which in fact,wuld be not correct.

Exanpl es

FUNCTI ON Mai n()
USE Tests NEW
DBSETFI LTER({|| Tests->ld <100}, "Tests->Id <100")

DBGOTOP()
St at us
Ready
Conpl i ance
This function is CA-dipper conpliant.
Files
Li brary is rdd
See Al so:
DBFI LTER()

DBCLEARFI LTER()

DBSTRUCT()

Creates a multidinensional array of a database structure.

Synt ax

DBSTRUCT() --> aStruct
Ret ur ns

DBSTRUCT() returns an array pointer to database structure
Descri ption

This function returns a nultidinmensional array.This array has array pointers

to ot her arrays, each of which contains the characteristic of a field in the active
work area. The |l enght of this array is based in the nunber of fields in that
particular work area.ln other words, LEN(DBSTRUCT()) is equal to the val ue obtai ned
from FCOUNT(). Each subscript position

Exanpl es

FUNCTI ON Mai n()

LOCAL aStru, X

USE Tests NEW

aSt r u: =DBSTRUCT()

FOR x:=1 TO LEN(aStru)
? asStru[x, 1]

NEXT

USE
RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Library is rdd Header is DbStruct.ch
See Al so:
AFI ELDS

DBUNL OCK()

Unl ock a record or release a file | ock

Synt ax
DBUNLOCK() --> NIL
Ret ur ns
DBUNLOCK() always returns NIL.
Descri ption
This function releases the file or record lock in the currently selected or
aliased work area.It will not unlock an associated lock in a related data- bases.
Exanpl es
nl d: =10

USE Testld I NDEX Testld NEW
| F Test | d->(DBSEEK(nl d))

| F Test|d->(RLOCK())

DBDELETE()
ELSE
DBUNLOCK()

ENDI F
ENDI F
USE

St at us
Ready
Conpl i ance
This function is CA-Cipper conpatible.
Files
Library is rdd
See Al so:

DBUNLOCKALL()
FLOCK
RLOCK

DBUNL OCKALL ()

Unl ocks all records and releases all file locks in all work areas.
Synt ax
DBUNLOCKALL() --> NIL
Ret ur ns
DBUNLOCKALL() always returns NIL.
Descri ption
This function will renove all file and record locks in all work area.
Exanpl es

nl d: =10
USE Tests | NDEX Testld NEW
USE Testsl | NDEX Tests NEW
| F Test | d->(DBSEEK(nl d))
| F Testld->(RLOCK())
DBDELETE()
ELSE
DBUNLOCK()
ENDI F
ELSE
DBUNLOCKALL()
ENDI F
USE

St at us
Ready
Conpl i ance
This function is CA dipper conpliant
Files
Li brary is rdd
See Al so:

DBUNL OCK()
FLOCK

RLOCK

DBUSEAREA()

Opens a work area and uses a database file.
Synt ax

DBUSEAREA([<l NewArea>], [<cDriver>], <cNane>, [<xcAlias>],
[<I Shared>], [<IReadonly>]) --> NL

Argunment s

<| NewArea> A optional |ogical expression for the new work area

<cDriver> Dat abase driver nane

<cNane> Fil e Name

<xcAl i as> Ali as nane

<| Shar ed> Shar ed/ excl usi ve status flag

<l Readonl y> Read-wite status flag.

Ret ur ns
DBUSEAREA() always returns NI L.
Descri ption

This function opens an existing database named <cName> in the current work

area. If <INewArea> is set to a logical true (.T.) value, then the database
<cNane> will be opened in the next available and unused work area. The default

val ue of <I NewArea> is a logical false (.F.). |If used, <cDriver> is the name of the
dat abase driver associated with the file <cNane> that is opened. The default for
this will be the value of DBSETDR VER().

| F used, <xcAlias> contains the alias nane for that work area, If not
specified, the root nane of the database specified in <cName> will be used.

If <l Shared> is set to a logical true (.T.) value, the database that is

specified in <cNane> will be opened by the user EXCLUSIVELY. Thus locking it from
all other nodes or users on the network. |If <l Shared>is set to a logical false
(.F.) value, then the database will be in SHARED npde. |If <I Shared> is not passed,
then the function will turn to the internal setting of SET EXCLUSIVE to deternmine a
setting.

If <l ReadOnly> is specified, the file will be set to READ ONLY node. |If it is
not specified, the file will he opened in normal read-wite node.

Exanpl es
DBUSEAREA(. T., , " Tests")
St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Li brary is rdd
See Al so:

DBCLOSEAREA()
DBSETDRI VER()
SELECT

SET()

DBZAP()

Renmove all records fromthe current database file

Synt ax

__Dbzap() -> NL
Ret ur ns

__Dbzap() will always return ni
Descri ption

__Dbzap(is a database command that permanently renoves all records from

files open in the current work area. This includes the current database file,
i ndex files, and associated neno file. Disk space previously occupied by the
ZAPped files is released to the operating system _ DbZap() perforns the sane
operation as DELETE ALL followed by PACK but is alnbst instantaneous.

To ZAP in a network environnent, the current database file nust be USEd
EXCLUSI VE! y.

This exanpl e denonstrates a typical ZAP operation in a network
envi ronnent :

USE Sal es EXCLUSI VE NEW
| F ! NETERR()
SET | NDEX TO Sal es, Branch, Sal esman
__dbZAP()
CLCSE Sal es
ELSE
? "Zap operation failed"
BREAK
ENDI F

St at us

Ready
Conpl i ance

This function is CA dipper conpliant
Files

Library is rdd

ORDBAGEXT

Returns the Order Bag extension
Synt ax

ORDBAGEXT() --> cBagExt
Argunment s

Ret ur ns
<cBagExt > The Rdd extension nane.
Descri ption

This function return th character name of the RDD extension for the order
bag. This is determined by the active RDD for the selected work area.

This function replaces the Indexord() function.
Exanpl es
USE Tests NEW VI A " DBFNTX"
? ORDBAGEXT() /1 Returns .ntx
DBCL OSEAREA()
USE Tests NEW VI A " DBFCDX"
? ORDBAGEXT() /1 Returns .cdx
DBCL OSEAREA()
St at us
Started
Conpl i ance
This function is CA dipper conpliant
Pl at f or ns
Al l
Files
Li brary is rdd

See Al so:

I NDEXEXT()
ORDBAGNAME

ORDBAGNANE()

Returns the Order Bag Nane.
Synt ax
ORDBAGNAME(<nOr der > | <cOrder Name>) --> cOrder BagNane
Argunment s
<nOrder> A nuneric value representing the Order bag nunber.

<cOrder Nane> The character nane of the Order Bag.

Ret ur ns
ORDBAGNAME() returns the Order bag nane

Descri ption
This function returns the nanme of the order bag for the specified work area.
If <nOrder> is specidied,it will represent the position in the order list of the
target order.If <cOrderName> is specified, it will represent the nanme of the target
order.In essence,it will tell the name of the database (if That Rdd is in use) for

a given index nane or index order number.lf <cOrderNane> is not specified or
<nOrder>is 0, the Current active order will be used.

Exanpl es

USE Tests VI A "DBFCDX" NEW
Set index to TESTs

ORDBAGNAME(" TeNane") /1 Returns: Custoner
ORDBAGNAME(" TelLast") /1 Returns: Custoner
ORDBAGNAME("t eZip") /1 Returns: Custormer

Set Order to Tag TeNane
? OrderBagNane() //Return Custuner

Tests
See Exanpl es
St at us
Started
Conpl i ance
This function is Ca-Cdipper conpliant
Pl at f or ns
All
Files
Library is rdd
See Al so:
| NDEXCOR)
ORDBAGEXT())

ALl AS()

ORDCONDSET(

Set the Condition and scope for an order
Synt ax

ORDCONSET([<cFor Condi ti on>],
<bFor Condi ti on>],
<lAIl>],

<bWhi | eCondi ti on>],
<bEval >],

<nl nterval >],
<nStart>],

<nNext >],
<nRecor d>],

<| Rest >],

<l Descend>],

<l Addi tive>],

<l Current>],

<l Cust onP],

<|I NoOpti m ze>])

Argunent s

<cForCondition> is a string that specifies the FOR condition for the order.

<bFor Condi tion> is a code bl ock that defines a FOR condition that each record
within the scope nust nmeet in order to be processed. If a record does not neet the
specified condition,it is ignored and the next record is processed.Duplicate keys
val ues are not added to the index file when a FOR condition is Used.

Ret ur ns

Descri ption

St at us

Started
ORDCONDSET() is CA-dipper conpliant

Files
Library is rdd

ORDCREATE()

Create an Order in an Order Bag
Synt ax

ORDCREATE(<cOr der BagNane>, [<cOr der Nane>], <cExpKey>,
[<bExpKey>], [<lUnique>]) --> NL

Argunment s
<cOr der BagNane> Name of the file that contains one or nore Orders.
<cOrder Name> Nanme of the order to be created.
<cExpKey> Key value for order for each record in the current work area

<bExpKey> Code bl ock that evaluates to a key for the order for each record
in the work area.

<l Uni que> Toggl e the uni que status of the index.

Ret ur ns
ORDCREATE() always returns N L
Descri ption

This function creates an order for the current work area.lt is simlar to the
DBCREATEI NDEX() except that this function allows different orders based on the RDD
in effect. The name of the file <cOrderBagNane> or the nane of the order
<cOrderNane> are technically both considered to be "optional" except that at | east
one of two nust exist in order to create the order

The paraneter <cExpKey> is the index key expression;typically in a .DBF
driver,the nmaxi nrumlength of the key is 255 characters.

| f <bExpKey> is not specified,then the code block is create by nmcro
expandi ng the val ue of <cExpKey>.

If <lUnique>is not specified,then the current internal setting of SET UN QUE
ON or OFF will be observed.

The active RDD driver deternines the capacity in the order for a specific
order bag.

If the name <cOrderBagNane> is found in the order bag can contain a single
order,the the name <cOrderBagNanme> is erased and a new order is added to the order
list in the current or specified work area.On the other hand,if it can contain
nmultiples tags and if <cOrderBagNane> does not already exist in the order list,then
it is added.It is does exist,then the <cOrderBagNane> replaces the forner nanme in
the order list in the current or specified work area.

Exanpl es
USE TESTS VI A "DBFNDX" NEW
ORDCREATE("FNAME",, "Tests->f Nanme")
USE TEsts VI A "DBFCDX" NEW
ORDCREATE(, "I Name", "tests->| Nanme")
Tests
See exanpl es
St at us
Started
Conpl i ance
This function is Ca-Cdipper conpliant
Pl at f or ns

Al'l

Fil es
Li brary is rdd
See Al so:

ARRAY
ORDNAME
ORDSETFOCUS()

ORDDESTROY()

Remove an Order froman Order Bag

Synt ax
ORDDESTROY(<cOr der Nane> [, <cOrderBagName>]) --> N L

Argunment s
<cOrder Name> Nane of the order to renove
<cOrder BagNane> Nanme of the order bag from which order id to be renoved

Ret ur ns
ORDDESTROY() always returns NIL.

Descri ption
This function attenpts to renove the order naned <cOrderNane> fromthe file
contai ni ng the order bag nane <cOrderBagNanme>. |f <cOrderBagName> is not
specified,then the nane of the file will be based on the value of the ORDNAME()
function.If the extension is not included with the nane of the order file,then the
extension will be obtained fromthe default extension of the current and active
RDD.
The DBFNTX driver do not support multiple order bags;therefore,there cannot
be an order to "destroy" froma bag. This function only works for those drivers
with support nultiple orders bags (e.q. DBFCDX and RDDADS drivers).

Exanpl es

USE TEsts VI A "DBFCDX' NEW
ORDdestroy("I Nane", "tests")

Tests

See exanpl es
St at us

Started
Conpl i ance

This function is Ca-Cdipper conpliant
Pl at f or ms

Al l
Files

Li brary is rdd

See Al so:

ORDCREATE

ORDFOR()

Return the FOR expression of an O der
Synt ax
ORDFOR(<xOrder>[, <cOrderBagNane>]) --> cForExp

<xOr der > It the nane of the target order,or the nuneric position of the
order.

<cOrder BagNanme> Nane of the order bag.
Ret ur ns
ORDFOR() returns a expression containing the FOR condition for an order.
Descri ption
This function returns a character string that is the expression for the FOR
condition for the specified order. The order may be specified if <xOrder>is the
nane of the order.However,<xOrder> may be an nuneric which represent the position
in the order list of the desired Order.
Exanpl es
USE Tests NEWvi a _DBFCDX
| NDEX ON Tests->ld ;
TO TESTS ;
FOR Tests->Id > 100
ORDFOR("Tests") /1 Returns: Tests->Id > 100
Test s
See exanpl es
St at us
Started

Conpl i ance

This function is Ca-Cipper conpliant with one exception. |If the <xOrder>
paranter is not specified or <xOrder> is 0, the current active order is used.

Pl at f or ns
Al l
Files
Library is rdd
See Al so:

ORDKEY
ORDCREATE
ORDNAME

ORDNUMBER()

ORDKEY()

Return the key expression of an Order

Synt ax

ORDKEY(<cOr der Name> | <nOrder> [, <cOrderBagNane>]) --> cExpKey
Argunment s

;(S)g(rjew It the nanme of the target order,or the numeric position of the

<cOrder BagNane> Nanme of the order bag.

Ret ur ns
<cExpKey> Returns a character string, cExpKey.
Descri ption

ORDKEY() is an Order managenent function that returns a character expression,
cExpKey, that represents the key expression of the specified Oder.

You may specify the Order by name or with a nunber that represents its
position in the Order List. Using the Oder nane is the preferred nethod.

The active RDD determ nes the Order capacity of an Order Bag. The default
DBFNTX and t he DBFNDX drivers only support single-Oder Bags, while other RDDs nay
support multiple-Oder Bags (e.g., the DBFCDX and DBFNMDX drivers).

Exanpl es

USE Custoner NEWvia _DBFCDX
I NDEX ON Custoner->Acct ;

TO Custoner ;

FOR Custoner->Acct > "AZZ777"
I ndex on Custuner->ld to Cusid

ORDKEY(" Custoner") /1 Returns: Customer->Acct
Set order to 2
ORDKEY() /1 Returns: Custuner->ld
St at us
Started
Conpl i ance
This function is Ca-dipper conpliant with one exception. |f the <xOrder>

paramer is not specified or <xOrder>is 0, the current active order is used.
Pl at f or ns
All
Files
Li brary is rdd
See Al so:

ORDFOR
ORDNANE

ORDNUMBER()
ORDKEY

ORDL| STADD

Add Orders to the Order List
Synt ax

ORDLI STADD(<cOr der BagName>
[, <cOrderNane>]) --> NL

Argunment s

<cOrderBagName> is the nane of a disk file containing one or nore O ders.

You may specify <cOrderBagNane> as the filename with or without the pathnane or
appropriate extension. |If you do not include the extension as part of

<cOr der BagNane> HARBOUR uses the default extension of the current RDD.

<cOrderNane> the nane of the specific Order fromthe Oder Bag to be added
to the Order List of the current work area. |If you do not specify <cOr derNane>,
all orders in the Order Bag are added to the Order List of the current work area.

Ret ur ns
ORDLI STADD() always returns NIL.
Descri ption

ORDLI STADD() is an Order managenent function that adds the contents of an

Order Bag , or a single Order in an Oder Bag, to the Order List. This function
| ets you extend the Order List without issuing a SET | NDEX conmand that, first,
clears all the active Orders fromthe O der List.

Any Orders already associated with the work area continue to be active. |If the
newl y opened Order Bag contains the only Order associated with the work area, it
becomes the controlling Order; otherwise, the controlling Order remains unchanged.

After the new Orders are opened, the work area is positioned to the first
| ogical record in the controlling O der.

ORDLI STADD() is simlar to the SET | NDEX conmand or the | NDEX clause of the
USE command, except that it does not clear the Oder List prior to adding the new
order (s).

ORDLI STADD() supersedes the DBSETI NDEX() function.

The active RDD deternines the Order capacity of an Order Bag. The default

DBFNTX and t he DBFNDX drivers only support single-Oder Bags, while other RDDs may
support multiple-Order Bags (e.g., the DBFCDX and DBPX drivers). Wen using RDDs
that support multiple Order Bags, you nmust explicitly SET ORDER (or ORDSETFOCUS())

to the desired controlling Oder. |If you do not specify a controlling Oder, the
data file will be viewed in natural Order.
Exanpl es

In this exanple Custoner.cdx contains three orders, CuAcct,
CuNane, and CuZi p. ORDLISTADD() opens Customer.cdx but only uses the
order named CuAcct:

USE Custoner VI A "DBFCDX" NEW
ORDLI STADD("Custoner", "CuAcct")

Tests

St at us
Started
Al |

Fil es

Library is rdd
See Al so:

ORDLI STCLEAR()

Clear the current O der List
Synt ax
ORDLI STCLEAR() --> NIL
Argunment s

Ret ur ns
ORDLI STCLEAR() always returns NI L.
Descri ption
ORDLI STCLEAR() is an Order managenent function that renoves all Orders from
the Order List for the current or aliased work area. Wen you are done, the O der
List is enpty.
This function supersedes the functi on DBCLEARI NDEX() .

USE Sal es NEW
SET I NDEX TO SaRegi on, SaRep, SaCode

< statenents >
ORDLI STCLEAR() /1 Coses all the current indexes
Tests

St at us
Started
All
Files
Li brary is rdd
See Al so:
ARRAY

ORDL| STREBUI LIX

Rebuild all Orders in the (Zder Li st of the current work area
Synt ax
ORDLI STREBUI LD() --> NIL
Argunment s

Ret ur ns
ORDLI STREBUI LD() always returns NI L.
Descri ption

ORDLI STREBUI LD() is an Order managenent function that rebuilds all the orders
in the current or aliased Order List.

To only rebuild a single Oder use the functi on ORDCREATE() .

Unl i ke ORDCREATE(), this function rebuilds all Orders in the Oder List. It is
equi val ent to RElI NDEX.

USE Custoner NEW

SET | NDEX TO CuAcct, CuName, CuZip

ORDLI STREBUI LX) /1 Causes CuAcct, CuNane, CuZip to
/1 be rebuilt

Tests
St at us
Started
Al l
Files
Li brary is rdd
See Al so:

ORDCREATE

ORDNAVE()

Return the name of an Order in the Order List
Synt ax
ORDNAME(<nOr der >[, <cOr der BagNane> --> cOr der Nane
Argunment s

<nOrder> is an integer that identifies the position in the Oder List of the
target Order whose database nane is sought.

<cOrderBagNane> is the nane of a disk file containing one or nore Oders.

You may specify <cOrderBagNane> as the filename with or without the pathnane or
appropriate extension. |If you do not include the extension as part of

<xcOr der BagNane> HARBOUR uses the default extension of the current RDD.

Ret ur ns

ORDNAME() returns the nane of the specified Order in the current Order List
or the specified Order Bag if opened in the Current Order list.

Descri ption

ORDNAME() is an Order nanagenent function that returns the nane of the
specified Order in the current Order List.

I f <cOrderBagName> is an Order Bag that has been enptied into the current
Order List, only those Orders in the Order List that correspond to <cO der BagNane>
Order Bag are searched.

The active RDD deternines the Order capacity of an Order Bag. The default
DBFNTX and t he DBFNDX drivers only support single-Oder Bags, while other RDDs may
support multiple-Oder Bags (e.g., the DBFCDX and DBPX drivers).

Exanpl es

This exanple retrieves the nane of an Order using its position
in the order Ilist:

USE Custoner NEW
SET | NDEX TO CuAcct, CuName, CuZip
ORDNAME(2) /1 Returns: CuNanme

This exanple retrieves the nane of an Order given its position
within a specific Order Bag in the Order List:

USE Custoner NEW

SET I NDEX TO Tenp, Custoner

/1 Assume Customer contains CuAcct, CuNane, CuZip
ORDNAME(2, "Custoner") /1 Returns: CuName

Tests

St at us
Started
Al l
Files
Li brary is rdd
See Al so:

ORDFOR
ORDKEY

ORDNUMBER()

ORDNUVBER()

Return the position of an Order in the current O der List
Synt ax
ORDNUMBER(<cOr der Nane> [, <cOrderBagNane>]) --> nOrderNo
Argunment s

<cOrderNane> the nane of the specific Order whose position in the Order List
i s sought.

<cOrderBagNane> is the nane of a disk file containing one or nore Oders.

You may specify <cOrderBagNane> as the filename with or without the pathnane or
appropriate extension. |If you do not include the extension as part of

<cOr der BagNane> HARBOUR uses the default extension of the current RDD.

Ret ur ns
the Order List.
Descri ption

ORDNUMBER() is an Order managenent function that lets you determ ne the

position in the current Order List of the specified Oder. ORDNUVMBER() searches
the Order List in the current work area and returns the position of the first O der
t hat mat ches <cOrder Nane>. If <cOrderBagNane> is the nane of an Order Bag newy
enptied into the current Oder List, only those orders in the Order List that have
been enptied from <cOrder BagNane> are sear ched.

If <cOrderNane> is not found ORDNUVBER() raises a recoverable runtine error.
The active RDD determ nes the Order capacity of an Order Bag. The default
DBFNTX driver only supports single-Order Bags, while other RDDs nay support
mul ti ple-Order Bags (e.g., the DBFCDX and DBPX drivers).

Exanpl es

USE Custoner VI A "DBFNTX" NEW
SET | NDEX TO CuAcct, CuNanme, CuZip

ORDNUMBER(" CuNane") /1l Returns: 2

Tests

St at us
Started
All

Files
Li brary is rdd

See Al so:

| NDEXOR

ORDSETFOCUS()

Set focus to an Oder in an Order List
Synt ax

ORDSETFOCUS([<cOr der Nane> | <nOr der >]
[, <cOrder BagNanme>]) --> cPrevOrder Nanel nFocus

<cOrderNane> is the name of the selected Order, a logical ordering of a
dat abase. ORDSETFOCUS() ignores any invalid values of <cOrderNane>.

<nOrder> is a nunber representing the position in the Order List of the
sel ected Order.

<cOrderBagNane> is the nane of a disk file containing one or nore O ders.

You may specify <cOrderBagNane> as the filenane with or w thout the pathnane or
appropriate extension. |f you do not include the extension as part of

<cOr der BagNane> HARBOUR uses the default extension of the current RDD.

Ret ur ns
ORDSETFOCUS() returns the Order Nane of the previous controlling Oder.
Descri ption

ORDSETFOCUS() is an Order nanagenent function that returns the Order Nane of
the previous controlling Order and optionally sets the focus to an new O der.

If you do not specify <cOrderName> or <nOrder>, the name of the currently
controlling order is returned and the controlling order remains unchanged.

All Oders in an Oder List are properly updated no matter what <cOr der Nane>
is the controlling Order. After a change of controlling Oders, the record
pointer still points to the sane record.

The active RDD determ nes the Order capacity of an Order Bag. The default
DBFNTX driver only supports single-Order Bags, while other RDDs nay support
mul ti ple-Order Bags (e.g., the DBFCDX and DBPX drivers).

ORDSETFOCUS() super sedes | NDEXORD() .
Exanpl es

USE Custoner VIA "DBFNTX" NEW

SET | NDEX TO CuAcct, CuName, CuZip
? ORDSETFOCUS(" CuNane") /
? ORDSETFOCUS() /

spl ays: "CuAcct™

/ Di
/ Displays: "CuNane"

St at us
Started
Al |

Files

Library is rdd

| NDEXEXT()

Returns the file extension of the index nodule used in an application

Synt ax
| NDEXEXT() --> <cExtension>
Argunment s
Ret ur ns
<cExt ensi on> Current driver file extension
Descri ption
This function returns a string that tells what indexes are to be used or wll
be created in the conpiled application. The default value is ".NIX'. This is
controled by the particul ar database driver that is linked with the application,
Exanpl es
| F 1| NDEXEXT() ==". NTX"
? "Current driver being used is DBFNTX"
Endi f
St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Pl at f or ns
All
Fil es
Li brary is rdd
See Al so:
| NDEXKEY

| NDEXOR

| NDEXKEY()

Yields the key expression of a specified index file.
Synt ax
| NDEXKEY(<nOr der >) --> <cl ndexKey>
Argunment s
<nOr der > | ndex order nunber
Ret ur ns
<cl ndexKey> The index key
Descri ption

This function returns a character string stored in the header of the index
file

The index key is displayed for an index file that is designated by

<nOrder>,its position in the USE...INDEX or SET INDEX TO conmand in the currently
sel ected or designated work area.|lf there is no corresnponding i ndex key at the
specified order position,a NULL byte will be returned.

Exanpl es

USE TESTS NEW | NDEX TEST1
2 | NDEXKEY(1)

St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Pl at f or ms
Al l
Files
Li brary is rdd
See Al so:

| NDEXORI

| NDEXORDY)

Returns the numeric position of the controlling index.

Synt ax
| NDEXORD() --> <nPosition>
Argunment s
Ret ur ns
<nPosi ti on> Ordinal position of a controling index
Descri ption

The | NDEXORD() function returns the nuneric position of the current

controlling index in the selected or designated work area. A returned value of 0O
i ndicated that no active index is controlling the database,which therefore is in
the natural order.

Exanpl es

USE TESTS NEW | NDEX TEST1
I F 1 NDEXORD() >0
? "Current order is ", | NDEXORD()

Endi f
St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Pl at f or ns
Al |
Files
Library is rdd
See Al so:

| NDEXKEY()

AFI ELDS()

Fills referenced arrays with database field information
Synt ax
AFi el ds(<aNanes>[, <aTypes>] [, <aLen>][, <aDecs>]) --> <nFi el ds>
Argunment s
<aNanes> Array of field nanes
<aTypes> Array of field nanes
<alLens> Array of field nanes

<aDecs> Array of field nanes

Ret ur ns
<nFi el ds> Nunber od fields in a database or work area
Descri ption
This function will fill a series of arrays with field nanes,field types,field

| enghts, and nunber of field decimal positions for the currently selected or

desi gned database. Each array parallels the different descriptors of a file's
structure. The first array will consist of the names of the fields in the current
work area. All other arrays are optional and will be filled with the correnspondi ng
data. This function will return zero if no paraneters are specified or if no

dat abase is avaliable in the current work area. X herw se, the nunber of fields or
the I enght of the shortest array argunent, wtchever is snaller, will be returned

Exanpl es

FUNCTI ON Mai n()
LOCAL aNames: ={}, aTypes: ={}, aLens: ={}, aDecs: ={}, nFi el ds: =0

USE Test

dbGoTop()
nFi el ds: =aFi el ds(aNanes, aTypes, aLens, aDecs)

? "Nunber of fields", nFields
RETURN NI L
St at us
Ready
Conpl i ance
AFIELDS() is fully CA-Clipper conpliant.
Fil es
Li brary is rdd

ALl AS(

Returns the a?i as nane of a work area

Synt ax

Al i as([<nWor kArea>]) --> <cWor kAr ea>
Argunment s

<nWbr kArea> Nunber of a work area
Ret ur ns

<cWor kArea> Nane of alias
Descri ption

This function returns the alias of the work area indicated by <nWrkArea> |f
<nWor kArea> is not provided, the alias of the current work area is returned.

Exanpl es
FUNCTI ON Mai n()
USE Test
select O
qgut(IF(Alia
Test - >(gQut (
gqQut (Alias(1))
RETURN NI L
St at us
Ready
Conpl i ance
ALI AS() is fully CA-dipper conpliant.
Files
Library is rdd

See Al so:
DBFE()

BOF(

Test for tze beggi ning-of -file condition

Synt ax
BOF() --> <I Begin>
Ret ur ns
BOF() Logical true (.T.) or false (.F.)
Descri ption
This function deternines if the beggining of the file marker has been
reached. If so, the function will return a logical true (.T.); otherwise, a

logical false(.F.) will be returned. By default, BOF() will apply to the currently
sel ect ed database unless the function is preceded by an alias

Exanpl es
FUNCTI ON Mai n()
USE Tests NEW
DBGOTOP()
? "ls Eof ()", EOF()
DBGOBOTTOM)
? "lIs Eof ()", EOF()
USE
RETURN NI L
St at us
Ready
Conpl i ance
BOF() is fully CA-dipper conpliant.
Files
Library is rdd

See Al so:

EOF()
FOUN

LASTREC()

ZAP

Renove all records fromthe current database file
Synt ax
ZAP
Descri ption

This command renoves all of the records fromthe database in the current work
area. This operation also updates any index file in wuse at the tinme of this
operation.ln addition, this command renpves all itenms within an associated nmeno
file. In a network enviroment,any file that is about to be ZAPped nust be used
excl usivel y.

Exanpl es
USE Tests NEW i ndex Tests
ZAP
USE
St at us
Ready
Conpl i ance
This command is CA Cdipper conpliant
See Al so:

ARRAY/
PACK
ARRAY

DELETED)

Tests the record"s deletion flag.

Synt ax

DELETED() --> | Del et ed
Ret ur ns

DELETED() return a logical true (.T.) or false (.F.).
Descri ption

This function returns a logical true (.T.) is the current record in the
sel ected or designated work area ha ben marked for deletion.If not, the function
will return a logical false (.F.).

Exanpl es

FUNCTI ON Mai n()

USE Test New

DBGOTQ()

DBDELETE()

? "lIs Record Del eted", Test->(DELETED))
DBRECALL()

USE

RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Li brary is rdd
See Al so:

DBDELETE()

ECF()

Test for end-of-file condition.
Synt ax
EOF() --> <l End>
Ret ur ns
<|End> A logical true (.T.) or false (.F.)
Descri ption

This function determines if the end-of-file marker has been reached. If it
has, the function will return a logical true (.T.); otherwise a logical false
(.F.) will be returnd

Exanpl es

FUNCTI ON Mai n()
USE Tests NEW
DBGOTOP()
? "ls Eof ()", EOF()
DBGOBOTTOM)
? "ls Eof ()", EOF()
USE

RETURN NI L

St at us
Ready
Conpl i ance
EOF() is fully CA-Clipper conpliant.
Files
Li brary is rdd
See Al so:

BOE()
FOUN

LASTREC()

FCOUNT()

Counts the nunber of fields in an active database.

Synt ax
FCOUNT() --> nFields
Ret ur ns
<nFi el ds> Return the nunmber of fields
Descri ption
This function returns the nunber of fields in the current or designated work
area.|f no database is open in this work area, the function will return O.
Exanpl es

FUNCTI ON Mai n()
USE Tests NEW
? "Thi s dat abase have ", Tests->(FCOUNT()),"Fi el ds"

USE
RETURN Ni |
St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Files
Li brary is rdd
See Al so:
Fl EL DNANME

TYPE()

FI ELDGET()

Ootains the value of a specified field

Synt ax

FI ELDGET(<nFi el d>) --> Val ueField
Argunment s

<nField> 1Is the nuneric field position
Ret ur ns

<Val ueFi el d> Any expression
Descri ption

This function returns the value of the field at the <nField>th location in

the selected or designed work area.|f the value in <nField> does not correspond to
n avaliable field position in this work area, the function wll return a NIL data
type.

Exanpl es

FUNCTI ON Mai n()
USE Test NEW
? Test->(FieldGet(1))

USE
RETURN NI L
St at us
Ready
Conpl i ance
This function is CA-dipper Conpliant.
Files
Li brary is rdd
See Al so:

Fl ELDPUT()

FI ELDNAVE()

Return the nane of a field at a nuneric field | ocation

Synt ax
FI ELDNAMVE/ FI ELD(<nPosi tion>) --> cFi el dNane
Argunment s
<nPosition> Field order in the database.
Ret ur ns
<cFi el dName> returns the field nane.
Descri ption
This function return the name of the field at the <nPosition>th position. |If

the nuneric val ue passed to this function does not correspond to an existing field
in the designated or selected work area,this function wll return a NULL byte.

Exanpl es

FUNCTI ON Mai n()
LOCAL x
USE Tests NEW
FOR x := 1 to Tests->(FCOUNT())
? "Field Nanme", Fi el dNane(x)
NEXT
USE
RETURN Ni

St at us
Ready
Conpl i ance
This function is CA-Cipper conpatible
Files
Library is rdd
See Al so:

DBSTRUCT()
FCOUNT

LENQ)
VALTYPE

FI ELDPOS()

Return the ordinal position of a field.

Synt ax
FI ELDPOS(<cFi el dNane>) --> nFi el dPos

Argunment s
<cFi el dName> Nanme of a field.

Ret ur ns
<nFi el dPos> is ordinal position of the field.

Descri ption
This function return the ordinal position of the specified field <cField> in
the current or aliased work arealf there isn't field under the name of <cField>
or of no database is open in the selected work area, the func- tion will return a
0.

Exanpl es
FUNCTI ON Mai n()
USE Test NEW
? Test->(FlI ELDPCS("I1D"))
USE
RETURN NI L

St at us
Ready

Conpl i ance
This function is CA-dipper conpliant.

Files
Li brary is rdd

See Al so:

Fl ELDGET
Fl ELDPUT()

FI ELDPUT()

Set the value of a field variable

Synt ax
FI ELDPUT(<nFi el d>, <expAssi gn>) --> Val ueAssi gned

Argunment s
<nField> The field nuneric position
<expAssi gn> Expression to be assigned to the specified field

Ret ur ns
<Val ueAssi gned> Any expression

Descri ption
This function assings the value in <expAssing> to the <nField>th field in the
current or designated work area.lf the operation is successful,the return value of

the function will be the sane value assigned to the specified field.If the
operation is not successful, the function will return a NIL data type

Exanpl es

USE Tests New
FI ELDPUT(1, "M . Jones")

USE
St at us
Ready
Conpl i ance
This function is CA-dipper conpatible
Files
Li brary is rdd
See Al so:

Fl ELDGET

FLOCK()

Locks a file
Synt ax
FLOCK() --> | Success
Ret ur ns

<l Success> A true (.T.) value, if the | ock was successful;otherw se fal se

(.F.)
Descri ption

This function returns a logical true (.T.0 if afile lock is attenpted and is
successfully placed on the current or designated database.This function will also
unlock all records |ocks placed by the sanme network station

Exanpl es
USE Tests New
I F FLOCK()
SUM Test s- >Anmount
ENDI F
USE
St at us
Ready
Conpl i ance
This function is CA-Cipper conpatible
Files
Library is rdd
See Al so:

RLOCK

FOUND()

Deternine the success of a previous search operation.

Synt ax
FOUND() --> | Success
Argunment s
Ret ur ns
<l Success> A logical true (.T.) is successful;otherw se, false (.F.)
Descri ption

This function is used to test if the previous SEEK, LOCATE, CONTI NUE, or FIND
operation was successful.Each wk area has its own FOUND() flag,so that a FOUND()
condition may be tested in unsel ected work areas by using an alias.

Exanpl es
nl d: =100
USE Tests NEW I NDEX Tests
SEEK nl d
I F FOUND()
? Test s->Name

ENDI F
USE

St at us
Ready
Conpl i ance
This function is CA-dipper conpatible
Files
Li brary is rdd
See Al so:

EOCF()

HEADER()

Return the length of a database file header
Synt ax
HEADER() --> nBytes
Ret ur ns
<nByt es> The nuneric size of a database file header in bytes
Descri ption

This function returns the nunber of bytes in the header of the selected
dat abase ot the database in the designated work area.

If used in conjunction with the LASTREC(), RECSI ZE() and DI SKSPACE()
functions,this functions is capable of inplenmenting a backup and restore routine.

Exanpl es

USE Tests New
? Header ()

St at us
Ready
Conpl i ance
This function is CA-dipper conpatible
Files
Li brary is rdd
See Al so:

DI SKSPACE()

LASTREC()
RECSI ZE

LASTRE

Returns the numper of records in an active work area or database.
Synt ax
LASTREC() | RECCOUNT()* --> nRecords
Ret ur ns
<nRecords > The nunber of records
Descri ption
This function returns the nunber of records present in the database in the
sel ected or designated work area.|lf no records are present the value of this

function will be 0.Additionaly,if no database is in use in the selected or
designated work area,this function will return a 0 value as well.

Exanpl es

USE Tests NEW
? LASTREC(), RECCOUNT()

St at us
Ready
Conpl i ance
This function is CA dipper conpatible
Pl at f or s
All
Files
Li brary is rdd
See Al so:

EOCF()

LUPDATE()

Yields the date the database was | ast updat ed.

Synt ax
LUPDATE() --> dModification
Argunment s
Ret ur ns
<dModi fication> The date of the |ast nodification.
Descri ption
This function returns the date recorded by the OS when the selected or
desi gnat ed dat abase was last witten to disk.This function will only work for
those database files in USE.
Exanpl es

Function Main

Use Tests New
? Lupdate() // 04/ 25/ 2000
Use

Return Nil
St at us
Ready
Conpl i ance
This function is CA dipper conpliant
Pl at f or s
All
Files
Li brary is rdd
See Al so:

Fl EL DNAVE

LASTREC()
RECSI ZE

NETERR()

Tests the success of a network function
Synt ax
NETERR([<l NewError>]) --> | Error
Argunment s
<I Newkrror> 1|s a |ogical Expression.
Ret ur ns
<l Error> A value based on the success of a network operation or function.
Descri ption
This function return a logical true (.T.) is a USE, APPEND BLANK, or a

USE. .. EXCLUSI VE command is issue and fails in a network environment. |In the case of
USE and USE. .. EXCLUSI VE comands, a NETERR() value of .T. would be returned if

anot her node of the network has the exclusive use of a file.And the case of the
APPEND BLANK conmmand, NETERR() will return a logical true (.T.) if the file or
record is |locked by another node or the value of LASTREC() has been advanced The
val ue of NETERR() may be changed via the value of <INewkrror>. This allow the
run-tinme error-handling systemto control the way certains errors are handl ed.

Exanpl es

USE TEST NEW I ndex Test
If I'NetErr()
Seek Test - >Nane=" HARBOUR'
I f Found()
? Test - >Name
Endi f
Endi f
USE

St at us
Ready
Conpl i ance
This function is CA dipper conpliant
Files
Li brary is rdd
See Al so:

FLOCK
RLOCK

RECCOUNT()

Counts the nunber of records in a database.
Synt ax
RECCOUNT()* | LASTREC() --> nRecords
Argunment s

Ret ur ns
<nRecor ds> The nunber of records
Descri ption

This function returns the nunber of records present in the database in the
sel ected or designated work area.|lf no records are present the value of this
function will be 0.Additionaly,if no database is in use in the selected or
designated work area,this function will return a 0 value as well.

Exanpl es

Use Test NEW

USE Har bour NEW

? Reccount ()

? Test - >(RECCOUNT())
CLOSE ALL

St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Library is rdd
See Al so:

EOF()
LASTREC()
RECNQ()
DBGOBOT T

RE

Returns the current record nunber or identity.
Synt ax

RECNQ() --> ldentity
Argunment s

Ret ur ns

RECNQ() The record nunber or indentity
Descri ption

This function returns the position of the record pointer in the currently
sel ected ot designated work area. |If the database file is enpty and if the RDD is
the traditional .DBF file,the value of this function will be 1.

Exanpl es

USE Tests NEW

DBGOTOP()

RECNQ() /1 Returns 1

DBGOT((50)

RECNQ() /1l Returns 50
St at us

Ready
Conpl i ance

This function is Ca-Cdipper conpliant
Files

Li brary is rdd

See Al so:

RECSI ZE()

Returns the size of a single record in an active database.
Synt ax
RECSI ZE() --> nBytes
Argunment s

Ret ur ns
<nBytes> The record size.
Descri ption

This function returns the nunber os bytes used by a single record in the
currently selected or designated database file.lf no database is in use in this
work area,the return value fromthis function wll be O.

Exanpl es

USE Tests NEW

DBGOTOP()

RECSI ZE() /1 Returns 1
DBGOTQ(50)

RECSI ZE()

St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Files
Li brary is rdd
See Al so:

DI SKSPACE()
Fl EL DNAVE

HEADER
LASTREC()

RLOCK()

Lock a record in a work area
Synt ax
RLOCK() --> | Success
Argunent s

Ret ur ns

RLOCK() True (.T.) if record lock is successful; otherwise, it returns false
F.).

Descri ption

This function returns a logical true (.T.) if an attenpt to lock a specific

record in a selected or designated work area is successful. It will yield a fal se
(.F.) if either the file or the desired record is currently |locked. A record that
is locked remains | ocked until another RLOCK() is issued or until an UNLOCK command
is executed. On a Network environent the follow conmand need that the record is

| ocked:

@..CGET
DELETE (single record)
RECALL (single record)
REPLACE (single record)
Exanpl es
nl d: =10
USE Testld | NDEX Testld NEW

| F Test | d- >(DBSEEK(nl d))
I F Test|d->(RLOCK())

DBDELETE()
ENDI F
ENDI F
USE
St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Files
Li brary is rdd
See Al so:

FLOCK

SELECT()

Returns the work area nunber for a specified alias.

Synt ax
SELECT([<cAlias>]) --> nWrkArea

Argunment s
<cAlias> 1is the target work area alias nane.

Ret ur ns
SELECT() returns the work area nunber.

Descri ption
This function returns the work area nunber for the specified alias nane
<cAlias>. If no paraneter is specified,the current work area will be the return
val ue of the function.

Exanpl es

USE TESTS NEW
USE NAMES NEW
cd dAr ea: =SELECT(" NAMES")

sel ect TEST
LI ST
SELECT cd dArea
St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Files
Li brary is rdd
See Al so:
ALI AS()

USED()

USEDY)

Checks whether a database is in use in a work area
Synt ax
USED() --> | Dbf Open
Argunment s

Ret ur ns
<| Dof OQpen> True is a database is Used; ot herwi se Fal se
Descri ption

This function returns a logical true (.T.) if a database file is in USE in
the current or designated work area. If no alias is specified along with this
function , it will default to the currently selected work area.

Exanpl es

Use TESTS NEW

USE Nanmes New

? USED() /1 .T.

? TESTS->(USED()) //.t.
CLCSE

? USEDX) [// .F.

Sel ect TESTS

? USED() //.T.

St at us
Ready
Conpl i ance
This function is Ca-clipper Conpliant
Files
Library is rdd
See Al so:
ALl AS()

SELECT

PACK

Renove records marked for deletion froma database
Synt ax
PACK
Descri ption

This conmand renoves records that were marked for deletion fromthe «currently
sel ect ed dat abase. Thi s command does not pack the contents of a nmeno field;those
files nust be packed via | owlevel fuctions.

Al open index files will be autonmatically reindexed once PACK conmand has
conpleted its operation.On conpletion,the record pointer is placed on the first
record in the database.

Exanpl es
USE Tests NEW i ndex Tests
DBGOT((10)
DELETE NEXT 10

PACK
USE

St at us
Ready
Conpl i ance
This command is CA Cipper conpliant
See Al so:

OVERVI EW

HARBOUR Read ne
Descri ption

The Har bour project

khkhkkkhhkhhkdkhkhkhhkrhkdhhkdhkrhdhrhkdhhrhkdhrhkdhrhdrhkdhkrhdrhkdhorhddrhkdhrrxhdkrrkdhrrxddxrkdxxkx*x

* This file contains information on obtaining, installing, and using *
* Harbour. Please read it *conpl etel y* before asking for help. *

khkhkkkhhkhkhkdhkhkhhkrhkdhhkhhkrhdhrhkdhhrhkdhrhkhhrhdhrhkdhkrhdrhkdhorddrhkdhrrxhdrrkdhrxddxrkdxxkx*x

Harbour is a free inplenmentation of an xBase | anguage conpiler. It is designed to
be source code conpatible with the CA-Cipper(r) conpiler. That neans that if

you' ve got sonme code that would conmpile using CA-Cipper(r) then it should conpile
under Harbour. The Harbour-Project web page is:

htt p: / / ww. Har bour - Pr oj ect . or g/

Status and other information is always available fromthe web site. There is a
Harbour mailing list. Harbour is still at a very early stage of devel opment, so
the mailing list is very much a Developers only list, although every body is
wel cone to join in the discussions.

W would like you to join the Harbour devel opnent team If you are interested you
may suscribe to our mailing list and start contributing to this free public
proj ect.

Pl ease feel free to report all questions, ideas, suggestions, fixes, code, etc.
you may need and want. Wth the help of all of you, the Harbour conpiler and
runtinme libraries will becone a reality very soon

What this distribution contains

This distribution is a Source code only distribution. It does not contain any
executable files. Executable versions of Harbour are available from the web site.
Execut abl e versi ons of Harbour DO NOT create runable prograns. Harbour at the
nmonent produces C output code, which nmust be conpiled with the Harbour Virtua
Machi ne and the support libraries in order to create a functioning program

Pl ease test running Harbour agai nst your Cipper source code and report any

probl ems that m ght occur

Very inportant: The preprocessor functionality is now worKking.

Install ation

1. Unzip with Harbour zip file using pkunzip or equival ent.

E.G pkunzip -d build72.zip

This will create Harbour/ directory and all the relevant sub directories.

2. Conpil e Harbour using your C conpiler. Mke files for different platforns are
i ncluded in the <WHERE ARE THEY?> directory.

--- COPYRI GHT ---

What copyright information do we have

--- LI CENCE ---

I nformati on about the License for usage of Harbour is available in the file
LI CENCE. TXT (when we have a |icense)

--- DI SCLAI MER - - -

Partici pants of The Harbour Project assume no responsibility for errors or
om ssions in these materials.

THESE MATERI ALS ARE PROVI DED "AS | S" W THOUT WARRANTY COF ANY KI ND, ElI THER
EXPRESS OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TGO, THE | MPLI ED WARRANTI ES OF

MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPOSE, OR NON- | NFRI NGEMENT.

Partici pants of The Harbour Project further do not warrant the accuracy or

conpl eteness of the code, information, text, output or any other itenms contained
within these materials. Participants of The Harbour Project shall not be liable for
any special, direct, indirect, incidental, or consequential damages, including
without limtation, |lost revenues or 1lost profits, which nay result fromthe use or
nm s-use of these materials.

The information in The Harbour Project is subject to change without notice and
does not represent any future comtment by the participants of The Harbour
Proj ect .

The Har bour Proj ect

See Al so:

Li cense

_ SETCENTURY()
Set the Current Century

Synt ax
__ SETCENTURY([<l Flag> | <cOnOFf>]) --> | PreviousVal ue

Argunment s
setting (4-digit years) .F. or "OFF" to disable the century setting (2-digit
years)

Ret ur ns

Fil es

Library is rtl

SET()

Changes or eval uated environental settings
Synt ax
Set (<nSet> [, <xNewSetting> [, <xOption>]]) --> xPreviousSetting
Argunment s
<nSet> Set Nunber
<xNewSetting> Any expression to assing a value to the seting
<xOption> Logical expression
<nSet > <xNewSet ti ng> <xOpti on>
_SET_ALTERNATE <IFlag> | <cOnOFf>
file has been opened or created wth SET ALTFILE. If disabled, which is the

default, QOUT() and QQOUT() only wite to the screen (and/or to the PRI NTFILE).
Defaults to disabl ed.

_SET_ALTFI LE <cFi | eName> <l Addi ti ve>

<| Additive> is TRUE and the file already exists, the file is opened and positioned
at end of file. Gherwise, the file is created. If a file is already opened, it is
cl osed before the newfile is opened or created (even if it is the sane file). The
default file extension is ".txt". There is no default file nanme. Call with an enpty
string to close the file.

_SET_AUTGCPEN <| Flag> | <cOnOFf>

_SET_AUTORDER <| Flag> | <cOnOFf>

_SET_AUTCSHARE <| Flag> | <cOnOFf>

_SET_BELL <| Flag> | <cOnOFf>
when a CGET validation fails. Disabled by default.
_SET_CANCEL <IFlag> | <cOnOif >

program When di sabl ed, both keystrokes can be read by I NKEY(). Note: SET KEY has
precedence over SET CANCEL.

_SET_COLOR <cCol or Set >

"<st andar d>, <enhanced>, <bor der >, <background>, <unsel ected>". Each col or pair uses
the format "<foreground>/ <background>". The col or codes are space or "N' for

bl ack, "B" for blue, "G' for green, "BG' for Cyan, "R' for red, "RB" for magenta,
"GR' for brown, "W for white, "N+" for gray, "B+" for bright blue, "G+" for
bright green, "BG+" for bright cyan, "R+" for bright red, "RB+" for bright nagenta,
"GR+" for yellow, and "W" for bright white. Special codes are "I" for inverse
video, "U' for underline on a nonochronme nonitor (blue on a color nmonitor), and
"X" for blank. The default color is "WNNWN N NW.

_SET_CONFI RM <IFlag> | <cOnOFf>

default, typing past the end wll |eave a GET.

_SET_CONSOLE <| Flag> | <cOnOFf>

di sabl ed, screen output is suppressed (Note: This setting does not affect QUTSTIX)
or QUTERR()).

_SET_CURSOR <nCur sor Type>

the screen cursor is hidden.
_SET_DATEFORVAT <cDat eFor mat >
to American ("midd/yy"). Oher formats include ANSI ("yy.nmmdd"), British

("dd/ miyy"), French ("dd/miyy"), German ("dd.mMmyy"), Italian ("dd-mmyy"),
Japan ("yy/midd"), and USA ("mmdd-yy"). SET CENTURY nodifies the date format. SET
CENTURY ON replaces the "y"s with "YYYY". SET CENTURY OFF replaces the "y"s with
"YY".

_SET_DEBUG <| St at us>

the default, Alt+D can be read by INKEY(). (Also affected by AltD(1) and AltD(0))
_SET_DECI MALS <nNunber O Deci mal s>

when SET FIXED is ON. Defaults to 2. If SET FIXED is OFF, then SET DECI MALS is
only used to determ ne the nunber of decinmal digits to use after using EXP(),
LOE), SQRT(), or division. Oher math operations nmay adjust the nunber of decina
digits that the result wll display. Note: This never affects the precision of a
nunber. Only the display format 1s affected.

_SET_DEFAULT <cDef aul t Di rect ory>
to current directory (bl ank).
_SET_DELETED <IFlag> | <cOnOFf>
deleted records will be ignored.

_SET_DELI MCHARS <cDeliniters>

_SET DELIMTERS <IFlag>| <cOnOf>
delimters are used.
_SET_DEeVI CE <cDevi ceName>

to the printer device or file set by SET PRINTFILE Wen set to anything el se,
all output is sent to the screen. Defaults to "SCREEN'.

_SET_EPCCH <nYear >

2-digit year is greater than or equal to the year part of the epoch, the century
part of the epoch is added to the year. Wen a 2-digit year is less than the year
part of the epoch, the century part of the epoch is increnmented and added to the
year. The default epoch is 1900, which converts all 2-digit years to 19xx.
Exanple: If the epoch is set to 1950, 2-digit years in the range fromb50 to 99 get
converted to 19xx and 2-digit years in the range 00 to 49 get converted to 20xx.

_SET_ESCAPE <IFlag> | <cOnOFf> *

pressing Esc during a READ is ignored, unless the Esc key has been assigned to a
function using SET KEY.

_SET_EVENTMASK <nEvent Codes>

events. INKEY LDOWN allows the |eft nouse button down click. INKEY LUP allows the
| eft nouse button up click. INKEY_ RDOWN allows the right nouse button down click

I NKEY_RUP allows the right nmouse button up clock. | NKEY _KEYBOARD all ows keyboard
keystrokes. INKEY_ALL allows all of the preceding events. Events nmay be conbi ned
(e.g., using |INKEY LDOM + INKEY RUP will allow | eft nouse button down clicks and
ri ght nmouse button up clicks). The default is | NKEY_KEYBQOARD.

_SET_EXACT <IFlag> | <cOnOFf>

checking for equality. \When disabled, which is the default, all string

conpari sons other than "==" treat two strings as equal if the right hand string is
"" or if the right hand string is shorter than or the same length as the left hand
string and all of the characters in the right hand string match the correspondi ng
characters in the |left hand string.

_SET_EXCLUSI VE <IFlag> | <cOnOFf>

node. Wien di sabl ed, all database files are opened in shared node. Note: The
EXCLUSI VE and SHARED cl auses of the USE conmand can be wused to override this
setting.

_SET_EXIT <IFlag> | <cOnOif >

enabl es them as exit keys, and false (.F.) disables them Used internally by the
ReadExi t () function.

_SET_EXTRA <IFlag> | <cOnOFf>

_SET_EXTRAFI LE <cFi | eName> <l Addi tive>

<| Additive> is TRUE and the file already exists, the fi
at end of file. Oherwise, the file is created. If a fi
cl osed before the new file is opened or created (even i
default file extension is ".prn". There is no default f
string to close the file.

e is opened and positioned
e is already opened, it is
it is the sane file). The
le nane. Call with an enpty

I
I
f
i
_SET_FI XED <IFlag> | <cOnOFf>

decinal digits set by SET DECI MALS, unless a PICTURE cl ause is used. \When

di sabl ed, which is the default, the nunber of decimal digits that are displayed
depends upon a variety of factors. See SET DECI MALS for nore.

SET| NSERT <IFlag> | <cOnOif >

which is the default, characters typed in a GET or MEMOEDI T overwite. Note: This
setting can al so be toggl ed between on and off by pressing the Insert key during a
GET or MEMOEDI T.

SET| NTENSI TY <IFlag> | <cOnOFf>

enhanced col or setting. Wien disabled, GETs and PROWPTs are di splayed using the
standard col or setting.

_SET_LANGUACE <clLanguagel D>

_SET_MARG N <nCol ums>

reflects the printer's colum position including the margin (e.g., SET MMARA@ N TO 5
foll owed by DEVPOS(5, 10) makes PCOL() return 15).

_SET_MBLOCKSI ZE <nMenoBl ockSi ze>

_SET_MCENTER <IFlag> | <cOnOFf>

default, display PROWTS at columm position 0 on the NMESSAGE row.

_SET_MESSAGE <nRow>

PROWPTs are displayed on the set row. Note: It is not possible to display pronpts

on the top-nost screen row, because row O is reserved for the SCOREBOARD, i f
enabl ed.

_SET_MFI LEEXT <cMenoFi | eExt >
_SET_OPTIM ZE <IFlag> | <cOnOff >
_SET_PATH <cDirectories>

| ocated in the DEFAULT directory. Defaults to no path (""). Directories nust be
separated by a semicolon (e.g., "C \DATA C\MORE").

_SET_PRI NTER <IFlag> | <cOnOf f>

file has been opened or created wth _SET ALTFILE. If disabled, which is the
default, QOUT() and QQQUT() only wite to the screen (and/or to the ALTFILE).

_SET_PRI NTFI LE <cFi | eName> <| Addi ti ve>

<l Additive> is TRUE and the file already exists, the file is opened and positioned
at end of file. herwise, the file is created. If a file is already opened, it is
cl osed before the newfile is opened or created (even if it is the sane file). The

default file extension is ".prn". The default file name is "PRN', which maps to the
default printer device. Call wth an enpty string to close the file.

_SET_SCOREBOARD <IFlag> | <cOnOff>
screen row 0. When disabled, READ and MEMOEDI T status nessages are suppressed.

_SET_SCROLLBREAK <IFlag> | <cOnOf>

_SET_SOFTSEEK <| Flag> | <cOnOFf>

that is higher than the sought after key or to LASTREC() + 1 if there is no higher
key. Whien disabled, which is the default, a SEEK that fails wll position the
record pointer to LASTREC() +1

_SET STRICTREAD <IFlag> | <cOnOf>

_SET_TYPEAHEAD <nKeySt r okes>

and the maxi mumis 4096.

_SET_UNI QUE <IFlag> | <cOnOf f>
i ndexes are allowed duplicate keys.

_SET_VIDEOVODE <nVal ue>

_SET_WRAP <IFlag> | <cOnOFf>

and fromthe first position to the Iast. Wen disabled, which is the default,
there is a hard stop at the first and | ast positions.

Ret ur ns
SET() The current or previous setting
Files

Library is rtl

__Set Functi on()
Assign a character string to a function key

Synt ax
__Set Function(<nFunctionKey>, [<cString>]) --> NL

Argunment s

<nFunctionKey> is a nunber in the range 1..40 that represent the function
key to be assi gned.

<cString> is a character string to set. If is not specified, the function

key is going to be set to NIL releasing by that any previous _ SetFunction() or
SETKEY() for that function.

Ret ur ns
__SetFunction() always return N L.
Descri ption

__SetFunction() assign a character string with a function key, when this

function key is pressed, the keyboard is stuffed with this character string.
__SetFunction() has the effect of clearing any SETKEY() previously set to the sanme
function nunber and vice versa.

hFunct i onKey Key to be set

1L .. 12 F1 .. F12

13 .. 20 Shift-F3 .. Shift-F10
P1 .. 30 Ctrl-F1 .. Crl-F10
31 .. 40 Alt-F1 .. Alt-F10

SET FUNCTI ON command is preprocessed into __ SetFunction() function during
conpile tine.

Exanpl es
/1 Set F1 with a string
CLS
__SetFunction(1, "I AmLazy" + CHR(13))

cTest := SPACE(20)

@10, 0 SAY "type sonething or F1 for |lazy nmode " GET cTest
READ
? cTest

St at us
Ready
Conpl i ance

Har bour use 11 and 12 to represent F11 and F12, while CA-Cipper use 11 and
12 to represent Shift-F1 and Shift-F2.

Pl at f or ns
All
Files
Library is rtl
See Al so:

| NKEY()
SETKEY()
__KEYBOARD()

SET KEY

SET FUNCTI ON

Assign a character string to a function key
Synt ax
SET FUNCTI ON <nFuncti onKey> TO [<cStri ng>]
Argunment s

<nFunctionKey> is a nunber in the range 1..40 that represent the function
key to be assi gned.

<cString> is a character string to set. If is not specified, the function

key is going to be set to NIL releasing by that any previous Set Function or

SETKEY() for that function.
Descri ption

Set Function assign a character string with a function key, when this

function key is pressed, the keyboard is stuffed with this character string.

Function has the effect of clearing any SETKEY() previously set to the same
function nunber and vice versa.

Set

hFunct i onKey Key to be set

L .. 12 F1 .. F12

13 .. 20 Shift-F3 .. Shift-F10
P1 .. 30 Ctrl-F1 .. Crl-F10
31 .. 40 Alt-F1 .. Alt-F10

SET FUNCTI ON conmand is preprocessed into __SetFunction() function during
conpile tinme.

Exanpl es
/1 Set F1 with a string
CLS
Set Function 1 to "I Am lLazy" + CHR(13)

cTest := SPACE(20)

@10, 0 SAY "type sonething or F1 for |lazy node " GET cTest
READ

? cTest
St at us

Ready
Conpl i ance

Har bour use 11 and 12 to represent F11 and F12, while CA-Cipper use 11 and
12 to represent Shift-F1 and Shift-F2.

Pl at f or ns
Al l
See Al so:

I NKEY()
SETKEY()
KEYBOARD()

SETKEY()

Assign an action block to a key
Synt ax
SETKEY(<anKey> [, <bAction> [, <bCondition>]])
Argunment s
<anKey> is either a nuneric key value, or an array of such val ues
<bAction> is an optional code-block to be assigned

<bCondition> is an optional condition code-bl ock

Ret ur ns
Descri ption
The Set Key() function returns the current code-bl ock assigned to a key when
called with only the key value. |If the action block (and optionally the condition

bl ock) are passed, the current block is returned, and the new code bl ock and
condition block are stored. A group of keys may be assigned the sane code

bl ock/condition block by using an array of key values in place on the first
par aneter.

Exanpl es

| ocal bdA dF10 : = setKey(K F10, {|]| Yahoo() })
... Il sonme other processing

Set Key(K_F10, bdA dF10)

... Il some other processing

bBl ock : = SetKey(K _SPACE)

if bBlock '= NL ...

/1 make F10 exit current get, but only if in a get - ignores other
/1 wait-states such as nenus, achoices, etc..
Set Key(K _F10, {|| CetActive():State := GE WRITE },;
{I| GetActive() '= NL})
Tests

None defi nabl e

St at us
Ready

Conpl i ance
SETKEY() is nostly CA-dipper conpliant. The only difference is the addition
of the condition code-bl ock paraneter, allow ng set-keys to be conditionally

turned off or on. This condition-block cannot be returned once set - see
Set KeyGCet ()

Files
Library is rtl
See Al so:

HB SETKEYSAVE()

HB Set Ke%/Get)

Determi ne a set-key code bl ock & condition-bl ock
Synt ax
HB SETKEYGET(<nKey> [, <bConditionByRef>])
Argunment s
<anKey> is an nuneric key val ue

<bCondi ti onByRef> 1is an optional return-paraneter

Ret ur ns

Descri ption

The HB Set KeyGet () function returns the current code-bl ock assigned to a key,
and optionally assignes the condition-block to the return-paraneter

Exanpl es
| ocal bd dF10, bdA dF10Cond
bA dF10 : = HB_Set KeyGet (K_F10, @0 dF10Cond)

... Il some other processing
Set Key(K_F10, bd dF10, bA dF10Cond)

Tests

See test code above

St at us

Ready
Conpl i ance

HB_SETKEYGET() is a new function and hence not CA-Cipper conpliant.
Fil es

Library is rtl

See Al so:

SETKEY()
HB_SETKEYSAVE()

HB Set KeyCheck()

HB_SETKEYSAVE(

Returns a copy of interna? set-key list, optionally overwiting
Synt ax
HB_SETKEYSAVE([<O dKeys>]|)
Argunment s

<0 dKeys> is an optional set-key list froma previous call to
HB_ Set KeySave(), or NIL to clear current set-key list

Ret ur ns

Descri ption
HB_ Set KeySave() is designed to act like the set() function which returns the
current state of an environnent setting, and optionally assigning a new value. In

this case, the "environment setting" is the internal set-key list, and the optiona
new value is either a value returned froma previous call to SetKeySave() - to
restore that list, or the value of NIL to clear the current Iist.

Exanpl es
| ocal aKeys := HB SetKeySave(NIL) // renoves all current set=keys
... Il some other processing
HB Set KeySave(aKeys)
Tests
None defi nabl e

St at us
Ready
Conpl i ance
HB_SETKEYSAVE() is new.
Files
Library is rtl
See Al so:

SETKEY()

HB Set KeyCheck()

I mpl i ments conmon hot - key activati on code

Synt ax
HB_Set KeyCheck(<nKey> [, <pl>][, <p2>][, <p3>1])
Argunment s
<nKey> 1is a nuneric key value to be tested code-block, if executed
<pl>..<p3> are optional paraneters that will be passed to the code-bl ock
Ret ur ns
False |If there is a hot-key association (before checking any condition): - if
there is a condition-block, it is passed one paraneter - <nKey> - when the hot-key

code-block is called, it is passed 1 to 4 paraneters, depending on the paraneters
passed to HB Set KeyCheck(). Any paraneters so passed are directly passed to the
code-bl ock, with an additional paraneter being <nKey>

Descri ption

HB_ Set KeyCheck() is intended as a comon interface to the SetKey()
functionality for such functions as ACHO CE(), DBEDI T(), MEMOEDI T(), ACCEPT,
| NPUT, READ, and WAIT

Exanpl es

/1 within ReadModal ()

i f HB Set KeyCheck(K ALT X, GetActive())
/] sone other processing

endi f

/1 within TBrowse handl er

case HB Set KeyCheck(nlnkey, oTBrowse)

return

case nlnKey == K _ESC

/1 sonme other processing

Test s
None defi nabl e

St at us
Ready
Conpl i ance
HB_SETKEYCHECK() is new.
Files
Library is rtl
See Al so:
SETKEY()

HB SETKEYSAVE()

SET KEY

Assign an action block to a key

Synt ax

SET KEY <anKey> to p<bAction>] [when <bCondition>1])
Argunment s

<anKey> is either a nuneric key value, or an array of such val ues

<bAction> is an optional code-block to be assigned

<bCondition> is an optional condition code-bl ock

Descri ption

The Set Key Conmand function is translated to the SetKey() function wtch
returns the current code-bl ock assigned to a key when called with only the key
value. |If the action block (and optionally the condition block) are passed, the
current block is returned, and the new code bl ock and condition bl ock are stored.
A group of keys may be assigned the same code bl ock/condition block by using an
array of key values in place on the first paraneter.

Exanpl es

| ocal bdA dF10 : = setKey(K F10, {|]| Yahoo() })
... Il sonme other processing

Set Key K _F10 to bd dF10)

... I/ some other processing

bBl ock : = SetKey(K _SPACE)

if bBlock '= NL ...

/1 make F10 exit current get, but only if in a get - ignores other
/1l wait-states such as nenus, achoices, etc..
Set Key(K _F10, {|| CetActive():State := GE WRITE },;
{I| GetActive() '= NL})
Tests

None defi nabl e

St at us
Ready

Conpl i ance
SET KEY is nostly CA-dipper compliant. The only difference is the addition
of the condition code-bl ock paraneter, allow ng set-keys to be conditionally
turned off or on. This condition-block cannot be returned once set - see
Set KeyGCet ()

See Al so:

HB_SETKEYSAVE()

SETTYPEAHEAD()

Sets the typeahead buffer to given size.
Synt ax
SETTYPEAHEAD(<nSi ze>) --> <nPreviousSi ze>
Argunment s
<nSize> is a valid typeahead si ze.
Ret ur ns
<nPrevi ousSi ze> The previous state of _SET TYPEAHEAD
Descri ption

This function sets the typeahead buffer to a valid given size as is Set(
_SET_TYPEAHEAD) where used.

Exanpl es

/1l Sets typeahead to 12
Set Typeahead(12)

St at us
Ready
Conpl i ance
SETTYPEAHEAD() is fully CA-Cipper conpliant.
Files
Library is rtl
See Al so:
ARRAY

XHELP

Looks if a Hel ps? user defined function exist.
Synt ax
__XHELP() --> <xVal ue>
Argunment s

Ret ur ns

Descri ption
This is an internal undocunented dipper function, which will try to call the
user defined function HELP() if it's defined in the current application. This is
the default SetKey() handler for the F1 key.

St at us
Ready

Conpl i ance
_ XHELP() is fully CA-Cipper conpliant.

Fil es

Library is rtl

SET DEFAULT

Est abl i shes the Harbour search drive and directory.
Synt ax
SET DEFAULT TO [<cPat h>]
Argunment s
<cPat h> Drive and/or path.
Descri ption
This command changes the drive and directory used for reading and witting

dat abase, i ndex, menory, and alternate files.Specifying no paranmeters with this
command will default the operation to the current |ogged drive and directory.

Exanpl es

SET DEFAULT to c:\ TEMP

St at us
Ready
Conpl i ance
This command is Ca-Cipper Conpliant.
See Al so:

SET PATH

CURDI R().
SET()

SET WRAP

Toggl e wrappi ng the PROWTs in a nenu.

Synt ax
SET WRAP on | OFF | (<l Wap>

Argunment s
<| Wap> Logical expression for toggle

Descri ption
This command toggles the highlighted bars in a @..PROMWT comand to wap
around in a bottomto-top and top-to-bottom manner.|1f the value of the I ogical
expression <IWap>is a logical false (.F.), the wapping node is set
OFF; otherwi se,it is set ON

Exanpl es

See Tests/menutest. prg

St at us
Ready
Conpl i ance
This command is Ca-Cipper Conpliant.
See Al so:

. PROVPT
MENU TO

SET MESSAGE

Ext abl i shes a nmessage row for @..PROVPT conmand
Synt ax
SET MESSAGE TO [<nRow> [CENTER]]
Argunment s
<nRow> Row nunber to display the nessage
Descri ption
This command is designed to work in conjuntion with the MENU TO and
@ .. PROWT conmmands. Wth this command, a row nunber between 0 and MAXRON) may be
specified in <nRow>. This establishes the row on wtch any nessage associated with
an @..PROWT command will apear.
If the value of <nRow> is 0,all nessages will be supressed. Al nessaged wll
be left-justifies unless the CENTER clause is wused.ln this case,the individual
nmessages in each @..PROVWT command w Il be centered at the designated row (unless
<nRow> is 0). Al nessages are independent;therefor,the screen area is cleared out
by the centered nessage will vary based on the I ength of each individual nessage.

Speci fying no paranmeters with this command set the row value to 0, wtch
suppresses all nessages output. The British spelling of CENTRE is al so supported.

Exanpl es

See Tests/menutest.prg

St at us

Ready
Conpl i ance

This command is Ca-Cipper Conpliant.
See Al so:

SET()
SET WRAP

. PROVPT
MENU TO

SET PATH

Specifies a search path for opening files

Synt ax
SET PATH TO [<cPat h>]

Argunment s
<cPat h> Search path for files

Descri ption
This command specifies the search path for files required by nbst commands
and functions not found in the current drive and directory. This pertains
primarily, but not exclusively, to databases,indexes, and neno files,as well as to
menory, | abel s, and reports files. The search hirarchy is: 1 Current drive and
directory,2 The SET DEFAULT path;3 The SET PATH pat h.

Exanpl es

SET PATH TO c: \ Har bour\ Test

St at us
Ready
Conpl i ance
This command is Ca-Cipper Conpliant.
See Al so:

SET DEFAULT

CURDI R()
SET()

SET I NTENSI TY

Toggl es the enhaced di splay of PROWT s and CETs.
Synt ax
SET INTENSITY ON | off | (<IInte>)
Argunment s
<l Inte> Logical expression for toggle conmand
Descri ption
This conmmand set the field input color and @..PROWT nenu color to either
hi ghli ghted (inverse video) or normal color. The default condition is ON
(hi ghl i ghted).
Exanpl es
SET I NTENSI TY ON
St at us
Ready
Conpl i ance
This command is Ca-Cipper Conpliant.
See Al so:

@. . Get

.. PROVPT
@ . . SAY
SET()

SET ALTERNATE

Toggl e and echos output to an alternate file
Synt ax

SET ALTERNATE to <cFil e> [ADDI Tl VE]
SET ALTERNATE on | OFF | (<l Alter>)

Argunment s

<cFile> Nane of alternate file.

<| Alter> Logical expression for toggle
Descri ption

Thi s command toggl es and output console information to the alternate file

<cFil e> provided that the conmand is toggled on or the condition <lIAter>is set
to alogical true (.T.). If <cFile> does not has a file extension, .TXT will be
assuned. The file name nmay optionally have a drive letter and/or directory path.If
none is speficied, the current drive and directory will be used. |If the ALTERNATE
file is created but no ALTERNATE ON conmand is issued,nothing will be echoed to the
file. |If ADDITIVE clause is used,then the infornation will be appended to the
existing alternate file.Oherwise,a newfile will be created wth the specified
nane (or an existing one will be overwitten) and the information will be appended
to the file. The default is to create a newfile. A SET ALTERNATE TO conmmand wil |
close the alternate file

Exanpl es

SET ALTERNATE TO test. txt
SET ALTERNATE ON

? ' Har bour'
o nig
? "Power"

SET ALTERNATE TO
SET ALTERNATE OFF

St at us
Ready
Conpl i ance
This command is Ca-Cipper Conpliant.
See Al so:

ARRAY
SET PRI NTER
SET CONSCOLE

SET()

SET CENTURY

Toggle the century digits in all dates display

Synt ax

SET CENTURY on | OFF | (<l Cent>)
Argunment s

<l Cent> Logical expression for toggle
Descri ption

This command all ows the input and display of dates with the century prefix.It
will be in the standart MM DDJ YYYY format unless specified by the SET DATE comand
or SET() function.If <ICent>is a logical true (.T.),the command will be set
on; otherwi se, the command will be set off
Exanpl es
SET CENTURY ON
? DATE()
SET CENTURY OFF
St at us
Ready
Conpl i ance
This command is Ca-C ipper conpliant
See Al so:

SET DATE

ATE

g

o
—

SET DATE

Assings a date format or chooses a predefined date data set.
Synt ax
SET DATE FORMAT [TQ <cFor mat >

SET DATE [TO] [ANSI / BRITISH/ FRENCH / GERVAN / | TALIAN / JAPAN
/ USA / AVERI CAN]

Argunent s
<cFormat > Keyword for date format
Descri ption
This command sets the date format for function display purposes. |If

speci fied, <cFormat > may be a custom zed date fornmat in which the letters d,mand vy

may be used to desing a date format. The default is an AMERI CAN date

format; specifying no paraneters will set the date format to AMERICAN.Below is a

table of the varius predefined dates formats.

Sy nt ax Dat e For mat
NS y.mm dd
BRI TI SH dd/ m yy
FRENCH dd/ i yy
GERVAN dd. nm yy
TALI AN dd- m yy
[APAN y. nm dd
USA fm dd- yy
AVERI CAN i dd/ yy
Exanpl es
SET DATE JAPAN
? DATE()
SET DATE GERVAN
? Date()
Tests
See tests/dates. prg
St at us
Ready
Conpl i ance
This conmmand is Ca-Cipper conpliant
See Al so:
SET DATE

ATE

2

0
—

SET EPOCH

Specifie a base year for interpreting dates
Synt ax
SET EPOCH TO <nEpoch>
Argunment s
<nEpoch> Base Century.
Descri ption
This command sets the base year value for dates that have only two digits. The
default setting is 1900. Dates between 01/01/0100 and 12/31/2999 are fully
support ed.
Exanpl es
SET EPOCH TO 2000
St at us
Ready
Conpl i ance
This command is Ca-C ipper conpliant
See Al so:
SET DATE

ATE

9P q g
_|
i
2
2

o
—

SET FI XED

Set the number of decinmal position to be displayed

Synt ax
SET FI XED on | OFF | (<IFixed>)
Argunment s

<l Fi xed> Logical expression for toggle

Descri ption

This conmmand activates a systemw de fixed placenent of decimals places shown
for all nuneric outputs.If the value of <IFixed>is a logical true (.T.),FlXED

will be turned ON;otherwise it wll

be turned OFF.

When SET DECI MALS OFF is used, the follow rules aply to the nunmber of decimal

pl aced di spl ayed.

IAddi ti on

[Same as operand with the greatest nunber of decimal digits

Subr act i on

[Same as operand with the greatest nunber of decimal digits

jul ti plication

ISum of operand decinmal digits

Di vi si on

Det er mi ned by SET DECI MAL TO

Exponent i al

Det er mi ned by SET DECI MAL TO

LOQ() Det er mi ned by SET DECI MAL TO
EXP() Det er mi ned by SET DECI MAL TO
ISQRT() Det er mi ned by SET DECI MAL TO
VAL () Det er mi ned by SET DECI MAL TO
Exanpl es
SET FI XED ON
? 25141251/ 362
SET FI XED OFF
St at us
Ready
Conpl i ance

This conmmand is Ca-Cipper conpliant
See Al so:

SET DECI MALS
EXP()

LOG()

SQRT()
L

ET

%
5

SET PRI NTER

Toggl es the printer and controls the printer device
Synt ax

SET PRINTER on | OFF
SET PRINTER (<l Printer>)
SET PRI NTER TO [<cPrinter>] [ADDI Tl VE]

Argunent s

<l Fi xed> Logi cal condition by which to toggle the printer <cPrinter> A
devi ce nanme or an alternate nane

Descri ption

This command can direct all output that is not controled by the @..SAY

command and t he DEVPOS() and DEVQUT() functions to the printer.If specified,the
condition <IPrinter> toggles the printer ONif a logical true (.T.) and OFF if a
logical false (.F.).If no argunent is specified in the command, the alternate file
(if one is open) is closed, or the device is reselected and the PRINTER option is
turned OFF.

If a device is specified in <cPrinter> the outpur will be directed to that
device instead of to the PRINTER A specified device may be a literal string or a
vari able, as long as the variable is enclosed in parentheses.For a network, do not
use a trailing colon when redirecting to a device.

If an alternate file is specified,<cPrinter> becones the name of a file that
will contain the output.If no file extension is specified an extension of.PRN will
be defaulted to.

If the ADDITIVE clause is specified,the information will be appended to the

end of the specified output file.Oherwise, a newfile will be created with the
specified name (or an existing file will first be cleared) and the information wll
then be appended to the file. The default is to create a new file.

Exanpl es

SET PRI NTER ON
SET PRINTER TO LPT1
? 25141251/ 362
SET PRINTER . F.

St at us
Ready
Conpl i ance
This command is Ca-Cipper conpliant
See Al so:

SET DEVI CE
SET CONSCLE
ARRAY

SET()

SET CONSOLE

Toggl e the consol e di spl ay

Synt ax
SET CONSCLE ON | off | (<IConsol e>)

Argunment s
<l Consol e> Logi cal expression for toggle conmand

Descri ption
This command turns the screen display either off or on for all screens
di splay other then direct output via the @..SAY conmmands or the <-> DEVOUT()

functi on.

If <IConsole >is a logical true (.T.),the console will be turned
ON ot herwi se, the console will be turned off.

Exanpl es
SET consol e on
? DATE()
SET consol e of f
? date()
St at us
Ready
Conpl i ance
This command is Ca-C ipper conpliant
See Al so:

SET DEVI CE
SET()

SET DECI MALS

Toggl e the consol e di spl ay
Synt ax
SET DECI MALS TO [<nDeci nal >]
Argunment s
<nDeci mal > Nunber of decinmals places
Descri ption
This conmmand establishes the nunber of decinal places that Harbour will
di splay in mathemati cal cal cul ations,functions, menory vari ables, and
fields.lssuing no paraneter with this conmand will the default nunber of decimals
to 0. For decinals to be seen,the SET FIXED ON comand must be acti vat ed.
Exanpl es
SET FI XED ON
? 25141251/ 362
SET DECI MALS TO 10
? 214514, 214/ 6325
St at us
Ready
Conpl i ance
This conmmand is Ca-Cipper conpliant
See Al so:

SET FI XED
SET()

SET DEVI CE

Directs all @..SAY output to a device.
Synt ax

SET DEVICE TO [printer | SCREEN]
Argunment s

Descri ption

This conmand det erm nes whether the output fromthe @..SAY conmand and the
DEVPCOS() and DEVOUT() function will be displayed on the printer.

When the device is set to the PRINTER the SET MARG N val ue adjusts the

position of the columm val ues accordingly. Al so,an automatic page eject will be
i ssued when the current printhead position is Iless than the last printed

row. Finally,if used in conjunction with the @..GET conmands, the val ues for the
GETs will all be ignored.

Exanpl es

SET DEVI CE TO SCRENN
? 25141251/ 362

SET DEVI CE TO PRI NTER
SET PRINTER TO LPT1

? 214514, 214/ 6325

SET PRI NTER OFF

SET DEVI CE TO SCREEN

St at us
Ready
Conpl i ance
This conmmand is Ca-Cipper conpliant
See Al so:

@ . . SAY
SET PRI NTER
ARRAY/

SET()

SET BELL

Toggl e the bell to sound once a GET has been conpl et ed.
Synt ax
SET BELL on | OFF | (<IBell>)
Argunment s
<I Bel | > Logical expression for toggle conmand
Descri ption

This command toggles the bell to sound whenever a character is entered into
the | ast character positionof a GET,of if an invalid data type is entered into a

GET.
If <IBell >is a logical true (.T.),the bell will be turned ON; otherw se, the
belle will be turned off.
Exanpl es
SET BEEL ON

cDumy: =space(20)
? 3,2 get cDummy

Read
SET bel | off
St at us
Ready
Conpl i ance
This conmmand is Ca-Cipper conpliant
See Al so:

SET()

| SALPHA()

Checks if leftnpst character in a string is an al phabetic character
Synt ax
| SALPHA(<cString>) --> | Al pha
Argunment s
<cString> Any character string
Ret ur ns

Descri ption

This function return a logical true (.T.) if the first character in <cString>
is an al phabetic character.If not, the function will return a logical false (.F.).

Exanpl es

QQUT("isal pha('"hello') ", isalpha('"hello))
QQUT("isal pha('12345') ", isal pha('12345"))

St at us
Ready
Conpl i ance
This function is CA-dipper conpliant
Pl at f or ns
Al |
Files
Library is rtl
See Al so:

I SDIL A T()
| SLOVER

| SUPPER()
LONER

UPPER()

| SDI G T()

Checks if leftnost character is a digit character
Synt ax
| SDIA T(<cString>) -->1Digit
Argunment s
<cString> Any character string

Ret ur ns

Descri ption

This function takes the caracter string <cString> and checks to see if the
| eftmost character is a digit,from1 to 9.1f so, the function will return a
logical true (.T.);otherwise, it will return a logical false (.F.).

Exanpl es

QOUT("isdigit('12345") ", isdigit('12345"))
QOQUT("isdigit('abcde') ", isdigit('abcde))

St at us
Ready
Conpl i ance
This function is CA-Cdipper conpliant
Pl at f or ms
All
Files
Library is rtl
See Al so:

| SALPHA

| SLONER()
| SUPPER()
LOVER

UPPER()

| SUPPER()

Checks if leftnost character is an uppercased letter.
Synt ax
| SUPPER(<cString>) --> | Upper
Argunment s
<cString> Any character string

Ret ur ns

Descri ption

This function takes the caracter string <cString> and checks to see if the
| eft most character is a uppercased letter.If so, the function will return a
logical true (.T.);otherwmse, it will return a logical false (.F.).

Exanpl es

QOUT("isupper('Abcde') ", isupper('Abcde'))
QOUT("i supper('abcde') ", isupper('abcde'))

St at us
Ready
Conpl i ance
This function is CA-Cdipper conpliant
Pl at f or ms
All
Files
Library is rtl
See Al so:

| SALPHA

| SLONER()
I SDIL A T()
LOVER

UPPER()

| SLOVER()

Checks if leftnpst character is an | owercased letter.
Synt ax
| SLONER(<cString>) --> | Lower
Argunment s
<cString> Any character string

Ret ur ns

Descri ption

This function takes the caracter string <cString> and checks to see if the
| eftnost character is a |lowercased letter.If so, the function will return a
logical true (.T.);otherwise, it will return a logical false (.F.).

Exanpl es

QOUT("islower('Abcde') ", islower('Abcde'))
QOUT("islower('abcde') ", islower('abcde'))

St at us
Ready
Conpl i ance
This function is CA-Cdipper conpliant
Pl at f or ms
All
Files
Library is rtl
See Al so:

| SALPHA

I SDI A T()
| SUPPER()
LOVER

UPPER()

LTRI M)

Removes | eadi ng spaces froma string
Synt ax
LTRI M <cStri ng>) --> <cReturn>
Argunment s
<cString> Character expression with | eading spaces
Ret ur ns

<cReturn> The sane character expression with |eading spaces renoved

Descri ption
This function trims the | eading space bl ank
Exanpl es
? QOUT(LTRI M "HELLO "))
St at us
Ready
Conpl i ance
This functions is CA-CLI PPER conpati bl e
Pl at f or ms
Al l
Files
Library is rtl
See Al so:
TRIM)
RTRI

ALLTRI M)

AT()

Locates the position of a substring in a nmain string.
Synt ax
AT(<cSearch>, <cString>) --> nPos
Argunment s
<cSear ch> Substring to search for
<cString> Main string
Ret ur ns

AT() return the starting position of the first occurrence of the substring
in the main string

Descri ption

This function searches the string <cString> for the characters in the first
string <cSearch>. |If the substring is not contained within the second

expression,the function will return O.
Exanpl es

QQUT("at('cde', 'abcdefgfedcba') ="'" +;

at('cde', 'abcsefgfedcha) + "'")
St at us

Ready
Conpl i ance

This function is CA-dipper conpatible
Pl at f or ms

Al l
Files

Library is rtl
See Al so:

RAT()

RAT(| . |
Searches tor a substring fromthe right side of a string.
Synt ax
RAT(<cSear ch>, <cString>) --> nPos
Argunment s

<cSear ch> Substring to search for
<cString> Main string
Ret ur ns
RAT() return the location of beginnig position
Descri ption
This function searches througt <cString> for the first existence of
<cSear ch>. The search operation is performed fromthe right side of <cString>to
the left. If the function is unable to find any occurence of <cSearch> in
<cString> the value of the function will be 0.
Exanpl es
QQUT("rat('cde', 'abcdefgfedcba') ="'" +
rat('cde', 'abcsefgfedcha) + "'")

St at us
Ready
Conpl i ance
WIIl not work with a search string > 64 KB on sone platforns
Pl at f or ms
Al l
Files

Library is rtl
See Al so:

AT()
SUBSTR()
Rl GHT

LEFT()

Extract the leftnost substring of a character expression

Synt ax
LEFT(<cString>, <nPos>) --> <cReturn>
Argunment s
<cString> Main character to be parsed
<nPos> Number of bytes to return beggining at the |leftnpst position
Ret ur ns
<cRet ur n> Substring of eval uation
Descri ption
This functions returns the | eftnost <nPos> characters of <cString> It is
equi valent to the follow ng programnm ng expression: SUBSTR(<cString>, 1, <nPos>
Exanpl es
? QOUT(LEFT(' HELLO HARBOUR |, 5))
St at us
Ready
Conpl i ance
This functions is CA CLI PPER conpati bl e
Pl at f or ms
All
Fil es
Library is rtl
See Al so:
SUBSTR()

o

Rl GHT()

Extract the rightnost substring of a character expression

Synt ax

SUBSTR(<cStri ng>, <nPos>) --> <cReturn>
Argunment s

<cString> Character expression to be parsed

<nPos> Nurmber of bytes to return beggining at the rightnost position
Ret ur ns

<cRet ur n> Substring of eval uation
Descri ption
This functions returns the rightnost <nPos> characters of <cString>.
Exanpl es
? QOUT(RI GHT(' HELLO HARBOUR |, 5))

St at us
Ready
Conpl i ance
This functions is CA CLI PPER conpati bl e
Pl at f or ms
All
Files
Library is rtl
See Al so:

SUBSTR()
LEFT()
AT().
RAT()

25

SUBSTR()

Returns a substring froma main string

Synt ax
SUBSTR(<cString>, <nStart>[, <nLen>)] --> <cReturn>

Argunment s
<cString> Character expression to be parsed
<nStart> Start position
<nLen> Nunber of characters to return

Ret ur ns
<cRet ur n> Substring of eval uation

Descri ption
This functions returns a character string forned from<cString>, starting at
the position of <nStart> and continuing on for a |enght of <nLen> characters. If
<nLen> is not specified, the value wll be all remaining characters fromthe
position of <nStart>.
The val ue of <nStart> may be negative. If it is, the direction of operation

is reversed froma default of left-to-right to right-to-left for the nunber of
characters specified in <nStart>.

Exanpl es

FUNCTI ON MAI N()
LOCAL X: =REPLI CATE(' ABCD , 70000)

? QOUT(SUBSTR(X, 65519, 200)
RETURN NI L

Test s
? QOUT(SUBSTR(' HELLO HARBOUR , 5)

St at us
Ready
Conpl i ance
This functions is CA CLIPPER conpatible with the execption that CA CLI PPER

will generate an error if the passed string is >65519 bytes and Harbour depends of
pl at af orm

Pl at f or ns
All
Files
Library is rtl
See Al so:

LEFT()
AT().
Rl GHT

STR()

Convert a numeric expression to a character string.
Synt ax
STR(<nNunber >, [<nLength>], [<nDecimals>]) --> cNunber
Argunment s
<nNunber> is the nuneric expression to be converted to a character string.

<nLength> 1is the length of the character string to return, including decimal
digits, decinal point, and sign

<nDeci mal s> is the nunber of decimal places to return
Ret ur ns
STR() returns <nNunber> formatted as a character string. |If the optiona

| ength and deci nal argunents are not specified, STR() returns the character string
according to the follow ng rules:

Expr essi on Ret urn Val ue Length
Fi el d Variable Field | ength plus decimls
Expr essi ons/ const ant s M ni mum of 10 digits plus decinals
AL() M ni mum of 3 digits
IMONTH() / DAY() B digits
[YEAR() b digits
RECNQ() 7 digits
Descri ption

STR() is a numeric conversion function that converts nuneric values to

character strings. It is comonly used to concatenate nuneric values to character
strings. STR() has applications displaying nunbers, creating codes such as part
nunbers from nuneric values, and creating index keys that conbine nuneric and
character data.

STR() is like TRANSFORM), which formats nuneric values as character strings
using a mask instead of |ength and deci nal specifications.

The inverse of STR() is VAL(), which converts character nunbers to nunerics.

* |f <nLength> is |less than the nunmber of whole nunmber digits in <nNumber>,
STR() returns asterisks instead of the nunber.

* |f <nLength> is |ess than the nunber of decimal digits required for the
decimal portion of the returned string, Harbour rounds the nunber to the avail able
nunber of decimal places.

* |f <nLength> is specified but <nDecimals> is onmtted (no decimal places),
the return value is rounded to an integer

Exanpl es

? STR(10, 6, 2) // " 10.00"

? STR(-10, 8, 2) // " -10.00"
Tests

see the regression test suit for conprehensive tests.

St at us
Ready

Conpl i ance
CA-C i pper conpati bl e.
Files
Library is rtl
See Al so:

STRZE

TRANSFORM)
VAL

STRZERQ()

Convert a nuneric expression to a character string, zero padded.
Synt ax
STRZERQ(<nNunber >, [<nLength>], [<nDeci nal s>]) --> cNunber
Argunment s
<nNunber> is the nuneric expression to be converted to a character string.

<nLength> 1is the length of the character string to return, including decimal
digits, decinal point, and sign

<nDeci mal s> is the nunber of decimal places to return
Ret ur ns
STRZERQ() returns <nNunber> formatted as a character string. |[|f the

optional length and decimal arguments are not specified, STRZERQ() returns the
character string according to the follow ng rules:

Expr essi on Ret urn Val ue Length
Fi el d Variable Field | ength plus decimls
Expr essi ons/ const ant s M ni mum of 10 digits plus decinals
AL() M ni mum of 3 digits
IMONTH() / DAY() B digits
[YEAR() b digits
RECNQ() 7 digits
Descri ption

STRZERQ() is a nuneric conversion function that converts nuneric values to

character strings. It is comopnly used to concatenate nuneric values to character
strings. STRZERQ() has applications displaying nunbers, creating codes such as part

nunbers from nuneric values, and creating index keys that conbine nuneric and
character data.

STRZERQ() is |ike TRANSFORM), which formats numeric val ues as character
strings using a nmask instead of length and deci mal specifications.

The inverse of STRZERQ() is VAL(), which converts character nunbers to
numerics.

* |f <nLength> is |ess than the nunber of whole nunmber digits in <nNunber>,
STR() returns asterisks instead of the nunber.

* |f <nLength> is |less than the nunber of decimal digits required for the

decimal portion of the returned string, Harbour rounds the nunber to the available

nunber of decimal places.

* |f <nLength> is specified but <nDecimals> is onmtted (no deciml places),
the return value is rounded to an integer

Exanpl es

? STRZERO(10, 6, 2) // "010.00"
? STRZERO(-10, 8, 2) // "-0010.00"

Test s

see the regression test suit for conprehensive tests.

St at us

Ready
Conpl i ance
CA-d i pper conpatible (it was not nmentioned in the docs though).
Fil es
Library is rtl
See Al so:

STR()

HB VALTOSTR()

ConvertS any scalar type to a string.
Synt ax
HB VALTOSTR(<xValue>) --> cString
Argunment s
<xVal ue> is any scal ar argunent.
Ret ur ns
<cString> A string representation of <xVal ue> using default conversions.
Descri ption
HB_VALTOSTR can be used to convert any scalar value to a string.
Exanpl es
? HB_VALTOSTR(4)
? HB_VALTOSTR("String")
Tests
HB VALTOSTR(4) == " 4"
HB_VALTOSTR(4.0/ 2) ==" 2. 00"
HB VALTOSTR("String") == "String"
HB_VALTOSTR(CTOD("01/01/2001")) == "01/01/01"
HB_VALTOSTR(NIL) == "NIL"

HB_VALTOSTR(.F.) == ".F.
HB_VALTOSTR(.T.) == ".T."

N))))))

St at us

Ready
Conpl i ance

HB VALTOSTR() is a Harbour enhancenent.
Files

Library is rtl

See Al so:
STR()

LEN()

Returns size of a string or size of an array.
Synt ax
LEN(<cString> | <aArray>) --> <nlLength>
Argunment s
<acString> is a character string or the array to check

Ret ur ns

Descri ption

This function returns the string length or the size of an array. If it is
used with a nmultidinmensional array it returns the size of the first dinension

Exanpl es

? Len("Harbour") -->7
? Len({ "One", "Two" }) --> 2

Tests

function Test()
LOCAL cName :=""
ACCEPT "Enter your nane: " TO cNane
? Len(cName)

return nil

St at us
Ready
Conpl i ance
LEN() is fully CA-Clipper conpliant.
Files
Library is rtl
See Al so:

EMPTY
RTRI

LTRI M)
AADD()
ASI ZE()

EMPTY()

Checks if the passed argunment is enpty.

Synt ax

EMPTY(<xExp>) --> <l |sEnpty>
Argunment s

<xExp> 1is any valid expression.
Ret ur ns

false (.F.).
Descri ption

This function checks if an expression has enpty value and returns a | ogical
i ndi cating whether it the expression is enpty or not.

Exanpl es

? Empty("1'mnot enpty")

Tests
function Test()
? Empty(1) --> . f
? Enpty(Date()) --> .f
? Empty(.f.) --> .t
return nil
St at us
Ready
Conpl i ance
EMPTY() is fully CA-dipper conpliant.
Files

Library is rtl
See Al so:

LENQ)

DESCEND)

Inverts an expression of string, logical, date or nuneric type.

Synt ax

DESCEND(<xExp>) --> <xExplnverted>
Argunment s

<xExp> 1is any valid expression.
Ret ur ns
Descri ption

This function converts an expression in his inverted form It is
bui | d descendi ng i ndexes.

Exanpl es

/1l Seek for Smith in a descendi ng index
SEEK DESCEND("SM TH')

Tests

DATA- >(DBSEEK(DESCEND("SM TH')))
will seek "SMTH' into a descendi ng i ndex.

St at us
Ready
Conpl i ance
DESCEND() is fully CA-Cipper conpliant.
Files
Library is rtl
See Al so:
ARRAY

usef ul

to

HB_ANSI TOOEM)

Convert "a wi ndows Character to a Dos based character

Synt ax
HB_ANSI TOOEM <cString>) -> cDosString
Argunment s
<cString> Wndows ansi string to convert to DOS oem String
Ret ur ns
<cDosString> Dos based string
Descri ption

This function converts each character in <cString> to the correspondi ng
character in the M5-DOS (OEM character set.The character expression <cString>

shoul d contain characters fromthe ANSI character set. |If a character in <cString>
doesn't have a M5-DOS equivalent, the character is converted to a simlar M5 DOS
character.

Exanpl es
? HB_OEMTOANSI (" Har bour ")

St at us
Ready

Conpl i ance
This function is a Harbour extension

Pl at f or ns

This functions work only on Wndows Pl ataform
Files
Library is rtl
See Al so:
HB_CEMTOANSI ()

HB_CEMTOANSI ()
Convert a DOS(CEM Character to a WNDOAS (ANSI) based character

Synt ax
HB_OEMIQANSI (<cString>) -> cDosString
Argunment s
<cString> DOS (CEM string to convert to WNDOWAS (ANSI) String
Ret ur ns
<cDosString> WNDOA5S based string
Descri ption

This function converts each character in <cString> to the correspondi ng
character in the Wndows (ANSI) character set.The character expression <cString>

shoul d contain characters fromthe OEM character set. |f a character in <cString>
doesn't have a ANSI equivalent, the character is remis the sane.
Exanpl es
? HB_OEMTOANSI (" Har bour ")
St at us
Ready
Conpl i ance
This function is a Harbour extension
Pl at f or ns
This functions work only on Wndows Pl ataform
Fil es

Library is rtl
See Al so:
HB_ANSI TOOEM)

LONER()

Uni versal ly gowercases a character string expression.

Synt ax

LONER(<cString>) --> cLowerString
Argunment s

<cString> Any character expression.
Ret ur ns

<cLower String> Lowercased value of <cString>
Descri ption

This function converts any character expression passes as <cString> to its
| ower cased representation. Any nonal phabetic character withing <cString> wll
remai n unchanged.

Exanpl es

? Lower (" HARBOUR')
? Lower("Hello AIl")

St at us
Ready
Conpl i ance
This function is CA-dipper conpatible
Pl at f or ms
ALL
Files
Library is rtl
See Al so:
UPPER()
| SLONER

| SUPPER()

UPPER()

Converts a character expression to uppercase format

Synt ax

UPPER(<cString>) --> cUpperString
Argunment s

<cString> Any character expression.
Ret ur ns

<cUpper String> Uppercased val ue of <cString>
Descri ption

This function converts all al pha characters in <cString> to upper case val ues
and returns that formatted character expression

Exanpl es

? UPPER(" har bour")

? UPPER(" Har bour ")
St at us

Ready
Conpl i ance

This function is CA-Cipper conpatible
Pl at f or ms

All
Files

Library is rtl

See Al so:

LONER

| SUPPER()
| SLOVER()

CHR()

Converts an ASCI| value to it character val ue
Synt ax
CHR(<nAsci i Nunm») --> cReturn
Argunment s
<nAsci i Nun» Any ASCI| character code.
Ret ur ns
<cReturn> Character expression of that ASCH| val ue
Descri ption
This function returns the ASCI| character code for <nAscii Nume. The nunber

expressed nmust be an interger value within the range of 0 to 255 inclusive. The
CHR() function will send the character returned to whatever device is presently

set.
The CHR() function may be used for printing special codes as well as norna
and graphi cs character codes.
Exanpl es
? CHR(32)
? chr(215)
St at us
Ready
Conpl i ance
This function is Ca-Cdipper conpliant
Pl at f or ns
Al l
Fil es
Library is rtl
See Al so:
ASC()

I NKEY()

AS

Returns the ASCI| value of a character
Synt ax
ASC(<cCharacter>) --> nAscNunber
Argunment s
<cCharacter> Any character expression
Ret ur ns
<nAscNunber> ASCI| val ue
Descri ption

This function return the ASCII value of the leftnost character of any
character expression passed as <cCharacter>.

Exanpl es
? ASC("A")
? ASC("1")
St at us
Ready
Conpl i ance
This function is Ca-dipper conpliant
Pl at f or ns
Al l
Files

Library is rtl
See Al so:

CHR()

PADC()

Centers an expression for a given width

Synt ax

PADC(<xVal >, <nW dt h>, <cFill>) --> cString
Argunment s

<xVal > An nunber, Character or date to pad

<nWdth> Wdth of output string

<cFill> Character to fill in the string

Ret ur ns

<cString> The Center string of <xVal>

Descri ption

This function takes an date, nunber,or character expression <xVal> and attenpt

to center the expression within a string of a given width expressed as

<nW dt h>. The default character used to pad either side of <xVal> will be an bl ank
space; however,this character may be explicitly specified the value of <cFill>.

If the lenght of <xVal> is |longer then <nWdth>,this function will truncate
the string <xVal> fromthe |eftnost side to the | enght of <nWdth>.

Exanpl es

? PADC(' Har bour ', 20)
? PADC(34.5142, 20)
? PADC(Dat e(), 35)

Tests

See Exanpl es

St at us

Ready

Conpl i ance

This function is Ca-Cd i pper conpil ant

Pl at f or ns

All

Files

Library is rtl

See Al so:

ALLTRI M)
PADL

PADR

PADL ()

Left-justifies an expression for a given width

Synt ax

PADL(<xVal >, <nWdt h>, <cFill>) --> cString
Argunment s

<xVal > An nunber, Character or date to pad

<nWdth> Wdth of output string

<cFill> Character to fill in the string

Ret ur ns

<cString> The left-justifies string of <xVal>

Descri ption

This function takes an date, nunber, or character expression <xVal> and attenpt
to left-justify it within a string of a given width expressed as <nWdth>. The
default character used to pad |left side of <xVal> will be an bl ank

space; however,this character may be explicitly specified the value of <cFill>.

If the lenght of <xVal> is longer then <nWdth>,this function will truncate
the string <xVal> fromthe |eftnost side to the | enght of <nWdth>.

Exanpl es

? PADC(' Har bour ', 20)
? PADC(34.5142, 20)
? PADC(Dat e(), 35)

Tests

See exanpl es

St at us

Ready

Conpl i ance

This function is Ca-Cd i pper conpil ant

Pl at f or ns

Fi

All
es

Library is rtl

See Al so:

ALLTRI M)
PADC()
PADR

PADR()

Ri ght -

justifies an expression for a given w dth

Synt ax

PADR(<xVal >, <nWdt h>, <cFill>) --> cString

Argunment s

<xVal > An nunber, Character or date to pad
<nWdth> Wdth of output string

<cFill> Character to fill in the string

Ret ur ns

<cString> The right-justifies string of <xVal>

Descri ption

This function takes an date, nunber, or character expression <xVal> and attenpt

toright-justify it within a string of a given width expressed as <nW dt h>. The
default character used to pad right side of <xVal> wll be an blank

space; however,this character may be explicitly specified the value of <cFill>.

If the lenght of <xVal> is longer then <nWdth>,this function will truncate
the string <xVal> fromthe |eftnost side to the | enght of <nWdth>.

Exanpl es

? PADC(' Har bour ', 20)
? PADC(34.5142, 20)
? PADC(Dat e(), 35)

Tests

See exanpl es

St at us

Ready

Conpl i ance

This function is Ca-Cd i pper conpil ant

Pl at f or ns

Fi

All
es

Library is rtl

See Al so:

ALLTRI M)
PADC()
PADL

ALLTRI M)

Renmoves | eading and trailing blank spaces froma string

Synt ax
ALLTRIM <cString>) --> cExpression
Argunment s
<cString> Any character string
Ret ur ns
<cExpression> An string will all blank spaces renmoved from <cString>
Descri ption
This function returns the string <cExpression> will all leading and trailing
bl ank spaces renoved.
Exanpl es
? ALLTRI M "HELLO HARBOUR")
? ALLTRIM™ HELLO HARBOUR")
? ALLTRI M " HELLO HARBOUR "
? ALLTRIM ™ HELLO HARBOUR ")
Tests
See Exanpl es
St at us
Ready
Conpl i ance
This function is Ca-dipper conpil ant
Pl at f or ns
All
Files
Library is rtl
See Al so:
LTRI M)
RTRI

TR M)

RTRI M)

Remove trailing spaces froma string.
Synt ax
RTRI M <cExpr essi on>) --> cString
Argunment s
<CcExpr essi on> Any character expression

Ret ur ns
<cString> A formated string with out any bl ank spaced.
Descri ption
This function returns the value of <cString> with any trailing blank renpved.

This function is indentical to RTRIM) and the opposite of LTRIM). Together
with LTRIRM),this function equated to the ALLTRIM) function.

Exanpl es
RTri m(" HELLO")
RTrin{ "") /
RTrim("UA ") |/
2 RTrin{ " UA") /
Tests

See Exanpl es
St at us

Ready
Conpl i ance

This function is Ca-Cd i pper conpil ant
Pl at f or ms

Al l

Files

/ "HELLO'

N N)

/
/
/ n UAII
/ n UAII

Library is rtl
See Al so:

ALLTRI M)
LTRI M)
TRIM)

TRI M)

Remove trailing spaces froma string.
Synt ax
TRI M <cExpr essi on>) --> cString
Argunment s
<CcExpr essi on> Any character expression
Ret ur ns
<cString> A formated string with out any bl ank spaced.
Descri ption
This function returns the value of <cString> with any trailing blank renpved.

This function is indentical to RTRIM) and the opposite of LTRIM). Together
with LTRIRM),this function equated to the ALLTRIM) function.

Exanpl es

? Trim"HELLO") /1 "HELLO'
? Trim(") 1
? Trim("UA ") [/ " UA"
? Trim(" UA") /] " UA"
Tests
See Exanpl es
St at us
Ready
Conpl i ance
This function is Ca-Cd i pper conpil ant
Pl at f or ms
Al l
Files
Library is rtl
See Al so:
RTRI
LTRI M)

ALLTRI M)

REPLI CATE()

Repeats a single character expression
Synt ax
REPLI CATE(<cString>, <nSi ze>) --> cReplicateString
Argunment s
<cString> Character string to be replicated
<nSi ze> Nurmber of times to replicate <cString>
Ret ur ns

<cReplicateString> A character expression containg the <cString> fill
character.

Descri ption
This function returns a string conmposed of <nSize> repetitions of
<cString> The | enght of the character string returned by this functionis linited
to the nmenory avaliabl e.
A value of 0 for <nSize> will return a NULL string.

Exanpl es

? Replicate('a', 10) /| aaaaaaaaaa
? Replicate('b',100000)

Tests

See Exanpl es
St at us

Ready
Conpl i ance

This function is Ca-Cipper conpliant in all aspects, with the exception
don't have the Clipper 64Kb string | ength.

Pl at f or ns
Al |
Fil es
Library is rtl
See Al so:
SPACE

i
4

SPACE()

Returns a string of blank spaces
Synt ax
SPACE(<nSize>) --> cString
Argunment s
<nSi ze> The | enght of the string
Ret ur ns
<cString> An string containing blank spaces
Descri ption

This function returns a string consisting of <nSize> bl ank spaces. If the
val ue of <nSize> is 0,a NULL string will be returned.

This function is useful to declare the lenght of a character nenory variable.
Exanpl es

FUNC MAI N

LOCAL cBigString

LOCAL cFirst

LOCAL cString : = Space(20) /'l Create an characte nenory vari abl e
/1 with | enght 20

? len(cString) /1 20

cBi gString: =space(100000) /1l create a nmenory variable with 100000
/'l blank spaces

? len(cBigString)

Use Tests New

cFirst:= nmakeenpty(1)

? len(cFirst)

Return Ni |

Functi on MakeEnpty(xFi el d)
LOCAL nRecord
LOCAL xRet Val ue

If lenpty(alias())
nRecord: =recno()
dbgot o(0)
if valtype(xField)=="C"
xFi el d: = ascan(dbstruct (), {| aFi el ds| aFi el ds[1] ==upper (xfield)})
el se
default xField to O
if xField < 1 .or. xField>fcount()
xfield:=0
endi f
endi f
if I'(xfield ==0)
xRet val ue: =f i el dget (xfi el d)
endi f
dbgot o(nrecor d)
endi f
return(xRetval ue)

Tests

See exanpl es
St at us

Ready
Conpl i ance

This function is Ca-Cipper conpliant in all aspects, with the exception
don't have the Cipper 64Kb string | ength.

Pl at f or ns
Al l

Fil es
Library is Rtl
See Al so:

22
&

ADR
REPL| CATE()

VAL()

Convert a nunber froma character type to numeric

Synt ax

VAL(<cNunber>) --> nNunber
Argunment s

<cNunber > Any valid character string of nunbers.
Ret ur ns

<nNumnber > The nuneric val ue of <cNunber>
Descri ption

This function converts any nunber previosly defined as an character
expression <cNunber> into a nuneric expression

This functions is the oppose of the STR() function
Exanpl es

? VAL('31421') // 31421
Tests

See regression test
St at us

Ready
Conpl i ance

This function is Ca-dipper conpatible
Pl at f or ms

Al l
Files

Library is RTL

See Al so:

STR
TRANSFORM)

STRTRAN()

Transl ate substring valuw with a main string
Synt ax
STRTRAN(<cString>, <cLocString> <cRepString> <nPos> <nCccurences>) --> cReturn
Argunment s
<cString> The main string to search
<cLocString> The string to locate in the main string
<cRepString> The string to replace the <cLocString>
<nPos> The first occurence to be repl aced
<nCccurences> Nunber of occurence to replace
Ret ur ns
<cRet ur n> Formated string
Descri ption
This function searches for any occurence of <cLocString> in <cString> and
replacesit with <cRepString>.1f <cRepString> is not specified, a NULL byte w Il
repl ace <clLocString>.
If <nPos> is used,its value defines the first occurence to be replaced. The
default value is 1.Additionally,if used,the value of <nCccurences> tell the
function how many occurrences of <cLocString> in <cString> are to the repl aced. The
default of <nQccurences> is all occurrences.

Exanpl es

? StrTran("Harbour Power"," "," ") // Harbour Power

? StrTran("Harbour Power The Future of xBase"," "," ",,2) // Harbour Power The futur

Tests
See regression test
St at us
Ready
Conpl i ance
WIl not work with a search string of > 64 KB on sone pl atforns
Pl at f or s
All
Files
Libraty is rtl
See Al so:

SUBSTR()
AT().

TRANSFORM)

Fornmats a val ue based on a specific picture tenplate.

Synt ax

TRANSFORM <xExpressi on>, <cTenplate>) --> cFornated
Argunment s

<xExpr ession> Any expression to be fornated.

<cTenpl at e> Character string with picture tenplate
Ret ur ns

<cFor nat ed> An fornatted expression in character fornat
Descri ption

This function returns <xExpression> in the format of the picture

passed to the function as <cTenpl at e>.

Their are two conponents that can make up <cTenplate> : a function
a tenplate string. Function strings are those functions that gl oba
format of <xExpression> should be. These functions are represented
character precede by the @ synbol

There are a coupl e of
tenpl ate strings:

rules to follow when using function strings

- First, a single space nust fall between the function tenplate an
tenplate string if they are used in conjunction with one anot her

- Second,if both conponents make up the val ue of <cTenplate> the f
string nmust precede the tenplate string. &therw se,the function str
with out the tenplate string and vice versa.

The tabl e bel ow shows the possible function strings avaliable with

TRANSFORM) functi on.

expr essi on

string and
ly tell what the
by a single

and

d the

unction
i ng may appear

t he

B Left justify the string within the format.
ac ssue a CR after format is nunbers are positive.
@) Put dates in SET DATE format.
3 Put dates in BRI TISH fornmat.
Q Meke a zero padded string out of the numnber.
AR nsert nontenpl ate characters.
@X ssue a DB after format is nunbers are negative.
@4 Di spl ay any zero as bl ank spaces.
e Quot es around negative nunbers
@ Convert al pha characters to uppercased format.
The second part of <cTenpl ate> consists of the format string. Each character
in the string may be formated based on using the follow characters as tenplate
markers for the string.
AN, X, 9, # lAny data type
L IShows | ogical as "T" or "F"
\4 IShows | ogical as "" or "N'
Convert to uppercase
] Dol ar sing in place of |eading spaces in nuneric expression

IAst eri sks in place of |eading spaces in nuneric expression

IConmas position

Deci mal point position

Exanpl es

local cString := 'This is harbour’

| ocal nNunber 9923. 34
| ocal nNunberl := -95842. 00
Local IVvalue :=.T

Local dbDate : = DATE()
? "working with String

? "Current String is" ,cString

? "Al'l uppercased",transform(cString,"@")

? "Date 1s",ddate

? "Date is ",transfornm(ddate, " @")

? Transform nNunber , '@ 99999999") 1 , "009923. 34"

? Transform O , @ 9999") // "0000"
Test s

See regression Test
St at us

Ready

Conpl i ance

The @ function tenplate is a FOXPRO Xbase Extension
Pl at f or ms
Al l
Files
Library is rtl
See Al so:

@ . . SAY
DEVOUTPI CT

Td ass()

TClass() is used in the creation of all classes

Synt ax
oC ass := TA ass(): New("TWy O ass")
Or
TCl ass() is usually accessed by defining a class with the comuands
defined in hbcl ass. h:
CLASS TGetList// Calls TC ass() to create the TGetList class
ENDCLASS

Argunment s

Ret ur ns
create the classes you define.
Descri ption
TClass is a class that ... The class nethods are as foll ows:
New() Create a new i nstance of the cl ass
Exanpl es

FUNCTI ON Test Obj ect ()
| ocal oObj ect

object := Td ass(): New("TMyCl ass")
oObj ect : End()

RETURN Ni |

St at us
Ready
Conpl i ance

hject Oriented syntax in Harbour is conpatible with CA-CLIPPER But Cipper

only allowed creation of objects froma few standard classes, and did not let the
programer create new classes. In Harbour, you can create your own

cl asses--conplete with Methods, Instance Variables, Cass Variables and
Inheritance. Entire applications can be designed and coded in Gbject Oiented
styl e.

Pl at f or s
Al l
Files
Library is rtl
See Al so:

__obj HasDat a()
ARRAY
CLASS

___XSaveScreen()
Save whol e screen i nage and coordinate to an internal buffer

Synt ax
__XSaveScreen() --> NL
Argunment s

Ret ur ns
__XSaveScreen() always return N L.
Descri ption
__XSaveScreen() save the inage of the whole screen into an internal buffer,
it also save current cursor position. The information could later be restored by

__XRestScreen(). Each call to _ XSaveScreen() overwite the internal buffer.

SAVE SCREEN command is preprocessed into _ XSaveScreen() function during
conpile time. Note that SAVE SCREEN TO is preprocessed into SAVESCREEN() function.

__XSaveScreen() is a conpatibility function, it is superseded by SAVESCREEN()
which allow you to save part or all the screen into a variable.

Exanpl es
/'l save the screen, display list of files than restore the screen
SAVE SCREEN
DR *. *
WAl T
RESTORE SCREEN
St at us
Ready
Conpl i ance
__XSaveScreen() works exactly like CA-dipper's _ XSaveScreen()
Pl at f or ns
__XSaveScreen() is part of the GI APl, and supported only by sonme platforns.
Files
Library is rtl
See Al so:

RESTORE SCREEN

SAVE SCREEN

Save whol e screen i mage and coordinate to an internal buffer
Synt ax
SAVE SCREEN
Argunment s

Ret ur ns

Descri ption

SAVE SCREEN save the inmage of the whole screen into an internal buffer, it
al so save current cursor position. The information could l|ater be restored by REST
SCREEN. Each call to SAVE SCREEN overwite the internal buffer.

SAVE SCREEN conmmand i s preprocessed into __XSaveScreen() function during
conpile time. Note that SAVE SCREEN TO is preprocessed into SAVESCREEN() function.

Exanpl es
/'l save the screen, display list of files than restore the screen
SAVE SCREEN
DR *.*
WAI T
RESTORE SCREEN

St at us
Ready
Conpl i ance
__XSaveScreen() works exactly like CA-dipper's _ XSaveScreen()
Pl at f or ns
__XSaveScreen() is part of the GI APl, and supported only by some platforns.
See Al so:

RESTORE SCREEN
XRest Scr een()
__XSaveScreen()

___XRest Screen()
Restore screen i nage and coordinate froman internal buffer

Synt ax
_ XRestScreen() --> NL
Argunment s

Ret ur ns
__ XRestScreen() always return N L.

Descri ption
__XRest Screen() restore saved i nage of the whole screen froman internal
buf fer that was saved by _ XSaveScreen(), it also restore cursor position. After a
call to _XRestScreen() the internal buffer is cleared.
RESTORE SCREEN command is preprocessed into _ XRestScreen() function during
conpile time. Note that RESTORE SCREEN FROM i s preprocessed into RESTSCREEN()
functi on.

__ XRestScreen() is a conpatibility function, it is superseded by RESTSCREEN()
which allow you to restore the screen froma variabl e.

Exanpl es

/1 save the screen, display list of files than restore the screen

SAVE SCREEN

DR *.*

VAI T

RESTORE SCREEN
St at us

Ready
Conpl i ance

_ XRest Screen() works exactly like CA-dipper's _ XRest Screen()
Pl at f or ns

__XRestScreen() is part of the GI APl, and supported only by sonme platforns.
Fil es

Library is rtl

See Al so:

XRest Scr een()
SAVE SCREEN
__XSaveScreen()

RESTORE SCREEN

Restore screen i nage and coordi nate froman internal buffer
Synt ax
RESTORE SCREEN
Argunment s

Ret ur ns

Descri ption

Rest Screen restore saved i mage of the whole screen froman internal buffer
that was saved by Save Screen, it also restore cursor position. After a call to
Rest Screen the internal buffer is cleared.

RESTORE SCREEN conmand is preprocessed into __ XRestScreen() function during
conpile tinme. Note that RESTORE SCREEN FROM i s preprocessed into RESTSCREEN()
function.

Exanpl es

/'l save the screen, display list of files than restore the screen
SAVE SCREEN

DR *.*

VWAI T

RESTORE SCREEN

St at us
Ready
Conpl i ance
Rest Screen() works exactly like CA-Clipper's Rest Screen
Pl at f or ns
Rest Screen is part of the GI APl, and supported only by sone platforns.
See Al so:

__XRest Screen()
SAVE SCREEN
XSaveScr een()

ALERT(

Di splay a di a?og box with a nessage
Synt ax
ALERT(<xMessage>, [<aOptions>], [<cCol orNornep], [<nDelay>]) --> nChoice or N L
Argunment s

<xMessage> Message to display in the dialog box. can be of any Harbour

type. |If <xMessage> is an array of Character strings, each elenent would be
displayed in a new line. If <xMessage> is a Character string, you could split the
message to several lines by placing a semcolon (;) in the desired places.

<aOptions> Array with avail abl e response. Each el enent should be Character
string. If onmtted, default is { "Ok" }.

<cCol orNorm> Color string to paint the dialog box with. If omtted, default
color is "W/ R".

<nDel ay> Nunber of seconds to wait to user response before abort. Default
value is 0, that wait forever.

Ret ur ns

ALERT() return Nuneric value representing option number chosen. If ESC was
pressed, return value is zero. The return value is NIL if ALERT() is called with
no paraneters, or if <xMessage> type is not Character and HB C52 STRICT option was
used. |If <nDel ay> seconds had passed without user response, the return value is 1.

Descri ption

ALERT() display sinple dialog box on screen and let the user select one
option. The user can nove the highlight bar using arrow keys or TAB key. To sel ect
an option the user can press ENTER, SPACE or the first letter of the option.

If the programis executed with the //NOALERT conmand line switch, nothing is
di splayed and it sinply returns NIL. This switch could be overridden with
__ NONQALERT() .

If the GI systemis linked in, ALERT() display the nmessage using the full
screen 1/ O system if not, the information is printed to the standard output using
QUTSTD() .

Exanpl es
LOCAL cMessage, aQptions, nChoice

/1 harm ess nmessage

cMessage : = "Major Database Corruption Detected!;" + ;
"(deadline in few hours);;" +
"where DO you want to go today?"

/1 define response option
aOptions := { "Ck", "www. jobs.cont, "Qops" }

/1 show nessage and |l et end user select panic |evel
nChoi ce : = ALERT(cMessage, aQOptions)
DO CASE
CASE nChoi ce ==
/1 do nothing, blane it on sone one el se
CASE nChoi ce ==
? "Please call hone and tell themyou' re gonn'a be |ate'
CASE nChoi ce ==
/1 nmake sure your resunme is up to date
CASE nChoi ce ==
? "Qops node is not working in this version"
ENDCASE

St at us
Ready
Conpl i ance

This function is sensitive to HB C52 STRICT settings during the conpilation

of source/rtl/alert.prg

defined: <xMessage> accept Character values only and return NL if
other types are passed.

undefi ned: <xMessage> could be any type, and internally converted to
Character string. If type is Array, nmulti-line nessage is displayed.

defined: Only the first four valid <aOptions> are taken
undefined: <aQptions> could contain as nany as needed options.

I f HB_COVWPAT _C53 was define during conpilation of source/rtl/alert.prg the
Left-Muse button could be used to select an option.

The interpretation of the //NOALERT command line switch is done only if
HB C52_ UNDOC was define during conpilation of source/rtl/alert.prg

<cCol orNornmP> is a Harbour extension, or at |east un-docunented in Cipper 5.2
NG

<nDel ay> i s a Harbour extension
Fil es
Library is rtl
See Al so:

. PROVPT
MENU TO
QUTST
__NONOALERT()

NONOALERT()

Override //NOALERT command |ine switch

Synt ax

__ NONOALERT() --> NIL
Argunment s
Ret ur ns

__ NONOALERT() always return NIL.
Descri ption

The // NOALERT command |ine switch cause Clipper to ignore calls to the
ALERT() function, this function override this behavior and always display ALERT()
di al og box.

Exanpl es

/1 make sure alert are been displayed
__ NONQALERT()

St at us

Ready
Files

Library is rtl
Conpl i ance

__ _NONQALERT() is an undocunmented CA-Clipper function and exist only if
HB_C52_ UNDOC was defined during the conpilation of source/rtl/alert.prg

HB_ OSNEWLI NE()

Returns the new ine character(s) to use with the current OS
Synt ax
HB_OSNewLi ne() --> cString
Ret ur ns
<cString> A character string containing the character or characters required
to nmove the screen cursor or print head to the start of a newline. The string
will hold either CHR(10) or CHR(13) + CHR(10).

Descri ption
Returns a character string containing the character or characters required to
nove the screen cursor or print head to the start of a new line for the operating

systemthat the programis running on (or thinks it is running on, if an OS
enmul ator is being used).

Exanpl es

/1 Get the newline character(s) for the current OS using defaults.
STATI C s_cNewLi ne

's._'cNewLi ne : = HB_OSNewLi ne()
QutStd("Hello Wrld!'" + s_cNewline)

Tests
val type(HB OSNewLine()) == "C'
LEN(HB_OSNewLi ne()) ==
St at us
Ready
Conpl i ance
This is an add-on Operating System Tool function.
Pl at f or ns

Under OS_UNI X_COWMPATI BLE operating systemthe return value is the Line-Feed
(0x0a) character CHR(10), with other operating systens (like DOS) the return val ue
is the Carriage-Return plus Line-Feed (0x0d Ox0Oa) characters CHR(13)+CHR(10).

Fil es
Library is rtl
See Al so:

(0@
QUTSTD()
QUTERR()

hb_Col or | ndex(

Extract “"one color froma Pull Cl i pper col orspec string.
Synt ax
hb_Col or I ndex(<cCol or Spec>, <nlndex>)
Argunment s
<cCol orSpec> is a Cipper color |ist

<nl ndex> 1is the position of the color itemto be extracted, the first
position is the zero.

Ret ur ns

Descri ption

Clipper has a color spec string, which has nore than one <color init,
separated with conmas. This function is able to extract a given itemfromthis
list. You nay use the mani fest constants defined in color.ch to extract conmnon
d i pper colors.

Exanpl es

? hb_Col orlndex("WN, NNW, CLR ENHANCED) // "NW
Tests

see the regression test suit for conprehensive tests.
St at us

Ready
Conpl i ance

Was not part of CA-Cipper
Files

Library is rtl
See Al so:
ARRAY

DEVOUTP! CT()

Di splays a value to a device using a picture tenplate
Synt ax
DEVQUTPI CT(<xExp>, <cPi cture>[,<cColorString>]) --> NL
Argunment s
<xExp> is any valid expression
<cPicture> 1is any picture transformation that TRANSFORM) can use.

<cColorString> is an optional string that specifies a screen color to use in
pl ace of the default color when the output goes to the screen.

Ret ur ns

Descri ption

Qut puts any expression using a picture transformation instead of using the
default transformation for the type of expression.

Exanpl es

/1 Qutput a negative dollar anpbunt using debit notation.
DEVQUTPI CT(-1.25, "@%$ 99,999.99)

Tests

@3,1 SAY -1.25 PICTURE "@%$ 99, 999. 99"
will display "$(1.25)" starting on row four, colum two of the
current device (w thout the double quotation marks, of course).

St at us
Ready
Conpl i ance
DEVOUTPI CT() is nostly CA-Clipper conpliant. Any differences are due to
enhancenents in the Harbour TRANSFORM) over CA-d i pper.
Files
Library is rtl
See Al so:
ARRAY

TRANSFORM)

| NPUT()

St opS appl i cation
Synt ax
__INPUT(<cMessage>) --> <cString>
Argunment s
<cMessage> is any valid expression.
Ret ur ns

Descri ption

This function waits for a console input and returns macroed expression
ent ered.

St at us
Started
Conpl i ance
__INPUT() is fully CA-dipper conpliant.
Files
Library is rtl
See Al so:

—VAIT()
ARRAYI

___Text Save()
Redi rect console output to printer or file and save ol d settings

Synt ax
__TextSave(<cFile>) --> NL
Argunment s
<cFile> is either "PRINTER' (note the uppercase) in which console output is
SET to PRINTER, or a nane of a text file with a default ".txt" extension, that is
used to redirect consol e output.
Ret ur ns

__TextSave() always return NL.

Descri ption
__TextSave() is used in the preprocessing of the TEXT TO command to redirect
t he consol e output while saving old settings that can be restored later by
__TextRestore().

St at us
Ready

Conpl i ance
__Text Save() is an Undocunmented CA-dipper function

Pl at f or ns
ALL

Fil es
Library is rtl

See Al so:

SET()
SET ALTERNATE

SET PRI NTER
ARRAY
__Text Restore()

__Text Restore()
Rest ore consol e output settings as saved by _ Text Save()

Synt ax
_ _TextRestore() --> NL
Argunment s

Ret ur ns
__TextRestore() always return N L.
Descri ption

__TextRestore() is used in the preprocessing of the TEXT TO conmmand to
restore consol e output settings that were previously saved by _ Text Save().

St at us
Ready
Conpl i ance
__TextRestore() is an Undocunented CA-dipper function
Pl at f or ms
All
Files
Library is rtl
See Al so:

SET()
SET ALTERNATE

SET PRI NTER
ARRAY

Text Save()

VAI T()

StopS the application until a key is pressed.
Synt ax
__ WAIT(<cMessage>) --> <cKey>
Argunment s
<cMessage> is a string.

Ret ur ns

Descri ption

This function stops the application until a key is pressed. The key nust be
in the range 32..255. Control keys are not processed.

Exanpl es

/1 Wait for a key stroke
__Wait("Press a key to continue")

Tests
do while cKey = "Q
cKey := __Wait("Press 'Q to continue")
end do
St at us
Ready
Conpl i ance
_ WAIT() is fully CA-dipper conpliant.
Files
Library is rtl
See Al so:
ARRAY

OUTSTI()

Wite a list of values to the standard output device
Synt ax
QUTSTD(<xExp,...>) --> NL
Argunment s

<XExp,...> is a list of expressions to display. Expressions are any mxture
of Harbour data types.

Ret ur ns
QUTSTD() always returns N L.
Descri ption

QUTSTD() wite one or nore values into the standard out put device. Character

and Menmo values are printed as is, Dates are printed according to the SET DATE
FORMAT, Nureric values are converted to strings, Logical values are printed as . T.
or .F., NIL are printed as NL, values of any other kind are printed as enpty
string. There is one space separating each two values. Note that Nuneric val ue can
take varying length when converted into string depending on its source (see STR()
for detail).

QUTSTD() is simlar to QQOUT() with the different that QQOUT() send its
out put to the Harbour console stream which can or can not be redirected according
with the screen driver, and OQUTSTD() send its output to the standard output device
(STDQUT) and can be redirected.

Exanpl es
QUTSTD("Hell o") /1l Result: Hello

oursTpD(1, .T., NL, "A")
QUTSTD("B") /1 Result: 1.T. NNL AB

St at us
Ready
Conpl i ance
QUTSTD() works exactly as in CA-dipper
Files
Library is rtl
See Al so:

OUTERR()

Wite a list of values to the standard error device
Synt ax
QUTERR(<xExp,...>) --> NL
Argunment s

<XExp,...> is a list of expressions to display. Expressions are any mxture
of Harbour data types.

Ret ur ns
QUTERR() always returns NI L.
Descri ption

QUTERR() wite one or nore values into the standard error device. Character

and Menmo values are printed as is, Dates are printed according to the SET DATE
FORMAT, Nureric values are converted to strings, Logical values are printed as . T.
or .F., NIL are printed as NL, values of any other kind are printed as enpty
string. There is one space separating each two values. Note that Nuneric val ue can
take varying length when converted into string depending on its source (see STR()
for detail).

There is an undocunented CA-C i pper conmand line switch //STDERR which can

set the file handle to wite output from QUTERR(). If not specified the default
STDERR is used, //STDERR or //STDERR: 0 set QOUTERR() to output to the sane file
handl e as QUTSTD(), //STDERR n set output to file handle n. Like other undocunented
features this switch is available only if source/rtl/console.c was conpiled with
the HB_C52_UNDCC fl ag.

Exanpl es

// wite error lo
OUTERR(DATE(), T

St at us

Ready
Conpl i ance

QUTERR() works exactly as in CA-dipper
Files

g information
I VE()

i
VE "Core neltdown detected")

Library is rtl
See Al so:

EJECT

| ssue an command to advance the printer to the top of the form
Synt ax

EJECT
Argunment s

Descri ption

This conmmand issue an formfeed command to the printer.If the printer is not
properly hooked up to the conputer,an error will not be generated and the comrand
wi |l be ignored.

Once conpl eted, t he val ues of PRON) and PCOL(),the row and colum indicators
to the printer,will be set to 0. Their val ues, however, may be nanipul ated before or
after ussuing an EJECT by using the DEVPOS() function

On compile time this command is translated into _ EJECT() function
Exanpl es

Use Cientes New
Set Device to Printer
Cur Pos: =0
Wi | e ! Eof ()
? Clientes->none, Cientes->endereco
Cur pos++
i f Curpos >59
Cur pos: =0
Ej ect
Endi f
Enddo
Set Device to Screen
Use

Tests
See exanpl es
St at us
Ready
Conpl i ance
This command is Ca-C ipper conpliant
Pl at f or ms
Al l
See Al so:

ARRAY
SET PRI NTER

CaL

Ret ur ns t$1e current screen columm position
Synt ax
COL() --> nPosition
Argunment s

Ret ur ns
<nPosi ti on> Current colunm position
Descri ption

This function returns the current cursor columm position. The value for this
function can range between 0 and MAXCOL().

Exanpl es
? Col ()
St at us
Ready
Conpl i ance
This Functions is Ca-Cipper conpliant
Pl at f or ms
All
Files
Library is rtl
See Al so:

RON()
MAXROW()
MAXCOL ()

Ret ur ns t;le current screen row pOSitiOI’l
Synt ax

RON) --> nPosition
Argunment s

Ret ur ns
<nPosi ti on> Current screen row position
Descri ption

This function returns the current cursor row | ocation. The value for this
function can range between 0 and MAXCOL().

Exanpl es
? Row()
St at us
Ready
Conpl i ance
This Functions is Ca-Cipper conpliant
Pl at f or ms
All
Files
Library is rtl
See Al so:

CAL()
MAXROW()
MAXCOL ()

MAXCOL()

Ret urns the nmaxi nun nunber of columms in the current video node
Synt ax
MAXCOL() --> nPosition
Argunment s

Ret ur ns
<nPosition> The nmaxi nun nunber of colums possible in current video node
Descri ption

This function returns the current cursor columm position. The value for this
function can range between 0 and MAXCOL().

Exanpl es
? MAXCol ()
St at us
Ready
Conpl i ance
This Functions is Ca-Cipper conpliant.
Pl at f or ns
It works in all platformw th some remarks: Under Linux and OS/2 the nunber of
col ums aval i abl e depends of the current Term nal screen size.Under Wn32, the

return value of MAXCOL() function is only affected if called after an SETMODE()
function

Fil es
Library is rtl
See Al so:

ROW()
MAXROW.)
CaL()

MAX

Returns the current screen row position
Synt ax
MAXROW) --> nPosition
Argunment s

Ret ur ns
<nPosition> The maxi mun nunber of rows possible in current video node
Descri ption

This function returns the current cursor row | ocation. The value for this
function can range between 0 and MAXCOL().

Exanpl es
? NMAXROW()
St at us
Ready
Conpl i ance
This Functions is Ca-Cipper conpliant
Pl at f or ns
It works in all platformw th some remarks: Under Linux and OS/2 the nunber of
col umms aval i abl e depends of the current Term nal screen size.Under Wn32, the

return value of MAXROAN) function is only affected if called after an SETMODE()
function

Fil es
Library is rtl
See Al so:

READVAR()

Return vari abl e name of current GET or MENU
Synt ax
READVAR([<cVarNanme>]) --> cd dVar Nane
Argunment s
<cVarNane> is a new variable nane to set.

Ret ur ns

READVAR() return the old variable name. If no variable previously was set,
READVAR() return "".

Descri ption
READVAR() is set inside a READ or MENU TO comand to hold the uppercase nane

of the GET / MENU TO vari able, and re-set back to old value when those conmands
finished. You should not normally set a variable name but rather use it to retrieve
the nane of a GET variable when executing a VALID or WHEN cl ause, or during SET KEY

execution and you are inside a READ or MENU TO

Exanpl es
/1 display a nenu, press F1 to view the MENU TO vari abl e nane
CLS
@1, 10 PROWPT "bl ood sucking insect that infect beds "
@2, 10 PROWPT "germ virus infection "

@3, 10 PROWT "defect; snag; (source of) malfunctioning"

@4, 10 PROVPT "smal | hidden m crophone "

@6, 10 SAY "(Press F1 for a hint)"

SET KEY 28 TO Showvar
MENU TO What | s_Bug

PROCEDURE Showvar
ALERT(READVAR()) // WHAT IS BUG in red ALERT() box

St at us
Ready
Conpl i ance

READVAR() works exactly like CA-Cipper's READKEY(), note however, that the
<cVar Nane> paraneter is not docunented and used internally by CA-dipper.

Pl at f or ns
Al l
Fil es

Library is rtl
See Al so:

@. . Get
. PROVPT
MENU TO
ARRAY
SET KEY
__AtPronpt ()
MenuTo()

LABEL FORM

Di spl ays labels to the screen or an alternate device
Synt ax

LABEL FORM <cLabel Nane> [TO PRINTER] [TO FI LE <cFil e>] [<cScope>] [WH LE <bWhile>]
[FOR <bFor>] [SAMPLE] [NOCONSCLE]

Argunment s
<clLabel Name> Nane of |abel file
<cFi |l e> Nane of an alternate file
<cScope> Expression of a scoping condition
<bWhi | e> VHI LE condi tion
<bFor > FOR condition
Descri ption
This command allows | abels to be printed based on the format outlined in .LBL
file specified as <cLabel Nane>. By default, output will go to the screen however

this output may be rerouted with either the TO PRINTER or the TO FILE cl ause.

If the TO FILE clause is specified, the nane of the ASCII text file
contai ning the generated | abels will be <cFile>

If no file extension is specified a . TXT extension is added. <cScope> is the

scope condition for this command. Valid scopes include NEXT <expN> (nunber of
records to be displayed, where <expN> is the nunber of records), RECORD <expN> (a
specific record to be printed), REST (all records starting fromthe current record
position,and ALL (all records). The default is ALL

Bot h | ogical expression may work ill conjunction with one another where

<bFor> is the |l ogical expression for the FOR condition (for records to be

di spl ayed whitin a given val ue range) and <bWile> for the WHILE condition (for
records to be displayed until they fail to nmeet the condition).

If the SAMPLE cl ause is specified, test |labels will be generated.

If the NOCONSOLE cl ause is specified,the console will be turned off while
this conmmand is being executed.

This command follows the search criteria outlined in the SET PATH TO conmand.
The path may be specified, along, with (the drive letter, in <cLabel Name>

Exanpl es
FUNCTI ON' VAl N()

USE Test New
LABEL FORM EE

USE
RETURN NI L
St at us
Ready
Conpl i ance
This command is CA-Cipper conpliant.
Pl at f or ns
ALL
Files

Library is Rtl.lib
See Al so:

REPORT FORM

REPORT FORM

Di splay a report
Synt ax

REPCORT FORM <cReport Nanme> [TO PRINTER] [TO FI LE <cFil e>] [<cScope>] [WH LE <bWhil e>
] [FOR <bFor>] [PLAI N | HEADI NG <cHeadi ng>] [NOEJECT] [SUMVARY] [NOCONSOLE]

Argunment s

<cReport Nane> Nanme of report file

<cFi |l e> Nane of alternate file
<cScope> Scope.
<bWhi | e> Logi cal expression of WH LE condition
<bFor > Logi cal expression of FOR condition
<cHeadi ng> Report headi ng

Ret ur ns

Descri ption

This conmand prints out the report naned <cReportNane>, which is a standard
FRMfile. The file extension is not required because FRMwi Il be assumed. The SET
PATH TO and SET DEFAULT TO conmands affect the search for the file <cReportName>;
unless a drive and path are specified in <cReportName>, REPORT will search the path
specified in the SET PATH command if it cannot find the report formin the current
directory.

The out put of the report will be offset based on the setting of the SET MARG N
TO val ue.

By default, output will go to the console; however, it nay be controlled via
either the TO PRINTER or TO FILE clause. If the output is to go to the file, the
nane of the alternate file is specified in <cFile> Unless specified in <cFile>,
the default file extension will be .TXT . <cScope> is the scope for this comuand.
Val i d scopes include NEXT <expN> (where <expN> 1s tile nunber of records), RECORD
<expN> (a specific record to be displayed), REST (all records fromthe current
record position), and ALL (all records). The default is ALL

Bot h | ogi cal expressions may work in conjuntion with one another, where <bFor>
is the logical expression for the FOR condition (for records to be displayed
within a given range) and <bWhile> for the WH LE condition (for records to be
di spl ayed until the condition fails).

If the PLAIN clause is specified, date and page nunbers are suppressed. In
addition, there is no automatic page breaking, and the report title and columm
headi ngs appear only once at the top of the form

If the HEADI NG cl ause i s used, <cHeading> is displayed on the first title of

each report page. The val ue of <cHeading> is evaluated only once before executing
the report; varying the values of <cHeading> is not allowed. The PLAIN clause will
t ake precedence over the HEADI NG cl ause if both are included.

If the NOEJECT clause is used, the initial page eject on the report will not
be issued when the output clause TO PRINTER is specified. Qtherw se, this clause
has no effect.

If the SUMARY Cl ause is specified, the report will contain only groups
subgroups, and grand total information. The detailed title iteminformation wll
be i gnored.

I f the NOCONSOLE cl ause is specified,output to the console will be turned off
while this conmand i s being executed.

Exanpl es

FUNCTI ON() MAIN
USE Test New
Report FORM EE
USE

RETURN NI L
St at us

Ready
Conpl i ance

This Command is CA-Clipper conpliant.
Pl at f or ms

ALL
Files
Library is Rtl.lib
See Al so:

LABEL FORM

MVPUBLI ()

Thi s function creates a PUBLIC vari abl e

Synt ax
__MVPUBLI C(<vari abl e_name>)
Argunment s
<variable nane> = either a string that contains the variable's nane or an

one-di mensi onal array of strings with variable nanmes No skeleton are allowed here.
Ret ur ns

Descri ption
This function can be called either by the harbour conpiler or by user. The
conpi l er always passes the itemof IT _SYMBOL type that stores the nane of
variable. |If a variable with the sanme nane exists already then the new variable is

not created - the previous value remains unchanged. |If it is first variable with
this name then the variable is initialized with .T. val ue.

Exanpl es

None Aval i abl e

St at us

Ready
Conpl i ance

This function is a Harbour extension
Files

Library is vm

MVPRI VATE()

Thi s function creates a PRI VATE vari abl e

Synt ax
__MWPRI VATE(<vari abl e_nane>)
Argunment s
<variable nane> = either a string that contains the variable's nane or an

one-di mensi onal array of strings with variable nanmes No skeleton are allowed here.
Ret ur ns

Descri ption
This function can be called either by the harbour conpiler or by user. The
conpi l er always passes the itemof IT _SYMBOL type that stores the nane of
variable. |If a variable with the same nanme exists already then the value of old

variable is hidden until the new variable is released. The new variable is always
initialized to NIL val ue.

Exanpl es

None Aval i abl e

St at us

Ready
Conpl i ance

This function is a Harbour extension
Files

Library is vm

MVXRELEASE()

Thi s Tunction rel eases value stored in PRI VATE or PUBLIC vari abl e

Synt ax
__ MXRELEASE(<vari abl e_nanme>)
Argunment s
<variable nane> = either a string that contains the variable's nane or an

one-di mensi onal array of strings with variable nanmes No skeleton are allowed here.
Ret ur ns

Descri ption

This function rel eases values stored in nenory variable. It shouldn't be

called directly, rather it should be placed i nto RELEASE conmand. |If the rel eased
vari able is a PRI VATE variable then previously hidden variable with the sanme nane
becomes visible after exit fromthe procedure where rel eased variable was created.
If you access the released variable in the sane function/procedure where it was
created the the NIL value is returned. You can however assign a new value to

rel eased variable w thout any side effects.

It releases variable even if this variable was created in different procedure

Exanpl es

PROCEDURE MAI N()
PRI VATE nPrivate

nPrivate :="PRI VATE from MAI N()"

? nmPrivate /1 PRI VATE from MAI N()

Test ()

? nPrivate /1 PRI VATE from MAI N()
RETURN

PROCEDURE Test ()
PRI VATE nPri vat e

nPrivate :="PRI VATE from Test ()"

? nPrivate /1 PRI VATE from TEST()
RELEASE nPrivate

? nmPrivate /1 NI'L

nPrivate :="Again in Test()"

RETURN

St at us

Ready
This function is a Harbour extension

Fil es

Library is vm

MVREL EASE()

Thi s Tunction rel eases PRI VATE vari abl es

Synt ax
__ MVRELEASE(<skel et on>, <include_exclude_flag>)
Argunment s
<skeleton> = string that contains the wildcard nask for variables' nanes

that will be released. Supported wildcards: '*'" and '?" <include_exclude_flag> =
| ogi cal value that specifies if variables that match passed skel eton should be
either included in deletion (if .T.) or excluded fromdeletion (if .F.)

Ret ur ns

Descri ption

This function rel eases values stored in nenory variables. It shouldn't be

called directly, it should be placed into RELEASE ALL command. |If the rel eased
variable is a PRI VATE vari abl e then previously hidden variable with the sane nane
beconmes visible after exit fromthe procedure where rel eased variabl e was creat ed.
If you access the released variable in the same function/procedure where it was
created the the NIL value is returned. You can however assign a new value to

rel eased variable w thout any side effects. PUBLIC variables are not changed by
this function.

Exanpl es

None Aval i abl e

St at us

Ready
Conpl i ance

This function is a Harbour extension
Files

Library is vm

MVSCOPE()

If variable exists then returns its scope.
Synt ax
__IWSCOPE(<cVar Nanme>)
Argunment s

<cVar Nane>

Ret ur ns

=variable is not declared (not found in synbol

vari abl e doesn't exi st
i nformati on cannot
=for public variables
out si de of current

declared in current

Exanpl es

(but found i

PROCEDURE MAI N()
PUBLI C nPubl i c
PRI VATE nPri vat ed obal

Cal I Proc()
? __nvScope("nPrivatelLocal ")

RETURN

PROCEDURE Cal | Proc()
PRI VATE nPri vat eLocal

? __nvScope("nmPublic")

? __nvScope("nPrivated obal")
? __nvScope("nPrivatelLocal ")
? __nvScope("nFindWve")

be obtai ned (nenory error
HB_M_PRI VATE GLOBAL =for
function/procedure
function/procedure

a string with a variable nane to check

=if
=if
HB_M_PUBLI C
private variabl es decl ared
HB_W_PRI VATE LOCAL =for private variabl es

tabl e) HB_MV_UNKNOMW
table) HB_M/_ERROR
or argunent error)

n symnbol

/1 HB_MV_UNKNOWN

I F(__mvScope("nPublic") > HB_MW_ERRCR)

? "Variabl e exists"
ELSE

? "Variable not created yet"
ENDI F

RETURN

St at us

Ready
This function is a Harbour

Files
Li brary is vm
See Al so:
ARRAY

Ext ensi on

MVCLEAR()

Thi s Tunction releases all PRI VATE and PUBLIC vari abl es
Synt ax
__MVCLEAR()
Argunment s

Ret ur ns

Descri ption

This function releases all PRI VATE and PUBLI C vari abl es.

It is used to
i npl ement CLEAR MEMORY statenent. The nmenory occupied by al
i
t

visible variables are
aruntinme error. You

I
rel eased - any attenpt to access the variable will result in
he variabl e that was

have to reuse PRI VATE or PUBLIC statenent to create again
cleared by this function

St at us
Ready
Conpl i ance
This function is a Harbour extension
Files
Library is vm
See Al so:
MVPUBLI C()

MVDBG NFQY)

This Tunction returns the informati on about the variables for debugger

Synt ax

__MWDBA NFQ(<nScope> [, <nPosition> [, @cVarNanme>]])
Argunment s

<nScope> = the scope of variables for which an information i s asked

Supported val ues (defined in hbmenvar. ch)

HB_MV_PUBLI C HB_M/_PRI VATE (or any

other value) <nPosition> = the position of asked variable on the list of variables

with specified scope - it should start fromposition 1
ref erence and <nPosition> is specified

filled with a variable name if passed by

Ret ur ns

<cVar Nane>

the value is

Descri ption
This function retrieves the information about menvar variables. It returns
ei ther the nunber of variables with given scope (when the first argunent is passed
only) or a value of variable identified by its position in the variables' Iist
(when second argunment is passed). It also returns the nane of a variable if

optional third argunent is passed by reference.

If requested variable doesn't exist (requested position is greater then the
nunber of defined variables) then NIL value is returned and variable nane is set
to n ?ll

The dynami c synbols table is used to find a PUBLIC variable then the PUBLIC
vari abl es are always sorted al phabetically. The PRIVATE variables are sorted in
the creation order.

Note: Due to dynamic nature of nenmvar variables there is no guarantee that
successive calls to retrieve the value of <Nth> PUBLIC variable will return the
val ue of the sane vari abl e.

Exanpl es

#i ncl ude <hbnemvar. ch>
LOCAL nCount, i, xVal ue, cNane

nCount =_nmvDBG NFO(HB_MWV_PUBLI C)

FOR i : =1 TO nCount
xVal ue = nvDBA NFOU HB W _PUBLIC, i, @Nane)
? i, cNane, xVal ue

NEXT

#i ncl ude <hbnenvar. ch>
PROCEDURE MAI N()

? ' PUBLI ', nvDBG NFOQ(HB_MW/_PUBLI C)

? 'PRIVATE=', _ nvDBA NFQ HB_MW_PRI VATE)
PUBLI C cPublic:="cPublic in MAIN

? 'PUBLIC=', _ nvDBG NFOQ{ HB_MV_PUBLIC)
? ' PRIVATE=', _ nvDBG NFQ(HB_MV_PRI VATE)

PRI VATE cPrivate: =" cPrivate in MAIN

2 'PUBLIC=', __nvDBG NFOQ(HB_MV_PUBLIC)
2 ' PRIVATE=', _ _nvDBG NFQ(HB_MV_PRI VATE)

Count Menvar s()

? '"Back in Main'
? ' PUBLI C=', nvDBG NFO(HB_MW/_PUBLI C)

2 ' PRIVATE=', _ _nvDBG NFQ(HB_MV_PRI VATE)

RETURN

PROCEDURE Count Menvar s()

LOCAL i, nCnt, xVal, cNane
PUBLI C ccPublic: =" ccPublic'
PRI VATE ccPrivate: ="' ccPrivate'

? "I n Count Menvars'
? ' PUBLI C=', mvDBA NFO(HB_ MW/ _PUBLI C)

? ' PRIVATE=', _ nvDBA NFQ HB_MW_PRI VATE)
PRI VATE cPublic: =" cPublic'

? 'PUBLIC=', _ nvDBGA NFOQ{ HB_M_PUBLIC)
? ' PRIVATE=',”_ nvDBG NFQ(HB_M/_PRI VATE)
nCnt = nvDBG NFO{ HB_MW_PRI VATE) +1
FOR i:=1 TO nCnt
xVal = mvDBGA NFO{ HB_MV_PRIVATE, i, @Nane)
? i, '=", cNanme, xVal
NEXT
nCnt = nvDBG NFO{ HB_MW_PUBLIC) +1
FOR i:=1 TO nCnt
xVal = nmvDBG NFO{ HB_MW_PUBLIC, i, @Nane)
? i, '=", cNanme, xVal
NEXT
RETURN
St at us
Ready
Conpl i ance

This function should be called fromthe debugger only.
Files

Li brary is vm

MVGET()

Thi s function returns value of nenory variable

Synt ax

_ MGET(<cVarNane>) --> <xVar>
Argunment s

<cVar Nane> - string that specifies the name of variable
Ret ur ns

<xVar> The val ue of variable
Descri ption

This function returns the value of PRI VATE or PUBLIC variable if this
vari abl e exists otherwise it generates a runtine error. The variable is specified
by its name passed as the function paraneter.

Exanpl es
FUNCTI ON MEMVARBLOCK(cMenvar)
RETURN {| x| IIF(PCOUNT()==0, __ MGET(cMenvar),;
_ _MWPUT(cMenmvar, x)) }
St at us
Ready
Conpl i ance
This function is a Harbour extension
Fil es

Library is vm
See Al so:
MVPUT

MVPUT()

Thi s function set the value of nenory variable

Synt ax
_ MVGET(<cVarName> [, <xValue>]) --> <xVal ue>
Argunment s
<cVar Nane> - string that specifies the nane of variable <xVal ue> - a val ue
of any type that will be set - if it is not specified then NIL i s assuned
Ret ur ns

<xVal ue> A val ue assigned to the given variabl e.
Descri ption

This function sets the value of PRI VATE or PUBLIC variable if this variable
exists otherwise it generates a runtime error. The variable is specified by its

nane passed as the function paraneter. |If a value is not specified then the NIL is
assuned

Exanpl es
FUNCTI ON MEMVARBLOCK(cMenvar)
RETURN {| x| IIF(PCOUNT()==0, __ MGET(cMenvar), ;
__MWPUT(cMermvar, x)) }

St at us
Ready

Conpl i ance
This function is a Harbour extension

Files
Library is vm

See Al so:

MVPUT

MEMVARBL OCK()

Ret urns a codebl ock that sets/gets a value of nmenvar variable

Synt ax

MEMVARBLOCK(<cMenvar Nane>) --> <bBl ock>
Argunment s

<cMenvar Name> - a string that contains the nane of variable
Ret ur ns

<bBl ock> a codebl ock that sets/get the value of variable
Descri ption

This function returns a codebl ock that sets/gets the value of PR VATE or

PUBLI C vari abl e. Wien this codebl ock is evaluated w thout any paraneters passed
then it returns the current value of given variable. If the second paraneter is
passed for the codebl ock evaluation then its value is used to set the new value of
given variable - the passed value is also returned as a value of the codebl ock

eval uati on.

Exanpl es

PROCEDURE MAI N()
LOCAL chSet Get
PUBLI C xPubl i c

chbSet Get = MEMVARBLOCK("xPublic")
EVAL(cbSet Get, "new val ue")
? "Value of xPublic variable", EVAL(cbSet CGet)

RETURN
St at us
Ready
Conpl i ance
This function is Ca-d i pper conpatible
Files
Library is rtl
See Al so:
MWGET

FI ELDBLOCK()

Return a code bl ock that sets/gets a value for a given field

Synt ax

FI ELDBLOCK(<cFi el dNane>) --> bFi el dBl ock
Argunment s

<cFieldNane> is a string that contain the field nane.
Ret ur ns

FI ELDBLOCK() return a code block that when evaluate could retrieve field
val ue or assigning a new value to the field. If <cFieldNane> is not specified or
fromtype other than character, FIELDBLOCK() return NI L.

Descri ption

FI ELDBLOCK() return a code block that sets/gets the value of field. Wen this

code block is evaluated without any paraneters passed then it returns the current
value of the given field. If the code block is evaluated with a paraneter, than its
value is used to set a new value to the field, this value is also return by the
block. If the block is evaluate and there is no field with the name <cFi el dNane>

in the current work area, the code block return NL

Note that FIELDBLOCK() works on the current work area, if you need a specific
wor k area code bl ock use FI ELDWBLOCK() i nstead.

Exanpl es
/1 open a file nanmed Test that have a field naned "nane"
LOCAL bField
bFil ed : = FI ELDBLOCK("nane")
USE Test
? "Original value of field "nane" :', EVAL(bField)
EVAL(bField, "M X new nane"
? "New value for the field "nane" :', EVAL(bField)
St at us
Ready
Conpl i ance

If the block is evaluate and there is no field with the nane <cFieldNane> in
the current work area, the code block return N L

CA-d i pper would rai se BASE/ 1003 error if the field does not exist.
Fil es
Library is rtl
See Al so:

EVAL
Fl ELDWBLOCK()
MEMVARBL OCK()

FI ELDWBLOCK()

Return a sets/gets code block for field in a given work area
Synt ax
FI ELDWBLOCK(<cFi el dName>, <nWbrkArea>) --> bFi el dBl ock
Argunment s
<cFieldNane> is a string that contain the field nane.
<nWrkArea> is the work area nunber in which <cFi el dName> exi st.
Ret ur ns

FI ELDWBLOCK() return a code bl ock that when evaluate could retrieve field

val ue or assigning a new value for a field in a given work area. |If <cFi el dName>
is not specified or fromtype other than character, or if <nWrkArea> is not
specified or is not nuneric FIELDWBLOCK() return NIL.

Descri ption

FI ELDWBLOCK() return a code block that sets/gets the value of field froma

given work area. Wen this code block is evaluated w thout any paraneters passed
then it returns the current value of the given field. If the code block is
evaluated with a paraneter, than its value is used to set a new value to the field,
this value is also return by the block. If the block is evaluate and there is no
field wth the nanme <cFi el dNane> in work area nunber <nWrkArea> the code bl ock
return N L.

Exanpl es

LOCAL bField

/1 this block work on the field "nanme" that exist on work area 2
bFiled : = FI ELDBLOCK("name", 2)

/1 open a file named One in work area 1

/1 that have a field named "nane"

SELECT 1

USE One

/1 open a file naned Two in work area 2

/1 it also have a field naned "nane"

SELECT 2

USE Two

SELECT 1

? "Original nanes: ", One->nanme, Two->nane

? "Nane value for file Two :", EVAL(bField)
EVAL(bField, "Two has new nane")

? "and now. , One->nane, Two->nane

St at us
Ready
Conpl i ance

If the block is evaluate and there is no field with the name <cFiel dNane> in
the given work area, the code block return NL

CA-d i pper woul d rai se BASE/ 1003 error if the field does not exist.
Files
Library is rtl
See Al so:

EVAL
Fl EL DBL OCK(
MEMVARBL OCK()

TYPE()

Retrieves the t

ype of an expression

Synt ax
TYPE(<cExp>) --> <cRet Type>
Argunment s
<cExp> nust be a character expression
Ret ur ns
<cRet Type> a string indicating the type of the passed expression
kcRet Type> Veani ng
A larray
'B" bl ock
"C' St ring
'D' dat e
T ogi cal
M reno
N huner i c
"0 bbj ect
U NI L, local, or static variable, or not linked-in function
"UE" syntax error in the expression or invalid argunents
U Function with non-reserved nane was requested
Descri ption
This function returns a string which represents the data type of the
argunent. The argunent can be any valid Harbour expression. |If there is a syntax
error in passed expression then "UE" is returned. |If there is a call for any
non-reserved Harbour function then "U" is returned (in other words there is no
call for passed UDF function during a data type deternination - this is Cipper
conpati ble behavior). Additionally if requested user defined function is not
linked into executable then "U' is returned.

The data type of expression is checked by invoking a nacro conpiler and by
eval uation of generated code (if there is no syntax errors). This causes that
annot determine a type of local or static variables - only synbols visible

TYPE() c
at runti

nme can be checked.

Notice the subtle difference between TYPE and VALTYPE functions. VALTYPE()
doesn't call a macro conmpiler - it sinply checks the type of passed
of any type. TYPE() requires a string argunent with a valid Harbour

on - the data type of this expression is returned.

function
ar gunment
expr essi

Exanpl es

TYPE(
TYPE(
TYPE(

N N N)

TYPE(

LOCAL c
PRI VATE

{1 21") [lprints "A"

"Il F(.T., SUBSTR(' TYPE',2,1), .F.)") [lprints "C'

"AT('OK', MyUDF())>0") [lprints "U"

{1, 2} 5]1") [/prints "UE"
e e

a:="A", b:="B"

"a+ b +c") /lprints: "U" ('C variable is a local one)

2 TYPE(

LOCAL cF

ilter := SPACE(60)

ACCEPT "Enter filter expression:" TO cFilter
|F(TYPE(cFilter) $ "CDLMN'))

/1 this is a valid expression

SET FILTER TO &cFilter
ENDI F

St at us
Ready

Conpl i ance

- Inconpatibility with Clipper: 1In the follow ng code:
PRIVATE | Cond := 0 ? TYPE("Il F(|Cond, 'true', MyUDF())")
Cipper will print "UE" - in Harbour the output will be "U"
- if "U" is returned then the syntax of the expression is correct. However
i nvalid argunents can be passed to function/procedure that will cause runtinme
errors during evaluation of expression
Files

Library is rtl

See Al so:

VALTYPE

VALTYPE()

Retrieves the data type of an expression

Synt ax
VALTYPE(<xExp
Argunment s

<xExp> is any valid expression

Ret ur ns
<cRet ur nType>

Descri ption

This function returns one character which represents the date type

ar gunent .
Exanpl es

See Test

Tests

function Test(

? Val Type(Array(1)) -->"
? Val Type({||] 1 +1}) -->"
? Val Type("HARBOUR') --> "
? Val Type(Date()) -->
? Val Type(. T.) --> "
? Val Type(1) -->"
? Val Type(TBrowse()) -->"
? Val Type(NIL) --> "
return nil
St at us
Ready
Conpl i ance

VALTYPE() is fully CA-Cipper conpliant.

Fil es

>) --> <cReturnType>

a character indicating the type of the passed expression

)

cQzr.QQux

Library is rtl

See Al so:

TYPE()

of the

BASE/ 1003
Attenpt to acces nonexisting or hidden variable
Descri ption
The specified variable was not found.
If it is a database field nake sure that the required database is open.
If it is a private or public variable then you nust first create it wusing
PRI VATE or PUBLI C st atenent.

Functi ons

St at us
d i pper

BASE/ 1068

Invalid type of argunent

Descri ption
The used data is not of |ogical type

Functi ons

St at us
d i pper

BASE/ 1068

Bound error in array access

Descri ption
The attenpt to retrieve data fromnon-array val ue

Functi ons

St at us
d i pper

BASE/ 1069

Bound error in array access

Descri ption
The attenpt to set data to non-array val ue

Functi ons

St at us
d i pper

BASE/ 1078

Invalid type of argunents

Descri ption
The type of conpared argunents do not nmatch

Functi ons

BASE/ 1072
Invalid type of argunents
Descri ption
The type of conpared argunents do not nmatch
Functi ons
<>

St at us
d i pper

BASE/ 1073
Invalid type of argunents
Descri ption
The type of conpared argunent do not natch
Functi ons
<

St at us
d i pper

BASE/ 1074
Invalid type of argunents
Descri ption
The type of conpared argunents do not nmatch
Functi ons
<=

St at us
d i pper

BASE/ 1075
Invalid type of argunents
Descri ption
The type of conpared argunents do not nmatch
Functi ons
>

St at us
d i pper

BASE/ 1076
Invalid type of argunents
Descri ption
The type of conpared argunents do not nmatch
Functi ons
>=

St at us
d i pper

BASE/ 1077
Invalid type of argunents
Descri ption

Qperation is not allowed for passed argunent. The argunent is not a |ogical
val ue.

Functi ons

St at us
d i pper

BASE/ 1078
Invalid type of argunents
Descri ption
The type of one or both argunents is not a |ogical
Functi ons
. AND.
St at us

d i pper

BASE/ 1079
Invalid type of argunents
Descri ption
The type of one or both argunents is not a |ogical
Functi ons
.OR
St at us

d i pper

BASE/ 1076
Invalid type of argunents
Descri ption
The val ue of argunment cannot be increnented
Functi ons
++

St at us
d i pper

BASE/ 1081
Invalid type of argunents
Descri ption
The plus operation is not allowed for used argunents.
Functi ons
+

St at us
d i pper

BASE/ 1082

Invalid type of argunents

Descri ption
The m nus operation is not allowed for used argunents.

Functi ons

St at us
d i pper

BASE/ 1100
Incorrect type of argunent
Descri ption
The specified argunment is not a string.
Functi ons
RTRRM TR M
St at us

d i pper

BASE/ 1101
Incorrect type of argunent
Descri ption
The specified argunment is not a string.
Functi ons
LTRI M
St at us

d i pper

BASE/ 1102
I nval id argunent passed to function
Descri ption
The first argunent passed to a function is not a string.
Functi ons
UPPER
St at us

d i pper

BASE/ 1103
I nval id argunent passed to function
Descri ption
The first argunent passed to a function is not a string.
Functi ons
LONER
St at us

d i pper

BASE/ 1104
Incorrect type of argunent
Descri ption
The specified argunment is not a nuneric val ue.
Functi ons
CHR
St at us

d i pper

BASE/ 1105
I nval id argunent passed to function
Descri ption
The argunents passed to a function are of incorrect type.
Functi ons
SPACE
St at us

d i pper

BASE/ 1106
I nval id argunent passed to function
Descri ption
The argunents passed to a function are of incorrect type.
Functi ons
REPLI CATE
St at us

d i pper

BASE/ 1107
Incorrect type of argunent
Descri ption
The specified argunment is not a string.
Functi ons
ASC
St at us

d i pper

BASE/ 1108
Incorrect type of argunent
Descri ption
The specified argunment is not a string.
Functi ons
AT
St at us

d i pper

BASE/ 1076

Invalid type of argunents

St at us
d i pper

BASE/ 1110
I nval id argunent passed to function
Descri ption
The first argunent passed to a function is not a string.
Functi ons
SUBSTR
St at us

d i pper

BASE/ 1110
I nval id argunent passed to function
Descri ption
The passed argunent is neither a string nor an array.
Functi ons
LEN
St at us

d i pper

BASE/ 1112
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function are of incorrect type
Functi ons
YEAR
St at us

d i pper

BASE/ 1113
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function are of incorrect type
Functi ons
MONTH
St at us

d i pper

BASE/ 1114
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function are of incorrect type
Functi ons
DAY
St at us

d i pper

BASE/ 1115
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function are of incorrect type
Functi ons
DOW
St at us

d i pper

BASE/ 1116
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function are of incorrect type
Functi ons
CMONTH
St at us

d i pper

BASE/ 1117
I nval id argunent passed to function
Descri ption
The argunent (or argunments) passed to a function is of incorrect type
Functi ons
CDow
St at us

d i pper

BASE/ 1120
I nval id argunent passed to function
Descri ption
The argunent (or argunments) passed to a function is of incorrect type
Functi ons
DTOS
St at us

d i pper

BASE/ 1122
Incorrect type of argunent
Descri ption
The argunent (or argunments) passed to a function is of incorrect type
Functi ons
TRANSFORM
St at us

d i pper

BASE/ 1124
Incorrect type of argunent
Descri ption
The first argunent is not a string.
Functi ons
LEFT
St at us

d i pper

BASE/ 1126
I nval id argunent passed to function
Descri ption
The first argunents passed to a function is not a string.
Functi ons
STRTRAN
St at us

d i pper

BASE/ 1132

Bound error in array access

Descri ption

The specified index into an array was greater then the nunber of elenents in
the array.

Functi ons

St at us
d i pper

BASE/ 1133

Bound error in array assigment

Descri ption

The specified index into an array was greater then the nunber of elenents in
the array.

Functi ons

St at us
d i pper

BASE/ 1068

Bound error in array el enent assignent

Descri ption

The specified index into an array was greater then the nunber of elenents in
the array.

Functi ons

St at us
d i pper

BASE/ 1085
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function is not an nuneric value
Functi ons
MOD
St at us

d i pper

BASE/ 1089
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function is not an nuneric value
Functi ons
ABS
St at us

d i pper

BASE/ 1090
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function is not an nuneric value
Functi ons
I NT
St at us

d i pper

BASE/ 1092
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function is not an nuneric value
Functi ons
M N
St at us

d i pper

BASE/ 1093
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function is not an nuneric value
Functi ons
MAX
St at us

d i pper

BASE/ 1094
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function is not an nuneric value
Functi ons
ROUND
St at us

d i pper

BASE/ 1095
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function is not an nuneric value
Functi ons
LOG
St at us

d i pper

BASE/ 1096
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function is not an nuneric value
Functi ons
EXP
St at us

d i pper

BASE/ 1097
I nval id argunent passed to function

Descri ption

The argunent (or argunents) passed to a function is not an nuneric value
Functi ons

SQRT
St at us

d i pper

BASE/ 1098
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function is not a string value
Functi ons
VAL
St at us

d i pper

BASE/ 1099
I nval id argunent passed to function
Descri ption
The argunent (or argunents) passed to a function is not a nuneric value
Functi ons
STR
St at us

d i pper

BASE/ 2010
I ncorrect argunents type
Descri ption
Passed Run Tine Errors was not strings with filenanmes to copy/
Functi ons
__COPYFI LE
Conpl i ance

Har bour specific

BASE/ 2012
File error
Descri ption

An error has occured during the attenpt to open, create or wite during copy
operation

Functi ons
___COPYFI LE
St at us

d i pper

BASE/ 2017
Inval id argunent passed to a function
Descri ption

The first argunent is not an array or/and the second argunent is not a code
bl ock

Functi ons
AEVAL
St at us

d i pper

BASE/ 2020
I nval id argunent passed to function

Descri ption
The passed value is negative. Only values > 0 are all owed.

Functi ons
SET DECI MALS
SET EPOCH
SET MARG N
SET MESSAGE

St at us
d i pper

BASE/ 3001
I ncorrect argunment type
Descri ption

The passed argunent is not an object. Only data of type OBJECT can be cl oned
by this function

Functi ons
OCLONE
St at us

Har bour specific

BASE/ 3002
Super class does not return an object
Descri ption

Passed argunent is not a nanme of defined class or specified class doesn't
have a super class

Functi ons
| NSTSUPER
St at us

Har bour specific

BASE/ 3003
Cannot find super class
Descri ption
Passed argunent is not a name of defined class
Functi ons
__ I NSTSUPER
St at us

Har bour specific

BASE/ 3004
Cannot nodify a DATAitemin a class
Descri ption

The attenpt to nodify a data nenber of a class was nmade. Only INLINE and
METHOD can be nodified

Functi ons
CLASSMOD
St at us

Har bour specific

BASE/ 3005
I ncorrect argunents type
Descri ption

Either the first argunent was not an object or the second argunent wasn't a
string.

Functi ons
| SMESSAGE, OSEND
St at us

Har bour specific

BASE/ 3007
Invalid type of argunent
Descri ption

The passed argunents are causing conflict in hanndling of the request. There
is no point in waiting forever for no input events!

Functi ons
| NKEY
St at us

Har bour specific

BASE/ 3008
Invalid type of argunent
Descri ption

The passed argunent(s) is not a string. It should be a string with a variable
name or an one-di mensi onal array of strings.

Functi ons
__MWPRI VATE, _ WPUBLI C
St at us

Har bour specific

BASE/ 3009
Incorrect argunment passed to _ MVGET function
Descri ption

__ MWGET function expects only one argunment: a string with a nane of variable.
The value of this variable will be returned.

Functi ons
_ MVGET
St at us

Har bour specific

BASE/ 3010
Incorrect argunment passed to _ MVPUT function
Descri ption

__MWPUT function expects at |east one argunent: a string with a name of
vari able. The value of this variable will be set.

Functi ons
__MVPUT
St at us

Har bour specific

BASE/ 3011
Inval id argunent passed to a function
Descri ption

The attenpt to retrieve the function argunent that was not passed. The nunber
of requested argunent is greated then the nunber of passed argunents.

Functi ons
PVALUE
St at us

Har bour specific

BASE/ 3012

Inval id argunent passed to a function

Descri ption
The first argunent is not a string with function/procedure nane that should
be cal |l ed.

Functi ons
DO

St at us

Har bour specific

BASE/ 3101
Invalid argunment passed to an object/class function
Descri ption
One passed argunent is not of the required type.
Functi ons
__08I*()
St at us

Har bour specific

BASE/ 3102
A synmbol should be nodified or deleted froma class, but the synbol
Descri ption

A synbol should be nodified or deleted froma class, but the synbol doesn't
exi st .

Functi ons
__0BI*()
St at us

Har bour specific

BASE/ 3103

A synbol should be added to a class, but the synbol already exists.

Descri ption

A synbol should be added to a class, but the synbol already exists.
Functi ons

__BJ*()
St at us

Har bour specific

TOOLS/ 4001
I nval id argunent passed to function
Descri ption
The second argunents passed to a function is not a string.
Functi ons
| SLEAPYEAR
St at us

Har bour specific

TERM 2013
Create error
Descri ption
The specified file cannot be created due sone CS error.
Functi ons
SET, SET ALTERNATE TO
St at us

d i pper

Har bour Ext ensi ons
Har bour Ext ensi ons
Descri ption

Language extensi ons:

* (Ol ass generation and nanagenent.

Clipper only allowed creation of objects froma few standard classes.

In Harbour, you can create your own classes--conplete with Methods,

I nstance Variables, Cass Variables and Inheritance. Entire applications can be
designed and coded in Object Oriented style.

* @Functi onNane>()

Returns the pointer (address) to a function.

The returned value is not useful to application-level programrng, but is
used at a low level to inplenent object oriented coding. (Internally, a class
method is a static function and there is no synbol for it, so it is accessed via
its address).

* Class TGetLi st

hj ect oriented support for Getlists managenent.

* ProcNane() support for class Method nanes.

Cl ass Methods can be retrieved fromthe call stack.

* Menory() has new return val ues.

See hbnenory. ch

* Transform() --> new function in format string

@ Make a zero padded string out of the nunber.

* SToD() --> dDate

New function that converts a yyyymmdd string to a Date val ue.

* Optional Conpile Tinme STRONG TYPE declaration (and conpile time TYPE M SMATCH
war ni ngs)

Exanpl e: LOCAL/ STATIC Var AS ...

* The Harbour debugger provides new interesting classes:

- Class TDbW ndow could be the foundation for a generic nultiplatform
- Cass TForm

- Class TDbMenu inpl enent both pull down and popup menus.

RTL enhanced functionality:

- Directory(<cMask>, <cFlags>, <l Ei ghtDotThree>)

The 3rd parameter is a Harbour (optional) paraneter and indicates that on those
platforns that support long filenanes, that you wish to receive what would be

consi dered the dos equivalant 8.3 nane. Could affect Adir() and Dir if they were
nodi fied to take advantage of it - currently, they will return long nanes if the os
supports it.

- HB_Di skSpace(<nDrive> <nType>)

The second paraneter is a Harbour (optional) paraneter and indicates the type of
di ski nfo bei ng requested. See en/diskspac.txt for info.

GN\U Li cense

Gu License File Part 1
Descri ption

GNU GENERAL PUBLI C LI CENSE

Version 2, June 1991

Copyright (C 1989, 1991 Free Software Foundation, Inc. 59 Tenple Place -
Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatimcopies of this license
docunent, but changing it is not allowed.

Pr eanbl e

The licenses for npbst software are designed to take away your freedomto

share and change it. By contrast, the GNU General Public License is intended to
guarantee your freedomto share and change free software--to nmake sure the software
is free for all its users. This General Public License applies to nost of the Free
Software Foundation's software and to any other program whose authors conmit to
using it. (Some other Free Software Foundation software is covered by the G\U

Li brary General Public License instead.) You can apply it to your prograns, too.

Wien we speak of free software, we are referring to freedom not price. Cur
CGeneral Public Licenses are designed to make sure that you have the freedomto

di stribute copies of free software (and charge for this service if you wi sh), that
you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free prograns; and that you know you can do

t hese things.

To protect your rights, we need to nake restrictions that forbid anyone to

deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you nodify it

For exanple, if you distribute copies of such a program whether gratis or

for a fee, you nust give the recipients all the rights that you have. You nust
make sure that they, too, receive or can get the source code. And you nust show
themthese terns so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
of fer you this Iicense which gives you legal perm ssion to copy, distribute and/or
viodi fy the software

Al so, for each author's protection and ours, we want to make certain that

everyone understands that there is no warranty for this free software. If the
software is nodified by soneone el se and passed on, we want its recipients to know
that what they have is not the original, so that any problens introduced by others
will not reflect on the original authors' reputations.

Finally, any free programis threatened constantly by software patents. W

wi sh to avoid the danger that redistributors of a free programw !l individually
obtain patent licenses, in effect nmaking the program proprietary. To prevent this,
we have nade it clear that any patent nust be licensed for everyone's free use or
not Ilicensed at all.

The precise ternms and conditions for copying, distribution and nodification
fol |l ow.

TERVS AND CONDI TI ONS FOR COPYI NG, DI STRI BUTI ON AND MCDI FI CATI ON

0. This License applies to any programor other work which contains a notice

pl aced by the copyright holder saying it nay be distributed under the terms of

this General Public License. The "Progrant, below, refers to any such program or
work, and a "work based on the Progranmt nmeans either the Program or any derivative
wor k under copyright law that is to say, a work containing the Programor a
portion of it, either verbatimor with nodifications and/or translated into another
| anguage. (Hereinafter, translation is included without Iimtation in the term
"modi fication".) Each |Ilicensee is addressed as "you". Activities other than
copying, distribution and nodification are not covered by this License; they are
outside its scope. The act of running the Programis not restricted, and the output
fromthe Programis covered only if its contents constitute a work based on the
Program (i ndependent of having been made by running the Progranm. Whether that is
true depends on what the Program does.

1. You nmay copy and distribute verbatimcopies of the Programs source code

as you receive it, in any medium provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and di scl ai ner
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Programa copy of
this License along with the Program You nmay charge a fee for the physical act of
transferring a copy, and you nmay at your option offer warranty protection in
exchange for a fee.

2. You may nodi fy your copy or copies of the Programor any portion of it,

thus form ng a work based on the Program and copy and distribute such

nodi fications or work under the terms of Section 1 above, provided that you al so
neet all of these conditions:

a) You nust cause the nodified files to carry proninent notices stating
that you changed the files and the date of any change.

b) You nust cause any work that you distribute or publish, that in whole or
in part contains or is derived fromthe Programor any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
Li cense.

c) If the nodified programnornally reads commands interactively when run

you must cause it, when started running for such interactive use in the nost
ordinary way, to print or display an announcenent including an appropriate
copyright notice and a notice that there is no warranty (or el se, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user howto view a copy of this License. (Exception: if
the Programitself is interactive but does not normally print such an announcenent,
your work based on the Programis not required to print an announcenent.)

These requirements apply to the nodified work as a whole. If identifiable

sections of that work are not derived fromthe Program and can be reasonably

consi dered i ndependent and separate works in themselves, then this License, and its
terns, do not apply to those sections when you distribute them as separate works.
But when you distribute the sane sections as part of a whole which is a work based
on the Program the distribution of the whole nust be on the terms of this License,
whose perm ssions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wote it.

Thus, it is not the intent of this section to claimrights or contest your
rights to work witten entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on the
Pr ogram

In addition, nere aggregation of another work not based on the Programwth
the Program (or with a work based on the Program) on a volunme of a storage or
di stribution nedium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable formunder the terns of Sections 1 and 2
above provided that you also do one of the follow ng:

a) Acconpany it with the conplete correspondi ng machi ne-readabl e source
code, which nmust be distributed under the terms of Sections 1 and 2 above on a
medi um customarily used for software interchange; or

b) Acconpany it with a witten offer, valid for at least three years, to

give any third party, for a charge no nore than your cost of physically performng
source distribution, a conplete nachine-readable copy of the correspondi ng source
code, to be distributed under the terns of Sections 1 and 2 above on a medi um
customarily used for software interchange; or

c) Acconpany it with the information you received as to the offer to

di stribute correspondi ng source code. (This alternative is allowed only for
nonconmer cial distribution and only if you received the programin object code or
executable formw th such an offer, in accord with Subsection b above.)

The source code for a work neans the preferred formof the work for naking

nodi fications to it. For an executable work, conplete source code neans all the
source code for all npbdules it contains, plus any associated interface definition
files, plus the scripts used to control conpilation and installation of the
execut abl e. However, as a special exception, the source code distributed need not
include anything that is normally distributed (in either source or binary form
with the nmajor conponents (conpiler, kernel, and so on) of the operating system on

whi ch the executable runs, unless that conponent itself acconpani es the executabl e.

If distribution of executable or object code is made by offering access to

copy froma designated place, then offering equivalent access to copy the source
code fromthe same place counts as distribution of the source code, even though
third parties are not conpelled to copy the source along with the object code.

4. You may not copy, nodify, sublicense, or distribute the Program except as
expressly provided under this License. Any attenpt otherwi se to copy, nodify,
sublicense or distribute the Programis void, and will automatically terni nate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses term nated so 1|ong as
such parties remain in full conpliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing el se grants you permssion to nodify or distribute the Program or
its derivative works. These actions are prohibited by lawif you do not accept this
Li cense. Therefore, by nodifying or distributing the Program (or any work based on
the Progran), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or nodifying the Program or works
based on it.

6. Each time you redistribute the Program (or any work based on the Progran)

the recipient automatically receives a license fromthe original licensor to copy,
distribute or nodify the Program subject to these terns and conditions. You nmay not
i mpose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing conpliance by third parties to this
Li cense.

See Al so:
G\U Li cense Part 2

GNU Li cense Part 2

Ghu License File Part 2
Descri ption

7. If, as a consequence of a court judgnment or allegation of patent

i nfringement or for any other reason (not linted to patent issues), conditions

are inposed on you (whether by court order, agreenent or otherw se) that contradict
the conditions of this License, they do not excuse you fromthe conditions of this
Li cense. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you
may not distribute the Programat all. For exanple, if a patent |icense would not
permt royalty-free redistribution of the Programby all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely fromdistribution of the Program

If any portion of this section is held invalid or unenforceable under any
particul ar circunstance, the balance of the section is intended to apply and the
section as a whole is intended to apply in other circunstances.

It is not the purpose of this section to induce you to infringe any patents

or other property right clainms or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software

di stribution system which is inplemented by public |license practices. Many people
have nade generous contributions to the wi de range of software distributed through
that systemin reliance on consistent application of that system it is up to the
aut hor/donor to decide if he or she is wlling to distribute software through any
other systemand a |icensee cannot inmpose that choice.

This section is intended to nmake thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Programis restricted in certain
countries either by patents or by copyrighted interfaces, the original copyright
hol der who places the Programunder this License may add an explicit geographica
distribution limtation excluding those countries, so that distribution is
permitted only in or anbng countries not thus excluded. In such case, this License
incorporates the linmtation as if witten in the body of this License.

9. The Free Software Foundati on may publish revised and/ or new versions of

the General Public License fromtime to time. Such new versions will be simlar in
spirit to the present version, but may differ in detail to address new problens or
concer ns.

Each version is given a distinguishing version nunber. If the Program

specifies a version nunber of this License which applies to it and "any later
version", you have the option of following the terns and conditions either of that
version or of any later version published by the Free Software Foundation. If the
Program does not specify a version nunber of this License, you may choose any
versi on ever published by the Free Software Foundation

10. If you wish to incorporate parts of the Programinto other free prograns

whose distribution conditions are different, wite to the author to ask for

perm ssion. For software which is copyrighted by the Free Software Foundation

wite to the Free Software Foundation; we sonetimes make exceptions for this. Qur
decision wll be guided by the two goals of preserving the free status of al
derivatives of our free software and of pronoting the sharing and reuse of software
general ly.

NO WARRANTY

11. BECAUSE THE PROGRAM | S LI CENSED FREE OF CHARCGE, THERE IS NO WARRANTY FOR

THE PROGRAM TO THE EXTENT PERM TTED BY APPL|I CABLE LAW EXCEPT WHEN OTHERW SE
STATED I N WRI TI NG THE COPYRI GHT HOLDERS AND/ OR OTHER PARTI ES PROVI DE THE PROGRAM
"AS |'S" WTHOUT WARRANTY OF ANY KIND, ElI THER EXPRESSED OR | MPLI ED, | NCLUDI NG, BUT
NOT LIMTED TO THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A

PARTI CULAR PURPCSE. THE ENTIRE RI SK AS TO THE QUALI TY AND PERFORMANCE OF THE
PROGRAM | S WTH YOQU. SHOULD THE PROGRAM PROVE DEFECTI VE, YOU ASSUME THE COST OF ALL
NECESSARY SERVI CI NG REPAIR OR CORRECTI ON.

12. IN NO EVENT UNLESS REQUI RED BY APPLI CABLE LAW OR AGREED TO IN WRI TI NG

WLL ANY COPYRI GHT HOLDER, OR ANY OTHER PARTY WHO MAY MODI FY AND/ OR REDI STRI BUTE
THE PROGRAM AS PERM TTED ABOVE, BE LIABLE TO YOU FOR DANMAGES, | NCLUDI NG ANY
GENERAL, SPECI AL, | NCI DENTAL OR CONSEQUENTI AL DAMAGES ARI SI NG QUT OF THE USE OR
I NABI LI TY TO USE THE PROGRAM (| NCLUDI NG BUT NOT LIMTED TO LCSS OF DATA OR DATA

BEI NG RENDERED | NACCURATE OR LOSSES SUSTAI NED BY YOU OR THI RD PARTIES OR A FAI LURE
OF THE PROGRAM TO OPERATE W TH ANY OTHER PROCGRAMS), EVEN | F SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVI SED OF THE PGSSI BI LI TY OF SUCH DAMAGES.

END OF TERVMS AND CONDI TI ONS

Appendi x: How to Apply These Terns to Your New Prograns

If you develop a new program and you want it to be of the greatest possible
use to the public, the best way to achieve this is to nake it free software which
everyone can redistribute and change under these terns.

To do so, attach the followi ng notices to the program It is safest to attach
themto the start of each source file to nost effectively convey the exclusion of
warranty; and each file should have at |east the "copyright" line and a pointer to
where the full notice is found:

<One line to give the progranms nane and an idea of what it does.> Copyright
(O yyyy <nane of author>

This programis free software; you can redistribute it and/or nodify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any l|later version

This programis distributed in the hope that it will be useful, but

W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the GNU CGenera
Public License for nore details.

You shoul d have received a copy of the GNU General Public License along with
this program if not, wite to the Free Software Foundation, Inc.
59 Tenple Place - Suite 330, Boston, MA 02111-1307, USA.

Al so add information on how to contact you by electronic and paper mail. If
the programis interactive, nake it output a short notice like this when it starts
in an interactive node

Gnonovi si on version 69, Copyright (C year name of author Ghonovision cones

wi th ABSOLUTELY NO WARRANTY; for details type "showw . This is free software

and you are welcome to redistribute it under certain conditions; type "showc' for
details.

The hypot hetical commands “~show w and “show c' should show the appropriate

parts of the General Public License. O course, the conmmands you use nay be called
sonet hing other than “show w and “show c'; they could even be nmouse-clicks or nmenu
i tems--whatever suits your program

You should also get your enployer (if you work as a programer) or your
school, if any, to sign a "copyright disclainmer” for the program if necessary.
Here is a sanple; alter the nanes:

Yoyodyne, Inc., hereby disclains all copyright interest in the program
“Gronovi sion' (which nakes passes at conpilers) witten by Janes Hacker

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This CGeneral Public License does not permt incorporating your programinto
proprietary prograns. |f your programis a subroutine Ilibrary, you nay consider it
nore useful to permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Library General Public License instead of this

Li cense.

FSF & GNU i nquiries & questions to gnu@nu. org.
Copyri ght notice above.
Free Software Foundation, |nc.

59 Tenple Place - Suite 330, Boston, MA 02111, USA
Updated: 3 Jan 2000 rnms

See Al so:

Li cense
G\U Li cense

Comi | er tions
Cbnpile{ngptions C}J

Descri ption

I nvoki ng t he Harbour conpiler:

har bour <file[.prg]> [options]

or

har bour [options] <file[.prg]>

or

har bour [options] <file[.prg]> [options]

The conmand |ine options have to be separated by at |east one space. The
option can start with either '/' character or '-' character

The Har bour conmand |ine options:

/a automati c nenvar decl aration

This causes all variables declared by PARAMETER, PRI VATE or PUBLIC
statements to be automatically declared as MEWAR vari abl es.

/b debug info

The conpiler generates all information required for debuggi ng

/ d<i d>[=<val >] #defi ne <id>

/es[<l evel >] set exit severity

/es or /esO = all warnings are ignored and exit code returned by the
conpil er (accessed by DOS ERRORLEVEL conmand) is equal to O if there are no errors
in conpiled source file.

/esl = any warni ngs generate a non=zero exit code, but output is
still created.

/es2 = all warnings are treated as errors and no output file is
created. The exit code is set to a non=zero val ue.

/ g<t ype> out put type generated is <type>

/ gc out put type: C source (.c) (default)

/ gf out put type: W ndows/DOS OBJ32 (.o0bj)

/ gh out put type: Harbour Portable Object (.hrb)

/ 9j out put type: Java source (.java)

/ gp out put type: Pascal source (.pas)

/ gr out put type: Wndows resource (.rc)

/i <pat h> add #include file search path

/1 suppress |ine nunber information

The conpil er does not generate the source code |line nunbers in the output
file. The PROCLINE() function will return O for nodules conpiled using this
option.

/m conpil e current nmodul e only

/In no inplicit starting procedure

The conpil er does not create a procedure with the same nane as the

conpiled file. This neans that any declarations placed before the first PROCEDURE
or FUNCTI ON statenent have file= w de scope and can be accessed/used in al
functions/procedures defined in the conpiled source file. Al executable statenents
pl aced at the beginning of the file and before the first PROCEDURE/ FUNCTI ON
statenent are ignored.

/ o<pat h> output file drive and/or path

/p generate pre=processed output (.ppo) file

The conpiler only creates the file that contains the result of
pre=processi ng the source file.

The conpiler does not print any nessages during conpiling (except the
copyright info).

/g0 be really quiet and don't display even the copyright info

[r[<lib>] request linker to search <lib> (or none)

The conpiler checks the syntax only. No output file is generated.

/ t <pat h> path for tenp file creation

Currently not used in Harbour (the Harbour conpiler does not create any
tenporary files).

fu[<file>] use comand definition set in <file> (or none)

/v vari abl es are assuned M=>

Al'l undecl ared or unaliased vari abl es are assuned MEMVAR vari abl es
(private or public variables). If this switch is not used then the scope of such
vari ables i s checked at runtine.

/W <l evel >] set warning | evel nunber (0..4, default 1)

/w0 = no war ni ngs

/w or /wl = Cli pper conpatibl e warnings

/w2 = some useful warnings nissed in Cipper

/w3 = warni ngs generated for Harbour | anguage extensions and al so

enabl es strong type checking but only warns against declared types, or types which
may be calculated at conpile tine

/w4 = Enabl es war ni ng about suspi cious operations, which neans if
you m x undecl ared types, or types which can not be calculated at conpile
tinme,together with declared types, a warning will be generated

[X[<prefix>] set symbol init function name prefix (for .c only)

Sets the prefix added to the generated synbol init function nane (in C
output currently). This function is generated automatically for every PRG nodul e

conpiled. This additional prefix can be used to suppress problens w th duplicated
synbols during linking an application with sone third party libraries.

ly trace lex & yacc activity

The Har bour conpiler uses the FLEX and YACC utilities to parse the source
code and to generate the required output file. This option traces the activity of
these utilities.

lz suppress |ogical shortcutting (.and. & .or.)

/10 restrict synmbol length to 10 characters

Al variable and functi on nanes are cut to nmaxi rum 10 char act ers.

Conpilation in batch node

Not supported yet.

Known i nconpatibilities between harbour and clipper conpilers

NOTE:

If you want a 100% conpati ble conpile and runtime libraries then you have to
defi ne HARBOUR_STRI CT_CLI PPER_COWPATI BI LI TY. This option should be defined in the

file include/ hbsetup.h (in fact this option is placed in a conrent by default = you

need to renove the /* */ characters only). This change has to be done before
i nvoking the make utility.

Handl i ng of undecl ared vari abl es

When a value is assigned to an undecl ared variable and the '=v' command |ine
option is not used, then the Cipper conpiler assumes that the variable is a
PRI VATE or a PUBLIC variabl e and generates POPM (pop nemvar) opcode.

When t he val ue of an undecl ared variable is accessed and the '=v' command
line option is not used, the Cipper conpiler generates PUSHV (push vari able)
opcode that determines the type of variable at runtinme. |If a field with the
requested nane exists in the current workarea then its value is used. If there is
no field then a PRI VATE or a PUBLIC variable is used (if exists).

The Har bour conpiler generates an opcode to deternine the type of variable at
runti ne (POPVARI ABLE or PUSHVARI ABLE) in both cases (assignnent and access).

The difference can be checked by the follow ng code:

PROCEDURE MAI N()
PRI VATE nynane

DBCREATE("TEST", { { "MYNAME', "C', 10, 0O} })
USE test NEW

SELECT t est

APPEND BLANK

FI ELD=>nynane := "FlELD'

MEMVAR=>nynanme : = " NMEWAR'

myname : = nynane + " assigned"

/1 In Cipper: "FIELD', In Harbour: "FIELD assigned"

? Fl ELD=>nynane

/1 In Cipper: "MEWAR assigned", In Harbour: "NMEWAR"
? MEMVAR=>nynane

USE
RETURN

Passi ng an undecl ared variable by the reference

The i pper conpiler uses the special opcode PUSHP to pass a reference to an
undecl ared variable ('@ operator). The type of passed variable is checked at
runtime (field or menvar). However, field variables cannot be passed by reference.
This means that Cipper checks the nmemvar variable only and doesn't | ook for a
field. This is the reason why the Harbour conpiler uses the usual PUSHVEMARREF
opcode in such cases. Notice that the runtine behavior is the same in Cipper and
in Harbour = only the generated opcodes are different.

Handl i ng of object nessages

The HARBOUR_STRI CT_CLI PPER_COWPATI BI LI TY setting determ nes the way chai ned
send nessages are handl ed.

For exanple, the follow ng code:

a:b(COUNT()):c +=1

wi Il be handl ed as:

a:b(COUNT()):c :=a:b(COUNT()):c + 1
in strict dipper conpatibility node and
tenp := a:b(COUNT()), tenp:c +=1

in non=strict node.

In practice, Clipper will call the COUNT() function two times: the first tine
before addition and the second one after addition. In Harbour, COUNT() will be
called only once, before addition.

The Har bour (non=strict) method is:

1) faster

2) it guarantees that the same instance variable of the sane object wll be
changed

(See al so: source/conpil er/expropt.c)

Initialization of static variables

There is a difference in the initialization of static variables that are
initialized with a codeblock that refers to a local variable. For exanple:
PROCEDURE TEST()

LOCAL MyLocal Var
STATIC MyStaticVar := {|| MLocal Var }

MyLocal Var : =0

? EVAL(MyStaticVar)

RETURN

The above code conpiles fine in Cipper, but it generates a runtine error
Error/BASE 1132 Bound error: array access

Cal | ed form (b) STATI CS$(0)

In Harbour this code generates a conpile tine error: Error E0009 Il egal
variable (b) initializer: 'MVLocal Var'

Both dipper and Harbour are handling all local variables used in a codebl ock

in a special way: they are detached fromthe |l ocal stack of function/procedure
where they are declared. This allows access to these variables after the exit from
a function/procedure. However, all static variables are initialized in a separate

procedur e

(" STATICS$' in Cipper and ' (_INITSTATICS)' in Harbour) before the main
procedure and before all INIT procedures. The |ocal variables don't exist on the
eval stack when static variables are initialized, so they cannot be detached.

HB_LANGSELECT()

Sel ect a specific nation nessage nodul e
Synt ax
HB_LANGSELECT(<cNewlLang>) --> cA dLang
Argunment s

<cNewLang> The ID of the country | anguage nodul e The possible val ues for
<cNewLang> is below as is defined in the Lang library,sorted by |anguage.

Ret ur ns
<cd dLang> The ol d | anguage indentifier

Descri ption
This function set a default |anguage nodul e for date/nonth nanes, internal
war ni gs, Nat Msg messages and internal errors. Wen a Lang IDis selected all
messages will be output as the current lang selected until another one is selected
or the program ends.

Exanpl es

REQUEST HB_LANG PT

REQUEST HB_LANG RO

REQUEST HB_LANG ES

FUNCTI ON MAI N()

HB_LANGSELECT(' PT') /1 Default |anguage is now Portuguese
? CDOWDATE()) //Segunda-feira

? 'Ad language id selected is ", HB_ LANGSELECT() /1 PT
HB_LANGSELECT(' RO) /1 Default |anguage is now Ronani an

? CMONTH(DATE()) // Mai

? 'Ad language id selected is ", HB_ LANGSELECT() /1 RO

HB_LANGSELECT(' ES') /1 Default |anguage is now Ronani an
? CMONTH(DATE()) // May o
? CDOWNDATE()) // Lunes
Return nil
Test s
See tests/l|angapi.prg
St at us
Ready
Conpl i ance
This function is a Harbour Extension.
Pl at f or ns
Dos, W n32, Os/ 2
Fil es
Libraty is rtl
See Al so:

HB_LANGNANE()
NATI ONMSEH)

HB L ANGNANME()

Return the Nane of the Current Language nodul e in USE
Synt ax
HB_LANGNAME() --> clLangNane
Argunment s

Ret ur ns
<cLangNane> Name of the Current |anguage in use
Descri ption
This function return the current nane of the | anguage nodul e in use.

Exanpl es

REQUEST HB_LANG PT

REQUEST HB_LANG RO

REQUEST HB_LANG ES

FUNCTI ON MAI N()

HB_LANGSELECT(' PT') /1 Default |anguage is now Portuguese
? CDOW DATE()) //Segunda-feira

? "Current language is ", HB_LANGNAME() //Portuguese

? 'dd language id selected is ", HB_ LANGSELECT() /1 PT
HB_LANGSELECT(' RO) /1 Default |anguage is now Ronani an
? CMONTH(DATE()) // Mai

? 'Ad language id selected is ", HB_ LANGSELECT() /1 RO

HB_LANGSELECT("' ES') /1 Default |anguage is now Ronani an
? "Current |language is ", HB_LANGNAME() // Spani sh
? CMONTH(DATE()) 7/ May o
? CDOWNDATE()) // Lunes
Tests
See tests/langapi.prg
St at us
Ready
Conpl i ance
This function is a Harbour Extension
Pl at f or ns
Dos, W n32, OS5/ 2
Files

Library is lang
See Al so:

HB_LANGSELECT()
NATI ONVBG()

SETMODE()

Change the video node to a specified nunber of rows and col ums
Synt ax
SETMODE(<nRows>, <nCol s>) --> | Success
Argunment s
<nRows> is the nunber of rows for the video node to set.
<nCol s> is the nunmber of columms for the video nbpde to set.
Ret ur ns

SETMODE() returns true if the video node change was successful; otherw se,
it returns fal se

Descri ption

SETMODE() is a function that change the video node depend on the video card

and nonitor conbination, to match the nunber of rows and columms specified. Note
that there are only a real few conbination or rows/cols pairs that produce the

vi deo node change. The follow ngs are availables for D.O S:

12 rows x 40 col ums 12 rows x 80 col ums
P5 rows x 40 col ums P5 rows x 80 col ums
P8 rows x 40 col ums P8 rows x 80 colums
0 rows x 40 col umms U3 rows x 80 col ums

b0 rows x 80 col ums

The follow nbdes are avaliable to W ndows

P5 rows x 40 col ums P5 rows x 80 col umms

50 rows x 40 col ums U3 rows x 80 col ums

K0 rows x 80 col umms

Sonme nodes only are avail ables for color and/or VGA nmonitors. Any change
produced on the screen size is updated in the values returned by MAXRON) and
MAXCOL() .

Exanpl es

p The first exanple change to a 12 lines of display node:
| F SETMODE(12, 40)
? "Hey nan are you blind ?"
ELSE
? "Mom bring ne ny gl asses!"”
ENDI F

b Next exanple change to a 50 |ines node:
| F SETMODE(50, 80)
? "This wonderful node was successfully set”
ELSE
? "WAit. this nonitor are not nade in rubber !"
ENDI F
St at us
Ready
Conpl i ance
Sonme of these nodes are not avail ables on O i pper

Pl at f or ns
DCS, W N32

Files
Source is gtdos.c,gtwin.c

See Al so:

MAXCOL ()
MVAXROW)

EVAL()

Eval uate a code bl ock

Synt ax
EVAL(<bBlock> [, <xVal>[,...]1]) --> xExpression
Argunment s
<bBl ock> Code bl ock expression to be eval uated
<xVal > Argunent to be passed to the code bl ock expression
<xVal...> Argunent list to be passed to the code bl ock expression
Ret ur ns

<xExpression> The result of the eval uated code bl ock
Descri ption

This function evaluates the code bl oc expressed as <bBl ock> and returns its
eval uated value.|If their are multiple expressions within the code bl ock,the | ast
expression will be value of this function.

If the code block requires paraneters to be passed to it,they are specified
in the paranmeter |ist <xVal > and follow ng. Each paraneter is separated by a coma
within the expression |ist.

Exanpl es

FUNC MAI N

LOCAL sbBl ock = {|| NL}
? EBval(1)

? Eval (@bBl ock)

? Eval ({|pl] pl },"A","B")
? Bval ({|pl, p2| pl+p2 },"A","B")
2 Eval ({|p1,p2,p3| pl},"A", "B")
Return N |
Tests
See exanpl es
St at us
Ready
Conpl i ance
This function is Ca dipper conpliant
Pl at f or ms
Al l
Files
Library is vm
See Al so:
AEVAL

DBEVAL

@ .. Cet

Creates a GET object and displays it to the screen
Synt ax
@ <nRow>, <nCol > [SAY <cSay> [Pl CTURE <cSayPi ct>] COLOR <cSayCol or>]

GET <xVar> [PI CTURE <cGet Pi ct>] [WHEN <|l When>] [COLOR <cGCet Col or >]
[VALID <l Valid> / RANGE <xStart>, <xEnd>]

Argunent s
<nRow> The row coordi nat e.
<nCol > The col umtm coor di nat e.
<cSay> Message to display.

<cSayPi ct > Char acter expression of PICTURE displ ayed.
<cSayCol or> Color to be Used for the SAY expression.
<xVar > An variable/field nane.

<cGet Pi ct > Character expression of PICTURE to get.

<l When> Logi cal expression to allow GET.
<l val i d> Logi cal expression to validate GET input.
<xStart> Lower RANGE val ue.
<xEnd> Upper RANGE val ue.
<cGetColor> Color string to be used for the GET expression.
Ret ur ns
Descri ption

This command adds a CET object to the reserved array variable naned GETLI ST[]
and displays it to the screen. The field or variable to be added to the GET object
is specified in <xVar> and is displayed at row, colum coordi nate <nRow>, <nCol >.

If the SAY clause is used <cSay> will be displayed starting at <nRow>, <nCol >,
with the field variable <xVar> displayed at RON), CO.()+ 1. If <cSayPicr>, the
picture tenplate for the SAY expression <cSay>, is used, all formatting rules
contained will apply See the TRANSFORM I function for futher information.

If <cGetPict> is specified, the PICTURE cl ause of <xVar> will be wused for the
CET object and all formatting rules will apply. See the table below for GET
formatting rul es.

If the WHEN cl ause is specified, when <l When> evaluates to a logical true

(.T.) condition, the GET object will he activated otherwise the GET object will be
ski pped and no information will be obtained via the screen. The name of a
user-defined function returning a logical true (.T.) or false (F.) or a code bl ock
may be ,specified in <IlWen> This clause not activated until a READ conmmand or
READMODAL() function call is issued.

If the VALID clause is specified and <l Valid> evaluates to it logical true

(.T.) condition the current GET will be considered valid and the get operation

Il continue onto the next active GET object. If not, the cursor will remain on
is GET object until aborted or wuntil the condition in <lValid> evaluates to true
.T.). The nane of a user-defined function returning a logical true (.T.) or false
F.) or it code block nmay be specified in <IValid> This clause is not activated
til a READ comand or READMODAL() function call is issued.

If the RANGE clause is specified instead of the VALID clause, the two

i nclusive range val ues for <xVar> nust be specified in <xStart> and <xEnd>. Id
<xVar> is a date data type,<xStart> and <xEnd> nust also be date data types; if
<xVar> is a nuneric data type <xStart> and <xEnd> nust al so be nuneric data types.
If a value fails the RANGE test ,a nmessage of OUT OF RANGE will appear in the
SCOREBQARD area (row = 0, col = 60). The RANGE nessage nmay be turned off it the SET
SCOREBQARD command or SET() function appropriately toggled.

NOTE GET functions/formatting rules:
@N Al | ows only al phabetic characters.
B Nunbers will be left justified
ac Al positive numbers will be followes by CR
@ Al dates will be in the SET DATE format.
a Dates will be in British formal: nunbers in European format.
CY Al | ows a suggested value to be seen within the GET
lrea but clears It if any noncu sor key is pressed when
k he cursor is in the first Position in the CGET area.
aR Nont enpl ate characters will be inserted.
GB<nSi ze> Al | ows horizontal scrolling of a field or variable that
s <nSize> characters wide.
@ Al | negative nunbers will be followed by DB
@4 Di spl ays zero val ues as bl anks.
@ For ces uppercase lettering
@ Di spl ays negative nunbers in parentheses with | eading spaces.
@ Di spl ays negative nunbers in parentheses without |[eading
kpaces.
GET tenplates/formatting rul es:
A Onl y al phabetic characters allowed.
Onl y al phabetic and nuneric characters allowed
IAny character all owed.
L Only T or F allowed For |ogical data.
\4 Only or N allowed for |ogical data.
g Only digits, including signs, will be allowed.
i3 Only digits, signs. and spaces will he allowed.
Al phabetic characters are converted to Uppercase.
5 Dol |l ar will be displayed in place of |eading

kpaces for nuneric data types.

Asterisk,, will Be displayed in place of |eading spaces

for nunmeric data types.

Posi tion of decimal point

Posi tion of comma.

Format PI CTURE functions nmay he grouped together as wel
Conjunction with a Pl CTURE tenpl at es; however,
the PICTURE string if there are both functions and

Exanpl es

Function Mai n()

Local cVar:=Space(50)
Local nld:=0
cls

as used in
a bl ank space nust be included in

tenpl at es.

@3,1 SAY "Name" GET cVar PICTURE "@S 30"

@4,1 SAY "1 d"
READ

? "The name you entered is", cVar
? "The id you entered is",nld
RETURN NI L

GET nld PICTURE "999. 999"

Tests
See Exanpl es
St at us
Ready
Conpl i ance
This command is Ca-Clipper conpatible
Pl at f or s
All
See Al so:

@ . . SAY
ARRAY|

TRANSFORM)

@ .. SAY

Di spl ays data to specified coordinates of the current device.
Synt ax
@ <nRow>, <nCol > SAY <xVal ue> [PICTURE <cPict>] [COLOR <cCol or>]
Argunment s

<nRow> Row coordi nat e
<nCol > Col umm coordi nat e
<xVal ue> Val ue to display
<cPi ct > Pl CTURE f or mat
<cCol or > Col or string
Ret ur ns
Descri ption

This conmmand di spl ays the contents of <xValue> at row colum coordinates

<nRow>, <nCol >. A PICTURE cl ause may be speclfied in <cPict> |If the current

device is set to the printer, the output wll go to the printer; the default is for
all output to go to the screen.

For a conplete list of PICTURES tenplates and functions, see the @..GET
command.

Exanpl es
Function Main
ds
@2,1 SAY "Harbour"
@3,1 SAY "is" COLOR "b/r+"
@4,1 SAY "Power" PICTURE "@"
Return N L
Test s
See Exanpl es
St at us
Ready
Conpl i ance
This command is Ca-C ipper conpliant
Pl at f or ns
Al l

Files

See Al so:

@. . Cet
SET DEVI CE

TRANSFORM)

Strong Typin
Conpi l e-Ti rregt ypg/ Bheclg ng

Descri ption

Strong Type Checking, could al so be described as "Conpile-Tinme Type

Checki ng". As you m ght know O ipper, generates a Run-Tine Error, ("Type

M smat ch") when we attenpt to perform some operations with the wong type of
Vari abl e.

Exanpl es:

LOCAL Varl := "A"

? Varl * 3 // Error here.

@Varl, 7 SAY 'Hello' // Error here.

? SubStr("Hello", Varl) // Error here.

The above 3 lines would all result in Run-Time Error, because Varl is of type
CHARACTER but the above lines used it as if it was of type NUMERIC

Usi ng Strong Type Checking, or Conpile-Tine Type Checki ng, the above problem
woul d have been discovered and reported in COWILE-TIME, rather than waiting for
the inevitable problemto be discovered when we finally execute the program

Strong Typed Languages all ow the progranmmer to "tell" the conpiler (declare)

what is the type of a each Variable, so that the Conpiler in return can warn the
programmer, when ever such Declared (Strong Typed) Variable, is used in a context
which is inconpatible with its declared type.

For instance, if we "told" the conpiler that Varl above is of type CHARACTER
(LOCAL Varl AS CHARACTER) the Harbour Conpiler could, in return, warn us if we
attenpted to performthe cal cul ation

Varl * 3

because the Conpiler knows we can't performa nultiplication of a Character

(we mght allowit in some context, but this is beyond the scope of this

di scussion). Sinmlarly we would have been warned when attenpting to use Varl as a
Row Nunmber (@Varl), or as the 2nd operand of the SubStr() function SubStr(
"Hell 0", Varl)), because the Conpiler knows that these operations require a
NUVERI C rat her than CHARACTER type.

The above nmay save us lots of tine, by pointing a problem we can not escape,
since such code will never performcorrectly once executed. So rather than wait to
the testing cycle, for such problens to be discovered, (and sone times even |ater
after we may have distributed our applications) instead we may know of such
problenms as soon as we type HARBOUR ProgName -w3

Har bour al so offers a hybrid nbde, where it can report such type misnmatch

probl enms, even without requiring the programmer to declare the type of variables.
This feature, is referred to as Adaptive Type Checking. The progranmmer, is not
required to make any changes in his code, to take advantage of this feature. Al of
the above 3 errors would have been reported just as effectively as if the
programer Strong Typed (declared) Varl. Harbour woul d have been able to report
such problens at conpile tine, because the assignnent Varl := "A" inplied that Varl
is of type CHARACTER until it will be assigned another value. Therefore Harbour
will "renenber" that Varl "adapted" type CHARACTER, and thus the subsequent
multiplication Varl * 3, will be reported as an error, as soon as you attenpt to
conpi | e such code

The nice aspect of this hybrid node, is that unlike Strong Typed

Vari abl es,you don't have to declare the type, so no code changes are need, the

Type instead is assuned by inplication (type of the assigned value). The other
benefit, is that it is conpletely ok to assign a new value of different type, any
time, to such undeclared (variant) variable. As soon as we assign a new type, the
Conpiler wll than protect us fromusing the Variable in an inconpatible context,
since the variable "adapted" this type as soon as we assigned a value which inplies

a type.
Wi | e Adapted Type Checking may be fairly effective in reporting nany conmon
m stakes, to take full benefits of such Compile-Time checking, it is recommended

to do declare the Type of Variables, when ever possible.

The Harbour Strong Type features, also allows the declaration of the expected
paranmeters (including optionals) of User Defined Functions, as well as their

return Type. Simlarly, you may declare the Type of any Cass Variables, Mthods,
and Met hods Paraneters.

The Garbage Col | ector

Readne for Harbour Garbage Coll ect Feature

Descri ption
The garbage collector uses the following logic: - first collect all nenory
al l ocations that can cause garbage; - next scan all variables if these nenory
bl ocks are still referenced.

Notice that only arrays, objects and codebl ocks are coll ected because these
are the only datatypes that can cause self-references (a[l]:=a) or circular
references (a[1]:=b; b[1l]:=c; c[1l]:=a) that cannot be properly deallocated by
sinpl e reference counting.

Since all variables in harbour are stored inside sone available tables (the

eval stack, menvars table and array of static variables) then checking if the
reference is still alive is quite easy and doesn't require any special treatnment
during nenory allocation. Additionaly the garbage «collector Is scanning sone

i nternal data used by harbour objects inplenentation that also stores sone val ues
that can contain nmenory references. These data are used to initialize class

i nstance variables and are stored in class shared vari abl es.

In special cases when the value of a harbour variable is stored internally in

sone static area (at C or assenbler level), for exanple SETKEY() stores codebl ocks
that will be evaluated when a key is pressed, the garbage collector will be not
able to scan such values since it doesn't know their l[ocation. This could cause
sonme nenory bl ocks to be released prenmaturely. To prevent the premature
deal | ocation of such nmenory blocks they have to be | ocked for the garbage
collector. The nenory bl ock can be I ocked with hb_gclLockltem) (recomended net hod)
if harbour itemstructure is used or hb_gcLock() function if a direct nmenory
pointer is used. The menory bl ock can be unl ocked by hb_gcUnl ocklten{) or

hb_gcUnl ock() .

Noti ce however that all variables passed to a low |level function are passed

via the eval stack, so they don't require locking during the function call. The
locking will be required if a passed value is copied into sone static area to nake
it available for other lowlevel functions called after the exit fromfunction that
stored the value. This is required because the value is renoved fromthe eval stack
after the function call and it can be no |longer be referenced by other vari abl es.

However, scanning of all variables can be a tinme consum ng operation. It

requires that all allocated arrays have to be traversed through all their elenents
to find nore arrays. Also all codebl ocks are scanned for detached |ocal variables
they are referencing. For this reason, |ooking for unreferenced nmenory blocks is
perfornmed during the idle states.

The idle state is a state when there is no real application code executed.

For exanple, the user code is stopped for 0.1 of a second during INKEY(O0.1) -
Har bour is checking the keyboard only during this tinme. It |eaves however quite
enough tine for nany other background tasks. One such background task can be

| ooking for unreferenced nenory bl ocks.

Al |l ocati ng nmenory

The garbage collector collects nmenmory bl ocks allocated with hb_gcAll oc()
function calls. Menory all ocated by hb_gcAlloc() should be released with
hb_gcFree() function.

Locki ng nenory

The nmenory allocated with hb_gcAll oc() should be | ocked to prevent automatic
releasing if such a nenory pointer is not stored within a harbour |evel variable.
Al'l harbour values (itens) stored internally in static C area have to be | ocked.
See hb_gclLockltem() and hb_gcUnl ocklten() for nore infornmation

The garbage coll ecting

During scanni ng of unreferenced nenory the GCis using a mark & sweep
algorithm This is done in three steps:

1) mark all nmenory bl ocks allocated by the GC with unused fl ag;

2) sweep (scan) all known places and clear unused flag for nenory bl ocks that
are referenced there;

3) finalize collecting by deallocation of all nenory blocks that are stil
mar ked as unused and that are not | ocked.

To speed things up, the mark step is sinplified by swapping the neaning of

the unused flag. After deallocation of unused blocks all still alive mnmenory bl ocks
are marked with the sane 'used' flag so we can reverse the nmeaning of this flag to
"unused' state in the next collecting. Al new or unlocked nenory bl ocks are
autonmatically marked as 'unused' using the current flag, which assures that al
menory bl ocks are marked with the same flag before the sweep step will start. See
hb_gcColl ectAll () and hb_gcltenRef()

Calling the garbage collector from harbour code

The garbage collector can be called directly fromthe harbour code. This is
usefull in situations where there is no idle states available or the application
is working in the loop with no user interaction and there is many nenory

all ocations. See HB GCALL() for explanation of howto call this function from your
har bour code.

See Al so:
hb_gcAl | oc
hb_gcFree

hb_gclockl tem)
hb_gcUnl ockl t em()
hb_gcCollectAll ()
hb_gcl t enRef ()

HB_ GCALL

HB 1dl eState()

hb_gcAl | oc()

Al l ocates nenory that” will be collected by the garbage collector.

Synt ax

#i ncl ude <hbapi . h>
void *hb_gcAl |l oc(ULONG ul Si ze,
HB_ GARBAGE FUNC PTR pd eanupFunc);

Argunent s

<ul Si ze> Requested size of nenory bl ock

<pd eanupFunc> Pointer to HB GARBAGE FUNC function that will be called

directly before rel easing the garbage nenory block or NULL. This function should
rel ease all other nenory allocated and stored inside the nenory bl ock. For exanple,
it releases all itens stored inside the array. The functions receives a single
paranmeter: the pointer to nmenory allocated by hb_gcAlloc().

Ret ur ns

Descri ption

hb_gcAlloc() is used to allocate the nenory that will be tracked by the

garbage collector. It allows to properly release nmenory in case of
self-referencing or cross-referencing harbour level variables. Menory allocated
with this function should be released with hb _gcFree() function or it will be
automatically deallocated by the GCif it is not locked or if it is not referenced
by sone harbour |evel variable.

Exanpl es

See source/vniarrays.c

St at us

c i pper

Conpl i ance

This function is a Harbour extension

Pl at f or ns

All

Fil es

sour ce/ vi gar bage. c

See Al so:

hb
hb

cFree
gclLockltem)

hb_gcUnl ockl t em()

hb_gcFree()

Rel easeS the nenory that was allocated with hb_gcAlloc().
Synt ax
void hb_gcFree(void *pMenoryPtr);
Argunment s

<pMenoryPtr> The pointer to nmenory for release. This nenory pointer have to
be allocated with hb_gcAlloc() function.

Ret ur ns

Descri ption

hb_gcFree() is used to deallocate the menory that was allocated with the
hb_gcAll oc() function.

Exanpl es

See source/vnfarrays.c
St at us

d i pper
Conpl i ance

This function is a Harbour extension
Pl at f or ms

Al l
Files

sour ce/ vim gar bage. ¢

See Al so:

hb_gcAl | oc
hb_gclockl tem)
hb_gcUnl ockltem()

hb_gcLockltem()

Locks the menory to prevent deallocation by the garbage collector
Synt ax
void hb_gclLockltem(HB | TEM PTR pltem);
Argunment s
<pltenm> The pointer to itemstructure that will be | ocked. The passed item
can be of any datatype although arrays, objects and codebl ocks are | ocked only.
O her datatypes don't require |ocking so they are sinply ignored.

Ret ur ns

Descri ption
hb_gcLockltem() is used to |lock the nenory pointer stored in the passed item
structure. It suppres the nmenory releasing if the garbage collector will not find
any reference to this pointer. The garbage collector is storing the |ock counter -
every call of this function increases the counter. The itemis locked if this
counter is greather then O.
Exanpl es
See source/rtl/setkey.c
St at us
d i pper
Conpl i ance
This function is a Harbour extension
Pl at f or ns
All
Files
sour ce/ vim gar bage. c

See Al so:

hb_gcAl | oc
hb_gcFree
hb_gcUnl ockl t em()

hb %cUnIockIten()

Unl ocks The nenory to prevent deallocation by the garbage coll ector
Synt ax
voi d hb_gcUnl ockltenm(HB | TEM PTR pltem);
Argunment s

<pltenm> The pointer to itemstructure that will be unlocked. The passed item
can be of any datatype although arrays, objects and codebl ocks are unl ocked only.
O her datatypes don't require |ocking so they are sinply ignored.

Ret ur ns

Descri ption
hb_gcUnl ockltem() is used to unlock the nenory pointer stored in the passed
itemstructure that was previously locked with hb gcLockltem() call. It allows to
rel ease the nenory during garbage collecting if the garbage collector will not find

any reference to this pointer. The garbage collector is storing the |ock counter -
every call of this function decreases the counter. This function doesn't deallocate
menory stored inside the item- the nmenory can be deal | ocated however during the
cl osest garbage <collecting if the lock counter is equal to O and the nmenory pointer
is not referenced by any harbour |evel variable.
Exanpl es
See source/rtl/setkey.c
St at us
d i pper
Conpl i ance
This function is a Harbour extension
Pl at f or ns
All
Files
sour ce/ vim gar bage. c
See Al so:

hb_gcAl | oc
hb_gcFree
hb_gcLockl t en()

hb _gcCol | ect Al'l ()

Scans alT nmenory bl ocks and rel eases the garbage nenory.
Synt ax
void hb_gcCollectA I (void);
Argunment s

Ret ur ns

Descri ption

This function scans the eval stack, the nenvars table, the array of static
vari abl es and table of created classes for referenced nenory bl ocks. After
scanni ng all unused nenory bl ocks and bl ocks that are not | ocked are rel eased.

St at us
d i pper
Conpl i ance
This function is a Harbour extension
Pl at f or ms
All
Files
sour ce/ vim gar bage. c
See Al so:

hb_gcAl | oc
hb_gcFree
hb_gclockl tem)
hb_gcUnl ockl t em()

hb_gcltenRef ()

Marks the menory to prevent deal |l ocation by the garbage collector.
Synt ax
void hb_gcltenRef(HB_ I TEM PTR pltem);
Argunment s
<pltenm> The pointer to itemstructure that will be scanned. The passed item
can be of any datatype although arrays, objects and codebl ocks are scanned only.
O her datatypes don't require |ocking so they are sinply ignored.

Ret ur ns

Descri ption

The garbage coll ector uses hb_gcltenRef() function during scanning of

referenced nmenory pointers. This function checks the type of passed item and scans
recursively all other menory blocks referenced by this itemif it is an array, an
obj ect or a codebl ock.

NOTE: This function is reserved for the garbage collector only. It cannot be
called fromthe user code - calling it can cause wunpredicted results (nmenory

bl ocks referenced by the passed itemcan be rel eased prenaturely during the cl osest
gar bage col |l ection).

St at us
d i pper
Conpl i ance
This function is a Harbour extension
Pl at f or ns
All
Files
sour ce/ vim gar bage. c
See Al so:

hb_gcAl | oc
hb_gcFree
hb_gclockl tem)
hb_gcUnl ockl t em()

HB GCALL()

Scans the nenory and rel eases all garbage nenory bl ocks.
Synt ax
HB_GCALL()
Argunment s

Ret ur ns

Descri ption
This function rel eases all nenory blocks that are considered as the garbage.
St at us
Har bour
Conpl i ance
This function is a Harbour extension
Pl at f or s
All
Files
sour ce/ vi gar bage. c
See Al so:
hb_gcCol I ect Al l ()

The idl e states
Read ne file for Idle States

Descri ption

The idle state is the state of the harbour virtual machine when it waits for

the user input fromthe keyboard or the nobuse. The idle state is entered during

I NKEY() calls currently. Al applications that don't use INKEY() function call can
signal the idle states with the call of HB IDLESTATE() function (or hb_idleState()
on C level).

During idle states the virtual nmachine calls the garbage collector and it can
call user defined actions (background tasks). It also releases the CPUtine slices
for sone poor platfornms that are not smart enough (W ndows NT).

For defining the background tasks see the HB_| DLEADD() and HB_| DLEDEL()
functions.

For direct call for background actions see HB_| DLESTATE() function
For signaling the idle state from C code see the hb_idleState() APl function

See Al so:

HB_| DLEADD()
HB_| DLEDEL()

HB | DLEADD
Adds the background tlsk.

Synt ax
HB | DLEADD(<cbAction>) --> nHandl e
Argunment s

<cbAction> is a codeblock that will be executed during idle states. There
are no argunments passed to this codebl ock during eval uation

Ret ur ns

<nHandl e> The handl e (an integer value) that identifies the task. This
handl e can be used for deleting the task

Descri ption
HB | DLEADD() adds a passed codebl ock to the |ist of background tasks that
will be evaluated during the idle states. There is no Ilimt for the nunber of
t asks.
Exanpl es
nTask := HB I DLEADD({|| SayTinme()})
St at us
Ready
Conpl i ance
T?EPZE; extension sinlar to FT_ONIDLE() function available in NanForum
Pl at f or ns
All
Files
source/rtl/idle.c
See Al so:
HB | DLEDEL()

HB 1dl eState()

HB_ | DLEDEL()

Renoves t he background task fromthe list of tasks.
Synt ax
HB | DLEDEL(<nHandl e>) --> xAction
Argunment s

<nHandl e> is the identifier of the task returned by the HB | DLEADD()
function.

Ret ur ns

<xAction> N L if invalid handle is passed or a codebl ock that was passed to
HB | DLEADD() function

Descri ption
HB | DLEDEL() renoves the action associated with passed identifier fromthe
list of background tasks. The identifer should be the value returned by the
previous call of HB IDLEADD() function.

If specified task is defined then the codeblock is returned otherw se the N L
val ue i s returned.

Exanpl es
nTask := HB_IDLEADD({|| SayTime()})
| NKEY(10)
cbAction := HB I DLEDEL(nTask)
St at us
Ready
Conpl i ance
Har bour extension
Pl at f or s
All
Files
source/rtl/idle.c
See Al so:
HB_| DLEADD()

HB 1dl eState()

HB | dl eSt at e()

Eval uatés a single background task and calls the garbage collector.
Synt ax
HB_| DLESTATE()
Argunment s

Ret ur ns

Descri ption

HB | DLESTATE() requests the garbage collection and executes a single

background task defined by the codebl ock passed with HB_ | DLEADD() function. Every
call to this function evaluates a different task in the order of task creation.
There are no argunents passed during a codebl ock eval uati on.

This function can be safely called even if there are no background tasks
defi ned.

Exanpl es

nTaskl := HB | DLEADD({|]| SayTine()})
nTask2 := HB I DLEADD({|| SaveScreen()})
DO WHI LE(! bFi ni shed)
bFi ni shed : =DCSonet hi ngVer yl nportant ()
HB I dl eState()
ENDDO
cbAction := HB_ | DLEDEL(nTaskl)
HB_ | DLEDEL(nTask2)

St at us
Ready
Conpl i ance
Il_?[)?g:];r/ extension simlar to FT_IAMDLE() function available in NanForum
Pl at f or ns
All
Fil es
source/rtl/idle.c
See Al so:
HB_| DLEADD()

HB_| DLEDEL ()

hb_idl eSt at e()

Eval uatés a single background task and calls the garbage coll ector

Synt ax
void hb_idleState(void);
Argunment s
Ret ur ns
Descri ption

hb_idleState() is a C function that requests garbage collection and executes
a single background task defined by the codebl ock passed with HB | DLEADI)
function. It also releases the CPUtine slices for platfornms that require it.

Every call for this function evaluates different task in the order of task
creation. There are no argunents passed during codebl ock eval uation

This function can be safely called even if there are no background tasks
defi ned.

This function is automatically called fromthe INKEY() function
St at us

Ready
Pl at f or ns

All
Fil es

source/rtl/idle.c

See Al so:

HB_| DLEADD()

HB | DLEDEL ()
HB Idl eState()

Command line Uility
Conpi l er Options

Descri ption

Thi s spec goes for CLIPPERCVD, HARBOURCMD, Harbour conpiler and #pragma

directives in the source code.

The conmmand |ine always overrides the envvar.

Note that sonme switches are not accepted in envvar, sonme others in

First the parser should start to step through all
(or just walk through all

separ at ed by whitespace.

the tokens in the
argv[])

string

#pragmas.

1.) If the token begins with "-", it should be treated as a new style swtch.
One or nore switch characters can followthis. The "-" sign inside the token
wWill turn off the swtch.

If the switch has an argunent all
part of the argunent.

The "/" sign has no speci al

the follow ng characters are

meani ng here.

treated as

Swi t ch Result option
- wn WN)
W n TWN)

L wi / har bour /i ncl ude/

W I =/ har bour /i ncl ude/)

- wi / har bour /i ncl ude/ n

W I =/ har bour /i ncl ude/n)

L wesOn WES=0 N)

L wen Wlinvalid switch: e] N)

Cwesn W ES=defaul t (0) N)

[wses WS ES=defaul t(0))

[Cwess WES=defaul t(0) S)

[invalid swtch])

W-n-p TWIN P)

W-n-p TWIN IP)

Cw -w -w finally: TW)
2.) If the token begins with "/", it should be treated as a conpatibility
style swtch.
The parser scans the token for the next "/" sign or ECS and treats the
resulting string as one switch.
This means that a switch with an argunent containing "/" sign has sone
limtations. This nmay be solved by allow ng the usage of quote <characters. This is
nmostly a problem on systens which use "/" as path separator.
The "-" sign has no special meaning here, it can't be used to disable a
swi tch.

Swi t ch Resul t option

w n WN)

wo/ n [invalid switch: wo] N)

i hel | o/ wor | d/

I=hello [invalid switch: world] [invalid switch:

1]

)

i"hello/world/"/w

| =hel | o/ worl d/ W)

i hel | o\ wor | d\

I =hel I o\wor | d\)

3.) If the token begins with anything else it should be skipped.
The Harbour switches are al ways case insensitive.

In the Harbour commandline the two style can be used together:
HARBOUR -wnes2 /gc0/ g0 -ic:\hello

Excepti ons:

- Handlig of the /CREDI T undocunmented switch on Harbour command line is
unusual, check the current code for this.

- The CLI PPER, HARBOUR and Har bour application command line parsing is a
different beast, see CVDARG C for a NOTE

Not es:

- All occurences where a path is accepted, Harbour should handle the quote
char to specify path containing space, negative sign, slash, or any other chars
wi th special neaning.

/i"c:/hellol"
-i"c:/hello-n"
/i"c:/programfiles/"
-i"c:/programfiles/"

Just some exanples for the various accepted fornmns:
[/ F20 == [F20 == F20 == F:20 == F20X

/ { TMPPATH: C: \ HELLO

F20// TMPPATH: / TEMP/ / / F: 30000000 NO DLE

FONO DLEX10

SQUAVKNO DLE

"/1" should al ways be used on the command li ne.
See Al so:

Conpi |l er Options

TBROASENewW()
Create a Browse bject
Constructor syntax

TBRONSENew(<nTop>, <nLeft >, <nBot t on®, <nRi ght >) --> <oBrowse>

Argunment s
<nTop> Top Row
<nLeft> Top Left Col um
<nBotton> Bottom Row
<nRi ght > Bott om Ri ght Col umm
Ret ur ns

<o0Br owse>
Descri ption

This function set

An new Browse Obj ect

up a browsing wi ndow at top-left coordi nates of

<nTop>, <nLeft> to bottomright coordi nates of <nBotton®, <nRight>. To browse
Dat abase files use TBROAMSEDB() function insted.
Dat a
: aCol umms Array to hold all browse col ums
cautolite Logi cal value to control highlighting
:cargo User-definabl e variabl e
. col or Spec Col or table for the TBrowse displ ay
: col Pos Current cursor colum position
: col Sep Col uim separator character
. f oot Sep Footi ng separator character
:freeze Nunmber of columms to freeze
. goBott onBl ock Code bl ock executed by TBrowse: goBottom)
: goTopBl ock Code bl ock executed by TBrowse: goTop()
: headSep Headi ng separat or character
:hitBottom I ndi cates the end of avail able data
:hitTop I ndi cat es the begi nning of avail abl e data
:leftVisible I ndi cates position of |eftnost unfrozen colum in display
: nBottom Bott om row nunber for the TBrowse display
:nLeft Left nost columm for the TBrowse displ ay
: nRi ght Ri ght nost colum for the TBrowse display
:nTop Top row nunber for the TBrowse di splay
crightVisible I ndi cates position of rightnost unfrozen colum in display
: rowCount Number of visible data rows in the TBrowse display
. r owPos Current cursor row position
. ski pBl ock Code bl ock used to reposition data source
:stable Indicates if the TBrowse object is stable

: aRedr aw
be redraw

. Rel ati vePos
on the screen

Met hod

Array of logical itens indicating, is appropriate row need to

I ndicates record position relatively position of first record

: | Header s Internal variable which indicates whether there are colum
footers to paint

| Footers Internal variable which indicates whether there are colum
footers to paint

: aRect The rectangl e specified with Col or Rect ()

: aRect Col or The color positions to use in the rectangle specified with
Col or Rect ()

: aKeys Hol ds the Default novement keys

New(nTop, nLeft, nBottom nRight) Create an new Browse class and set the
def aul t val ues

Down() Moves the cursor down one row

End() Moves the cursor to the rightnost visible data col um

CGoBot t on() Repositions the data source to the bottomof file

GoTop() Repositions the data source to the top of file

Horre() Moves the cursor to the leftnmost visible data col um

Left() Moves the cursor left one col um

PageDown() Repositions the data source downward

PageUp() Repositions the data source upward

PanEnd() Moves the cursor to the rightnost data col um

PanHone() Moves the cursor to the leftnost visible data col um

PanLeft () Pans | eft without changing the cursor position

PanRi ght () Pans right w thout changing the cursor position

Ri ght () Moves the cursor right one colum

Up() Moves the cursor up one row

Col Count () Return the Current nunber of Col umms

Col or Rect () Alters the color of a rectangular group of cells

Col Wdt h(nCol um)

Configure(nhode)
nhbde i s an undocunent ed paramneter

Left Det ermi ne()

DeHi i te()

Del Col um(nPos)
For ceSt abl e()
Get Col um(nCol um)

Hilite()

I nsCol uim(nPos,

I nval i dat e()

Returns the display width of a particular colum

Reconfigures the internal settings of the TBrowse
i n CA-d *pper

obj ect

Deternine | eftnmost unfrozen colum in display
Dehi ghlights the current cel

Del ete a colum object froma browse

Performs a full stabilization
Gets a specific TBCol um obj ect
H ghlights the current cel

oCol)

Insert a columm object in a browse

Forces entire redraw during next stabilization

RefreshAll () Causes all data to be recal cul ated during the next
stabilize

RefreshCurrent () Causes the current rowto be refilled and repainted on
next stabilize

Set Col um(nCol um, oCol) Repl aces one TBCol umm object with anot her
Stabilize() Perforns incremental stabilization
Di spCel I (nColum, cColor) Displays a single cell
Exanpl es
See tests/testbrw prg
Test s
See tests/testbrw prg
St at us
Started
Conpl i ance

This functions is Conpatible with Ca-Cdipper 5.2. The applykey() and Setkey()
net hods are only visible if HB_COWAT_C53 is defined.

Pl at f or ns
Al l
Files
Library is rtl
See Al so:
TBROASENe

ARRAY/

Set Key()

CGet an optionaly Set an new Code bl ock associated to a i nkey val ue

--> bA dBl ock

If an Keypress has it code bl ock changes,
return the current one

Synt ax

Set Key(<nKey>[, <bBl ock>])
Argunment s

<nKey> An valid inkey Code

<bBl ock> An optiona
Ret ur ns

<bA dBl ock>

previus one; otherwise, it wll
Descri ption

This method Get an optionaly set an code bl ock that

action to associate to the inkey val ue.

it wll return the

is associated to an inkey

val ue. The table bel ow show the default keypress/ Code Bl ock definitions

nkey Val ue Code Bl ock
K_DOMN | O, nKey| Ob: Down(), 0}
K_END | O, nKey| Ob: End(), 0}
K_CTRL_PGDN | b, nKey| Ob: GoBotton(), 0}
K_CTRL_PGUP | Ob, nKey| Ob: GoTop(), 0}
K_HOVE | Ob, nKey| Ob: Hone(), 0}
K_LEFT | Ob, nKey| Ob: Left(), 0}
K_PGDN | O, nKey| Ob: PageDown(), 0}
K_PGUP | Ob, nKey| Ob: PageUp(), 0}
K_CTRL_END | b, nKey| Ob: PanEnd(), 0}
K_CTRL_HOVE | Ob, nKey| Ob: PanHone(), 0}
K_CTRL_LEFT | Ob, nKey| Ob: PanLeft (), 0}
K_CTRL_RI GHT | Ob, nKey| Ob: PanRi ght (), 0}
K_RI GHT | O, nKey| Ob: Right(), 0}
K_UP | b, nKey| Ob: Up(), 0}
K_ESC | Cb, nkey| -1 }

The keys handl ers can be queri
i nternal keyboard dictionary.

oTb: SETKEY(K _TAB, {| oTh, nKey|

An def aul t

key handl er can be

ed, added and replace an renmoved from the
See the exanple.

-1})

decl ared by specifyin a value of 0 for

<nKey>.1t associate code block w Il

be eval uated each tinme TBrowse: Appl ykey()

called wth an key val ue that

i's not contained

in the dictionary. For exanple

oTh: Set Key(0, {| oTb, nKey|

Def KeyHandl er (ot b, nkey})

Thi s cal

the a function

naned Def KeyHandl er () when nKey is not

To renmove an keypress/code bl ock definition

contained in the dictionary.

specify NIL for <bBl ock>

oTh: Set Key(K_ESC, ni |)
Exanpl es
oTh: SeyKey (K _F10, {| ot b, nkey|

ShowLi st Bynane(otb) }

is

pl ykey()

Eval uates an code bl ock associated with an specific key

Synt ax
Appl yKey(<nKey>) --> nResult
Argunment s

<nKey> An valid Inkey code
Ret ur ns
<nResul t > Val ue returned fromthe eval uated Code Bl ock See Tabl e Bel ow
Val ue Veani ng
1 User request for the browse |ost input focus
D Code bl ock associ ated with <nkey> was eval uat ed
il t?ggggseéo locate <nKey> in the dictionary, Key was not
Descri ption
This method eval uate an code bl ock associated with <nkey> that is contained
in the TBrowse: setkey() dictionary.
Exanpl es
while .t

oTh: f orceSt abl e()
i f (oTb:appl ykey(inkey(0))==-1)
exit
endi f
enddo

AddCol umn()

Add an New Columm to an TBrowse bject

Synt ax
AddCol uim(oCol) --> Self
Argunment s
<oCol > I's an TbCol unm obj ect
Ret ur ns
<Self> The Current object
Descri ption

This met hod add an new col unm obj ect specified as <oCol > to the assigned
browsi ng obj ect.

	Document
	License
	OVERVIEW
	Harbour Extensions
	GNU License
	GNU License Part 2
	Compiler Options
	Strong Typing
	The Garbage Collector
	The idle states
	Command line Utility

	Array
	ARRAY()
	AADD()
	ASIZE()
	ATAIL()
	AINS()
	ADEL()
	AFILL()
	ASCAN()
	AEVAL()
	ACOPY()
	ACLONE()
	ASORT()
	ADIR()
	ACHOICE()

	Binary conversion
	BIN2W()
	BIN2I()
	BIN2L()
	BIN2U()
	I2BIN()
	W2BIN()
	L2BIN()
	U2BIN()

	Conversion
	WORD()
	EMPTY()
	DESCEND()

	Data input and output
	DBEDIT()*
	BROWSE()
	__TYPEFILE()
	READKEY()*
	__AtPrompt()
	__MenuTo()
	__XSaveScreen()
	__XRestScreen()
	ALERT()
	__NONOALERT()
	__INPUT()
	OUTSTD()
	OUTERR()
	READVAR()

	TBrowse class
	TBrowseDB()
	TBROWSENew()

	Database
	dbSkipper()
	__dbCopyStruct()
	__dbCopyXStruct()
	__dbCreate()
	__FLEDIT()*
	__dbStructFilter()
	RDDLIST()
	RDDNAME()
	RDDSETDEFAULT()
	__RDDSETDEFAULT()
	DBEVAL()
	DBF()
	DBAPPEND()
	DBCLEARFILTER()
	DBCLOSEALL()
	DBCLOSEAREA()
	DBCOMMIT()
	DBCOMMITALL()
	__DBCONTINUE()
	DBCREATE()
	DBDELETE()
	DBFILTER()
	DBGOBOTTOM()
	DBGOTO()
	DBGOTOP()
	DBRECALL()
	DBRLOCK()
	DBRLOCKLIST()
	DBRUNLOCK()
	DBSEEK()
	DBSELECTAREA()
	DBSETDRIVER()
	DBSKIP()
	DBSETFILTER()
	DBSTRUCT()
	DBUNLOCK()
	DBUNLOCKALL()
	DBUSEAREA()
	__DBZAP()
	ORDBAGEXT()
	ORDBAGNAME()
	ORDCONDSET()
	ORDCREATE()
	ORDDESTROY()
	ORDFOR()
	ORDKEY()
	ORDLISTADD()
	ORDLISTCLEAR()
	ORDLISTREBUILD()
	ORDNAME()
	ORDNUMBER()
	ORDSETFOCUS()
	INDEXEXT()
	INDEXKEY()
	INDEXORD()
	AFIELDS()
	ALIAS()
	BOF()
	DELETED()
	EOF()
	FCOUNT()
	FIELDGET()
	FIELDNAME()
	FIELDPOS()
	FIELDPUT()
	FLOCK()
	FOUND()
	HEADER()
	LASTREC()
	LUPDATE()
	NETERR()
	RECCOUNT()
	RECNO()
	RECSIZE()
	RLOCK()
	SELECT()
	USED()

	OOP Command
	CLASS
	DATA
	CLASSDATA
	METHOD
	MESSAGE
	ERROR HANDLER
	ON ERROR
	ENDCLASS

	Date
	CDOW()
	CMONTH()
	DATE()
	CTOD()
	DAY()
	DAYS()
	DOW()
	DTOC()
	DTOS()
	MONTH()
	YEAR()

	Time
	ELAPTIME()
	SECONDS()
	SECS()
	TIME()

	Command
	COPY STRUCTURE
	COPY STRUCTURE EXTENDED
	CREATE
	CREATE FROM
	DIR
	RENAME
	ERASE
	DELETE FILE
	TYPE
	COPY FILE
	KEYBOARD
	@...PROMPT
	MENU TO
	RUN
	ZAP
	PACK
	SET FUNCTION
	SET KEY
	SET DEFAULT
	SET WRAP
	SET MESSAGE
	SET PATH
	SET INTENSITY
	SET ALTERNATE
	SET CENTURY
	SET DATE
	SET EPOCH
	SET FIXED
	SET PRINTER
	SET CONSOLE
	SET DECIMALS
	SET DEVICE
	SET BELL
	SAVE SCREEN
	RESTORE SCREEN
	EJECT
	LABEL FORM
	REPORT FORM
	@...Get
	@...SAY

	Low Level
	DISKSPACE()
	HB_DISKSPACE()
	FOPEN()
	FCREATE()
	FREAD()
	FWRITE()
	FERROR()
	FCLOSE()
	FERASE()
	FSEEK()
	FREADSTR()
	CURDIR()
	HB_FEOF()
	DIRREMOVE()
	DIRCHANGE()
	MAKEDIR()
	ISDISK()

	File management
	__Dir()*
	FRENAME()
	FILE()

	Error recovery
	ERRORSYS()
	BREAK()

	Misc
	PROCNAME()
	PROCLINE()
	PROCFILE()
	TYPE()
	VALTYPE()

	Parameter Checks
	HB_PVALUE()
	PCOUNT()

	Events
	__QUIT()
	SETKEY()
	HB_SetKeyGet()
	HB_SETKEYSAVE()
	HB_SetKeyCheck()
	__WAIT()

	Internal
	CLIPINIT()
	__SetHelpK()
	__XHELP()
	__TextSave()
	__TextRestore()

	Utility
	DO()

	Variable Management
	__VMVARLGET()
	__MVPUBLIC()
	__MVPRIVATE()
	__MVXRELEASE()
	__MVRELEASE()
	__MVSCOPE()
	__MVCLEAR()
	__MVDBGINFO()
	__MVGET()
	__MVPUT()
	MEMVARBLOCK()

	Console input
	INKEY()
	__KEYBOARD()
	HB_KEYPUT()
	NEXTKEY()
	LASTKEY()
	MROW()
	MCOL()

	Math
	ABS()
	EXP()
	INT()
	LOG()
	MAX()
	MIN()
	MOD()
	SQRT()
	ROUND()

	Strings
	MEMOTRAN()
	HARDCR()
	ISALPHA()
	ISDIGIT()
	ISUPPER()
	ISLOWER()
	LTRIM()
	AT()
	RAT()
	LEFT()
	RIGHT()
	SUBSTR()
	STR()
	STRZERO()
	HB_VALTOSTR()
	LEN()
	HB_ANSITOOEM()
	HB_OEMTOANSI()
	LOWER()
	UPPER()
	CHR()
	ASC()
	PADC()
	PADL()
	PADR()
	ALLTRIM()
	RTRIM()
	TRIM()
	REPLICATE()
	SPACE()
	VAL()
	STRTRAN()
	TRANSFORM()

	DOS
	OS()
	__RUN()

	Environment
	VERSION()
	GETENV()
	__SETCENTURY()
	SET()
	__SetFunction()
	SETTYPEAHEAD()
	SETMODE()

	Miscellaneous
	TONE()

	Nation
	ISAFFIRM()
	ISNEGATIVE()
	NATIONMSG()
	HB_LANGSELECT()
	HB_LANGNAME()

	Object manipulation
	__objHasData()
	__objHasMethod()
	__objGetMsgList()
	__objGetMethodList()
	__objGetValueList()
	__ObjSetValueList()
	__objAddMethod()
	__objAddInline()
	__objAddData()
	__objModMethod()
	__objModInline()
	__objDelMethod()
	__objDelInline()
	__objDelData()
	__objDerivedFrom()

	Classes
	TClass()

	Operating System Specific
	HB_OSNEWLINE()

	GT
	hb_ColorIndex()
	COL()
	ROW()
	MAXCOL()
	MAXROW()

	Terminal
	DEVOUTPICT()

	Code Block
	FIELDBLOCK()
	FIELDWBLOCK()
	EVAL()

	Run Time Errors
	BASE/1003
	BASE/1068
	BASE/1068
	BASE/1069
	BASE/1078
	BASE/1072
	BASE/1073
	BASE/1074
	BASE/1075
	BASE/1076
	BASE/1077
	BASE/1078
	BASE/1079
	BASE/1076
	BASE/1081
	BASE/1082
	BASE/1100
	BASE/1101
	BASE/1102
	BASE/1103
	BASE/1104
	BASE/1105
	BASE/1106
	BASE/1107
	BASE/1108
	BASE/1076
	BASE/1110
	BASE/1110
	BASE/1112
	BASE/1113
	BASE/1114
	BASE/1115
	BASE/1116
	BASE/1117
	BASE/1120
	BASE/1122
	BASE/1124
	BASE/1126
	BASE/1132
	BASE/1133
	BASE/1068
	BASE/1085
	BASE/1089
	BASE/1090
	BASE/1092
	BASE/1093
	BASE/1094
	BASE/1095
	BASE/1096
	BASE/1097
	BASE/1098
	BASE/1099
	BASE/2010
	BASE/2012
	BASE/2017
	BASE/2020
	BASE/3001
	BASE/3002
	BASE/3003
	BASE/3004
	BASE/3005
	BASE/3007
	BASE/3008
	BASE/3009
	BASE/3010
	BASE/3011
	BASE/3012
	BASE/3101
	BASE/3102
	BASE/3103
	TOOLS/4001
	TERM/2013

	The garbage collector
	hb_gcAlloc()
	hb_gcFree()
	hb_gcLockItem()
	hb_gcUnlockItem()
	hb_gcCollectAll()
	hb_gcItemRef()
	HB_GCALL()

	The idle states
	HB_IDLEADD()
	HB_IDLEDEL()
	HB_IdleState()
	hb_idleState()

	TBrowse Method
	SetKey()
	Applykey()
	AddColumn()

