
Harbour Guide

ARRAY()
Create an uninitialized array of specified length

 Syntax

 ARRAY(<nElements> [, <nElements>...]) --> aArray

 Arguments

 <nElements> is the number of elements in the specified dimension.

 Returns

 <aArray> an array of specified dimensions.

 Description

 This function returns an uninitialized array with the length of <nElements>.
 Nested arrays are uninitialized within the same array pointer reference if
 additional parameters are specified. Establishing a memory variable with the same
 name as the array may destroy the original array and release the entire contents of
 the array. This depends, of course, on the data storage type of either the array
 or the variable with the same name as the array.

 Examples

 FUNCTION Main()
 LOCAL aArray:=Array(10)
 LOCAL x:=1
 FOR x:=1 to LEN(aArray)
 aArray[x]:=Array(x)
 NEXT
 Return Nil

 Status

 Ready

 Compliance

 This function is CA-CLIPPER Compliant in all Cases, except that arrays in
 Harbour can have an unlimited number of dimensions, while Clipper has a limit of
 4096 array elements.

 Files

 Library is vm

See Also:

AADD()
ADEL()
AFILL()
AINS()

AADD()
Dynamically add an element to an array

 Syntax

 AADD(<aArray>[, <xValue>]) --> Value

 Arguments

 <aArray> The name of an array

 <xValue> Element to add to array <aArray>

 Returns

 <Value> if specified <xValue>,<xValue> will return , otherwise this function
 returns a NIL value.

 Description

 This function dynamically increases the length of the array named <aArray> by
 one element and stores the value of <xValue> to that newly created element.

 <xValue> may be an array reference pointer, which in turn may be stored to an
 array's subscript position.

 Examples

 LOCAL aArray:={}
 AADD(aArray,10)
 FOR x:=1 to 10
 AADD(aArray,x)
 NEXT

 Status

 Ready

 Files

 Library is vm

See Also:

AINS()
ASIZE()

ASIZE()
Adjust the size of an array

 Syntax

 ASIZE(<aArray>, <nLen>) --> aTarget

 Arguments

 <aArray> Name of array to be dynamically altered

 <nLen> Numeric value representing the new size of <aArray>

 Returns

 <aTarget> an array pointer reference to .

 Description

 This function will dynamically increase or decrease the size of <aArray> by
 adjusting the length of the array to <nLen> subscript positions.

 If the length of the array <aArray> is shortened, those former subscript
 positions are lost. If the length of the array is lengthened a NIL value is
 assigned to the new subscript position.

 Examples

 aArray := { 1 } // Result: aArray is { 1 }
 ASIZE(aArray, 3) // Result: aArray is { 1, NIL, NIL }
 ASIZE(aArray, 1) // Result: aArray is { 1 }

 Status

 Ready

 Compliance

 If HB_COMPAT_C53 is defined, the function generates an Error, else it will
 return the array itself.

 Files

 Library is vm

See Also:

AADD()
ADEL()
AFILL()
AINS()

ATAIL()
Returns the rightmost element of an array

 Syntax

 ATAIL(<aArray>) --> Element

 Arguments

 <aArray> is the array.

 Returns

 <Element> the expression of the last element in the array.

 Description

 This function return the value of the last element in the array named
 <aArray>. This function does not alter the size of the array or any of the
 subscript values.

 Examples

 LOCAL array:= {"Harbour", "is", "Supreme", "Power"}
 ? ATAIL(aArray)

 Status

 Ready

 Compliance

 This function is CA Clipper compliant

 Files

 Library is vm

See Also:

LEN()
ARRAY()
ASIZE()
AADD()

AINS()
Insert a NIL value at an array subscript position.

 Syntax

 AINS(<aArray>, <nPos>) --> aTarget

 Arguments

 <aArray> Array name.

 <nPos> Subscript position in <aArray>

 Returns

 <aTarget> an array pointer reference.

 Description

 This function inserts a NIL value in the array named <aArray> at the <nPos>th
 position.

 All array elements starting with the <nPos>th position will be shifted down
 one subscript position in the array list and the last item in the array will be
 removed completely. In other words, if an array element were to be inserted at the
 fifth subscript position, the element previously in the fifth position would now
 be located at the sixth position. The length of the array <aArray> will remain
 unchanged.

 Examples

 LOCAL aArray:={"Harbour","is","Power!","!!!"}
 AINS(aArray,4)

 Status

 Ready

 Compliance

 This function is CA Clipper compliant

 Files

 Library is vm

See Also:

AADD()
ACOPY()
ADEL()
AEVAL()
AFILL()
ASIZE()

ADEL()
Delete an element form an array.

 Syntax

 ADEL(<aArray>, <nPos>) --> aTarget

 Arguments

 <aArray> Name of array from which an element is to be removed.

 <nPos> Subscript of the element to be removed.

 Returns

 <aTarget> an array pointer reference.

 Description

 This function deletes the element found at <nPos> subscript position in the
 array <aArray>. All elements in the array <aArray> below the given subscript
 position <nPos> will move up one position in the array. In other words, what was
 formerly the sixth subscript position will become the fifth subscript position. The
 length of the array <aArray> will remain unchanged,as the last element in the array
 will become a NIL data type.

 Examples

 LOCAL aArray
 aArray := { "Harbour","is","Power" } // Result: aArray is

 ADEL(aArray, 2) // Result: aArray is

 Status

 Ready

 Compliance

 This function is CA Clipper compliant

 Files

 Library is vm

See Also:

ACOPY()
AINS()
AFILL()

AFILL()
Fill an array with a specified value

 Syntax

 AFILL(<aArray>, <xValue>, [<nStart>], [<nCount>]) --> aTarget

 Arguments

 <aArray> Name of array to be filled.

 <xValue> Expression to be globally filled in <aArray>

 <nStart> Subscript starting position

 <nCount> Number of subscript to be filled

 Returns

 <aTarget> an array pointer.

 Description

 This function will fill each element of an array named <aArray> with the
 value <xValue>. If specified, <nStart> denotes the beginning element to be filled
 and the array elements will continue to be filled for <nCount> positions. If Not
 specified, the value of <nStart> will be 1, and the value of <nCount> will be the
 value of LEN(<aArray>); thus, all subscript positions in the array <aArray> will
 be filled with the value of <xValue>.

 This function will work on only a single dimension of <aArray>. If there are
 array pointer references within a subscript <aArray>, those values will be lost,
 since this function will overwrite those values with new values.

 Examples

 LOCAL aTest:={Nil,0,1,2}
 Afill(aTest,5)

 Status

 Ready

 Compliance

 This function is CA Clipper compliant

 Files

 Library is vm

See Also:

AADD()
AEVAL()
DBSTRUCT()
ARRAY()

ASCAN()
Scan array elements for a specified condition

 Syntax

 ASCAN(<aTarget>, <xSearch>, [<nStart>], [<nCount>]) --> nStoppedAt

 Arguments

 <aTarget> Name of array to be scanned.

 <xSearch> Expression to search for in <aTarget>

 <nStart> Beginning subscript position at which to start the search.

 <nCount> Number of elements to scan with <aTarget>.

 Returns

 <nStoppedAt> A numeric value of subscript position where <xSearch> was
 found.

 Description

 This function scan the content of array named <aTarget> for the value of
 <xSearch>. The return value is the position in the array <aTarget> in which
 <xSearch> was found. If it was not found, the return value will be 0.

 If specified, the beginning subscript position at which to start scanning may
 be set with the value passed as <nStart>. The default is 1.

 If specified, the number of array elements to scan may be set with the value
 passed as <nCount>. The default is the number of elements in the array <aTarget>.

 If <xSearch> is a code block, the operation of the function is slightly
 different. Each array subscript pointer reference is passed to the code block to
 be evaluated. The scanning routine will continue until the value obtained from the
 code block is a logical true (.T.) or until the end of the array has been reached.

 Examples

 aDir:=Directory("*.prg")
 AScan(aDir,,,{|x,y| x[1]="Test.prg"})

 Status

 Ready

 Compliance

 This function is not CA-Clipper compatible. Clipper ASCAN() is affected by the
 SET EXACT ON/OFF Condition

 Files

 Library is vm

See Also:

AEVAL()

AEVAL()
Evaluated the subscript element of an array

 Syntax

 AEVAL(<aArray>, <bBlock>, [<nStart>], [<nCount>]) --> aArray

 Arguments

 <aArray> Is the array to be evaluated.

 <bBlock> Is a code block to evaluate for each element processed.

 <nStart> The beginning array element to evaluate.

 <nCount> The number of elements to process.

 Returns

 <aArray> an array pointer reference.

 Description

 This function will evaluate and process the subscript elements in <aArray>. A
 code block passed as <bBlock> defines the operation to be executed on each element
 of the array. All elements in <aArray> will be evaluated unless specified by a
 beginning subscript position in <nStart> for <nCount> elements.

 Two parameters are passed to the code block <bBlock>. The individual elements
 in an array are the first parameter and the subscript position is the second.

 AEVAL() does not replace a FOR...NEXT loop for processing arrays. If an array
 is an autonomous unit, AEVAL() is appropriate. If the array is to be altered or if
 elements are to be reevaluated, a FOR...NEXT loop is more appropriate.

 Status

 Ready

 Compliance

 This function is CA Clipper compliant

 Files

 Library is vm

See Also:

EVAL()
DBEVAL()

ACOPY()
Copy elements from one array to another

 Syntax

 ACOPY(<aSource>, <aTarget>, [<nStart>], [<nCount>], [<nTargetPos>])
 --> aTarget

 Arguments

 <aSource> is the array to copy elements from.

 <aTarget> is the array to copy elements to.

 <nStart> is the beginning subscript position to copy from <aSource>

 <nCount> the number of subscript elements to copy from <aSource>.

 <nTargetPos> the starting subscript position in <aTarget> to copy elements
 to.

 Returns

 <aTarget> an array pointer reference

 Description

 This function copies array elements from <aSource> to <aTarget>. <nStart> is
 the beginning element to be copied from <aSource>; the default is 1.

 <nCount> is the number of elements to be copied from <aSource>; the default
 is the entire array.

 <nTargetPos> is the subscript number in the target array,<aTarget>, to which
 array elements are to be copied; the default is 1

 This function will copy all data types in <aSource> to <aTarget>.

 If an array element in <aSource> is a pointer reference to another array,
 that array pointer will be copied to <aTarget>; not all subdimensions will be
 copied from one array to the next. This must be accomplished via the ACLONE()
 function.

 Note If array <aSource> is larger then <aTarget>, array elements will start
 copying at <nTargetPos> and continue copying until the end of array <aTarget> is
 reached. The ACOPY() function doesn't append subscript positions to the target
 array, the size of the target array <aTarget> remains constant.

 Examples

 LOCAL nCount := 2, nStart := 1, aOne, aTwo
 aOne := {"HABOUR"," is ","POWER"}
 aTwo := {"CLIPPER"," was ","POWER"}
 ACOPY(aOne, aTwo, nStart, nCount)

 Status

 Ready

 Compliance

 This function is CA Clipper compliant

 Files

 Library is vm

See Also:

ACLONE()
ADEL()
AEVAL()
AFILL()
AINS()
ASORT()

ACLONE()
Duplicate a multidimensional array

 Syntax

 ACLONE(<aSource>) --> aDuplicate

 Arguments

 <aSource> Name of the array to be cloned.

 Returns

 <aDuplicate> A new array pointer reference complete with nested array
 values.

 Description

 This function makes a complete copy of the array expressed as <aSource> and
 return a cloned set of array values.This provides a complete set of arrays values
 for all dimensions within the original array <aSource>

 Examples

 LOCAL aOne, aTwo
 aOne := {"Harbour"," is ","POWER"}
 aTwo := ACLONE(aOne) // Result: aTwo is {1, 2, 3}
 aOne[1] := "The Harbour Compiler" // Result: aOne is {99, 2, 3}
 // aTwo is still {1, 2, 3}

 Status

 Ready

 Compliance

 Clipper will return NIL if the parameter is not an array.

 Files

 Library is vm

See Also:

ACOPY()
ADEL()
AINS()
ASIZE()

ASORT()
Sort an array

 Syntax

 ASORT(<aArray>, [<nStart>], [<nCount>], [<bSort>]) --> aArray

 Arguments

 <aArray> Array to be sorted.

 <nStart> The first element to start the sort from, default is 1.

 <nCount> Number of elements starting from <nStart> to sort, default is all
 elements.

 <bSort> Code block for sorting order, default is ascending order {| x, y | x
 < y }. The code block should accept two parameters and must return .T. if the sort
 is in order, .F. if not.

 Returns

 <aArray> reference to the now sorted or NIL if the passed <aArray> is not
 an array.

 Description

 ASORT() sort all or part of a given array. If <bSort> is omitted, the
 function expect <aArray> to be one dimensional array containing single data type
 (one of: Character, Date, Logical, Numeric) and sort this array in ascending order:
 Character are sorted by their ASCII value, Dates are sorted chronologically,
 Logical put .F. values before .T., Numeric are sorted by their value.

 If <bSort> is specified, it is used to handle the sorting order. With each
 time the block is evaluate, two array elements are passed to the code block, and
 <bSort> must return a logical value that state if those elements are in order (.T.)
 or not (.F.). Using this block you can sort multidimensional array, descending
 orders or even (but why would you want to do that) sort array that contain
 different data type.

 Examples

 // sort numeric values in ascending order
 ASORT({ 3, 1, 4, 42, 5, 9 }) // result: { 1, 3, 4, 5, 9, 42 }

 // sort character strings in descending lexical order
 aKeys := { "Ctrl", "Alt", "Delete" }
 bSort := {| x, y | UPPER(x) > UPPER(y) }
 ASORT(aKeys,,, bSort) // result: { "Delete", "Ctrl", "Alt" }

 // sort two-dimensional array according to 2nd element of each pair
 aPair := { {"Sun",8}, {"Mon",1}, {"Tue",57}, {"Wed",-6} }
 ASORT(aPair,,, {| x, y | x[2] < y[2] })
 // result: { {"Wed",-6}, {"Mon",1}, {"Sun",8}, {"Tue",57} }

 Status

 Ready

 Compliance

 Codeblock calling frequency and order differs from Clipper, since Harbour
 uses a different (faster) sorting algorithm (quicksort).

 Files

 Library is vm

See Also:

ASCAN()
EVAL()
ARRAY()

BIN2W()
Convert unsigned short encoded bytes into Harbour numeric

 Syntax

 BIN2W(<cBuffer>) --> nNumber

 Arguments

 <cBuffer> is a character string that contain 16 bit encoded unsigned short
 integer (least significant byte first). The first two bytes are taken into
 account, the rest if any are ignored.

 Returns

 BIN2W() return numeric integer (or 0 if <cBuffer> is not a string).

 Description

 BIN2W() is one of the low level binary conversion functions, those functions
 convert between Harbour numeric and a character representation of numeric value.
 BIN2W() take two bytes of encoded 16 bit unsigned short integer and convert it into
 standard Harbour numeric value.

 You might ask what is the need for such functions, well, first of all it
 allow you to read/write information from/to a binary file (like extracting
 information from DBF header), it is also a useful way to share information from
 source other than Harbour (C for instance).

 BIN2W() is the opposite of W2BIN()

 Examples

 // Show header length of a DBF
 FUNCTION main()
 LOCAL nHandle, cBuffer := space(2)
 nHandle := fopen("test.dbf")
 IF nHandle > 0
 fseek(nHandle, 8)
 fread(nHandle, @cBuffer, 2)
 ? "Length of DBF header in bytes:", BIN2W(cBuffer)
 fclose(nHandle)
 ELSE
 ? "Can not open file"
 ENDIF
 RETURN NIL

 Status

 Ready

 Compliance

 BIN2W() works exactly like CA-Clipper's BIN2W()

 Files

 Library is rtl

See Also:

BIN2I()
BIN2L()
BIN2U()
I2BIN()
L2BIN()
W2BIN()
WORD()
U2BIN()
FREAD()

BIN2I()
Convert signed short encoded bytes into Harbour numeric

 Syntax

 BIN2I(<cBuffer>) --> nNumber

 Arguments

 <cBuffer> is a character string that contain 16 bit encoded signed short
 integer (least significant byte first). The first two bytes are taken into
 account, the rest if any are ignored.

 Returns

 BIN2I() return numeric integer (or 0 if <cBuffer> is not a string).

 Description

 BIN2I() is one of the low level binary conversion functions, those functions
 convert between Harbour numeric and a character representation of numeric value.
 BIN2I() take two bytes of encoded 16 bit signed short integer and convert it into
 standard Harbour numeric value.

 You might ask what is the need for such functions, well, first of all it
 allow you to read/write information from/to a binary file (like extracting
 information from DBF header), it is also a useful way to share information from
 source other than Harbour (C for instance).

 BIN2I() is the opposite of I2BIN()

 Examples

 // Show DBF last update date
 FUNCTION main()
 LOCAL nHandle, cYear, cMonth, cDay
 nHandle := fopen("test.dbf")
 IF nHandle > 0
 fseek(nHandle, 1)
 cYear := cMonth := cDay := " "
 fread(nHandle, @cYear , 1)
 fread(nHandle, @cMonth, 1)
 fread(nHandle, @cDay , 1)
 ? "Last update:", BIN2I(cYear), BIN2I(cMonth), BIN2I(cDay)
 fclose(nHandle)
 ELSE
 ? "Can not open file"
 ENDIF
 RETURN NIL

 Status

 Ready

 Compliance

 BIN2I() works exactly like CA-Clipper's BIN2I()

 Files

 Library is rtl

See Also:

BIN2L()
BIN2U()
BIN2W()
I2BIN()
L2BIN()
W2BIN()
WORD()
U2BIN()

FREAD()

BIN2L()
Convert signed long encoded bytes into Harbour numeric

 Syntax

 BIN2L(<cBuffer>) --> nNumber

 Arguments

 <cBuffer> is a character string that contain 32 bit encoded signed long
 integer (least significant byte first). The first four bytes are taken into
 account, the rest if any are ignored.

 Returns

 BIN2L() return numeric integer (or 0 if <cBuffer> is not a string).

 Description

 BIN2L() is one of the low level binary conversion functions, those functions
 convert between Harbour numeric and a character representation of numeric value.
 BIN2L() take four bytes of encoded 32 bit signed long integer and convert it into
 standard Harbour numeric value.

 You might ask what is the need for such functions, well, first of all it
 allow you to read/write information from/to a binary file (like extracting
 information from DBF header), it is also a useful way to share information from
 source other than Harbour (C for instance).

 BIN2L() is the opposite of L2BIN()

 Examples

 // Show number of records in DBF
 FUNCTION main()
 LOCAL nHandle, cBuffer := space(4)
 nHandle := fopen("test.dbf")
 IF nHandle > 0
 fseek(nHandle, 4)
 fread(nHandle, @cBuffer, 4)
 ? "Number of records in file:", BIN2L(cBuffer)
 fclose(nHandle)
 ELSE
 ? "Can not open file"
 ENDIF
 RETURN NIL

 Status

 Ready

 Compliance

 BIN2L() works exactly like CA-Clipper's BIN2L()

 Files

 Library is rtl

See Also:

BIN2I()
BIN2U()
BIN2W()
I2BIN()
L2BIN()
W2BIN()
WORD()
U2BIN()
FREAD()

BIN2U()
Convert unsigned long encoded bytes into Harbour numeric

 Syntax

 BIN2U(<cBuffer>) --> nNumber

 Arguments

 <cBuffer> is a character string that contain 32 bit encoded unsigned long
 integer (least significant byte first). The first four bytes are taken into
 account, the rest if any are ignored.

 Returns

 BIN2U() return numeric integer (or 0 if <cBuffer> is not a string).

 Description

 BIN2U() is one of the low level binary conversion functions, those functions
 convert between Harbour numeric and a character representation of numeric value.
 BIN2U() take four bytes of encoded 32 bit unsigned long integer and convert it into
 standard Harbour numeric value.

 You might ask what is the need for such functions, well, first of all it
 allow you to read/write information from/to a binary file (like extracting
 information from DBF header), it is also a useful way to share information from
 source other than Harbour (C for instance).

 BIN2U() is the opposite of U2BIN()

 Examples

 // Show number of records in DBF
 FUNCTION main()
 LOCAL nHandle, cBuffer := space(4)
 nHandle := fopen("test.dbf")
 IF nHandle > 0
 fseek(nHandle, 4)
 fread(nHandle, @cBuffer, 4)
 ? "Number of records in file:", BIN2U(cBuffer)
 fclose(nHandle)
 ELSE
 ? "Can not open file"
 ENDIF
 RETURN NIL

 Status

 Ready

 Compliance

 BIN2U() is an XBase++ compatibility function and does not exist as a standard
 CA-Clipper 5.x function. This function is only visible if source/rtl/binnum.c was
 compiled with the HB_COMPAT_XPP flag.

 Files

 Library is rtl

See Also:

BIN2I()
BIN2L()
BIN2W()
I2BIN()
L2BIN()
W2BIN()
WORD()
U2BIN()
FREAD()

I2BIN()
Convert Harbour numeric into signed short encoded bytes

 Syntax

 I2BIN(<nNumber>) --> cBuffer

 Arguments

 <nNumber> is a numeric value to convert (decimal digits are ignored).

 Returns

 I2BIN() return two bytes character string that contain 16 bit encoded signed
 short integer (least significant byte first).

 Description

 I2BIN() is one of the low level binary conversion functions, those functions
 convert between Harbour numeric and a character representation of numeric value.
 I2BIN() take a numeric integer value and convert it into two bytes of encoded 16
 bit signed short integer.

 You might ask what is the need for such functions, well, first of all it
 allow you to read/write information from/to a binary file (like extracting
 information from DBF header), it is also a useful way to share information from
 source other than Harbour (C for instance).

 I2BIN() is the opposite of BIN2I()

 Examples

 // Update DBF "last update" date
 #include "fileio.ch"
 FUNCTION main()
 LOCAL nHandle, cYear, cMonth, cDay
 use test
 ? "Original update date is:", lupdate()
 close
 nHandle := fopen("test.dbf", FO_READWRITE)
 IF nHandle > 0
 fseek(nHandle, 1,)
 cYear := I2BIN(68)
 cMonth := I2BIN(8)
 cDay := I2BIN(1)
 fwrite(nHandle, cYear , 1) // write only the first byte
 fwrite(nHandle, cMonth, 1)
 fwrite(nHandle, cDay , 1)
 fclose(nHandle)
 use test
 ? "New update date is:", lupdate()
 close
 ELSE
 ? "Can not open file"
 ENDIF
 RETURN NIL

 Status

 Ready

 Compliance

 I2BIN() works exactly like CA-Clipper's I2BIN()

 Files

 Library is rtl

See Also:

BIN2I()
BIN2L()
BIN2U()

BIN2W()
L2BIN()
W2BIN()
WORD()
U2BIN()
FWRITE()

W2BIN()
Convert Harbour numeric into unsigned short encoded bytes

 Syntax

 W2BIN(<nNumber>) --> cBuffer

 Arguments

 <nNumber> is a numeric value to convert (decimal digits are ignored).

 Returns

 W2BIN() return two bytes character string that contain 16 bit encoded
 unsigned short integer (least significant byte first).

 Description

 W2BIN() is one of the low level binary conversion functions, those functions
 convert between Harbour numeric and a character representation of numeric value.
 W2BIN() take a numeric integer value and convert it into two bytes of encoded 16
 bit unsigned short integer.

 You might ask what is the need for such functions, well, first of all it
 allow you to read/write information from/to a binary file (like extracting
 information from DBF header), it is also a useful way to share information from
 source other than Harbour (C for instance).

 W2BIN() is the opposite of BIN2W()

 Status

 Ready

 Compliance

 W2BIN() is an XBase++ compatibility function and does not exist as a standard
 CA-Clipper 5.x function. This function is only visible if source/rtl/binnum.c was
 compiled with the HB_COMPAT_XPP flag.

 Files

 Library is rtl

See Also:

BIN2I()
BIN2L()
BIN2U()
BIN2W()
I2BIN()
L2BIN()
WORD()
U2BIN()
FWRITE()

L2BIN()
Convert Harbour numeric into signed long encoded bytes

 Syntax

 L2BIN(<nNumber>) --> cBuffer

 Arguments

 <nNumber> is a numeric value to convert (decimal digits are ignored).

 Returns

 L2BIN() return four bytes character string that contain 32 bit encoded
 signed long integer (least significant byte first).

 Description

 L2BIN() is one of the low level binary conversion functions, those functions
 convert between Harbour numeric and a character representation of numeric value.
 L2BIN() take a numeric integer value and convert it into four bytes of encoded 32
 bit signed long integer.

 You might ask what is the need for such functions, well, first of all it
 allow you to read/write information from/to a binary file (like extracting
 information from DBF header), it is also a useful way to share information from
 source other than Harbour (C for instance).

 L2BIN() is the opposite of BIN2L()

 Status

 Ready

 Compliance

 L2BIN() works exactly like CA-Clipper's L2BIN()

 Files

 Library is rtl

See Also:

BIN2I()
BIN2L()
BIN2U()
BIN2W()
I2BIN()
W2BIN()
WORD()
U2BIN()
FWRITE()

U2BIN()
Convert Harbour numeric into unsigned long encoded bytes

 Syntax

 U2BIN(<nNumber>) --> cBuffer

 Arguments

 <nNumber> is a numeric value to convert (decimal digits are ignored).

 Returns

 U2BIN() return four bytes character string that contain 32 bit encoded
 unsigned long integer (least significant byte first).

 Description

 U2BIN() is one of the low level binary conversion functions, those functions
 convert between Harbour numeric and a character representation of numeric value.
 U2BIN() take a numeric integer value and convert it into four bytes of encoded 32
 bit unsigned long integer.

 You might ask what is the need for such functions, well, first of all it
 allow you to read/write information from/to a binary file (like extracting
 information from DBF header), it is also a useful way to share information from
 source other than Harbour (C for instance).

 U2BIN() is the opposite of BIN2U()

 Status

 Ready

 Compliance

 U2BIN() is an XBase++ compatibility function and does not exist as a standard
 CA-Clipper 5.x function. This function is only visible if source/rtl/binnum.c was
 compiled with the HB_COMPAT_XPP flag.

 Files

 Library is rtl

See Also:

BIN2I()
BIN2L()
BIN2U()
BIN2W()
I2BIN()
L2BIN()
W2BIN()
WORD()
FWRITE()

WORD()
Converts double to integer values.

 Syntax

 WORD(<nDouble>) --> <nInteger>

 Arguments

 <nDouble> is a numeric double value.

 Returns

 WORD() return an integer in the range +-32767

 Description

 This function converts double values to integers to use within the CALL
 command

 Status

 Ready

 Compliance

 The Clipper NG states that WORD() will only work when used in CALL commands
 parameter list, otherwise it will return NIL, in Harbour it will work anywhere.

 Files

 Library is rtl

See Also:

ARRAY()

DBEDIT()*
Browse records in a table

 Syntax

 DBEDIT([<nTop>], [<nLeft>], [<nBottom>], [<nRight>], [<acColumns>], [<xUserFunc>],
 [<xColumnSayPictures>], [<xColumnHeaders>], [<xHeadingSeparators>],
 [<xColumnSeparators>], [<xFootingSeparators>], [<xColumnFootings>]) --> lOk

 Arguments

 <nTop> coordinate for top row display. could range from 0 to MAXROW(),
 default is 0.

 <nLeft> coordinate for left column display. could range from 0 to MAXCOL(),
 default is 0.

 <nBottom> coordinate for bottom row display. could range from 0 to
 MAXROW(), default is MAXROW().

 <nRight> coordinate for right column display. could range from 0 to
 MAXCOL(), default is MAXCOL().

 <acColumns> is an array of character expressions that contain database
 fields names or expressions to display in each column. If not specified, the
 default is to display all fields from the database in the current work area.

 <xUserFunc> is a name of a user defined function or a code block that would
 be called every time unrecognized key is been pressed or when there are no keys
 waiting to be processed and DBEDIT() goes into idle mode. If <xUserFunc> is a
 character string, it must contain root name of a valid user define function without
 parentheses. Both the user define function or the code block should accept two
 parameters: nMode, nCurrentColumn. Both should return a numeric value that
 correspond to one of the expected return codes (see table below for a list of nMode
 and return codes).

 <xColumnSayPictures> is an optional picture. If is a character string, all
 columns would used this value as a picture string. If <xColumnSayPictures> is an
 array, each element should be a character string that correspond to a picture
 string for the column with the same index. Look at the help for @...SAY to get
 more information about picture values.

 <xColumnHeaders> contain the header titles for each column, if this is a
 character string, all columns would have that same header, if this is an array,
 each element is a character string that contain the header title for one column.
 Header may be split to more than one line by placing semicolon (;) in places where
 you want to break line. If omitted, the default value for each column header is
 taken from <acColumns> or field name if <acColumns> was not specified.

 <xHeadingSeparators> is an array that contain characters that draw the lines
 separating the headers and the fields data. Instead of an array you can use a
 character string that would be used to display the same line for all fields.
 Default value is a double line.

 <xColumnSeparators> is an array that contain characters that draw the lines
 separating displayed columns. Instead of an array you can use a character string
 that would be used to display the same line for all fields. Default value is a
 single line.

 <xFootingSeparators> is an array that contain characters that draw the lines
 separating the fields data area and the footing area. Instead of an array you can
 use a character string that would be used to display the same line for all footers.
 Default is to have to no footing separators.

 <xColumnFootings> contain the footing to be displayed at the bottom of each
 column, if this is a character string, all columns would have that same footer, if
 this is an array, each element is a character string that contain the footer for
 one column. Footer may be split to more than one line by placing semicolon (;) in
 places where you want to break line. If omitted, no footer are displayed.

 Returns

 DBEDIT() return .F. if there is no database in use or if the number of
 columns to display is zero, else DBEDIT() return .T.

 Description

 DBEDIT() display and edit records from one or more work areas in a grid on
 screen. Each column is defined by element from <acColumns> and is the equivalent
 of one field. Each row is equivalent of one database record.

 Following are active keys that handled by DBEDIT():

 MeaningKey

Move one column to the left (previous field)Left

Move one column to the right (next field)Right

Move up one row (previous record)Up

Move down one row (next record)Down

Move to the previous screenPage-Up

Move to the next screenPage-Down

Move to the top of the fileCtrl Page-Up

Move to the end of the fileCtrl Page-Down

Move to the leftmost visible columnHome

Move to the rightmost visible columnEnd

Pan one column to the leftCtrl Left

Pan one column to the rightCtrl Right

Move to the leftmost columnCtrl Home

Move to the rightmost columnCtrl End

 When <xUserFunc> is omitted, two more keys are active:

 MeaningKey

Terminate BROWSE()Esc

Terminate BROWSE()Enter

 When DBEDIT() execute <xUserFunc> it pass the following arguments: nMode and
 the index of current record in <acColumns>. If <acColumns> is omitted, the index
 number is the FIELD() number of the open database structure.

 DBEDIT() nMode could be one of the following:

 MeaningDbedit.ch

DBEDIT() is idle, all movement keys have been handled.DE_IDLE

Attempt to cursor past top of file.DE_HITTOP

Attempt to cursor past bottom of file.DE_HITBOTTOM

No records in work area, database is empty.DE_EMPTY

Key exception.DE_EXCEPT

 The user define function or code block must return a value that tell DBEDIT()
 what to do next.

 User function return codes:

 The user function is called once in each of the following cases: - The
 database is empty. - The user try to move past top of file or past bottom file. -
 Key exception, the uses had pressed a key that is not handled by DBEDIT(). - The
 keyboard buffer is empty or a screen refresh had just occurred DBEDIT() is a
 compatibility function, it is superseded by the TBrowse class and there for not
 recommended for new applications.

 Examples

 // Browse a file using default values
 USE Test
 DBEDIT()

 Status

 Started

 Compliance

 <xUserFunc> can take a code block value, this is a Harbour extension.

 CA-Clipper will throw an error if there's no database open, Harbour would
 return .F.

 CA-Clipper is buggy and will throw an error if the number of columns zero,
 Harbour would return .F.

 The CA-Clipper 5.2 NG state that the return value is NIL, this is wrong and
 should be read logical.

 There is an undocumented result code (3) from the user defined function in
 Clipper (both 87 and 5.x). This is an Append Mode which: "split the screen to
 allow data to be appended in windowed area". This mode is not supported by Harbour.

 Files

 Header files are dbedit.ch, inkey.ch Library is rtl

See Also:

@...SAY
BROWSE()
ARRAY()
TRANSFORM()

BROWSE()
Browse a database file

 Syntax

 BROWSE([<nTop>, <nLeft>, <nBottom>, <nRight>]) --> lOk

 Arguments

 <nTop> coordinate for top row display.

 <nLeft> coordinate for left column display.

 <nBottom> coordinate for bottom row display.

 <nRight> coordinate for right column display.

 Returns

 BROWSE() return .F. if there is no database open in this work area, else it
 return .T.

 Description

 BROWSE() is a general purpose database browser, without any thinking you can
 browse a file using the following keys:

 MeaningKey

Move one column to the left (previous field)Left

Move one column to the right (next field)Right

Move up one row (previous record)Up

Move down one row (next record)Down

Move to the previous screenPage-Up

Move to the next screenPage-Down

Move to the top of the fileCtrl Page-Up

Move to the end of the fileCtrl Page-Down

Move to the leftmost visible columnHome

Move to the rightmost visible columnEnd

Pan one column to the leftCtrl Left

Pan one column to the rightCtrl Right

Move to the leftmost columnCtrl Home

Move to the rightmost columnCtrl End

Terminate BROWSE()Esc

 On top of the screen you see a status line with the following indication:

 Current record number / Total number of records.Record ###/###

There are no records, the file is empty.<none>

You are in append mode at the bottom of file.<new>

Current record is deleted.<Deleted>

You are at the top of file.<bof>

 You should pass whole four valid coordinate, if less than four parameters are
 passed to BROWSE() the coordinate are default to: 1, 0, MAXROW(), MAXCOL().

 Examples

 // this one shows you how to browse around
 USE Around
 BROWSE()

 Status

 Started

 Files

 Library is rtl

See Also:

DBEDIT()*
ARRAY()

TBrowseDB()
Create a new TBrowse object to be used with database file

 Syntax

 TBrowseDB([<nTop>], [<nLeft>], [<nBottom>], [<nRight>]) --> oBrowse

 Arguments

 <nTop> coordinate for top row display.

 <nLeft> coordinate for left column display.

 <nBottom> coordinate for bottom row display.

 <nRight> coordinate for right column display.

 Returns

 TBrowseDB() return new TBrowse object with the specified coordinate and a
 default :SkipBlock, :GoTopBlock and :GoBottomBlock to browse a database file.

 Description

 TBrowseDB() is a quick way to create a TBrowse object along with the minimal
 support needed to browse a database. Note that the returned TBrowse object contain
 no TBColumn objects and you need to add column for each field by your self.

 Examples

 for a good example, look at the source code for BROWSE() function
 at source/rtl/browse.prg

 Status

 Started

 Compliance

 TBrowseDB() works exactly like CA-Clipper's TBrowseDB().

 Files

 Library is rtl

See Also:

BROWSE()
ARRAY()
ARRAY()
TBROWSENew()

dbSkipper()
Helper function to skip a database

 Syntax

 dbSkipper(<nRecs>) --> nSkipped

 Arguments

 <nRecs> is the number of records to skip relative to current record.
 Positive number would try to move the record pointer forward, while a negative
 number would try to move the record pointer back <nRecs> records.

 Returns

 dbSkipper() return the number of actual record skipped.

 Description

 dbSkipper() is a helper function used in browse mechanism to skip a number of
 records while giving the caller indication about the actual records skipped.

 Examples

 // open a file and find if we've got enough records in it
 USE MonthSales
 IF dbSkipper(100) == 100
 ? "Good work! You can party now"
 ELSE
 ? "Too bad, you should really work harder"
 ENDIF
 CLOSE

 Status

 Ready

 Compliance

 dbSkipper() is an XBase++ compatibility function and does not exist as a
 standard CA-Clipper 5.x function.

 This function is only visible if source/rtl/browdb.prg was compiled with the
 HB_COMPAT_XPP flag.

 Files

 Library is rtl

See Also:

DBSKIP()
ARRAY()

CLASS
Define a Class for Object Oriented Programming

 Syntax

 [CREATE] CLASS <ClassName> [<FROM, INHERIT> <SuperClass1> [,<SuperClassN>]]
 [STATIC]

 Arguments

 <ClassName> Name of the class to define. By tradition, Harbour classes
 start with "T" to avoid collisions with user- created classes.

 <SuperClass1...n> The Parent class(es) to use for inheritance. Harbour
 supports Multiple Inheritance.

 function. It will therefore not be available outside the current module.

 Description

 CLASS creates a class from which you can create objects. The CLASS command
 begins the class specification, in which the DATA elements (also known as instance
 variables) and METHODS of the class are named. The following scoping commands may
 also appear. They control the default scope of DATA and METHOD commands that follow
 them.

 EXPORTED:
 VISIBLE:
 HIDDEN:
 PROTECTED:

 The class specification ends with the END CLASS command.

 Classes can inherit from multiple <SuperClasses>, and the chain of
 inheritance can extend to many levels.

 A program uses a Class by calling the Class Constructor, usually the New()
 method, to create an object. That object is usually assigned to a variable, which
 is used to access the DATA elements and methods.

 Harbour's OOP syntax and implementation supports Scoping (Protect, Hidden and
 Readonly) and Delegating, and is largely compatible with Class(y)(tm),
 TopClass(tm) and Visual Objects(tm).

 Examples

 CLASS TBColumn

 DATA Block // Code block to retrieve data for the column
 DATA Cargo // User-definable variable
 DATA ColorBlock // Code block that determines color of data items
 DATA ColSep // Column separator character
 DATA DefColor // Array of numeric indexes into the color table
 DATA Footing // Column footing
 DATA FootSep // Footing separator character
 DATA Heading // Column heading
 DATA HeadSep // Heading separator character
 DATA Width // Column display width
 DATA ColPos // Temporary column position on screen

 METHOD New() // Constructor

 ENDCLASS

 Status

 Ready

 Compliance

 CLASS is a Harbour extension.

 Platforms

 All

See Also:

TClass()
ARRAY()
DATA
METHOD

DATA
Alternate syntax for VAR: instance variable for the objects.

 Syntax

 DATA <DataName1> [,<DataNameN>] [AS <type>] [INIT <uValue>]
 [[EXPORTED | VISIBLE] | [PROTECTED] | [HIDDEN]] [READONLY | RO]

 Arguments

 <DataName1> Name of the DATA

 <type> Optional data type specification from the following: Character,
 Numeric, Date, Logical, Codeblock, Nil.

 <uValue> Optional initial value when creating a new object.

 outside of the class. VISIBLE is a synonym for EXPORTED.

 within this class and its subclasses.

 defined, and is not inherited by the subclasses.

 clause, assignment is only permitted from the current class and its subclasses.
 If specified with the PROTECTED clause, assignment is only permitted from the
 current class. RO is a synonym for READONLY.

 Description

 DATA elements can also be thought of as the "properties" of an object. They
 can be of any data type, including codeblock. Once an object has been created, the
 DATA elements are referenced with the colon (:) as in MyObject:Heading := "Last
 name". Usually a class also defines methods to manipulate the DATA.

 You can use the "AS <type>" clause to enforce that the DATA is maintained as
 a certain type. Otherwise it will take on the type of whatever value is first
 assigned to it.

 Use the "INIT <uValue>" clause to initialize that DATA to <uValue> whenever a
 new object is created.

 VAR can be a synonym for DATA, or it can use a slightly different syntax for
 compatibility with other dialects.

 CLASS TBColumn

 DATA Block // Code block to retrieve data for the column
 DATA Cargo // User-definable variable
 DATA ColorBlock // Code block that determines color of data items
 DATA ColSep // Column separator character
 DATA DefColor // Array of numeric indexes into the color table
 DATA Footing // Column footing
 DATA FootSep // Footing separator character
 DATA Heading // Column heading
 DATA HeadSep // Heading separator character
 DATA Width // Column display width
 DATA ColPos // Temporary column position on screen

 METHOD New() // Constructor

 ENDCLASS

 Status

 Ready

 Compliance

 DATA is a Harbour extension.

 Platforms

 All

See Also:

ARRAY()
CLASS
METHOD
CLASSDATA
ARRAY()

CLASSDATA
Define a CLASSDATA variable for a class (NOT for an Object!)

 Syntax

 CLASSDATA <DataName1> [,<DataNameN>] [AS <type>] [INIT <uValue>]

 Arguments

 <DataName1> Name of the DATA

 <type> Optional data type specification from the following: Character,
 Numeric, Date, Logical, Codeblock, Nil

 <uValue> Optional initial value at program startup

 Description

 CLASSDATA variables can also be thought of as the "properties" of an entire
 class. Each CLASSDATA exists only once, no matter how many objects are created. A
 common usage is for a counter that is incremented whenever an object is created and
 decremented when one is destroyed, thus monitoring the number of objects in
 existance for this class.

 You can use the "AS <type>" clause to enforce that the CLASSDATA is
 maintained as a certain type. Otherwise it will take on the type of whatever value
 is first assigned to it. Use the "INIT <uValue>" clause to initialize that DATA to
 <uValue> whenever the class is first used.

 Examples

 CLASS TWindow
 DATA hWnd, nOldProc
 CLASSDATA lRegistered AS LOGICAL
 ENDCLASS

 Status

 Ready

 Compliance

 CLASSDATA is a Harbour extension.

 Platforms

 All

See Also:

ARRAY()
CLASS
METHOD
DATA

METHOD
Declare a METHOD for a class in the class header

 Syntax

 METHOD <MethodName>([<params,...>]) [CONSTRUCTOR]
 METHOD <MethodName>([<params,...>]) INLINE <Code,...>
 METHOD <MethodName>([<params,...>]) BLOCK <CodeBlock>
 METHOD <MethodName>([<params,...>]) EXTERN <FuncName>([<args,...>])
 METHOD <MethodName>([<params,...>]) SETGET
 METHOD <MethodName>([<params,...>]) VIRTUAL
 METHOD <MethodName>([<param>]) OPERATOR <op>
 METHOD <MethodName>([<params,...>]) CLASS <ClassName>

 Arguments

 <MethodName> Name of the method to define

 <params,...> Optional parameter list

 Description

 Methods are "class functions" which do the work of the class. All methods
 must be defined in the class header between the CLASS and ENDCLASS commands. If
 the body of a method is not fully defined here, the full body is written below the
 ENDCLASS command using this syntax:

 METHOD <MethodName>([<params,...>]) CLASS <ClassName>

 Methods can reference the current object with the keyword "Self:" or its
 shorthand version "::".

 CLAUSES:

 CONSTRUCTOR Defines a special method Class Constructor method, used to
 create objects. This is usually the New() method. Constructors always return the
 new object.

 INLINE Fast and easy to code, INLINE lets you define the code for the
 method immediately within the definition of the Class. Any methods not declared
 INLINE or BLOCK must be fully defined after the ENDCLASS command. The <Code,...>
 following INLINE receives a parameter of Self. If you need to receive more
 parameters, use the BLOCK clause instead.

 BLOCK Use this clause when you want to declare fast 'inline' methods
 that need parameters. The first parameter to <CodeBlock> must be Self, as in:

 METHOD <MethodName> BLOCK {|Self,<arg1>,<arg2>, ...,<argN>|...}

 EXTERN If an external function does what the method needs, use this
 clause to make an optimized call to that function directly.

 SETGET For calculated Data. The name of the method can be manipulated
 like a Data element to Set or Get a value.

 VIRTUAL Methods that do nothing. Useful for Base classes where the child
 class will define the method's behavior, or when you are first creating and
 testing a Class.

 OPERATOR Operator Overloading for classes. See example Tests/TestOp.prg
 for details.

 CLASS <ClassName> Use this syntax only for defining a full method after the
 ENDCLASS command.

 Examples

 CLASS TWindow
 DATA hWnd, nOldProc
 METHOD New() CONSTRUCTOR
 METHOD Capture() INLINE SetCapture(::hWnd)
 METHOD End() BLOCK { | Self, lEnd | If(lEnd := ::lValid(),;
 ::PostMsg(WM_CLOSE),), lEnd }
 METHOD EraseBkGnd(hDC)
 METHOD cTitle(cNewTitle) SETGET

 METHOD Close() VIRTUAL
 ENDCLASS

 METHOD New() CLASS TWindow
 local nVar, cStr
 ... <code> ...
 ... <code> ...
 RETURN Self

 Tests

 TestOp.prg

 Status

 Ready

 Compliance

 METHOD is a Harbour extension.

 Platforms

 All

See Also:

TClass()
ARRAY()
DATA
CLASS

MESSAGE
Route a method call to another Method

 Syntax

 MESSAGE <MessageName> METHOD <MethodName>([<params,...>])
 MESSAGE <MessageName>() METHOD <MethodName>([<params,...>])

 Arguments

 <MessageName> The pseudo-method name to define

 <MethodName> The method to create and call when <MessageName> is invoked.

 <params,...> Optional parameter list for the method

 Description

 The MESSAGE command is a seldom-used feature that lets you re-route a call to
 a method with a different name. This can be necessary if a method name conflicts
 with a public function that needs to be called from within the class methods.

 For example, your app may have a public function called BeginPaint() that is
 used in painting windows. It would also be natural to have a Window class method
 called :BeginPaint() that the application can call. But within the class method you
 would not be able to call the public function because internally methods are based
 on static functions (which hide public functions of the same name).

 The MESSAGE command lets you create the true method with a different name
 (::xBeginPaint()), yet still allow the ::BeginPaint() syntax to call
 ::xBeginPaint(). This is then free to call the public function BeginPaint().

 Examples

 CLASS TWindow
 DATA hWnd, nOldProc
 METHOD New() CONSTRUCTOR
 MESSAGE BeginPaint METHOD xBeginPaint()
 ENDCLASS

 Status

 Ready

 Compliance

 MESSAGE is a Harbour extension.

 Platforms

 All

See Also:

METHOD
DATA
CLASS
ARRAY()

ERROR HANDLER
Designate a method as an error handler for the class

 Syntax

 ERROR HANDLER <MethodName>([<params,...>])

 Arguments

 <MethodName> Name of the method to define

 <params,...> Optional parameter list

 Description

 ERROR HANDLER names the method that should handle errors for the class being
 defined.

 Examples

 CLASS TWindow
 ERROR HANDLER MyErrHandler()
 ENDCLASS

 Status

 Ready

 Compliance

 ERROR HANDLER is a Harbour extension.

 Platforms

 All

See Also:

ARRAY()
ON ERROR
CLASS
METHOD
DATA

ON ERROR
Designate a method as an error handler for the class

 Syntax

 ON ERROR <MethodName>([<params,...>])

 Arguments

 <MethodName> Name of the method to define

 <params,...> Optional parameter list

 Description

 ON ERROR is a synonym for ERROR HANDLER. It names the method that should
 handle errors for the class being defined.

 Examples

 CLASS TWindow
 ON ERROR MyErrHandler()
 ENDCLASS

 Status

 Ready

 Compliance

 ON ERROR is a Harbour extension.

 Platforms

 All

See Also:

ARRAY()
ERROR HANDLER
CLASS
METHOD
DATA

ENDCLASS
End the declaration of a class.

 Syntax

 ENDCLASS

 Description

 ENDCLASS marks the end of a class declaration. It is usually followed by the
 class methods that are not INLINE.

 Examples

 CLASS TWindow
 DATA hWnd, nOldProc
 ENDCLASS

 Status

 Ready

 Compliance

 ON ERROR is a Harbour extension.

 Platforms

 All

See Also:

ARRAY()
CLASS
METHOD
DATA

CDOW()
Converts a date to the day of week

 Syntax

 CDOW(<dDate>) --> cDay

 Arguments

 <dDate> Any date expression.

 Returns

 <cDay> The current day of week.

 Description

 This function returns a character string of the day of the week, from a date
 expression <dDate> passed to it. If a NULL date is passed to the function, the
 value of the function will be a NULL byte.

 Examples

 ? CDOW(DATE())
 if CDOW(DATE()+10) =="SUNDAY"
 ? "This is a sunny day."
 Endif

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant.

 Platforms

 All

 Files

 Library is rtl

See Also:

DAY()
DOW()
DATE()
CMONTH()

CMONTH()
Return the name of the month.

 Syntax

 CMONTH(<dDate>) --> cMonth

 Arguments

 <dDate> Any date expression.

 Returns

 <cMonth> The current month name

 Description

 This function returns the name of the month (January,February,etc.) from a
 date expression <dDate> passed to it. If a NULL date is passed to the function,
 the value of the function will be a NULL byte.

 Examples

 ? CMONTH(DATE())
 if CMONTH(DATE()+10) =="March"
 ? "Have you done your system BACKUP?"
 Endif

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

CDOW()
DATE()
MONTH()
YEAR()
DOW()
DTOC()

DATE()
Return the Current OS Date

 Syntax

 DATE() --> dCurDate

 Arguments

 Returns

 <dCurDate> Current system date.

 Description

 This function returns the current system date.

 Examples

 ? Date()

 Tests

 ? "Today is ",Day(date())," of ",cMonth(date())," of ",Year(date())

 Status

 Ready

 Compliance

 This function is Ca-Clipper Compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

CTOD()
DTOS()
DTOC()
DAY()
MONTH()
CMONTH()

CTOD()
Converts a character string to a date expression

 Syntax

 CTOD(<cDateString>) --> dDate

 Arguments

 <cDateString> A character date in format 'mm/dd/yy'

 Returns

 <dDate> A date expression

 Description

 This function converts a date that has been entered as a character expression
 to a date expression.The character expression will be in the form "MM/DD/YY"
 (based on the default value in SET DATE) or in the appropriate format specified by
 the SET DATE TO command. If an improper character string is passed to the
 function,an empty date value will be returned.

 Examples

 ? CTOD('12/21/00')

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

SET DATE
DATE()
DTOS()

DAY()
Return the numeric day of the month.

 Syntax

 DAY(<cDate>) --> nMonth

 Arguments

 <cDate> Any valid date expression.

 Returns

 <nMonth> Numeric value of the day of month.

 Description

 This function returns the numeric value of the day of month from a date.

 Examples

 ? Day(DATE())
 ? Day(DATE()+6325)

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

CTOD()
DTOS()
DTOC()
DATE()
MONTH()
CMONTH()

DAYS()
Convert elapsed seconds into days

 Syntax

 DAYS(<nSecs>) --> nDay

 Arguments

 <nSecs> The number of seconds

 Returns

 <nDay> The number of days

 Description

 This function converts <nSecs> seconds to the equivalent number of days;
 86399 seconds represents one day, 0 seconds being midnight.

 Examples

 ? DAYS(2434234)
 ? "Has been passed ",DAYS(63251),' since midnight'

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

SECONDS()
SECS()
ELAPTIME()

DOW()
Value for the day of week.

 Syntax

 DOW(<dDate>) --> nDay

 Arguments

 <dDate> Any valid date expression

 Returns

 <nDay> The current day number

 Description

 This function returns the number representing the day of the week for the
 date expressed as <dDate>.

 Examples

 ? DOW(DATE())
 ? DOW(DATE()-6584)

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

DTOC()
CDOW()
DATE()
DTOS()
DAY()

DTOC()
Date to character conversion

 Syntax

 DTOC(<dDateString>) --> cDate

 Arguments

 <dDateString> Any date

 Returns

 <dDate> Character represention of date

 Description

 This function converts any date expression (a field or variable) expressed as
 <dDateString> to a character expression in the default format "MM/DD/YY". The date
 format expressed by this function is controled in part by the date format specified
 in the SET DATE command

 Examples

 ? DTOC(Date())

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

SET DATE
DATE()
DTOS()

DTOS()
Date to string conversion

 Syntax

 DTOS(<dDateString>) --> cDate

 Arguments

 <dDateString> Any date

 Returns

 <dDate> String notation of the date

 Description

 This function returns the value of <dDateString> as a character string in the
 format of YYYYMMDD. If the value of <dDateString> is an empty date, this function
 will return eight blank spaces.

 Examples

 ? DTOS(Date())

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

DTOC()
DATE()
DTOS()

ELAPTIME()
Calculates elapted time.

 Syntax

 ELAPTIME(<cStartTime>,<cEndTime>) --> cDiference

 Arguments

 <cStartTime> Start in time as a string format <cEndTime> End time as a
 string format

 Returns

 <cDiference> Difference between the times

 Description

 This function returns a string that shows the difference between the starting
 time represented as <cStartTime> and the ending time as <cEndTime>. If the stating
 time is greater then the ending time, the function will assume that the date
 changed once.

 Examples

 Static cStartTime
 Init Proc Startup
 cStartTime:=Time()

 Exit Proc StartExit
 ? "You used this program by",ELAPTIME(cStartTime,Time())

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

SECS()
SECONDS()
TIME()
DAY()

MONTH()
Converts a date expression to a month value

 Syntax

 MONTH(<dDate>) --> nMonth

 Arguments

 <dDate> Any valid date expression

 Returns

 <nMonth> Corresponding number of the month in the year, ranging from 0 to 12

 Description

 This function returns a number that represents the month of a given date
 expression <dDate>. If a NULL date (CTOD('')) is passed to the function, the value
 of the function will be 0.

 Examples

 ? Month(DATE())

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

CDOW()
DOW()
YEAR()
CMONTH()

SECONDS()
Returns the number of elapsed seconds past midnight.

 Syntax

 SECONDS() --> nSeconds

 Arguments

 Returns

 <nSeconds> Number of seconds since midnight

 Description

 This function returns a numeric value representing the number of elapsed
 seconds based on the current system time. The system time is considered to start
 at 0 (midnight);it continues up to 86399 seconds.The value of the return expression
 is displayed in both seconds and hundredths of seconds.

 Examples

 ? Seconds()

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

TIME()

SECS()
Return the number of seconds from the system date.

 Syntax

 SECS(<cTime>) --> nSeconds

 Arguments

 <cTime> Character expression in a time string format

 Returns

 <nSeconds> Number of seconds

 Description

 This function returns a numeric value that is a number of elapsed seconds
 from midnight based on a time string given as <cTime>.

 Examples

 ? Secs(Time())
 ? Secs(time()-10)

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

SECONDS()
ELAPTIME()
TIME()

TIME()
Returns the system time as a string

 Syntax

 TIME() --> cTime

 Arguments

 Returns

 <cTime> Character string representing time

 Description

 This function returns the system time represented as a character expression
 in the format of HH:MM:SS

 Examples

 ? Time()

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

DATE()
SECONDS()

YEAR()
Converts the year portion of a date into a numeric value

 Syntax

 YEAR(<cDate>) --> nYear

 Arguments

 <dDate> Any valid date expression

 Returns

 <nYear> The year portion of the date.

 Description

 This function returns the numeric value for the year in <dDate>. This value
 will always be a four-digit number and is not affected by the setting of the SET
 CENTURY and SET DATE commands. Addition ally, an empty date expression passed to
 this function will yield a zero value.

 ? Year(date())
 ? year(CTOD("01/25/3251"))

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

DAY()
MONTH()

__dbCopyStruct()
Create a new database based on current database structure

 Syntax

 __dbCopyStruct(<cFileName>, [<aFieldList>]) --> NIL

 Arguments

 <cFileName> is the name of the new database file to create. (.dbf) is the
 default extension if none is given.

 <aFieldList> is an array where each element is a field name. Names could be
 specified as uppercase or lowercase.

 Returns

 __dbCopyStruct() always return NIL.

 Description

 __dbCopyStruct() create a new empty database file with a structure that is
 based on the currently open database in this work-area. If <aFieldList> is empty,
 the newly created file would have the same structure as the currently open
 database. Else, the new file would contain only fields that exactly match
 <aFieldList>.

 __dbCopyStruct() can be use to create a sub-set of the currently open
 database, based on a given field list.

 COPY STRUCTURE command is preprocessed into __dbCopyStruct() function during
 compile time.

 Examples

 // Create a new file that contain the same structure
 USE TEST
 __dbCopyStruct("MyCopy.DBF")

 // Create a new file that contain part of the original structure
 LOCAL aList
 USE TEST
 aList := { "NAME" }
 __dbCopyStruct("OnlyName.DBF", aList)

 Status

 Ready

 Compliance

 __dbCopyStruct() works exactly like CA-Clipper's __dbCopyStruct()

 Platforms

 All

 Files

 Library is rdd

See Also:

COPY STRUCTURE
COPY STRUCTURE EXTENDED
DBCREATE()
DBSTRUCT()
__dbCopyXStruct()
__dbCreate()
__dbStructFilter()

COPY STRUCTURE
Create a new database based on current database structure

 Syntax

 COPY STRUCTURE TO <xcFileName> [FIELDS <field,...>]

 Arguments

 TO <xcFileName> is the name of the new database file to create.
 (.dbf) is the default extension if none is given. It can be specified as a literal
 file name or as a character expression enclosed in parentheses.

 FIELDS <field,...> is an optional list of field names to copy from
 the currently open database in the specified order, the default is all fields.
 Names could be specified as uppercase or lowercase.

 Description

 COPY STRUCTURE create a new empty database file with a structure that is
 based on the currently open database in this work-area.

 COPY STRUCTURE can be use to create a sub-set of the currently open database,
 based on a given field list.

 COPY STRUCTURE command is preprocessed into __dbCopyStruct() function during
 compile time.

 Examples

 // Create a new file that contains the same structure
 USE TEST
 COPY STRUCTURE TO MyCopy

 // Create a new file that contains part of the original structure
 USE TEST
 COPY STRUCTURE TO SomePart FIELDS name, address

 Status

 Ready

 Compliance

 COPY STRUCTURE works exactly as in CA-Clipper

 Platforms

 All

See Also:

COPY STRUCTURE EXTENDED
DBCREATE()
DBSTRUCT()
__dbCopyStruct()
__dbCopyXStruct()
__dbCreate()
__dbStructFilter()

__dbCopyXStruct()
Copy current database structure into a definition file

 Syntax

 __dbCopyXStruct(<cFileName>) --> lSuccess

 Arguments

 <cFileName> is the name of target definition file to create. (.dbf) is the
 default extension if none is given.

 Returns

 __dbCopyXStruct() return (.F.) if no database is USED in the current
 work-area, (.T.) on success, or a run-time error if the file create operation had
 failed.

 Description

 __dbCopyXStruct() create a new database named <cFileName> with a pre-defined
 structure (also called "structure extended file"):

 DecimalsLengthTypeField name

010CFIELD_NAME

01CFIELD_TYPE

03NFIELD_LEN

03NFIELD_DEC

 Each record in the new file contains information about one field in the
 original file. CREATE FROM could be used to create a database from the structure
 extended file.

 For prehistoric compatibility reasons, Character fields which are longer than
 255 characters are treated in a special way by writing part of the length in the
 FIELD_DEC according to the following formula (this is done internally):

 FIELD->FIELD_DEC := int(nLength / 256)
 FIELD->FIELD_LEN := (nLength % 256)

 Later if you want to calculate the length of a field you can use the
 following formula:

 nLength := IIF(FIELD->FIELD_TYPE == "C", ;
 FIELD->FIELD_DEC * 256 + FIELD->FIELD_LEN, ;
 FIELD->FIELD_LEN)

 COPY STRUCTURE EXTENDED command is preprocessed into __dbCopyXStruct()
 function during compile time.

 Examples

 // Open a database, then copy its structure to a new file,
 // Open the new file and list all its records
 USE Test
 __dbCopyXStruct("TestStru")
 USE TestStru
 LIST

 Status

 Ready

 Compliance

 __dbCopyXStruct() works exactly like CA-Clipper's __dbCopyXStruct()

 Platforms

 All

 Files

 Library is rdd

See Also:

COPY STRUCTURE
COPY STRUCTURE EXTENDED
CREATE
CREATE FROM
DBCREATE()
DBSTRUCT()
__dbCopyStruct()
__dbCreate()

COPY STRUCTURE EXTENDED
Copy current database structure into a definition file

 Syntax

 COPY STRUCTURE EXTENDED TO <xcFileName>

 Arguments

 TO <xcFileName> The name of the target definition file to create.
 (.dbf) is the default extension if none is given. It can be specified as a literal
 file name or as a character expression enclosed in parentheses.

 Description

 COPY STRUCTURE EXTENDED create a new database named <cFileName> with a
 pre-defined structure (also called "structure extended file"):

 DecimalsLengthTypeField name

010CFIELD_NAME

01CFIELD_TYPE

03NFIELD_LEN

03NFIELD_DEC

 Each record in the new file contains information about one field in the
 original file. CREATE FROM could be used to create a database from the structure
 extended file.

 For prehistoric compatibility reasons, Character fields which are longer than
 255 characters are treated in a special way by writing part of the length in the
 FIELD_DEC according to the following formula (this is done internally):

 FIELD->FIELD_DEC := int(nLength / 256)
 FIELD->FIELD_LEN := (nLength % 256)

 Later if you want to calculate the length of a field you can use the
 following formula:

 nLength := IIF(FIELD->FIELD_TYPE == "C", ;
 FIELD->FIELD_DEC * 256 + FIELD->FIELD_LEN, ;
 FIELD->FIELD_LEN)

 COPY STRUCTURE EXTENDED command is preprocessed into __dbCopyXStruct()
 function during compile time.

 Examples

 // Open a database, then copy its structure to a new file,
 // Open the new file and list all its records
 USE Test
 COPY STRUCTURE EXTENDED TO TestStru
 USE TestStru
 LIST

 Status

 Ready

 Compliance

 COPY STRUCTURE EXTENDED works exactly as in CA-Clipper

 Platforms

 All

See Also:

COPY STRUCTURE
CREATE
CREATE FROM
DBCREATE()
DBSTRUCT()
__dbCopyStruct()
__dbCopyXStruct()
__dbCreate()

__dbCreate()
Create structure extended file or use one to create new file

 Syntax

 __dbCreate(<cFileName>, [<cFileFrom>], [<cRDDName>], [<lNew>],
 [<cAlias>]) --> lUsed

 Arguments

 <cFileName> is the target file name to create and then open. (.dbf) is the
 default extension if none is given.

 <cFileFrom> is an optional structure extended file name from which the
 target file <cFileName> is going to be built. If omitted, a new empty structure
 extended file with the name <cFileName> is created and opened in the current
 work-area.

 <cRDDName> is RDD name to create target with. If omitted, the default RDD is
 used.

 <lNew> is an optional logical expression, (.T.) opens the target file name
 <cFileName> in the next available unused work-area and makes it the current
 work-area. (.F.) opens the target file in the current work-area. Default value is
 (.F.). The value of <lNew> is ignored if <cFileFrom> is not specified.

 <cAlias> is an optional alias to USE the target file with. If not specified,
 alias is based on the root name of <cFileName>.

 Returns

 __dbCreate() returns (.T.) if there is database USED in the current
 work-area (this might be the newly selected work-area), or (.F.) if there is no
 database USED. Note that on success a (.T.) would be returned, but on failure you
 probably end up with a run-time error and not a (.F.) value.

 Description

 __dbCreate() works in two modes depending on the value of <cFileFrom>:

 1) If <cFileFrom> is empty or not specified a new empty structure
 extended file with the name <cFileName> is created and then opened in the current
 work-area (<lNew> is ignored). The new file has the following structure:

 DecimalsLengthTypeField name

010CFIELD_NAME

01CFIELD_TYPE

03NFIELD_LEN

03NFIELD_DEC

 The CREATE command is preprocessed into the __dbCopyStruct() function during
 compile time and uses this mode.

 2) If <cFileFrom> is specified, it is opened and assumed to be a
 structure extended file where each record contains at least the following fields
 (in no particular order): FIELD_NAME, FIELD_TYPE, FIELD_LEN and FIELD_DEC. Any
 other field is ignored. From this information the file <cFileName> is then created
 and opened in the current or new work-area (according to <lNew>), if this is a new
 work-area it becomes the current.

 For prehistoric compatibility reasons, structure extended file Character
 fields which are longer than 255 characters should be treated in a special way by
 writing part of the length in the FIELD_DEC according to the following formula:

 FIELD->FIELD_DEC := int(nLength / 256)
 FIELD->FIELD_LEN := (nLength % 256)

 CREATE FROM command is preprocessed into __dbCopyStruct() function during
 compile time and use this mode.

 Examples

 // CREATE a new structure extended file, append some records and
 // then CREATE FROM this file a new database file

 __dbCreate("template")
 DBAPPEND()
 FIELD->FIELD_NAME := "CHANNEL"
 FIELD->FIELD_TYPE := "N"
 FIELD->FIELD_LEN := 2
 FIELD->FIELD_DEC := 0
 DBAPPEND()
 FIELD->FIELD_NAME := "PROGRAM"
 FIELD->FIELD_TYPE := "C"
 FIELD->FIELD_LEN := 20
 FIELD->FIELD_DEC := 0
 DBAPPEND()
 FIELD->FIELD_NAME := "REVIEW"
 FIELD->FIELD_TYPE := "C" // this field is 1000 char long
 FIELD->FIELD_LEN := 232 // 1000 % 256 = 232
 FIELD->FIELD_DEC := 3 // 1000 / 256 = 3
 DBCLOSEAREA()
 __dbCreate("TV_Guide", "template")

 Status

 Ready

 Compliance

 __dbCreate() works exactly as in CA-Clipper

 Platforms

 All

 Files

 Library is rdd

See Also:

COPY STRUCTURE
COPY STRUCTURE EXTENDED
CREATE
CREATE FROM
DBCREATE()
DBSTRUCT()
__dbCopyStruct()
__dbCopyXStruct()

CREATE
Create empty structure extended file

 Syntax

 CREATE <xcFileName> [VIA <xcRDDName>] [ALIAS <xcAlias>]

 Arguments

 <xcFileName> is the target file name to create and then open. (.dbf) is the
 default extension if none is given. It can be specified as literal file name or as
 a character expression enclosed in parentheses.

 VIA <xcRDDName> is RDD name to create target with. If omitted, the
 default RDD is used. It can be specified as literal name or as a character
 expression enclosed in parentheses.

 ALIAS <xcAlias> is an optional alias to USE the target file with. If
 not specified, alias is based on the root name of <xcFileName>.

 Description

 CREATE a new empty structure extended file with the name <cFileName> and then
 open it in the current work-area. The new file has the following structure:

 DecimalsLengthTypeField name

010CFIELD_NAME

01CFIELD_TYPE

03NFIELD_LEN

03NFIELD_DEC

 CREATE command is preprocessed into __dbCopyStruct() function during compile
 time and use this mode.

 Examples

 // CREATE a new structure extended file, append some records and
 // then CREATE FROM this file a new database file

 CREATE template
 APPEND BLANK
 FIELD->FIELD_NAME := "CHANNEL"
 FIELD->FIELD_TYPE := "N"
 FIELD->FIELD_LEN := 2
 FIELD->FIELD_DEC := 0
 APPEND BLANK
 FIELD->FIELD_NAME := "PROGRAM"
 FIELD->FIELD_TYPE := "C"
 FIELD->FIELD_LEN := 20
 FIELD->FIELD_DEC := 0
 APPEND BLANK
 FIELD->FIELD_NAME := "REVIEW"
 FIELD->FIELD_TYPE := "C" // this field is 1000 char long
 FIELD->FIELD_LEN := 232 // 1000 % 256 = 232
 FIELD->FIELD_DEC := 3 // 1000 / 256 = 3
 CLOSE
 CREATE TV_Guide FROM template

 Status

 Ready

 Compliance

 CREATE works exactly as in CA-Clipper

 Platforms

 All

See Also:

COPY STRUCTURE
COPY STRUCTURE EXTENDED
CREATE FROM
DBCREATE()
DBSTRUCT()
__dbCopyStruct()
__dbCopyXStruct()
__dbCreate()

CREATE FROM
Create new database file from a structure extended file

 Syntax

 CREATE <xcFileName> FROM <xcFileFrom> [VIA <xcRDDName>] [NEW]
 [ALIAS <xcAlias>]

 Arguments

 <xcFileName> is the target file name to create and then open. (.dbf) is the
 default extension if none is given. It can be specified as literal file name or as
 a character expression enclosed in parentheses.

 FROM <xcFileFrom> is a structure extended file name from which the
 target file <xcFileName> is going to be built. It can be specified as literal file
 name or as a character expression enclosed in parentheses.

 VIA <xcRDDName> is RDD name to create target with. If omitted, the
 default RDD is used. It can be specified as literal name or as a character
 expression enclosed in parentheses.

 NEW open the target file name <xcFileName> in the next available
 unused work-area and making it the current work-area. If omitted open the target
 file in current work-area.

 ALIAS <xcAlias> is an optional alias to USE the target file with. If
 not specified, alias is based on the root name of <xcFileName>.

 Description

 CREATE FROM open a structure extended file <xcFileFrom> where each record
 contain at least the following fields (in no particular order): FIELD_NAME,
 FIELD_TYPE, FIELD_LEN and FIELD_DEC. Any other field is ignored. From this
 information the file <xcFileName> is then created and opened in the current or new
 work-area (according to the NEW clause), if this is a new work-area it becomes the
 current.

 For prehistoric compatibility reasons, structure extended file Character
 fields which are longer than 255 characters should be treated in a special way by
 writing part of the length in the FIELD_DEC according to the following formula:

 FIELD->FIELD_DEC := int(nLength / 256)
 FIELD->FIELD_LEN := (nLength % 256)

 CREATE FROM command is preprocessed into __dbCopyStruct() function during
 compile time and uses this mode.

 Examples

 See example in the CREATE command

 Status

 Ready

 Compliance

 CREATE FROM works exactly as in CA-Clipper

 Platforms

 All

See Also:

COPY STRUCTURE
COPY STRUCTURE EXTENDED
CREATE
DBCREATE()
DBSTRUCT()
__dbCopyStruct()
__dbCopyXStruct()

__dbCreate()

__FLEDIT()*
Filter a database structure array

 Syntax

 __FLEDIT(<aStruct>, [<aFieldList>]) --> aStructFiltered

 Arguments

 <aStruct> is a multidimensional array with database fields structure, which
 is usually the output from DBSTRUCT(), where each array element has the following
 structure:

 <aFieldList> is an array where each element is a field name. Names could be
 specified as uppercase or lowercase.

 Returns

 __FLEDIT() return a new multidimensional array where each element is in the
 same structure as the original <aStruct>, but the array is built according to the
 list of fields in <aFieldList>. If <aFieldList> is empty, __FLEDIT() return
 reference to the original <aStruct> array.

 Description

 __FLEDIT() can be use to create a sub-set of a database structure, based on a
 given field list.

 Note that field names in <aStruct> MUST be specified in uppercase or else no
 match would found.

 SET EXACT has no effect on the return value.

 __FLEDIT() is a compatibility function and it is synonym for
 __dbStructFilter() which does exactly the same.

 Examples

 LOCAL aStruct, aList, aRet
 aStruct := { { "CODE", "N", 4, 0 }, ;
 { "NAME", "C", 10, 0 }, ;
 { "PHONE", "C", 13, 0 }, ;
 { "IQ", "N", 3, 0 } }
 aList := { "IQ", "NAME" }
 aRet := __FLEDIT(aStruct, aList)
 // { { "IQ", "N", 3, 0 }, { "NAME", "C", 10, 0 } }

 aRet := __FLEDIT(aStruct, {})
 ? aRet == aStruct // .T.

 aList := { "iq", "NOTEXIST" }
 aRet := __FLEDIT(aStruct, aList)
 // { { "IQ", "N", 3, 0 } }

 aList := { "NOTEXIST" }
 aRet := __FLEDIT(aStruct, aList) // {}

 // Create a new file that contain part of the original structure
 LOCAL aStruct, aList, aRet
 USE TEST
 aStruct := DBSTRUCT()
 aList := { "NAME" }
 DBCREATE("OnlyName.DBF", __FLEDIT(aStruct, aList))

 Status

 Ready

 Compliance

 CA-Clipper has internal undocumented function named __FLEDIT(), in Harbour we
 name it __dbStructFilter(). The new name gives a better description of what this

 function does. In Harbour __FLEDIT() simply calls __dbStructFilter() and therefor
 the later is the recommended function to use.

 This function is only visible if source/rdd/dbstrux.prg was compiled with the
 HB_C52_UNDOC flag.

 Platforms

 All

 Files

 Header file is dbstruct.ch Library is rdd

See Also:

DBCREATE()
DBSTRUCT()
__dbCopyStruct()
__dbStructFilter()

__dbStructFilter()
Filter a database structure array

 Syntax

 __dbStructFilter(<aStruct>, [<aFieldList>]) --> aStructFiltered

 Arguments

 <aStruct> is a multidimensional array with database fields structure, which
 is usually the output from DBSTRUCT(), where each array element has the following
 structure:

 <aFieldList> is an array where each element is a field name. Names could be
 specified as uppercase or lowercase.

 Returns

 __dbStructFilter() return a new multidimensional array where each element is
 in the same structure as the original <aStruct>, but the array is built according
 to the list of fields in <aFieldList>. If <aFieldList> is empty, __dbStructFilter()
 return reference to the original <aStruct> array.

 Description

 __dbStructFilter() can be use to create a sub-set of a database structure,
 based on a given field list.

 Note that field names in <aStruct> MUST be specified in uppercase or else no
 match would be found.

 SET EXACT has no effect on the return value.

 Examples

 LOCAL aStruct, aList, aRet
 aStruct := { { "CODE", "N", 4, 0 }, ;
 { "NAME", "C", 10, 0 }, ;
 { "PHONE", "C", 13, 0 }, ;
 { "IQ", "N", 3, 0 } }
 aList := { "IQ", "NAME" }
 aRet := __dbStructFilter(aStruct, aList)
 // { { "IQ", "N", 3, 0 }, { "NAME", "C", 10, 0 } }

 aRet := __dbStructFilter(aStruct, {})
 ? aRet == aStruct // .T.

 aList := { "iq", "NOTEXIST" }
 aRet := __dbStructFilter(aStruct, aList)
 // { { "IQ", "N", 3, 0 } }

 aList := { "NOTEXIST" }
 aRet := __dbStructFilter(aStruct, aList) // {}

 // Create a new file that contain part of the original structure
 LOCAL aStruct, aList, aRet
 USE TEST
 aStruct := DBSTRUCT()
 aList := { "NAME" }
 DBCREATE("OnlyName.DBF", __dbStructFilter(aStruct, aList))

 Status

 Ready

 Compliance

 __dbStructFilter() is a Harbour extension. CA-Clipper has an internal
 undocumented function named __FLEDIT() that does exactly the same thing. The new
 name gives a better description of what this function does.

 Platforms

 All

 Files

 Header file is dbstruct.ch Library is rdd

See Also:

DBCREATE()
DBSTRUCT()
__dbCopyStruct()
__FLEDIT()*

DISKSPACE()
Get the amount of space available on a disk

 Syntax

 DISKSPACE([<nDrive>]) --> nDiskbytes

 Arguments

 <nDrive> The number of the drive you are requesting info on where 1 = A, 2 =
 B, etc. For 0 or no parameter, DiskSpace will operate on the current drive. The
 default is 0

 Returns

 <nDiskBytes> The number of bytes on the requested disk that match the
 requested type.

 Description

 By default, this function will return the number of bytes of free space on
 the current drive that is available to the user requesting the information.

 If information is requested on a disk that is not available, a runtime error
 2018 will be raised.

 Examples

 ? "You can use : " +Str(DiskSpace()) + " bytes " +;
 Note: See tests\tstdspac.prg for another example

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 Dos,Win32,OS/2

 Files

 Library is rtl Header is fileio.ch

HB_DISKSPACE()
Get the amount of space available on a disk

 Syntax

 HB_DISKSPACE([<cDrive>] [, <nType>]) --> nDiskbytes

 Arguments

 <cDrive> The drive letter you are requesting info on. The default is A:

 <nType> The type of space being requested.The default is HB_DISK_AVAIL.

 Returns

 <nDiskBytes> The number of bytes on the requested disk that match the
 requested type.

 Description

 By default, this function will return the number of bytes of free space on
 the current drive that is available to the user requesting the information.

 There are 4 types of information available:

 HB_FS_AVAIL The amount of space available to the user making the request.
 This value could be less than HB_FS_FREE if disk quotas are supported by the O/S
 in use at runtime, and disk quotas are in effect. Otherwise, the value will be
 equal to that returned for HB_FS_FREE.

 HB_FS_FREE The actual amount of free diskspace on the drive.

 HB_FS_USED The number of bytes in use on the disk.

 HB_FS_TOTAL The total amount of space allocated for the user if disk
 quotas are in effect, otherwise, the actual size of the drive.

 If information is requested on a disk that is not available, a runtime error
 2018 will be raised.

 Examples

 ? "You can use : " +Str(HB_DiskSpace()) + " bytes " +;
 "Out of a total of " + Str(HB_DiskSpace('C:',HB_FS_TOTAL))

 Note: See tests\tstdspac.prg for another example

 Status

 Ready

 Compliance

 CA-Clipper will return an integer value which limits it's usefulness to
 drives less than 2 gigabytes. The Harbour version will return a floating point
 value with 0 decimals if the disk is > 2 gigabytes. <nType> is a Harbour extension.

 Platforms

 Dos,Win32,OS/2,Unix

 Files

 Library is rtl Header is fileio.ch

__Dir()*
Display listings of files

 Syntax

 __Dir([<cFileMask>]) --> NIL

 Arguments

 <cFileMask> File mask to include in the function return. It could contain
 path and standard wildcard characters as supported by your OS (like * and ?). If
 <cFileMask> contains no path, then SET DEFAULT path is used to display files in the
 mask.

 Returns

 __Dir() always returns NIL.

 Description

 If no <cFileMask> is given, __Dir() displays information about all *.dbf in
 the SET DEFAULT path. This information contains: file name, number of records,
 last update date and the size of each file.

 If <cFileMask> is given, __Dir() list all files that match the mask with the
 following details: Name, Extension, Size, Date.

 DIR command is preprocessed into __Dir() function during compile time.

 __Dir() is a compatibility function, it is superseded by DIRECTORY() which
 return all the information in a multidimensional array.

 Examples

 __Dir() // information for all DBF files in current directory

 __Dir("*.dbf") // list all DBF file in current directory

 // list all PRG files in Harbour Run-Time library
 // for DOS compatible operating systems
 __Dir("c:\harbour\source\rtl*.prg")

 // list all files in the public section on a Unix like machine
 __Dir("/pub")

 Status

 Ready

 Compliance

 DBF information: CA-Clipper displays 8.3 file names, Harbour displays the
 first 15 characters of a long file name if available.

 File listing: To format file names displayed we use something like: PadR(
 Name, 8) + " " + PadR(Ext, 3) CA-Clipper use 8.3 file name, with Harbour it
 would probably cut long file names to feet this template.

 Files

 Library is rtl

See Also:

ADIR()
ARRAY()
SET DEFAULT
DIR

DIR
Display listings of files

 Syntax

 DIR [<cFileMask>]

 Arguments

 <cFileMask> File mask to include in the function return. It could contain
 path and standard wildcard characters as supported by your OS (like * and ?). If
 <cFileMask> contains no path, then SET DEFAULT path is used to display files in the
 mask.

 Description

 If no <cFileMask> is given, __Dir() display information about all *.dbf in
 the SET DEFAULT path, this information contain: file name, number of records, last
 update date and the size of each file.

 If <cFileMask> is given, __Dir() list all files that match the mask with the
 following details: Name, Extension, Size, Date.

 DIR command is preprocessed into __Dir() function during compile time.

 __Dir() is a compatibility function, it is superseded by DIRECTORY() which
 returns all the information in a multidimensional array.

 Examples

 DIR // information for all DBF files in current directory

 dir "*.dbf" // list all DBF file in current directory

 // list all PRG files in Harbour Run-Time library
 // for DOS compatible operating systems
 Dir "c:\harbour\source\rtl*.prg"

 // list all files in the public section on a Unix like machine
 Dir "/pub"

 Status

 Ready

 Compliance

 DBF information: CA-Clipper displays 8.3 file names, Harbour displays the
 first 15 characters of a long file name if available.

 File listing: To format file names displayed we use something like: PadR(
 Name, 8) + " " + PadR(Ext, 3) CA-Clipper use 8.3 file name, with Harbour it
 would probably cut long file names to feet this template.

See Also:

ADIR()
ARRAY()
SET DEFAULT
__Dir()*

ADIR()
Fill pre-defined arrays with file/directory information

 Syntax

 ADIR([<cFileMask>], [<aName>], [<aSize>], [<aDate>],
 [<aTime>], [<aAttr>]) -> nDirEnries

 Arguments

 <cFileMask> File mask to include in the function return. It could contain
 path and standard wildcard characters as supported by your OS (like * and ?). If
 you omit <cFileMask> or if <cFileMask> contains no path, then the path from SET
 DEFAULT is used.

 <aName> Array to fill with file name of files that meet <cFileMask>. Each
 element is a Character string and include the file name and extension without the
 path. The name is the long file name as reported by the OS and not necessarily the
 8.3 uppercase name.

 <aSize> Array to fill with file size of files that meet <cFileMask>. Each
 element is a Numeric integer for the file size in Bytes. Directories are always
 zero in size.

 <aDate> Array to fill with file last modification date of files that meet
 <cFileMask>. Each element is of type Date.

 <aTime> Array to fill with file last modification time of files that meet
 <cFileMask>. Each element is a Character string in the format HH:mm:ss.

 <aAttr> Array to fill with attribute of files that meet <cFileMask>. Each
 element is a Character string, see DIRECTORY() for information about attribute
 values. If you pass array to <aAttr>, the function is going to return files with
 normal, hidden, system and directory attributes. If <aAttr> is not specified or
 with type other than Array, only files with normal attribute would return.

 Returns

 ADIR() return the number of file entries that meet <cFileMask>

 Description

 ADIR() return the number of files and/or directories that match a specified
 skeleton, it also fill a series of given arrays with the name, size, date, time
 and attribute of those files. The passed arrays should pre-initialized to the
 proper size, see example below. In order to include hidden, system or directories
 <aAttr> must be specified.

 ADIR() is a compatibility function, it is superseded by DIRECTORY() which
 returns all the information in a multidimensional array.

 Examples

 LOCAL aName, aSize, aDate, aTime, aAttr, nLen, i
 nLen := ADIR("*.JPG") // Number of JPG files in this directory
 IF nLen > 0
 aName := Array(nLen) // make room to store the information
 aSize := Array(nLen)
 aDate := Array(nLen)
 aTime := Array(nLen)
 aAttr := Array(nLen)
 FOR i = 1 TO nLen
 ? aName[i], aSize[i], aDate[i], aTime[i], aAttr[i]
 NEXT
 ELSE
 ? "This directory is clean from smut"
 ENDIF

 Status

 Ready

 Compliance

 <aName> is going to be fill with long file name and not necessarily the 8.3
 uppercase name.

 Files

 Library is rtl

See Also:

ARRAY()
ARRAY()
SET DEFAULT

ERRORSYS()
Install default error handler

 Syntax

 ERRORSYS() --> NIL

 Arguments

 Returns

 ERRORSYS() always return NIL.

 Description

 ERRORSYS() is called upon startup by Harbour and install the default error
 handler. Normally you should not call this function directly, instead use
 ERRORBLOCK() to install your own error handler.

 Status

 Ready

 Compliance

 ERRORSYS() works exactly like CA-Clipper's ERRORSYS().

 Files

 Library is rtl

See Also:

ARRAY()
ARRAY()

FOPEN()
Open a file.

 Syntax

 FOPEN(<cFile>, [<nMode>]) --> nHandle

 Arguments

 <cFile> Name of file to open.

 <nMode> Dos file open mode.

 Returns

 <nHandle> A file handle.

 Description

 This function opens a file expressed as <cFile> and returns a file handle to
 be used with other low-level file functions. The value of <nMode> represents the
 status of the file to be opened; the default value is 0. The file open modes are as
 follows:

 If there is an error in opening a file, a -1 will be returned by the
 function. Files handles may be in the range of 0 to 65535. The status of the SET
 DEFAULT TO and SET PATH TO commands has no effect on this function. Directory names
 and paths must be specified along with the file that is to be opened.

 If an error has occured, see the returns values from FERROR() for possible
 reasons for the error.

 Examples

 IF (nH:=FOPEN('X.TXT',66) < 0
 ? 'File can't be opened'
 ENDIF

 Status

 Ready
 This function is CA-Clipper compliant

 Files

 Library is rtl Header is fileio.ch

See Also:

FCREATE()
FERROR()
FCLOSE()

FCREATE()
Creates a file.

 Syntax

 FCREATE(<cFile>, [<nAttribute>]) --> nHandle

 Arguments

 <cFile> is the name of the file to create.

 <nAttribute> Numeric code for the file attributes.

 Returns

 <nHandle> Numeric file handle to be used in other operations.

 Description

 This function creates a new file with a filename of <cFile>. The default
 value of <nAttribute> is 0 and is used to set the attribute byte for the file
 being created by this function. The return value will be a file handle that is
 associated with the new file. This number will be between zero to 65,535,
 inclusive. If an error occurs, the return value of this function will be -1.

 If the file <cFile> already exists, the existing file will be truncated to a
 file length of 0 bytes.

 If specified, the following table shows the value for <nAttribute> and their
 related meaning to the file <cFile> being created by this function.

 Examples

 IF (nh:=FCREATE("TEST.TXT") <0
 ? "Cannot create file"
 ENDIF

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant.

 Files

 Library is rtl Header is fileio.ch

See Also:

FCLOSE()
FOPEN()
FWRITE()
FREAD()
FERROR()

FREAD()
Reads a specified number of bytes from a file.

 Syntax

 FREAD(<nHandle>, @<cBuffer>, <nBytes>) --> nBytes

 Arguments

 <nHandle> Dos file handle

 <cBufferVar> Character expression passed by reference.

 <nBytes> Number of bytes to read.

 Returns

 <nBytes> the number of bytes successfully read from the file. <nHandle>

 Description

 This function reads the characters from a file whose file handle is <nHandle>
 into a character memory variable expressed as <cBuffer>. The function returns the
 number of bytes successfully read into <cBuffer>.

 The value of <nHandle> is obtained from either a call to the FOPEN() or the
 FCREATE() function.

 The <cBuffer> expression is passed by reference and must be defined before
 this function is called. It also must be at least the same length as <nBytes>.

 <nBytes> is the number of bytes to read, starting at the current file pointer
 position. If this function is successful in reading the characters from the file,
 the length of <cBuffer> or the number of bytes specified in <nBytes> will be the
 value returned. The current file pointer advances the number of bytes read with
 each successive read. The return value is the number of bytes successfully read
 from the file. If a 0 is returned, or if the number of bytes read matches neither
 the length of <cBuffer> nor the specified value in <nBytes> an end-of-file
 condition has been reached.

 Examples

 cBuffer:=SPACE(500)
 IF (nH:=FOPEN('X.TXT))>0
 FREAD(Hh,@cBuffer,500)
 ? cbuffer
 ENDIF
 FCLOSE(nH)

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant, but also extends the possible buffer
 size to strings greater than 65K (depending on platform).

 Files

 Library is Rtl

See Also:

BIN2I()
BIN2L()
BIN2W()
FERROR()
FWRITE()

FWRITE()
Writes characters to a file.

 Syntax

 FWRITE(<nHandle>, <cBuffer>, [<nBytes>]) --> nBytesWritten

 Arguments

 <nHandle> DOS file handle number.

 <cBuffer> Character expression to be written.

 <nBytes> The number of bytes to write.

 Returns

 <nBytesWritten> the number of bytes successfully written.

 Description

 This function writes the contents of <cBuffer> to the file designated by its
 file handle <nHandle>. If used, <nBytes> is the number of bytes in <cBuffer> to
 write.

 The returned value is the number of bytes successfully written to the DOS
 file. If the returned value is 0, an error has occurred (unless this is intended).
 A successful write occurs when the number returned by FWRITE() is equal to either
 LEN(<cBuffer>) or <nBytes>.

 The value of <cBuffer> is the string or variable to be written to the open
 DOS file <nHandle>.

 The value of <nBytes> is the number of bytes to write out to the file. The
 disk write begins with the current file position in <nHandle>. If this variable is
 not used, the entire contents of <cBuffer> is written to the file. To truncate a
 file. a call of FWRITE(nHandle, "", 0) is needed.

 Examples

 nHandle:=FCREATE('x.txt')
 FOR X:=1 to 10
 FWRITE(nHandle,STR(x))
 NEXT
 FCLOSE(nHandle)

 Status

 Ready

 Compliance

 This function is not CA-Clipper compatile since it can writes strings
 greather the 64K

 Files

 Library is Rtl

See Also:

FCLOSE()
FCREATE()
FERROR()
FOPEN()
I2BIN()
L2BIN()

FERROR()
Reports the error status of low-level file functions

 Syntax

 FERROR() --> <nErrorCode>

 Returns

 <nErrorCode> Value of the DOS error last encountered by a low-level file
 function.

 FERROR() Return Values

 MeaningError

Successful0

File not found2

Path not found3

Too many files open4

Access denied5

Invalid handle6

Insufficient memory8

Invalid drive specified15

Attempted to write to a write-protected disk19

Drive not ready21

Data CRC error23

Write fault29

Read fault30

Sharing violation32

Lock Violation33

 Description

 After every low-level file function,this function will return a value that
 provides additional informationon the status of the last low-level file
 functions's performance.If the FERROR() function returns a 0, no error was
 detected.Below is a table of possibles values returned by the FERROR() function.

 Examples

 #include "Fileio.ch"
 //
 nHandle := FCREATE("Temp.txt", FC_NORMAL)
 IF FERROR() != 0
 ? "Cannot create file, DOS error ", FERROR()
 ENDIF

 Status

 Ready

 Compliance

 This function is CA-Clipper compatible

 Files

 Library is Rtl

See Also:

FCLOSE()
FERASE()
FOPEN()
FWRITE()

FCLOSE()
Closes an open file

 Syntax

 FCLOSE(<nHandle>) --> <lSuccess>

 Arguments

 <nHandle> DOS file handle

 Returns

 <lSuccess> Logical TRUE (.T.) or FALSE (.F.)

 Description

 This function closes an open file with a dos file handle of <nHandle> and
 writes the associated DOS buffer to the disk. The <nHandle> value is derived from
 the FCREATE() or FOPEN() function.

 Examples

 nHandle:=FOPEN('x.txt')
 ? FSEEK(nHandle0,2)
 FCLOSE(nHandle)

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is Rtl

See Also:

FOPEN()
FCREATE()
FREAD()
FWRITE()
FERROR()

FERASE()
Erase a file from disk

 Syntax

 FERASE(<cFile>) --> nSuccess

 Arguments

 <cFile> Name of file to erase.

 Returns

 <nSuccess> 0 if successful, -1 if not

 Description

 This function deletes the file specified in <cFile> from the disk. No
 extensions are assumed. The drive and path my be included in <cFile>; neither the
 SET DEFAULT not the SET PATH command controls the performance of this function.If
 the drive or path is not used, the function will look for the file only on the
 currently selected direcytory on the logged drive.

 If the function is able to successfully delete the file from the disk, the
 value of the function will be 0; otherwise a -1 will be returned.If not successfu,
 aditional information may be obtained by calling the FERROR() function.

 Note: Any file to be removed by FERASE() must still be closed.

 IF (FERASE("TEST.TXT")==0)
 ? "File successfully erased"
 ELSE
 ? "File can not be deleted"
 ENDIF

 Status

 Ready

 Compliance

 This function is CA-Clipper Compatible

 Files

 Library is Rtl

See Also:

FERROR()
FRENAME()

FRENAME()
Renames a file

 Syntax

 FRENAME(<cOldFile>, <cNewFile>) --> nSuccess

 Arguments

 <cOldFile> Old filenarne to he changed

 <cNewFile> New filename

 Returns

 <nSuccess> If sucessful, a 0 will he returned otherwise, a -1 will be
 returned.

 Description

 This function renames the specified file <cOldFile> to <cNewFile>. A filename
 and/or directory name may be specified for either para- meter. However, if a path
 is supplied as part of <cNewFile> and this path is different from either the path
 specified in <cOldFile> or (if none is used) the current drive and directory, the
 function will not execute successfully.

 Neither parameter is subject to the control of the SET PATH TO or SET DEFAULT
 TO commands. In attempting to locate the file to be renamed, this function will
 search the default drive and directory or the drive and path specified in
 <cOldFile>. It will not search directories named by the SET PATH TO and SET DEFAULT
 TO commands or by the DOS PATH statement.

 If the file specified in <cNewFile> exists or the file is open, the function
 will be unable to rename the file.If the function is unable to complete its
 operation,it will return a value of -1. If it is able to rename the file, the
 return value for the function will be 0.A call to FERROR() function will give
 additional infor- mation about any error found.

 Examples

 nResult:=FRENAME("x.txt","x1.txt")
 IF nResult <0
 ? "File could not be renamed."
 ENDIF

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is Rtl

See Also:

ERASE
FERASE()
FERROR()
FILE()
RENAME

FSEEK()
Positions the file pointer in a file.

 Syntax

 FSEEK(<nHandle>, <nOffset>, [<nOrigin>]) --> nPosition

 Arguments

 <nHandle> DOS file handle.

 <nOffset> The number of bytes to move.

 <nOrigin> The relative position in the file.

 Returns

 <nPosition> the current position relative to begin-of-file

 Description

 This function sets the file pointer in the file whose DOS file handle is
 <nHandle> and moves the file pointer by <expN2> bytes from the file position
 designated by <nOrigin>. The returned value is the relative position of the file
 pointer to the beginning-of-file marker once the operation has been completed.

 <nHandle> is the file handle number. It is obtained from the FOPEN() or
 FCREATE() function.

 The value of <nOffSet> is the number of bytes to move the file pointer from
 the position determined by <nOrigin>.The value of <nOffset> may be a negative
 number, suggesting backward movement.

 The value of <nOrigin> designates the starting point from which the file
 pointer should he moved, as shown in the following table:

 If a value is not provided for <nOrigin>, it defaults to 0 and moves the file
 pointer from the beginning of the file.

 Examples

 // here is a function that read one text line from an open file

 // nH = file handle obtained from FOPEN()
 // cB = a string buffer passed-by-reference to hold the result
 // nMaxLine = maximum number of bytes to read

 #define EOL HB_OSNEWLINE()
 FUNCTION FREADln(nH, cB, nMaxLine)
 LOCAL cLine, nSavePos, nEol, nNumRead
 cLine := space(nMaxLine)
 cB := ''
 nSavePos := FSEEK(nH, 0, FS_RELATIVE)
 nNumRead := FREAD(nH, @cLine, nMaxLine)
 IF (nEol := AT(EOL, substr(cLine, 1, nNumRead))) == 0
 cB := cLine
 ELSE
 cB := SUBSTR(cLine, 1, nEol - 1)
 FSEEK(nH, nSavePos + nEol + 1, FS_SET)
 ENDIF
 RETURN nNumRead != 0

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant.

 Files

 Library is rtl Header is fileio.ch

See Also:

FCREATE()
FERROR()
FOPEN()
FREAD()
FREADSTR()
FWRITE()

FILE()
Tests for the existence of file(s)

 Syntax

 FILE(<cFileSpec>) --> lExists

 Arguments

 <cFileSpec> Dos Skeleton or file name to find.

 Returns

 <lExists> a logical true (.T.) if the file exists or logical false (.F.).

 Description

 This function return a logical true (.T.) if the given filename <cFileSpec>
 exist.

 Dos skeletons symbols may be used in the filename in <cFileSpec>, as may the
 drive and/or path name. If a drive are not explicity specified,FILE() will first
 search the current drive and directory, and will look for the file in the
 directories specified by SET PATH TO and SET DEFAULT TO commands.However, this
 command does not look at the values in the DOS PATH command.

 Examples

 ? file('c:\harbour\doc\compiler.txt")
 ? file('c:/harbour/doc/subcodes.txt")

 Status

 Ready

 Compliance

 This function is CA-Clipper compatible.

 Files

 Library is Rtl

See Also:

SET PATH
SET DEFAULT
SET()

FREADSTR()
Reads a string from a file.

 Syntax

 FREADSTR(<nHandle>, <nBytes>) --> cString

 Arguments

 <nHandle> DOS file handle number.

 <nBytes> Number of bytes to read.

 Returns

 <cString> an characted expression

 Description

 This function returns a character string of <nBytes> bytes from a file whose
 DOS file handle is <nHandle>.

 The value of the file handle <nHandle> is obtained from either the FOPEN() or
 FCREATE() functions.

 The value of <nBytes> is the number of bytes to read from the file. The
 returned string will be the number of characters specified in <nBytes> or the
 number of bytes read before an end-of-file charac- ter (ASCII 26) is found.

 NOTE This function is similar to the FREAD() function, except that it will
 not read binary characters that may he required as part of a header of a file
 construct. Characters Such as CHR(0) and CHR(26) may keep this function from
 performing its intended operation. In this event, the FREAD() function should he
 used in place of the FREADSTR() function.

 Examples

 IF (nH := FOPEN("x.txt")) > 0
 cStr := Freadstr(nH,100)
 ? cStr
 ENDIF
 FCLOSE(nH)

 Status

 Ready

 Compliance

 This function is not CA-Clipper compliant since may read strings greather the
 65K depending of platform.

 Files

 Library is Rtl

See Also:

BIN2I()
BIN2L()
BIN2W()
FERROR()
FREAD()
FSEEK()

RENAME
Changes the name of a specified file

 Syntax

 RENAME <cOldFile> TO <cNewFile>

 Arguments

 <cOldFile> Old filename

 <cNewFile> New Filename

 Description

 This command changes the name of <cOldFile> to <cNewFile>.Both <cOldFile> and
 <cNewFile> must include a file extension.This command if not affected by the SET
 PATH TO or SET DEFAULT TO commands;drive and directoy designaters must be specified
 if either file is in a directory other then the default drive and directory.

 If <cNewFile> id currently open or if it previously exists, this command will
 not perform the desired operation.

 Examples

 RENAME c:\autoexec.bat to c:\autoexec.old

 Status

 Ready

 Compliance

 This command is CA-Clipper compatible

 Files

 Library is Rtl

See Also:

CURDIR()
ERASE
FILE()
FERASE()
FRENAME()

ERASE
Remove a file from disk

 Syntax

 ERASE <xcFile>

 Arguments

 <xcFile> Name of file to remove

 Description

 This command removes a file from the disk.The use of a drive,directo- ry,and
 wild-card skeleton operator is allowed for the root of the filename.The file
 extension is required.The SET DEFAULT and SET PATH commands do not affect this
 command.

 The file must be considered closed by the operating system before it may be
 deleted.

 Examples

 Erase c:\autoexec.bat
 Erase c:/temp/read.txt

 Status

 Ready

 Compliance

 This command is CA-Clipper compatible

See Also:

CURDIR()
FILE()
FERASE()
DELETE FILE

DELETE FILE
Remove a file from disk

 Syntax

 DELETE FILE <xcFile>

 Arguments

 <xcFile> Name of file to remove

 Description

 This command removes a file from the disk.The use of a drive,directo- ry,and
 wild-card skeleton operator is allowed for the root of the filename.The file
 extension is required.The SET DEFAULT and SET PATH commands do not affect this
 command.

 The file must be considered closed by the operating system before it may be
 deleted.

 Examples

 Erase c:\autoexec.bat
 Erase c:/temp/read.txt

 Status

 Ready

 Compliance

 This command is CA-Clipper compatible

See Also:

CURDIR()
FILE()
FERASE()
ERASE

__TYPEFILE()
Show the content of a file on the console and/or printer

 Syntax

 __TYPEFILE(<cFile>, [<lPrint>]) --> NIL

 Arguments

 <cFile> is a name of the file to display. If the file have an extension, it
 must be specified (there is no default value).

 <lPrint> is an optional logical value that specifies whether the output
 should go only to the screen (.F.) or to both the screen and printer (.T.), the
 default is (.F.).

 Returns

 __TYPEFILE() always return NIL.

 Description

 __TYPEFILE() function type the content of a text file on the screen with an
 option to send this information also to the printer. The file is displayed as is
 without any headings or formating.

 If <cFile> contain no path, __TYPEFILE() try to find the file first in the
 SET DEFAULT directory and then in search all of the SET PATH directories. If
 <cFile> can not be found a run-time error occur.

 Use SET CONSOLE OFF to suppress screen output. You can pause the output using
 Ctrl-S, press any key to resume.

 __TYPEFILE() function is used in the preprocessing of the TYPE command.

 Examples

 The following examples assume a file name MyText.DAT exist in all
 specified paths, a run-time error would displayed if it does not

 // display MyText.DAT file on screen
 __TYPEFILE("MyText.DAT")

 // display MyText.DAT file on screen and printer
 __TYPEFILE("MyText.DAT", .T.)

 // display MyText.DAT file on printer only
 SET CONSOLE OFF
 __TYPEFILE("MyText.DAT", .T.)
 SET CONSOLE ON

 Status

 Ready

 Compliance

 __TYPEFILE() works exactly like CA-Clipper's __TYPEFILE()

 Files

 Library is Rtl

See Also:

COPY FILE
SET DEFAULT
SET PATH
SET PRINTER
TYPE

TYPE
Show the content of a file on the console, printer or file

 Syntax

 TYPE <xcFile> [TO PRINTER] [TO FILE <xcDestFile>]

 Arguments

 <xcFile> is a name of the file to display. If the file have an extension, it
 must be specified (there is no default value). It can be specified as literal file
 name or as a character expression enclosed in parentheses.

 the screen and printer.

 given (.txt) is added to the output file name. <xcDestFile> can be specified as
 literal file name or as a character expression enclosed in parentheses.

 Description

 TYPE command type the content of a text file on the screen with an option to
 send this information also to the printer or to an alternate file. The file is
 displayed as is without any headings or formating.

 If <xcFile> contain no path, TYPE try to find the file first in the SET
 DEFAULT directory and then in search all of the SET PATH directories. If <xcFile>
 can not be found a run-time error occur.

 If <xcDestFile> contain no path it is created in the SET DEFAULT directory.

 Use SET CONSOLE OFF to suppress screen output. You can pause the output using
 Ctrl-S, press any key to resume.

 Examples

 The following examples assume a file name MyText.DAT exist in all
 specified paths, a run-time error would displayed if it does not

 // display MyText.DAT file on screen
 TYPE MyText.DAT

 // display MyText.DAT file on screen and printer
 TYPE MyText.DAT TO PRINTER

 // display MyText.DAT file on printer only
 SET CONSOLE OFF
 TYPE MyText.DAT TO PRINTER
 SET CONSOLE ON

 // display MyText.DAT file on screen and into a file MyReport.txt
 TYPE MyText.DAT TO FILE MyReport

 Status

 Ready

 Compliance

 TYPE works exactly like CA-Clipper's TYPE

See Also:

COPY FILE
SET DEFAULT
SET PATH
SET PRINTER
__TYPEFILE()

CURDIR()
Returns the current OS directory name.

 Syntax

 CURDIR([<cDrive>]) --> cPath

 Arguments

 <cDir> OS drive letter

 Returns

 <cPath> Name of directory

 Description

 This function yields the name of the current OS directory on a specified
 drive.If <cDrive> is not speficied,the currently logged drive will be used.

 This function should not return the leading and trailing (back)slashes.

 If an error has been detected by the function,or the current OS directory is
 the root,the value of the function will be a NULL byte.

 Examples

 ? Curdir()

 Status

 Ready

 Compliance

 This function is Ca-Clipper Compatible

 Platforms

 ALL

 Files

 Library is Rtl

See Also:

FILE()

COPY FILE
Copies a file.

 Syntax

 COPY FILE <cfile> TO <cfile1>

 Arguments

 <cFile> Filename of source file <cFile1> Filename of target file

 Description

 This command makes an exact copy of <cFile> and names it <cFile1>. Both files
 must have the file extension included; the drive and the directory names must also
 be specified if they are different from the default drive and/or director.<cFile1>
 also can refer to a OS device (e.g. LPT1).This command does not obsert the SET PATH
 TO or SET DEFAULT TO settings.

 Examples

 COPY FILE C:\HARBOUR\TESTS\ADIRTEST.PRG to C:\TEMP\ADIRTEST.PRG
 COPY FILE c:\harbour\utils\hbdoc\gennf.prg to LPT1

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant

See Also:

ERASE
RENAME
FRENAME()
FERASE()

HB_FEOF()
Check for end-of-file.

 Syntax

 HB_FEOF(<nHandle>) --> lIsEof

 Arguments

 <nHandle> The handle of an open file.

 Returns

 <lIsEof> .T. if the file handle is at end-of-file, otherwise .F.

 Description

 This function checks an open file handle to see if it is at E-O-F.

 If the file handle is missing, not numeric, or not open, then this function
 returns .T. and sets the value returned by FERROR() to -1 (FS_ERROR) or a
 C-compiler dependent errno value (EBADF or EINVAL).

 Examples

 nH:=FOPEN('FILE.TXT')
 ? FREADSTR(nH,80)
 IF HB_FEOF(nH)
 ? 'End-of-file reached.'
 ELSE
 ? FREADSTR(nH,80)
 ENDIF

 Status

 Ready

 Compliance

 This function is a Harbour extension

 Files

 Library is rtl

See Also:

FERROR()

DIRREMOVE()
Attempt to remove an directory

 Syntax

 DIRCHANGE(<cDirectory>) --> nError

 Arguments

 <cDirectory> The name of the directory you want to remove.

 Returns

 <nError> 0 if directory was successfully removed, otherwise the number of
 the last error.

 Description

 This function attempt to remove the specified directory in <cDirectory> If
 this function fail, the it will return the last OS error code number. See FERROR()
 function for the description of the error.

 Examples

 cDir:= ".\Backup"
 if (DIRREMOVE(cDir)==0)
 ? "Remove of directory",cDir, "was successfull"
 endif

 Tests

 See examples

 Status

 Ready

 Compliance

 This function is CA Clipper 5.3 compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

MAKEDIR()
DIRCHANGE()
ISDISK()
ARRAY()
ARRAY()
FERROR()

DIRCHANGE()
Changes the directory

 Syntax

 DIRCHANGE(<cDirectory>) --> nError

 Arguments

 <cDirectory> The name of the directory you want do change into.

 Returns

 <nError> 0 if directory was successfully changed, otherwise the number of
 the last error.

 Description

 This function attempt to change the current directory to the one specidied in
 <cDirectory>.If this function fail, the it will return the last OS error code
 number.See FERROR() function for the description of the error.

 Examples

 if (DIRCHANGE("\temp")==0)
 ? "Change to diretory was successfull"
 endif

 Tests

 See examples

 Status

 Ready

 Compliance

 This function is CA Clipper 5.3 compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

MAKEDIR()
DIRREMOVE()
ISDISK()
ARRAY()
ARRAY()
FERROR()

MAKEDIR()
Create a new directory

 Syntax

 MAKEDIR(<cDirectory>) --> nError

 Arguments

 <cDirectory> The name of the directory you want to create.

 Returns

 <nError> 0 if directory was successfully changed, otherwise the number of
 the last error.

 Description

 This function attempt to create a new directory with the name contained in
 <cDirectory>.If this function fail, the it will return the last OS error code
 number.See FERROR() function for the description of the error

 Examples

 cDir:= "Temp"
 If (MAKEDIR(cDir)==0)
 ? "Directory ",cDir," successfully created
 Endif

 Tests

 See examples

 Status

 Ready

 Compliance

 This function is CA Clipper 5.3 compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

DIRCHANGE()
DIRREMOVE()
ISDISK()
ARRAY()
ARRAY()
FERROR()

ISDISK()
Verify if a drive is ready

 Syntax

 ISDISK(<cDrive>) --> lSuccess

 Arguments

 <cDrive> An valid Drive letter

 Returns

 <lSuccess> .T. is the drive is ready, otherwise .F.

 Description

 This function attempts to access a drive. If the access to the drive was
 successfull, it will return true (.T.), otherwise false(.F.).This function is
 usefull for backup function, so you can determine if the drive that will recieve
 the backup data is ready or not.

 Examples

 IF ISDISK("A")
 ? "Drive is ready "
 Endif

 Tests

 See Examples

 Status

 Ready

 Compliance

 This function is CA Clipper 5.3 compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

DIRCHANGE()
MAKEDIR()
DIRREMOVE()
ARRAY()
ARRAY()

PROCNAME()
Gets the name of the current function on the stack

 Syntax

 PROCNAME(<nLevel>) --> <cProcName>

 Arguments

 <nLevel> is the function level required.

 Returns

 <cProcName> The name of the function that it is being executed.

 Description

 This function looks at the top of the stack and gets the current executed
 function if no arguments are passed. Otherwise it returns the name of the function
 or procedure at <nLevel>.

 Examples

 See Test

 Tests

 This test will show the functions and procedures in stack.
 before executing it.
 function Test()
 LOCAL n := 1
 while !Empty(ProcName(n))
 ? ProcName(n++)
 end do
 return nil

 Status

 Ready

 Compliance

 PROCNAME() is fully CA-Clipper compliant.

 Files

 Library is vm

See Also:

PROCLINE()
PROCFILE()

PROCLINE()
Gets the line number of the current function on the stack.

 Syntax

 PROCLINE(<nLevel>) --> <nLine>

 Arguments

 <nLevel> is the function level required.

 Returns

 <nLine> The line number of the function that it is being executed.

 Description

 This function looks at the top of the stack and gets the current line number
 of the executed function if no arguments are passed. Otherwise it returns the line
 number of the function or procedure at <nLevel>.

 Examples

 See Test

 Tests

 function Test()
 ? ProcLine(0)
 ? ProcName(2)
 return nil

 Status

 Ready

 Compliance

 PROCLINE() is fully CA-Clipper compliant.

 Files

 Library is vm

See Also:

PROCNAME()
PROCFILE()

PROCFILE()
This function allways returns an empty string.

 Syntax

 PROCFILE(<xExp>) --> <cEmptyString>

 Arguments

 <xExp> is any valid type.

 Returns

 <cEmptyString> Return an empty string

 Description

 This function is added to the RTL for full compatibility. It always returns
 an empty string.

 Examples

 ? ProcFile()

 Tests

 function Test()
 ? ProcFile()
 ? ProcFile(NIL)
 ? ProcFile(2)
 return nil

 Status

 Ready

 Compliance

 PROCFILE() is fully CA-Clipper compliant.

 Files

 Library is vm

See Also:

PROCNAME()
PROCLINE()

HB_PVALUE()
Retrieves the value of an argument.

 Syntax

 HB_PVALUE(<nArg>) --> <xExp>

 Arguments

 Returns

 <xExp> Returns the value stored by an argument.

 Description

 This function is useful to check the value stored in an argument.

 Examples

 See Test

 Tests

 function Test(nValue, cString)
 if PCount() == 2
 ? hb_PValue(1), nValue
 ? hb_PValue(2), cString
 endif
 return nil

 Status

 Ready

 Compliance

 HB_PVALUE() is a new function and hence not CA-Clipper compliant.

 Files

 Library is vm

See Also:

PCOUNT()

PCOUNT()
Retrieves the number of arguments passed to a function.

 Syntax

 PCOUNT() --> <nArgs>

 Arguments

 Returns

 <nArgs> A number that indicates the number of arguments passed to a function
 or procedure.

 Description

 This function is useful to check if a function or procedure has received the
 required number of arguments.

 Examples

 See Test

 Tests

 function Test(xExp)
 if PCount() == 0
 ? "This function needs a parameter"
 else
 ? xExp
 endif
 return nil

 Status

 Ready

 Compliance

 PCOUNT() is fully CA-Clipper compliant.

 Files

 Library is vm

See Also:

HB_PVALUE()

__QUIT()
Terminates an application.

 Syntax

 __QUIT() --> NIL

 Arguments

 Returns

 Description

 This function terminates the current application and returns to the system.

 Examples

 See Test

 Tests

 function EndApp(lYesNo)
 if lYesNo
 __Quit()
 endif
 return nil

 Status

 Ready

 Compliance

 __QUIT() is fully CA-Clipper compliant.

 Files

 Library is vm

See Also:

ARRAY()

CLIPINIT()
Initialize various Harbour sub-systems

 Syntax

 CLIPINIT() --> NIL

 Arguments

 Returns

 CLIPINIT() always return NIL.

 Description

 CLIPINIT() is one of the pre-defined INIT PROCEDURE and is executed at
 program startup. It declare an empty MEMVAR PUBLIC array called GetList that is
 going to be used by the Get system. It activates the default error handler, and (at
 least for the moment) calls the function that sets the default help key.

 Status

 Ready

 Compliance

 It is said that CLIPINIT() should not call the function that sets the default
 help key since CA-Clipper does it in some other place.

 Platforms

 All

See Also:

ARRAY()

__SetHelpK()
Set F1 as the default help key

 Syntax

 __SetHelpK() --> NIL

 Arguments

 Returns

 __SetHelpK() always return NIL.

 Description

 Set F1 to execute a function called HELP if such a function is linked into
 the program.

 Status

 Ready

 Compliance

 __SetHelpK() works exactly like CA-Clipper's __SetHelpK()

 Files

 Library is vm

See Also:

__XHELP()
SET KEY
SETKEY()

BREAK()
Exits from a BEGIN SEQUENCE block

 Syntax

 BREAK(<xExp>) --> NIL

 Arguments

 <xExp> is any valid expression. It is always required. If do not want to
 pass any argument, just use NIL.

 Returns

 Description

 This function passes control to the RECOVER statement in a BEGIN SEQUENCE
 block.

 Examples

 Break(NIL)

 Status

 Ready

 Compliance

 BREAK() is fully CA-Clipper compliant.

 Files

 Library is vm

See Also:

ARRAY()

DO()
Calls a procedure or a function

 Syntax

 DO(<xFuncProc> [, <xArguments...>])

 Arguments

 <xFuncProc> = Either a string with a function/procedure name to be called or
 a codeblock to evaluate.
 <xArguments> = arguments passed to a called function/procedure or to a
 codeblock.

 Returns

 Description

 This function can be called either by the harbour compiler or by user. The
 compiler always passes the item of IT_SYMBOL type that stores the name of
 procedure specified in DO <proc> WITH ... statement.
 If called procedure/function doesn't exist then a runtime error is generated.
 This function can be used as replacement of macro operator. It is also used
 internally to implement DO <proc> WITH <args...> In this case <xFuncProc> is of
 type HB_SYMB.

 Examples

 cbCode ={|x| MyFunc(x)}
 DO(cbCode, 1)

 cFunction := "MyFunc"
 xRetVal :=DO(cFunction, 2)

 Old style (slower):
 DO &cFunction WITH 3

 Files

 Library is rtl

__VMVARLGET()
Retrive a local variable from a procedure level

 Syntax

 __VMVARLGET(<nProcLevel>, <nLocal>)

 Arguments

 <nProcLevel> Is the procedure level, same as used in ProcName() and
 ProcLine(), from which a local variable containts is going to be retrieved.
 <nLocal> Is the index of the local variable to retrieve.

 Returns

 Description

 This function is used from the debugger

 Files

 Library is vm

INKEY()
Extracts the next key code from the Harbour keyboard buffer.

 Syntax

 INKEY([<nTimeout>] [,<nEvents>]) --> nKey

 Arguments

 <nTimeout> is an optional timeout value in seconds, with a granularity of
 1/10th of a second. If omitted, INKEY() returns immediately. If set to 0, INKEY()
 waits until an input event occurs. If set to any other value, INKEY() will return
 either when an input event occurs or when the timeout period has elapsed. If only
 this parameter is specified and it is not numeric, it will be treated as if it were
 0. But if both parameters are specified and this parameter is not numeric, it will
 be treated as if it were not present.

 <nEvents> is an optional mask of input events that are to be enabled. If
 omitted, defaults to hb_set.HB_SET_EVENTMASK. Valid input masks are in inkey.ch
 and are explained below. It is recommended that the mask names be used rather than
 their numeric values, in case the numeric values change in future releases of
 Harbour. To allow more than one type of input event, simply add the various mask
 names together.

 Meaninginkey.ch

Mouse motion events are allowedINKEY_MOVE

The mouse left click down event is allowedINKEY_LDOWN

The mouse left click up event is allowedINKEY_LUP

The mouse right click down event is allowedINKEY_RDOWN

The mouse right click up event is allowedINKEY_RUP

All keyboard events are allowedINKEY_KEYBOARD

All mouse and keyboard events are allowedINKEY_ALL

 hb_set.HB_SET_EVENTMASK.

 Returns

 -39 to 386 for keyboard events or the range 1001 to 1007 for mouse events. Mouse
 events and non-printable keyboard events are represented by the K_<event> values
 listed in inkey.ch. Keyboard event return codes in the range 32 through 127 are
 equivalent to the printable ASCII character set. Keyboard event return codes in the
 range 128 through 255 are assumed to be printable, but results may vary based on
 hardware and nationality.

 Description

 INKEY() can be used to detect input events, such as keypress, mouse movement,
 or mouse key clicks (up and/or down).

 Examples

 // Wait for the user to press the Esc key
 ? "Please press the ESC key."
 WHILE INKEY(0.1) != K_ESC
 END

 Tests

 KEYBOARD "AB"; ? INKEY(), INKEY() ==> 65 66

 Status

 Started

 Compliance

 INKEY() is compliant with the Clipper 5.3 INKEY() function with one
 exception: The Harbour INKEY() function will raise an argument error if the first
 parameter is less than or equal to 0 and the second parameter (or the default mask)
 is not valid, because otherwise INKEY would never return, because it was, in
 effect, asked to wait forever for no events (Note: In Clipper, this also blocks SET
 KEY events).

 Files

 Library is rtl

See Also:

ARRAY()

__KEYBOARD()
DO NOT CALL THIS FUNCTION DIRECTLY!

 Syntax

 KEYBOARD <cString>
 CLEAR TYPEAHEAD

 Arguments

 <cString> is the optional string to stuff into the Harbour keyboard buffer
 after clearing it first. Note: The character ";" is converted to CHR(13) (this is
 an undocumented CA-Clipper feature).

 Returns

 Description

 Clears the Harbour keyboard typeahead buffer and then inserts an optional
 string into it.

 Examples

 // Stuff an Enter key into the keyboard buffer
 KEYBOARD CHR(13)
 // Clear the keyboard buffer
 CLEAR TYPEAHEAD

 Tests

 KEYBOARD CHR(13); ? INKEY() ==> 13
 KEYBOARD ";" ? INKEY() ==> 13
 KEYBOARD "HELLO"; CLEAR TYPEAHEAD; ? INKEY() ==> 0

 Status

 Ready

 Compliance

 __KEYBOARD() is compliant with CA-Clipper 5.3

 Files

 Library is rtl

See Also:

ARRAY()
KEYBOARD

HB_KEYPUT()
Put an inkey code to the keyboard buffer.

 Syntax

 HB_KEYPUT(<nInkeyCode>)

 Arguments

 <nInkeyCode> is the inkey code, which should be inserted into the keyboard
 buffer.

 Returns

 Description

 Inserts an inkey code to the string buffer. The buffer is *not* cleared in
 this operation. This function allows to insert such inkey codes which are not in
 the range of 0 to 255. To insert more than one code, call the function repeatedly.
 The zero code cannot be inserted.

 Examples

 // Stuff an Alt+PgDn key into the keyboard buffer
 HB_KEYPUT(K_ALT_PGDN)

 Tests

 HB_KEYPUT(K_ALT_PGDN) ; ? INKEY() ==> 417
 HB_KEYPUT(K_F11) ; ? INKEY() ==> -40

 Status

 Ready

 Compliance

 HB_KEYPUT() is a Harbour extension.

 Files

 Library is rtl

See Also:

KEYBOARD
ARRAY()
INKEY()

NEXTKEY()
Get the next key code in the buffer without extracting it.

 Syntax

 NEXTKEY() --> nKey

 Arguments

 Returns

 <nKey> The value of the next key in the Harbour keyboard buffer.

 Description

 Returns the value of the next key in the Harbour keyboard buffer without
 extracting it.

 Examples

 // Use NEXTKEY() with INKEY() to change display characters, or by
 // itself to exit the loop, so that the caller can detect the Esc.
 LOCAL nKey, cChar := "+"
 WHILE TRUE
 ?? cChar
 nKey := NEXTKEY()
 IF nKey == K_ESC
 EXIT
 ELSE
 IF nKey != 0
 cChar := CHR(nKey)
 END IF
 END IF
 END WHILE

 Tests

 KEYBOARD "AB"; ? NEXTKEY(), NEXTKEY() ==> 65 65

 Status

 Ready

 Compliance

 NEXTKEY() is compliant with CA-Clipper 5.3

 Files

 Library is rtl

See Also:

INKEY()
LASTKEY()

LASTKEY()
Get the last key extracted from the keyboard buffer.

 Syntax

 LASTKEY() --> nKey

 Arguments

 Returns

 <nKey> The last key extracted from the keyboard buffer.

 Description

 Returns the value of the last key exttracted from the Harbour keyboard buffer

 Examples

 // Continue looping unless the ESC key was pressed in MainFunc()
 WHILE TRUE
 MainFunc()
 IF LASTKEY() == K_ESC
 EXIT
 ENDIF
 END WHILE

 Tests

 KEYBOARD "AB"; ? INKEY(), LASTKEY() ==> 65 65

 Status

 Ready

 Compliance

 LASTKEY() is compliant with CA-Clipper 5.3

 Files

 Library is rtl

See Also:

INKEY()
LASTKEY()

KEYBOARD
Stuffs the keyboard with a string.

 Syntax

 KEYBOARD <cString>

 Arguments

 <cString> String to be processed, one character at a time, by the Harbour
 keyboard processor

 Description

 This command stuffs the input buffer with <cString>. The number of characters
 that can be stuffed into the keyboard buffer is controlled by the SET TYPEAHEAD
 command and may range from 0 to 32,622, with each character appearing in the ASCII
 range of 0 to 255. None of the extended keys may be stuffed into the keyboard
 buffer. Issuing a KEYBOARD " " will clear the keyboard buffer.

 Examples

 // Stuff an Enter key into the keyboard buffer
 KEYBOARD CHR(13)
 // Clear the keyboard buffer
 CLEAR TYPEAHEAD

 Tests

 KEYBOARD CHR(13); ? INKEY() ==> 13
 KEYBOARD "HELLO"; CLEAR TYPEAHEAD; ? INKEY() ==> 0

 Status

 Ready

 Compliance

 __KEYBOARD() is compliant with CA-Clipper 5.3

See Also:

ARRAY()
__KEYBOARD()

READKEY()*
Find out which key terminated a READ.

 Syntax

 READKEY() --> nKeyCode

 Arguments

 Returns

 READKEY() returns a numeric code representing the key that caused READ to
 terminate.

 Description

 READKEY() is used after a READ was terminated to determine the exit key
 pressed. If the GET buffer was updated during READ, 256 is added to the return
 code.

 READKEY() is a compatibility function so try not to use it. READKEY() is
 superseded by LASTKEY() which returns the INKEY() code for that key. UPDATED()
 could be used to find if the GET buffer was changed during the READ.

 Status

 Ready

 Compliance

 READKEY() is compliant with CA-Clipper 5.3

 Files

 Library is rtl

See Also:

@...Get
INKEY()
LASTKEY()
ARRAY()
ARRAY()
ARRAY()

MROW()
Returns the mouse cursor row position.

 Syntax

 MRow() --> nMouseRow

 Arguments

 Returns

 <nMouseRow> The mouse cursor row position.

 Description

 This function returns the current mouse row cursor position. On graphical
 systems the value represents pixel rows. On character-based systems the value
 represents character rows as in Clipper.

 Examples

 IF MRow() < 1
 ? "Mouse is on top row!"
 ENDIF

 Status

 Ready

 Compliance

 MROW() is compliant with CA-Clipper 5.3, but has been extended to work on
 graphical systems as well as character-based systems.

 Files

 Library is rtl

See Also:

MCOL()

MCOL()
Returns the mouse cursor column position.

 Syntax

 MCol() --> nMouseColumn

 Arguments

 Returns

 <nMouseColumn> The mouse cursor column position.

 Description

 This function returns the column position of the mouse cursor. On graphical
 systems the value represents pixels. On character-based systems the value
 represents character columns as in Clipper.

 Examples

 IF MCol() < 1
 ? "Mouse is on left edge!"
 ENDIF

 Status

 Ready

 Compliance

 MROW() is compliant with CA-Clipper 5.3, but has been extended to work on
 graphical systems as well as character-based systems.

 Platforms

 All

 Files

 Library is rtl

See Also:

MROW()

License
Harbour License

 Description

 THE HARBOUR PROJECT LICENSE
 ===========================

 This program is free software; you can redistribute it and/or modify it under the
 terms of the GNU General Public License as published by the Free Software
 Foundation; either version 2 of the License, or (at your option) any later version,
 with one exception:

 The exception is that if you link the Harbour Runtime Library (HRL) and/or the
 Harbour Virtual Machine (HVM) with other files to produce an executable, this does
 not by itself cause the resulting executable to be covered by the GNU General
 Public License. Your use of that executable is in no way restricted on account of
 linking the HRL and/or HVM code into it.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 details.

 You should have received a copy of the GNU General Public License along with this
 program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave,
 Cambridge, MA 02139, USA (or visit their web site at http://www.gnu.org/).

See Also:

OVERVIEW

ABS()
Return the absolute value of a number.

 Syntax

 ABS(<nNumber>) --> <nAbsNumber>

 Arguments

 <nNumber> Any number.

 Returns

 <nAbsNumber> The absolute numeric value.

 Description

 This function yields the absolute value of the numeric value or expression
 <nNumber>.

 Examples

 Proc Main()

 Local nNumber:=50
 Local nNumber1:=27
 cls

 qout(nNumber-nNumber1)
 qout(nNumber1-nNumber)
 qout(ABS(nNumber-nNumber1))
 qout(ABSnNumber1-nNumber))
 qout(ABS(-1 * 345))

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant.

 Platforms

 All

 Files

 Library is rtl

See Also:

EXP()

EXP()
Calculates the value of e raised to the passed power.

 Syntax

 EXP(<nNumber>) --> <nValue>

 Arguments

 <nNumber> Any real number.

 Returns

 <nValue> The anti-logarithm of <nNumber>

 Description

 This function returns the value of e raised to the power of <nNumber>. It is
 the inverse of LOG().

 Examples

 ? EXP(45)

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant.

 Platforms

 All

 Files

 Library is rtl

See Also:

LOG()

INT()
Return the integer port of a numeric value.

 Syntax

 INT(<nNumber>) --> <nIntNumber>

 Arguments

 <nNumber> Any numeric value.

 Returns

 <nIntNumber> The integer portion of the numeric value.

 Description

 This function converts a numeric expression to an integer. All decimal digits
 are truncated. This function does not round a value upward or downward; it merely
 truncates a number at the decimal point.

 Examples

 SET Decimal to 5
 ? INT(632512.62541)
 ? INT(845414111.91440)

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant.

 Platforms

 All

 Files

 Library is rtl

See Also:

ROUND()
STRZERO()

LOG()
Returns the natural logarithm of a number.

 Syntax

 LOG(<nNumber>) --> <nLog>

 Arguments

 <nNumber> Any numeric expression.

 Returns

 <nExponent> The natural logarithm of <nNumber>.

 Description

 This function returns the natural logarithm of the number <nNumber>. If
 <nNumber> is 0 or less than 0, a numeric overflow occurs, which is depicted on the
 display device as a series of asterisks. This function is the inverse of EXP().

 Examples

 ? LOG(632512)

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant.

 Platforms

 All

 Files

 Library is rtl

See Also:

EXP()

MAX()
Returns the maximum of two numbers or dates.

 Syntax

 MAX(<xValue>,<xValue1>) --> <xMax>

 Arguments

 <xValue> Any date or numeric value.

 <xValue1> Any date or numeric value (same type as <xValue>).

 Returns

 <xMax> The larger numeric (or later date) value.

 Description

 This function returns the larger of the two passed espressions. If <xValue>
 and <xValue1> are numeric data types, the value returned by this function will be
 a numeric data type as well and will be the larger of the two numbers passed to it.
 If <xValue> and <xValue1> are date data types, the return value will be a date data
 type as well. It will be the later of the two dates passed to it.

 Examples

 ? MAX(214514214,6251242142)
 ? MAX(CTOD('11/11/2000'),CTOD('21/06/2014')

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant.

 Platforms

 All

 Files

 Library is rtl

See Also:

MIN()

MIN()
Determines the minumum of two numbers or dates.

 Syntax

 MIN(<xValue>,<xValue1>) --> <xMin>

 Arguments

 <xValue> Any date or numeric value.

 <xValue1> Any date or numeric value.

 Returns

 <xMin> The smaller numeric (or earlier date) value.

 Description

 This function returns the smaller of the two passed espressions. <xValue> and
 <xValue1> must be the same data type. If numeric, the smaller number is returned.
 If dates, the earlier date is returned.

 Examples

 ? MIN(214514214,6251242142)
 ? MIN(CTOD('11/11/2000'),CTOD('21/06/2014')

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant.

 Platforms

 All

 Files

 Library is rtl

See Also:

MAX()

MOD()
Return the modulus of two numbers.

 Syntax

 MOD(<nNumber>,<nNumber1>) --> <nRemainder>

 Arguments

 <nNumber> Numerator in a divisional expression.

 <nNumber1> Denominator in a divisional expression.

 Returns

 <nRemainder> The remainder after the division operation.

 Description

 This functuion returns the remainder of one number divided by another.

 Examples

 ? MOD(12,8.521)
 ? Mod(12,0)
 ? Mod(62412.5142,4522114.12014)

 Status

 Ready

 Compliance

 This Function is Ca-Clipper compliant.

 Platforms

 All

 Files

 Library is rtl

See Also:

ARRAY()

SQRT()
Calculates the square root of a number.

 Syntax

 SQRT(<nNumber>) --> <nSqrt>

 Arguments

 <nNumber> Any numeric value.

 Returns

 <nSqrt> The square root of <number>.

 Description

 This function returns the square root of <nNumber>. The precision of this
 evaluation is based solely on the settings of the SET DECIMAL TO command. Any
 negative number passed as <nNumber> will always return a 0.

 Examples

 SET Decimal to 5
 ? SQRT(632512.62541)
 ? SQRT(845414111.91440)

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant.

 Platforms

 All

 Files

 Library is rtl

See Also:

ROUND()

ROUND()
Rounds off a numeric expression.

 Syntax

 ROUND(<nNumber>,<nPlace>) --> <nResult>

 Arguments

 <nNumber> Any numeric value.

 <nPlace> The number of places to round to.

 Returns

 <nResult> The rounded number.

 Description

 This function rounds off the value of <nNumber> to the number of decimal
 places specified by <nPlace>. If the value of <nPlace> is a negative number, the
 function will attempt to round <nNumber> in whole numbers. Numbers from 5 through 9
 will be rounded up, all others will be rounded down.

 Examples

 ? ROUND(632512.62541,5)
 ? ROUND(845414111.91440,3)

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant.

 Platforms

 All

 Files

 Library is rtl

See Also:

INT()
STR()
VAL()
SET FIXED

MEMOTRAN()
Converts hard and soft carriage returns within strings.

 Syntax

 MEMOTRAN(<cString>, <cHard>, <cSoft>) --> <cConvertedString>

 Arguments

 <cString> is a string of chars to convert.

 <cHard> is the character to replace hard returns with. If not specified
 defaults to semicolon.

 <cSoft> is the character to replace soft returns with. If not specified
 defaults to single space.

 Returns

 <cConvertedString> Trasformed string.

 Description

 Returns a string/memo with carriage return chars converted to specified
 chars.

 Examples

 ? MEMOTRAN(DATA->CNOTES)

 Tests

 @ 1, 1 SAY MEMOTRAN(Data->CNOTES)
 will display converted string starting on row two, column two of the
 current device.

 Status

 Ready

 Compliance

 MEMOTRAN() is fully CA-Clipper compliant.

 Files

 Library is rtl

See Also:

HARDCR()
STRTRAN()

HARDCR()
Replace all soft carriage returns with hard carriages returns.

 Syntax

 HARDCR(<cString>) --> <cConvertedString>

 Arguments

 <cString> is a string of chars to convert.

 Returns

 <cConvertedString> Trasformed string.

 Description

 Returns a string/memo with soft carriage return chars converted to hard
 carriage return chars.

 Examples

 ? HARDCR(Data->CNOTES)

 Tests

 @ 1, 1 SAY HARDCR(Data->CNOTES)
 will display converted string starting on row two, column two of the
 current device.

 Status

 Ready

 Compliance

 HARDCR() is fully CA-Clipper compliant.

 Files

 Library is rtl

See Also:

MEMOTRAN()
STRTRAN()

ACHOICE()
Allows selection of an element from an array

 Syntax

 ACHOICE(<nTop>, <nLeft>, <nBottom>, <nRight>, <acMenuItems>, [<alSelableItems> |
 <lSelableItems>], [<cUserFunction> | <bUserBlock>], [<nInitialItem>],
 [<nWindowRow>]) --> nPosition

 Arguments

 <nTop> - topmost row used to display array (default 0)

 <nLeft> - leftmost row used to display array (default 0)

 <nBottom> - bottommost row used to display array (default MAXROW())

 <nRight> - rightmost row used to display array (default MAXCOL())

 <acMenuItems> - the character array of items from which to select

 <alSelableItems> - an array of items, either logical or character, which is
 used to determine if a particular item may be selected. If the type of a given
 item is character, it is macro evaluated, and the result is expected to be a
 logical. A value of .T. means that the item may be selected, .F. that it may not.
 (See next argument: lSelectableItems)

 <lSelableItems> - a logical value which is used to apply to all items in
 acMenuItems. If .T., all items may be selected; if .F., none may be selected.
 (See previous argument: alSelectableItems) Default .T.

 <cUserFunction> - the name of a function to be called which may affect
 special processing of keystrokes. It is specified without parentheses or
 parameters. When it is called, it will be supplied with the parameters: nMode,
 nCurElement, and nRowPos. Default NIL.

 <bUserBlock> - a codeblock to be called which may affect special
 processing of keystrokes. It should be specified in the form {|nMode,
 nCurElemenet, nRowPos| ; MyFunc(nMode, nCurElemenet, nRowPos) }. Default NIL.

 <nInitialItem> - the number of the element to be highlighted as the
 current item when the array is initially displayed. 1 origin. Default 1.

 <nWindowRow> - the number of the window row on which the initial item is
 to be displayed. 0 origin. Default 0.

 Returns

 <nPosition> - the number of the item to be selected, or 0 if the selection
 was aborted.

 Description

 Allows selection of an element from an array. Please see standard Clipper
 documentation for ACHOICE for additional detail.

 Examples

 aItems := { "One", "Two", "Three" }
 nChoice := ACHOICE(10, 10, 20, 20, aItems)
 IF nChoice == 0
 ? "You did not choose an item"
 ELSE
 ? "You chose element " + LTRIM(STR(nChoice))
 ?? " which has a value of " + aItems[nChoice]
 ENDIF

 Files

 Library is rtl

See Also:

MENU TO

__AtPrompt()
Display a menu item on screen and define a message

 Syntax

 __AtPrompt(<nRow>, <nCol>, <cPrompt>, [<xMsg>]) --> .F.

 Arguments

 <nRow> is the row number to display the menu <cPrompt>. Value could range
 from zero to MAXROW().

 <nCol> is the column number to display the menu <cPrompt>. Value could range
 from zero to MAXCOL().

 <cPrompt> is the menu item character string to display.

 <xMsg> define a message to display each time this menu item is highlighted.
 <xMsg> could be a character string or code block that is evaluated to a character
 string. If <xMsg> is not specified or got the wrong type, an empty string ("")
 would be used.

 Returns

 __AtPrompt() always return .F.

 Description

 With __AtPrompt() you define and display a menu item, each call to
 __AtPrompt() add another item to the menu, to start the menu itself you should
 call the __MenuTo() function (MENU TO command). You can define any row and column
 combination and they will be displayed at the order of definition. After each call
 to __AtPrompt(), the cursor is placed one column to the right of the last text
 displayed, and ROW() and COL() are updated.

 @...PROMPT command is preprocessed into __AtPrompt() function during compile
 time.

 Examples

 // display a two line menu with status line at the bottom
 // let the user select favorite day
 SET MESSAGE TO 24 CENTER
 @ 10, 2 PROMPT "Sunday" MESSAGE "This is the 1st item"
 @ 11, 2 PROMPT "Monday" MESSAGE "Now we're on the 2nd item"
 MENU TO nChoice
 DO CASE
 CASE nChoice == 0 // user press Esc key
 QUIT
 CASE nChoice == 1 // user select 1st menu item
 ? "Guess you don't like Mondays"
 CASE nChoice == 2 // user select 2nd menu item
 ? "Just another day for some"
 ENDCASE

 Status

 Ready

 Compliance

 CA-Clipper array is limited to 4096 items, and therefor 4096 menu items are
 the maximum that could be defined per one menu, Harbour does not have this limit
 (not that you'll ever need that).

 Files

 Library is rtl

See Also:

ACHOICE()
MENU TO
SET MESSAGE
SET INTENSITY

SET WRAP
__MenuTo()

@...PROMPT
Display a menu item on screen and define a message

 Syntax

 @ <nRow>, <nCol> PROMPT <cPrompt> [MESSAGE <xMsg>]

 Arguments

 <nRow> is the row number to display the menu <cPrompt>. Value could range
 from zero to MAXROW().

 <nCol> is the column number to display the menu <cPrompt>. Value could range
 from zero to MAXCOL().

 <cPrompt> is the menu item character string to display.

 <xMsg> define a message to display each time this menu item is highlighted.
 <xMsg> could be a character string or code block that is evaluated to a character
 string. If <xMsg> is not specified or got the wrong type, an empty string ("")
 would be used.

 Returns

 @...Prompt always return .F.

 Description

 With @...Prompt you define and display a menu item, each call to @...Prompt
 add another item to the menu, to start the menu itself you should call the
 __MenuTo() function (MENU TO command). You can define any row and column
 combination and they will be displayed at the order of definition. After each call
 to @...Prompt, the cursor is placed one column to the right of the last text
 displayed, and ROW() and COL() are updated.

 @...PROMPT command is preprocessed into __AtPrompt() function during compile
 time.

 Examples

 // display a two line menu with status line at the bottom
 // let the user select favorite day
 SET MESSAGE TO 24 CENTER
 @ 10, 2 PROMPT "Sunday" MESSAGE "This is the 1st item"
 @ 11, 2 PROMPT "Monday" MESSAGE "Now we're on the 2nd item"
 MENU TO nChoice
 DO CASE
 CASE nChoice == 0 // user press Esc key
 QUIT
 CASE nChoice == 1 // user select 1st menu item
 ? "Guess you don't like Mondays"
 CASE nChoice == 2 // user select 2nd menu item
 ? "Just another day for some"
 ENDCASE

 Status

 Ready

 Compliance

 CA-Clipper array is limited to 4096 items, and therefor 4096 menu items are
 the maximum that could be defined per one menu, Harbour does not have this limit
 (not that you'll ever need that).

See Also:

ACHOICE()
MENU TO
SET MESSAGE
SET INTENSITY
SET WRAP
__MenuTo()

__MenuTo()
Invoked a menu defined by set of @...PROMPT

 Syntax

 __MenuTo(<bBlock>, <cVariable>) --> nChoice

 Arguments

 <bBlock> is a set/get code block for variable named <cVariable>.

 <cVariable> is a character string that contain the name of the variable to
 hold the menu choices, if this variable does not exist a PRIVATE variable with the
 name <cVariable> would be created to hold the result.

 Returns

 __MenuTo() return the number of select menu item, or 0 if there was no item
 to select from or if the user pressed the Esc key.

 Description

 __MenuTo() invoked the menu define by previous __AtPrompt() call and display
 a highlight bar that the user can move to select an option from the menu. If
 <cVariable> does not exist or not visible, a PRIVATE variable named <cVariable> is
 created and hold the current menu selection. If there is a variable named
 <cVariable>, its value is used to select the first highlighted item.

 Menu prompts and messages are displayed in current Standard color,
 highlighted bar is displayed using current Enhanced color.

 Pressing the arrow keys move the highlighted bar. When a menu item is
 highlighted the message associated with it is displayed on the line specified with
 SET MESSAGE. If SET WRAP is ON and the user press UP arrow while on the first
 selection the last menu item is highlighted, if the user press Down arrow while on
 the last item, the first item is highlighted.

 Following are active keys that handled by __MenuTo():

 Meaningkey

Move to previous itemUp

Move to next itemDown

Move to previous itemLeft

Move to next itemRight

Move to the first itemHome

Move to the last itemEnd

Select menu item, return positionPage-Up

Select menu item, return positionPage-Down

Select menu item, return positionEnter

Abort selection, return 0Esc

Select next menu with the same first letter,First letter

return this item position.|

 upon exit the cursor is placed at MAXROW()-1, 0 __MenuTo() can be nested
 without loosing the previous prompts.

 MENU TO command is preprocessed into __MenuTo() function during compile time.

 Examples

 // display menu item on each screen corner and let user select one
 CLS
 SET MESSAGE TO MAXROW()/2 CENTER
 SET WRAP ON

 @ 0, 0 PROMPT "1. Upper left" MESSAGE " One "
 @ 0, MAXCOL()-16 PROMPT "2. Upper right" MESSAGE " Two "
 @ MAXROW()-1,MAXCOL()-16 PROMPT "3. Bottom right" MESSAGE "Three"
 @ MAXROW()-1,0 PROMPT "4. Bottom left" MESSAGE "Four "
 MENU TO nChoice
 SETPOS (MAXROW()/2, MAXCOL()/2 - 10)
 if nChoice == 0
 ?? "Esc was pressed"
 else
 ?? "Selected option is", nChoice
 endif

 Status

 Ready

 Compliance

 This command is CA-Clipper compliant

 Files

 Library is rtl

See Also:

@...PROMPT
ACHOICE()
SET MESSAGE
SET INTENSITY
SET WRAP
__AtPrompt()

MENU TO
Invoked a menu defined by set of @...PROMPT

 Syntax

 MENU TO <cVariable>

 Arguments

 <cVariable> is a character string that contain the name of the variable to
 hold the menu choices, if this variable does not exist a PRIVATE variable with the
 name <cVariable> would be created to hold the result.

 Returns

 from or if the user pressed the Esc key.

 Description

 Menu To() invoked the menu define by previous __AtPrompt() call and display a
 highlight bar that the user can move to select an option from the menu. If
 <cVariable> does not exist or not visible, a PRIVATE variable named <cVariable> is
 created and hold the current menu selection. If there is a variable named
 <cVariable>, its value is used to select the first highlighted item.

 Menu prompts and messages are displayed in current Standard color,
 highlighted bar is displayed using current Enhanced color.

 Pressing the arrow keys move the highlighted bar. When a menu item is
 highlighted the message associated with it is displayed on the line specified with
 SET MESSAGE. If SET WRAP is ON and the user press UP arrow while on the first
 selection the last menu item is highlighted, if the user press Down arrow while on
 the last item, the first item is highlighted.

 Following are active keys that handled by Menu To:

 Meaningkey

- Move to previous itemUp

- Move to next itemDown

- Move to previous itemLeft

- Move to next itemRight

- Move to the first itemHome

- Move to the last itemEnd

- Select menu item, return positionPage-Up

- Select menu item, return positionPage-Down

- Select menu item, return positionEnter

- Abort selection, return 0Esc

- Select next menu with the same first letter,First letter

return this item position.|

 upon exit the cursor is placed at MAXROW()-1, 0 Menu To can be nested without
 loosing the previous prompts.

 MENU TO command is preprocessed into __MenuTo() function during compile time.

 Examples

 // display menu item on each screen corner and let user select one
 CLS
 SET MESSAGE TO MAXROW()/2 CENTER
 SET WRAP ON
 @ 0, 0 PROMPT "1. Upper left" MESSAGE " One "
 @ 0, MAXCOL()-16 PROMPT "2. Upper right" MESSAGE " Two "
 @ MAXROW()-1,MAXCOL()-16 PROMPT "3. Bottom right" MESSAGE "Three"

 @ MAXROW()-1,0 PROMPT "4. Bottom left" MESSAGE "Four "
 MENU TO nChoice
 SETPOS (MAXROW()/2, MAXCOL()/2 - 10)
 if nChoice == 0
 ?? "Esc was pressed"
 else
 ?? "Selected option is", nChoice
 endif

 Status

 Ready

 Compliance

 This command is CA Clipper compliant

See Also:

@...PROMPT
ACHOICE()
SET MESSAGE
SET INTENSITY
SET WRAP
__AtPrompt()

OS()
Return the current operating system.

 Syntax

 OS() --> <cOperatingSystem>

 Returns

 <cOperatinSystem> -> The Current operating system.

 Description

 This function will return the current operating system.

 Examples

 qout(OS())

 Status

 Ready

 Compliance

 This function is Ca-Clipper compatible.

 Platforms

 All

 Files

 source/rtl/version.c

VERSION()
Returns the HARBOUR Version or the Harbour/Compiler Version.

 Syntax

 VERSION() --> <cReturn>

 Arguments

 Returns

 <cReturn> String containing the Harbour Version

 Description

 This function returns the current Harbour Version.

 Examples

 QOUT(VERSION())
 "Harbour Terminal: Standard stream console"

 Status

 Started

 Compliance

 This function is Ca-Clipper compatible.

 Platforms

 All

 Files

 source/rtl/version.c Library is rtl

See Also:

OS()

GETENV()
Obtains system environmental settings.

 Syntax

 GETENV(<cEnviroment>, <cDefaultValue>) --> <cReturn>

 Arguments

 <cEnviroment> Enviromental variable to obtain.

 <cDefaultValue> Optional value to return if <cEnvironment> is not found.

 Returns

 <cReturn> Value of the Environment Variable.

 Description

 This function yields a string that is the value of the environment variable
 <cEnviroment>, which is stored at the system level with the Set command. If no
 environment variable can be found, the value of the function will be
 <cDefaultValue> if it is passed, else an empty string.

 Examples

 QOUT(GETENV('PATH'))
 QOUT(GETENV('CONFIG'))
 QOUT(GETENV('HARBOURCMD', '-n -l -es2'))

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant. The <cDefaultValue> parameter is a
 Harbour extension.

 Platforms

 All

 Files

 source/rtl/gete.c Library is rtl

__RUN()
Run an external program.

 Syntax

 __RUN(<cCommand>)

 Arguments

 <cCommand> Command to execute.

 Description

 This command runs an external program. Please make sure that you have enough
 free memory to be able to run the external program. Do not use it to run Terminate
 and Stay Resident programs (in case of DOS) since that causes several problems.

 Note: This function is what the RUN command preprocesses into. It is
 considered bad form to use this function directly. Use the RUN command instead.

 Examples

 __Run("edit " + cMyTextFile) // Runs an external editor
 __Run("command") // Gives a DOS shell (DOS only)

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant.

 Platforms

 All

 Files

 source/rtl/run.c Library is rtl

See Also:

RUN

TONE()
Sound a tone with a specified frequency and duration.

 Syntax

 TONE(<nFrequency>, <nDuration>) --> NIL

 Arguments

 <nFrequency> A non-negative numeric value that specifies the frequency of
 the tone in hertz.

 <nDuration> A positive numeric value which specifies the duration of the
 tone in 1/18 of a second units.

 Returns

 TONE() always returns NIL.

 Description

 TONE() is a sound function that could be used to irritate the end user, his
 or her dog, and the surrounding neighborhood. The frequency is clamped to the
 range 0 to 32767 Hz.

 Examples

 If lOk // Good Sound
 TONE(500, 1)
 TONE(4000, 1)
 TONE(2500, 1)
 Else // Bad Sound
 TONE(300, 1)
 TONE(499, 5)
 TONE(700, 5)
 EndIf

 Tests

 TONE(800, 1) // same as ? CHR(7)
 TONE(32000, 200) // any dogs around yet?
 TONE(130.80, 1) // musical note - C
 TONE(400, 0) // short beep
 TONE(700) // short beep
 TONE(10, 18.2) // 1 second delay
 TONE(-1) // 1/18.2 second delay
 TONE() // 1/18.2 second delay

 Status

 Started

 Compliance

 TONE() works exactly like CA-Clipper's TONE().

 Platforms

 All

 Files

 Library is rtl

See Also:

CHR()
SET BELL

RUN
Run an external program.

 Syntax

 RUN <cCommand>

 Arguments

 <cCommand> Command to execute.

 Description

 This command runs an external program. Please make sure that you have enough
 free memory to be able to run the external program. Do not use it to run Terminate
 and Stay Resident programs (in case of DOS) since that causes several problems.

 Examples

 Run "edit " + cMyTextFile // Runs an external editor
 Run "command" // Gives a DOS shell (DOS only)

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant.

 Platforms

 All

 Files

 source/rtl/run.c Library is rtl

See Also:

RUN

ISAFFIRM()
Checks if passed char is an affirmation char

 Syntax

 ISAFFIRM(<cChar>) --> <lTrueOrFalse>

 Arguments

 <cChar> is a char or string of chars

 Returns

 <lTrueOrFalse> True if passed char is an affirmation char,otherwise false

 Description

 This function is used to check if a user's input is true or not according to
 the msgxxx module used.

 Examples

 // Wait until user enters Y
 DO WHILE !ISAFFIRM(cYesNo)
 ACCEPT "Sure: " TO cYesNo
 END DO

 Status

 Ready

 Compliance

 ISAFFIRM() is fully CA-Clipper compliant.

 Files

 Library is rtl

See Also:

ISNEGATIVE()
NATIONMSG()

ISNEGATIVE()
Checks if passed char is a negation char.

 Syntax

 ISNEGATIVE(<cChar>) --> <lTrueOrFalse>

 Arguments

 <cChar> is a char or string of chars

 Returns

 <lTrueOrFalse> True if passed char is a negation char, otherwise false.

 Description

 This function is used to check if a user's input is true or not according to
 the msgxxx module used.

 Examples

 // Wait until user enters N
 DO WHILE !ISNEGATIVE(cYesNo)
 ACCEPT "Sure: " TO cYesNo
 END DO

 Status

 Ready

 Compliance

 ISNEGATIVE() is fully CA-Clipper compliant.

 Files

 Library is rtl

See Also:

ISAFFIRM()
NATIONMSG()

NATIONMSG()
Returns international strings messages.

 Syntax

 NATIONMSG(<nMsg>) --> <cMessage>

 Arguments

 <nMsg> is the message number you want to get.

 Returns

 <cMessage> If <nMsg> is a valid message selector, returns the message. If
 <nMsg> is nil returns "Invalid Argument", and if <nMsg> is any other type it
 returns an empty string.

 Description

 NATIONMSG() returns international message descriptions.

 Examples

 // Displays "Sure Y/N: " and waits until user enters Y
 // Y/N is the string for NATIONMSG(12) with default natmsg module.
 DO WHILE !ISAFFIRM(cYesNo)
 ACCEPT "Sure " + NATIONMSG(12) + ": " TO cYesNo
 END DO

 Status

 Clipper

 Compliance

 NATIONMSG() is fully CA-Clipper compliant.

 Files

 Library is rtl

See Also:

ISAFFIRM()
ISNEGATIVE()

__objHasData()
Determine whether a symbol exist in object as DATA

 Syntax

 __objHasData(<oObject>, <cSymbol>) --> lExist

 Arguments

 <oObject> is an object to scan.

 <cSymbol> is the name of the symbol to look for.

 Returns

 __objHasData() return .T. if the given <cSymbol> exist as DATA (instance
 variable) in object <oObject), .F. if it does not exist.

 Description

 __objHasData() is a low level class support function that let you find out if
 a symbol is an instance variable in a given object.

 Examples

 oB := TBrowseNew(0, 0, 24, 79)
 ? __objHasData(oB, "nLeft") // this should return .T.
 ? __objHasData(oB, "lBugFree") // hopefully this should be .F.
 ? __objHasData(oB, "Left") // .F. since this is a METHOD

 Status

 Ready

 Compliance

 __objHasData() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objGetMethodList()
__objGetMsgList()
__objHasMethod()

__objHasMethod()
Determine whether a symbol exist in object as METHOD

 Syntax

 __objHasMethod(<oObject>, <cSymbol>) --> lExist

 Arguments

 <oObject> is an object to scan.

 <cSymbol> is the name of the symbol to look for.

 Returns

 __objHasMethod() return .T. if the given <cSymbol> exist as METHOD (class
 function) in object <oObject), .F. if it does not exist.

 Description

 __objHasMethod() is a low level class support function that let you find out
 if a symbol is a class function in a given object.

 Examples

 oB := TBrowseNew(0, 0, 24, 79)
 ? __objHasMethod(oB, "nLeft") // .F. since this is a DATA
 ? __objHasMethod(oB, "FixBugs") // hopefully this should be .F.
 ? __objHasMethod(oB, "Left") // this should return .T.

 Status

 Ready

 Compliance

 __objHasMethod() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objGetMethodList()
__objGetMsgList()
__objHasData()

__objGetMsgList()
Return names of all DATA or METHOD for a given object

 Syntax

 __objGetMsgList(<oObject>, [<lData>]) --> aNames

 Arguments

 <oObject> is an object to scan.

 <lData> is an optional logical value that specifies the information to
 return. A value of .T. instruct the function to return list of all DATA names, .F.
 return list of all METHOD names. Default value is .T.

 Returns

 __objGetMsgList() return an array of character stings with all DATA names or
 all METHOD names for a given object. __objGetMsgList() would return an empty array
 {} if the given object does not contain the requested information.

 Description

 __objGetMsgList() is a low level class support function that let you find all
 instance variable or class functions names for a given object.

 Examples

 // show information about TBrowse class
 oB := TBrowseNew(0, 0, 24, 79)
 aData := __objGetMsgList(oB, .T.)
 aMethod := __objGetMsgList(oB, .F.)
 FOR i = 1 to len (aData)
 ? "DATA name:", aData[i]
 NEXT
 FOR i = 1 to len (aMethod)
 ? "METHOD name:", aMethod[i]
 NEXT

 Status

 Ready

 Compliance

 __objGetMsgList() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objGetMethodList()
__objGetValueList()
__objHasData()
__objHasMethod()

__objGetMethodList()
Return names of all METHOD for a given object

 Syntax

 __objGetMethodList(<oObject>) --> aMethodNames

 Arguments

 <oObject> is an object to scan.

 Returns

 __objGetMethodList() return an array of character stings with all METHOD
 names for a given object. __objGetMethodList() would return an empty array {} if
 the given object does not contain any METHOD.

 Description

 __objGetMethodList() is a low level class support function that let you find
 all class functions names for a given object. It is equivalent to __objGetMsgList(
 oObject, .F.).

 Examples

 // show information about TBrowse class
 oB := TBrowseNew(0, 0, 24, 79)
 aMethod := __objGetMethodList(oB)
 FOR i = 1 to len (aMethod)
 ? "METHOD name:", aMethod[i]
 NEXT

 Status

 Ready

 Compliance

 __objGetMethodList() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objGetMsgList()
__objGetValueList()
__objHasData()
__objHasMethod()

__objGetValueList()
Return an array of DATA names and values for a given object

 Syntax

 __objGetValueList(<oObject>, [<aExcept>]) --> aData

 Arguments

 <oObject> is an object to scan.

 <aExcept> is an optional array with DATA names you want to exclude from the
 scan.

 Returns

 __objGetValueList() return a 2D array that contain pairs of a DATA symbol
 name and the value of DATA. __objGetValueList() would return an empty array {} if
 the given object does not contain the requested information.

 Description

 __objGetValueList() is a low level class support function that return an
 array with DATA names and value, each array element is a pair of: aData[i,
 HB_OO_DATA_SYMBOL] contain the symbol name aData[i, HB_OO_DATA_VALUE] contain
 the value of DATA

 Examples

 // show information about TBrowse class
 oB := TBrowseNew(0, 0, 24, 79)
 aData := __objGetValueList(oB)
 FOR i = 1 to len (aData)
 ? "DATA name:", aData[i, HB_OO_DATA_SYMBOL], ;
 " value=", aData[i, HB_OO_DATA_VALUE]
 NEXT

 Status

 Ready

 Compliance

 __objGetValueList() is a Harbour extension.

 Files

 Header file is hboo.ch Library is rtl

See Also:

__objGetMethodList()
__objGetMsgList()
__objHasData()
__objHasMethod()
__ObjSetValueList()

__ObjSetValueList()
Set object with an array of DATA names and values

 Syntax

 __ObjSetValueList(<oObject>, <aData>) --> oObject

 Arguments

 <oObject> is an object to set.

 <aData> is a 2D array with a pair of instance variables and values for
 setting those variable.

 Returns

 __ObjSetValueList() return a reference to <oObject>.

 Description

 __ObjSetValueList() is a low level class support function that let you set a
 group of instance variables with values. each array element in <aData> is a pair
 of: aData[i, HB_OO_DATA_SYMBOL] which contain the variable name to set aData[i,
 HB_OO_DATA_VALUE] contain the new variable value.

 Examples

 // set some TBrowse instance variable
 oB := TBrowse():New()
 aData := array(4, 2)
 aData[1, HB_OO_DATA_SYMBOL] = "nTop"
 aData[1, HB_OO_DATA_VALUE] = 1
 aData[2, HB_OO_DATA_SYMBOL] = "nLeft"
 aData[2, HB_OO_DATA_VALUE] = 10
 aData[3, HB_OO_DATA_SYMBOL] = "nBottom"
 aData[3, HB_OO_DATA_VALUE] = 20
 aData[4, HB_OO_DATA_SYMBOL] = "nRight"
 aData[4, HB_OO_DATA_VALUE] = 70
 __ObjSetValueList(oB, aData)
 ? oB:nTop // 1
 ? oB:nLeft // 10
 ? oB:nBottom // 20
 ? oB:nRight // 70

 Status

 Ready

 Compliance

 __ObjSetValueList() is a Harbour extension.

 Files

 Header file is hboo.ch Library is rtl

See Also:

__objGetValueList()

__objAddMethod()
Add a METHOD to an already existing class

 Syntax

 __objAddMethod(<oObject>, <cMethodName>, <nFuncPtr>) --> oObject

 Arguments

 <oObject> is the object to work on.

 <cMethodName> is the symbol name of the new METHOD to add.

 <nFuncPtr> is a pointer to a function to associate with the method.

 Returns

 __objAddMethod() return a reference to <oObject>.

 Description

 __objAddMethod() is a low level class support function that add a new METHOD
 to an object. <oObject> is unchanged if a symbol with the name <cMethodName>
 already exist in <oObject>.

 Note that <nFuncPtr> is a special pointer to a function that was created
 using the @ operator, see example below.

 Examples

 // create a new THappy class and add a Smile method
 oHappy := TClass():New("THappy")
 __objAddMethod(oHappy, "Smile", @MySmile())
 ? oHappy:Smile(1) // :)
 ? oHappy:Smile(2) // ;)
 ? oHappy:Smile(3) // *SMILE*

 STATIC FUNCTION MySmile(nType)
 LOCAL cSmile
 DO CASE
 CASE nType == 1
 cSmile := ":)"
 CASE nType == 2
 cSmile := ";)"
 CASE nType == 3
 cSmile := "*SMILE*"
 ENDCASE
 RETURN cSmile

 Status

 Ready

 Compliance

 __objAddMethod() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objAddInline()
__objAddData()
__objDelMethod()
__objGetMethodList()
__objGetMsgList()
__objHasMethod()
__objModMethod()

__objAddInline()
Add an INLINE to an already existing class

 Syntax

 __objAddInline(<oObject>, <cInlineName>, <bInline>) --> oObject

 Arguments

 <oObject> is the object to work on.

 <cInlineName> is the symbol name of the new INLINE to add.

 <bInline> is a code block to associate with the INLINE method.

 Returns

 __objAddInline() return a reference to <oObject>.

 Description

 __objAddInline() is a low level class support function that add a new INLINE
 method to an object. <oObject> is unchanged if a symbol with the name
 <cInlineName> already exist in <oObject>.

 Examples

 // create a new THappy class and add a Smile INLINE method
 oHappy := TClass():New("THappy")
 bInline := { | nType | { ":)", ";)", "*SMILE*" }[nType] }
 __objAddInline(oHappy, "Smile", bInline)
 ? oHappy:Smile(1) // :)
 ? oHappy:Smile(2) // ;)
 ? oHappy:Smile(3) // *SMILE*

 Status

 Ready

 Compliance

 __objAddInline() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objAddData()
__objAddMethod()
__objDelInline()
__objGetMethodList()
__objGetMsgList()
ARRAY()
__objModInline()

__objAddData()
Add a DATA to an already existing class

 Syntax

 __objAddData(<oObject>, <cDataName>) --> oObject

 Arguments

 <oObject> is the object to work on.

 <cDataName> is the symbol name of the new DATA to add.

 Returns

 __objAddData() return a reference to <oObject>.

 Description

 __objAddData() is a low level class support function that add a new DATA to
 an object. <oObject> is unchanged if a symbol with the name <cDataName> already
 exist in <oObject>.

 Examples

 // create a new THappy class and add a lHappy DATA
 oHappy := TClass():New("THappy")
 __objAddData(oHappy, "lHappy")
 oHappy:lHappy := .T.
 IF oHappy:lHappy
 ? "Happy, Happy, Joy, Joy !!!"
 ELSE
 ? ":(..."
 ENDIF

 Status

 Ready

 Compliance

 __objAddData() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objAddInline()
__objAddMethod()
__objDelData()
__objGetMsgList()
__objGetValueList()
__objHasData()
__ObjSetValueList()

__objModMethod()
Modify (replace) a METHOD in an already existing class

 Syntax

 __objModMethod(<oObject>, <cMethodName>, <nFuncPtr>) --> oObject

 Arguments

 <oObject> is the object to work on.

 <cMethodName> is the symbol name of the METHOD to modify.

 <nFuncPtr> is a pointer to a new function to associate with the method.

 Returns

 __objModMethod() return a reference to <oObject>.

 Description

 __objModMethod() is a low level class support function that modify a METHOD
 in an object and replace it with a new function. <oObject> is unchanged if a
 symbol with the name <cMethodName> does not exist in <oObject>. __objModMethod() is
 used in inheritance mechanism.

 Note that <nFuncPtr> is a special pointer to a function that was created
 using the @ operator, see example below.

 Examples

 // create a new THappy class and add a Smile method
 oHappy := TClass():New("THappy")
 __objAddMethod(oHappy, "Smile", @MySmile())
 ? oHappy:Smile(1) // :)
 ? oHappy:Smile(2) // ;)
 // replace Smile method with a new function
 __objAddMethod(oHappy, "Smile", @YourSmile())
 ? oHappy:Smile(1) // *SMILE*
 ? oHappy:Smile(2) // *WINK*

 STATIC FUNCTION MySmile(nType)
 LOCAL cSmile
 DO CASE
 CASE nType == 1
 cSmile := ":)"
 CASE nType == 2
 cSmile := ";)"
 ENDCASE
 RETURN cSmile

 STATIC FUNCTION YourSmile(nType)
 LOCAL cSmile
 DO CASE
 CASE nType == 1
 cSmile := "*SMILE*"
 CASE nType == 2
 cSmile := "*WINK*"
 ENDCASE
 RETURN cSmile

 Status

 Ready

 Compliance

 __objModMethod() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objAddMethod()
__objDelMethod()
__objGetMethodList()
__objGetMsgList()
__objHasMethod()

__objModInline()
Modify (replace) an INLINE method in an already existing class

 Syntax

 __objModInline(<oObject>, <cInlineName>, <bInline>) --> oObject

 Arguments

 <oObject> is the object to work on.

 <cInlineName> is the symbol name of the INLINE method to modify.

 <bInline> is a new code block to associate with the INLINE method.

 Returns

 __objModInline() return a reference to <oObject>.

 Description

 __objModInline() is a low level class support function that modify an INLINE
 method in an object and replace it with a new code block. <oObject> is unchanged
 if a symbol with the name <cInlineName> does not exist in <oObject>.
 __objModInline() is used in inheritance mechanism.

 Examples

 // create a new THappy class and add a Smile INLINE method
 oHappy := TClass():New("THappy")
 bMyInline := { | nType | { ":)", ";)" }[nType] }
 bYourInline := { | nType | { "*SMILE*", "*WINK*" }[nType] }
 __objAddInline(oHappy, "Smile", bMyInline)
 ? oHappy:Smile(1) // :)
 ? oHappy:Smile(2) // ;)
 // replace Smile inline method with a new code block
 __objModInline(oHappy, "Smile", bYourInline)
 ? oHappy:Smile(1) // *SMILE*
 ? oHappy:Smile(2) // *WINK*

 Status

 Ready

 Compliance

 __objModInline() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objAddInline()
__objDelInline()
__objGetMethodList()
__objGetMsgList()
__objHasMethod()

__objDelMethod()
Delete a METHOD from class

 Syntax

 __objDelMethod(<oObject>, <cSymbol>) --> oObject

 Arguments

 <oObject> is the object to work on.

 <cSymbol> is the symbol name of METHOD or INLINE method to be deleted
 (removed) from the object.

 Returns

 __objDelMethod() return a reference to <oObject>.

 Description

 __objDelMethod() is a low level class support function that delete (remove) a
 METHOD or an INLINE method from an object. <oObject> is unchanged if a symbol with
 the name <cSymbol> does not exist in <oObject>.

 __objDelInline() is exactly the same as __objDelMethod().

 Examples

 // create a new THappy class and add a Smile method
 oHappy := TClass():New("THappy")
 __objAddMethod(oHappy, "Smile", @MySmile())
 ? __objHasMethod(oHappy, "Smile") // .T.
 // remove Smile method
 __objDelMethod(oHappy, "Smile")
 ? __objHasMethod(oHappy, "Smile") // .F.

 STATIC FUNCTION MySmile(nType)
 LOCAL cSmile
 DO CASE
 CASE nType == 1
 cSmile := ":)"
 CASE nType == 2
 cSmile := ";)"
 ENDCASE
 RETURN cSmile

 Status

 Ready

 Compliance

 __objDelMethod() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objAddInline()
__objAddMethod()
__objGetMethodList()
__objGetMsgList()
__objHasMethod()
__objModInline()
__objModMethod()

__objDelInline()
Delete a METHOD INLINE from class

 Syntax

 __objDelInline(<oObject>, <cSymbol>) --> oObject

 Arguments

 <oObject> is the object to work on.

 <cSymbol> is the symbol name of METHOD or INLINE method to be deleted
 (removed) from the object.

 Returns

 __objDelInMethod() return a reference to <oObject>.

 Description

 __objDelInMethod() is a low level class support function that delete (remove)
 a METHOD or an INLINE method from an object. <oObject> is unchanged if a symbol
 with the name <cSymbol> does not exist in <oObject>.

 Examples

 // create a new THappy class and add a Smile method
 oHappy := TClass():New("THappy")
 __objAddMethod(oHappy, "Smile", @MySmile())
 ? __objHasMethod(oHappy, "Smile") // .T.
 // remove Smile method
 __objDelInMethod(oHappy, "Smile")
 ? __objHasMethod(oHappy, "Smile") // .F.

 STATIC FUNCTION MySmile(nType)
 LOCAL cSmile
 DO CASE
 CASE nType == 1
 cSmile := ":)"
 CASE nType == 2
 cSmile := ";)"
 ENDCASE
 RETURN cSmile

 Status

 Ready

 Compliance

 __objDelMethod() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objAddInline()
__objAddMethod()
__objGetMethodList()
__objGetMsgList()
__objHasMethod()
__objModInline()
__objModMethod()

__objDelData()
Delete a DATA (instance variable) from class

 Syntax

 __objDelMethod(<oObject>, <cDataName>) --> oObject

 Arguments

 <oObject> is the object to work on.

 <cDataName> is the symbol name of DATA to be deleted (removed) from the
 object.

 Returns

 __objDelData() return a reference to <oObject>.

 Description

 __objDelData() is a low level class support function that delete (remove) a
 DATA from an object. <oObject> is unchanged if a symbol with the name <cDataName>
 does not exist in <oObject>.

 Examples

 // create a new THappy class and add a lHappy DATA
 oHappy := TClass():New("THappy")
 __objAddData(oHappy, "lHappy")
 ? __objHasData(oHappy, "lHappy") // .T.
 // remove lHappy DATA
 __objDelData(oHappy, "lHappy")
 ? __objHasData(oHappy, "lHappy") // .F.

 Status

 Ready

 Compliance

 __objDelData() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objAddData()
__objGetMsgList()
__objGetValueList()
__objHasData()
__ObjSetValueList()

__objDerivedFrom()
Determine whether a class is derived from another class

 Syntax

 __objDerivedFrom(<oObject>, <xSuper>) --> lIsParent

 Arguments

 <oObject> is the object to check.

 <xSuper> is the object that may be a parent. can be either an Object or a
 Character string with the class name.

 Returns

 __objDerivedFrom() return a logical TRUE (.T.) if <oObject> is derived from
 <xSuper>.

 Description

 __objDerivedFrom() is a low level class support function that check is one
 class is a super class of the other, or in other words, does class <oObject> a
 child or descendant of <xSuper>.

 Examples

 // Create three classes and check their relations

 #include "hbclass.ch"
 FUNCTION main()
 local oSuper, oObject, oDress
 oSuper := TMood():New()
 oObject := THappy():New()
 oDress := TShirt():New()
 ? __objDerivedFrom(oObject, oSuper) // .T.
 ? __objDerivedFrom(oSuper, oObject) // .F.
 ? __objDerivedFrom(oObject, oDress) // .F.
 RETURN NIL

 CLASS TMood
 METHOD New() INLINE Self
 ENDCLASS

 CLASS THappy FROM TMood
 METHOD Smile() INLINE qout("*smile*")
 ENDCLASS

 CLASS TShirt
 DATA Color
 DATA Size
 METHOD New() INLINE Self
 ENDCLASS

 Status

 Ready

 Compliance

 __objDerivedFrom() is a Harbour extension.

 Files

 Library is rtl

See Also:

__objHasData()
__objHasMethod()

RDDLIST()
Return an array of the available Replaceable Database Drivers

 Syntax

 RDDLIST([<nRDDType>]) --> aRDDList

 Arguments

 <nRDDType> is an integer that represents the type of the RDD you wish to
 list. The constants RDT_FULL and RDT_TRANSFER represent the two types of RDDs
 currently available.

 ÄÄ Constant
 Value Meaning
 ÄÄ RDT_FULL
 1 Full RDD implementation RDT_TRANSFER 2 Import/Export only
 driver ÄÄ

 RDT_FULL identifies full-featured RDDs that have all the capabilities
 associated with an RDD.

 RDT_TRANSFER identifies RDDs of limited capability. They can only transfer
 records between files. You cannot use these limited RDD drivers to open a file in
 a work area. The SDF and DELIM drivers are examples of this type of RDD. They are
 only used in the implementation of APPEND FROM and COPY TO with SDF or DELIMITED
 files.

 Returns

 RDDLIST() returns a one-dimensional array of the RDD names registered with
 the application as <nRDDType>.

 Description

 RDDLIST() is an RDD function that returns a one-dimensional array that lists
 the available RDDs.

 If you do not supply <nRDDType>, all available RDDs, regardless of type, are
 returned.

 Examples

 In this example RDDLIST() returns an array containing the
 character strings, "DBF", "SDF", "DELIM", "DBFCDX", and "DBFNTX":

 REQUEST DBFCDX

 .
 . < statements >
 .

 aRDDs := RDDLIST()

 // Returns {"DBF", SDF", "DELIM", "DBFCDX", "DBFNTX" }

 In this example, RDDLIST() returns an array containing the
 character strings, "SDF" and "DELIM":

 #include "rddsys.ch"
 .
 . < statements >
 .
 aImpExp := RDDLIST(RDT TRANSFER)

 Tests

 Status

 Ready

RDDNAME()
Return the name of the currently active RDD

 Syntax

 RDDNAME() --> cRDDName

 Arguments

 Returns

 current or specified work area.

 Description

 RDDNAME() is an RDD function that returns a character string, cRDDName, the
 name of the active RDD in the current or specified work area.

 You can specify a work area other than the currently active work area by
 aliasing the function.

 Examples

 USE Customer VIA "DBFNTX" NEW
 USE Sales VIA "DBFCDX" NEW

 ? RDDNAME() // Returns: DBFCDX
 ? Customer->(RDDNAME()) // Returns: DBFNTX
 ? Sales->(RDDNAME()) // Returns: DBFCDX

 Tests

 Status

 Ready

See Also:

RDDLIST()

RDDSETDEFAULT()
Set or return the default RDD for the application

 Syntax

 RDDSETDEFAULT([<cNewDefaultRDD>])
 --> cPreviousDefaultRDD

 <cNewDefaultRDD> is a character string, the name of the RDD that is to be
 made the new default RDD in the application.

 Returns

 RDDSETDEFAULT() returns a character string, cPreviousDefaultRDD, the name of
 the previous default driver. The default driver is the driver that HARBOUR uses
 if you do not explicitly specify an RDD with the VIA clause of the USE command.

 Description

 RDDSETDEFAULT() is an RDD function that sets or returns the name of the
 previous default RDD driver and, optionally, sets the current driver to the new
 RDD driver specified by cNewDefaultRDD. If <cNewDefaultDriver> is not specified,
 the current default driver name is returned and continues to be the current default
 driver.

 This function replaces the DBSETDRIVER() function.

 Examples

 // If the default driver is not DBFNTX, make it the default

 IF (RDDSETDEFAULT() != "DBFNTX")
 cOldRdd := RDDSETDEFAULT("DBFNTX")
 ENDIF

 Tests

 Status

 Ready

See Also:

DBSETDRIVER()

__RDDSETDEFAULT()
Set or return the default RDD for the application

 Syntax

 __RDDSETDEFAULT([<cNewDefaultRDD>])
 --> cPreviousDefaultRDD

 <cNewDefaultRDD> is a character string, the name of the RDD that is to be
 made the new default RDD in the application.

 Returns

 __RDDSETDEFAULT() returns a character string, cPreviousDefaultRDD, the name
 of the previous default driver. The default driver is the driver that HARBOUR
 uses if you do not explicitly specify an RDD with the VIA clause of the USE
 command.

 Description

 RDDSETDEFAULT() is an RDD function that sets or returns the name of the
 previous default RDD driver and, optionally, sets the current driver to the new
 RDD driver specified by cNewDefaultRDD. If <cNewDefaultDriver> is not specified,
 the current default driver name is returned and continues to be the current default
 driver.

 This function replaces the DBSETDRIVER() function.

 Examples

 // If the default driver is not DBFNTX, make it the default

 IF (__RDDSETDEFAULT() != "DBFNTX")
 cOldRdd := __RDDSETDEFAULT("DBFNTX")
 ENDIF

 Tests

 Status

 Ready

See Also:

DBSETDRIVER()

DBEVAL()
Performs a code block operation on the current Database

 Syntax

 DBEVAL(<bBlock>,
 [<bFor>], [<bWhile>],
 [<nNext>], [<nRecord>],
 [<lRest>]) --> NIL

 Arguments

 <bBlock> Operation that is to be performed

 <bFor> Code block for the For condition

 <bWhile> Code block for the WHILE condition

 <nNext> Number of NEXT records to process

 <nRecord> Record number to work on exactly

 <lRest> Toggle to rewind record pointer

 Returns

 DBEVAL() always returns NIL

 Description

 Performs a code block operation on the current Database

 Examples

 FUNCTION Main()
 LOCAL nCount

 USE Test

 dbGoto(4)
 ? RecNo()
 COUNT TO nCount
 ? RecNo(), nCount
 COUNT TO nCount NEXT 10
 ? RecNo(), nCount

 RETURN NIL

 Status

 Started

 Compliance

 DBEVAL is fully CA-Clipper compliant.

 Files

 Library is rdd

See Also:

EVAL()

DBF()
Alias name of a work area

 Syntax

 Dbf() --> <cWorkArea>

 Returns

 <cWorkArea> Name of alias

 Description

 This function returns the same alias name ofthe currently selected work area.

 Examples

 FUNCTION Main()

 USE Test

 select 0
 qOut(IF(DBF()=="","No Name",DBF()))
 Test->(qOut(DBF())
 qOut(Alias(1))

 RETURN NIL

 Status

 Ready

 Compliance

 DBF() is fully CA-Clipper compliant.

 Files

 Library is rdd

See Also:

ALIAS()

DBAPPEND()
Appends a new record to a database file.

 Syntax

 DbAppend(<lLock>]) --> NIL

 Arguments

 <lLock> Toggle to release record locks

 Returns

 DbAppend() always returns NIL

 Description

 This function add a new record to the end of the database in the selected or
 aliased work area. All fields in that database will be given empty data values -
 character fields will be filled with blank spaces,date fields with CTOD('//'),
 numeric fields with 0,logical fields with .F., and memo fields with NULL bytes.The
 header of the database is not updated until the record is flushed from the buffer
 and the contents are written to the disk.

 Under a networking enviroment, DBAPPEND() performs an additional operation: It
 attrmps to lock the newly added record. If the database file is currently locked
 or if a locking assignment if made to LASTREC()+1,NETERR() will return a logical
 true (.T.) immediately after the DBAPPEND() function. This function does not
 unlock the locked records.

 If <lLock> is passed a logical true (.T.) value, it will release the record
 locks, which allows the application to main- tain multiple record locks during an
 appending operation. The default for this parameter is a logical false (.F.).

 Examples

 FUNCTION Main()

 USE Test
 local cName="HARBOUR",nId=10
 Test->(DbAppend())
 Replace Test->Name wit cName,Id with nId
 Use
 RETURN NIL

 Status

 Ready

 Compliance

 DBAPPEND() is fully CA-Clipper compliant.

 Files

 Library is rdd

See Also:

DBUNLOCK()
DBUNLOCKALL()

DBCLEARFILTER()
Clears the current filter condiction in a work area

 Syntax

 DbClearFilTer() -> NIL

 Returns

 DbClearFilTer() always returns NIL

 Description

 This function clears any active filter condiction for the current or selected
 work area.

 Examples

 Function Main()

 Use Test

 Set Filter to Left(Test->Name,2) == "An"

 Dbedit()

 Test->(DbClearFilter())

 USE

 Return Nil

 Status

 Ready

 Compliance

 DBCLEARFILTER() is fully CA-Clipper compliant.

 Files

 Library is rdd

See Also:

DBSETFILTER()
DBFILTER()

DBCLOSEALL()
Close all open files in all work areas.

 Syntax

 DbCloseAll() -> NIL

 Returns

 DBCLOSEALL() always return NIL

 Description

 This function close all open databases and all associated indexes.In
 addition, it closes all format files and moves the work area pointer to the first
 position

 Examples

 Function Main()

 Use Test New

 DbEdit()

 Use Test1 New

 DbEdit()

 DbCloseAll()

 USE

 Return Nil

 Status

 Ready

 Compliance

 DBCLOSEALL() is fully CA-Clipper compliant.

 Files

 Library is rdd

See Also:

DBUSEAREA()
DBCLOSEAREA()

DBCLOSEAREA()
Close a database file in a work area.

 Syntax

 DbCloseArea() -> NIL

 Returns

 DbCloseArea() always returns NIL.

 Description

 This function will close any database open in the selected or aliased work
 area.

 Examples

 Function Main()

 Use Test

 Dbedit()

 Test->(DbCloseArea())

 USE

 Return Nil

 Status

 Ready

 Compliance

 DBCLOSEAREA() is fully CA-Clipper compliant.

 Files

 Library is rdd

See Also:

DBUSEAREA()
DBCLOSEALL()

DBCOMMIT()
Updates all index and database buffers for a given workarea

 Syntax

 DBCOMMIT() --> NIL

 Returns

 DBCOMMIT() always returns NIL.

 Description

 This function updates all of the information for a give,selected, or active
 workarea.This operation includes all database and index buffers for that work area
 only. This function does not update all open work areas.

 Examples

 FUNCTION Main()
 LOCAL cName:=SPACE(40)
 LOCAL nId:=0
 USE Test EXCLUSIVE NEW
 //
 @ 10, 10 GET cName
 @ 11, 10 GET nId
 READ
 //
 IF UPDATED()
 APPEND BLANK
 REPLACE Tests->Name WITH cName
 REPLACE Tests->Id WITH nId
 Tests->(DBCOMMIT())
 ENDIF
 RETURN NIL

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

DBCLOSEALL()
DBCOMMITALL()
DBUNLOCK()

DBCOMMITALL()
Flushes the memory buffer and performs a hard-disk write

 Syntax

 DBCOMMIT() --> NIL

 Returns

 DBCOMMIT() always returns NIL.

 Description

 This function performs a hard-disk write for all work areas. Before the disk
 write is performed,all buffers are flushed. open work areas.

 Examples

 FUNCTION Main()
 LOCAL cName:=SPACE(40)
 LOCAL nId:=0
 USE Test EXCLUSIVE NEW
 USE TestId New INDEX Testid
 //
 @ 10, 10 GET cName
 @ 11, 10 GET nId
 READ
 //
 IF UPDATED()
 APPEND BLANK
 REPLACE Tests->Name WITH cName
 REPLACE Tests->Id WITH nId
 IF !TestId->(DBSEEK(nId))
 APPEND BLANK
 REPLACE Tests->Id WITH nId
 ENDIF
 ENDIF
 DBCOMMITALL()
 RETURN NIL

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant.

 Files

 Library is rdd

See Also:

DBCLOSEALL()
DBCOMMIT()
DBUNLOCK()

__DBCONTINUE()
Resume a pending LOCATE

 Syntax

 __DbCONTINUE() -> NIL

 Returns

 __DbCONTINUE() Always return nil

 Description

 __DBCONTINUE is a database command that searches from the current record
 position for the next record meeting the most recent LOCATE condition executed in
 the current work area. It terminates when a match is found or end of file is
 encountered. If __DBCONTINUE is successful, the matching record becomes the
 current record and FOUND() returns true (.T.); if unsuccessful, FOUND() returns
 false (.F.).

 Each work area may have an active LOCATE condition. In CA-Clipper, a LOCATE
 condition remains pending until a new LOCATE condition is specified. No other
 commands release the condition.

 Notes

 Scope and WHILE condition: Note that the scope and WHILE condition of the
 initial LOCATE are ignored; only the FOR condition is used with CONTINUE. If you
 are using a LOCATE with a WHILE condition and want to continue the search for a
 matching record, use SKIP and then repeat the original LOCATE statement adding REST
 as the scope.

 This example scans records in Sales.dbf for a particular
 salesman and displays a running total sales amounts:

 LOCAL nRunTotal := 0
 USE Sales NEW
 LOCATE FOR Sales->Salesman = "1002"
 DO WHILE FOUND()
 ? Sales->Salesname, nRunTotal += Sales->Amount
 __DBCONTINUE()
 ENDDO

 This example demonstrates how to continue if the pending
 LOCATE scope contains a WHILE condition:

 LOCAL nRunTotal := 0
 USE Sales INDEX Salesman NEW
 SEEK "1002"
 LOCATE REST WHILE Sales->Salesman = "1002";
 FOR Sales->Amount > 5000
 DO WHILE FOUND()
 ? Sales->Salesname, nRunTotal += Sales->Amount
 SKIP
 LOCATE REST WHILE Sales->Salesman = "1002";
 FOR Sales->Amount > 5000
 ENDDO

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant.

 Files

 Library is rdd

See Also:

EOF()
FOUND()

DBCREATE()
Creates an empty database from a array.

 Syntax

 DBCREATE(<cDatabase>, <aStruct>,[<cDriver>],[<lOpen>],
 [<cAlias>]) --> NIL

 Arguments

 <cDatabase> Name of database to be create

 <aStruct> Name of a multidimensional array that contains the a database
 structure

 <cDriver> Name of the RDD

 <lOpenNew> 3-way toggle to Open the file in New or Current workarea:

 The file is not opened.NIL

It is opened in a New area.True

It is opened in the current area.False

 <cAlias> Name of database Alias

 Returns

 DBCREATE() always returns NIL.

 Description

 This function creates the database file specified as <cDatabase> from the
 multidimensional array <aStruct>.If no file extension is use with <cDatabase> the
 .DBF extension is assumed. The array specified in <aStruct> must follow a few
 guidelines when being built prior to a call to DBCREATE():

 - All subscripts values in the second dimension must be set to proper values

 - The fourth subscript value in the second dimension - which contains the
 decimal value-must he specified. even 1kw nonnumeric fields.

 - The second subscript value in the second dimension-which contains the field
 data type-must contain a proper value: C, D, L, M or N It is possible to use
 additional letters (or clarity (e.g., 'Numeric' for 'N'): however, the first letter
 of this array element must be a proper value.

 The DBCREATE() function does not use the decimal field to calculate the
 length of a character held longer than 256. Values up to the maximum length of a
 character field (which is 65,519 bytes) are stored directly in the database in the
 length attribute if that database was created via this function. However, a file
 containing fields longer than 256 bytes is not compatible with any interpreter.

 The <cDriver> parameter specifies the name of the Replaceable Da- tabase
 Driver to use to create the database. If it is not specified, then the Replaceable
 Database Driver in the current work area is tised. The <lOpenNew> parameter
 specifies if the already created database is to be opened, and where. If NIL, the
 file is not opened. If True, it is opened in a New area, and if False it is opened
 in the current area (closing any file already occupying that area). The <cAlias>
 parameter specifies the alias name for the new opened database

 Examples

 function main()

 local nI, aStruct := { { "CHARACTER", "C", 25, 0 }, ;
 { "NUMERIC", "N", 8, 0 }, ;
 { "DOUBLE", "N", 8, 2 }, ;
 { "DATE", "D", 8, 0 }, ;
 { "LOGICAL", "L", 1, 0 }, ;
 { "MEMO1", "M", 10, 0 }, ;
 { "MEMO2", "M", 10, 0 } }

 REQUEST DBFCDX

 dbCreate("testdbf", aStruct, "DBFCDX", .t., "MYALIAS")

 RETURN NIL

 Status

 Ready

 Compliance

 This function is Not CA-Clipper compliant

 Files

 Library is rdd Header is Dbstruct.ch

See Also:

AFIELDS()
DBSTRUCT()

DBDELETE()
Marks records for deletion in a database.

 Syntax

 DBDELETE() --> NIL

 Returns

 DBDELETE() always returns NIL.

 Description

 This function marks a record for deletion in the selected or aliased work
 area.If the DELETED setting is on, the record will still be visible until the
 record pointer in that work area is moved to another record.

 In a networking situation, this function requires that the record be locked
 prior to issuing the DBDELETE() function.

 Examples

 nId:=10
 USE TestId INDEX TestId NEW
 IF TestId->(DBSEEK(nId))
 IF TestId->(RLOCK())
 DBDELETE()
 ENDIF
 ENDIF
 USE

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

DBRECALL()

DBFILTER()
Return the filter expression in a work area

 Syntax

 DBFILTER() --> cFilter

 Returns

 DBFILTER() returns the filter expression.

 Description

 This function return the expression of the SET FILTER TO command for the
 current or designated work area. If no filter condition is present,a NULL string
 will be returned.

 Examples

 USE Test INDEX Test NEW
 SET FILTER TO Name= "Harbour"
 USE TestId INDEX TestId NEW
 SET FILTER TO Id = 1
 SELECT Test
 //
 ? DBFILTER()
 ? TestId->(DBFILTER())

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

ARRAY()
ARRAY()

DBGOBOTTOM()
Moves the record pointer to the bottom of the database.

 Syntax

 DBGOBOTTOM() --> NIL

 Returns

 DBGOBOTTOM() always returns NIL.

 Description

 This function moves the record pointer in the selected or aliased work area
 to the end of the file.The position of the record pointer is affected by the
 values in the index key or by an active FILTER condition.Otherwise,if no index is
 active or if no filter condition is present,the value of the record pointer will be
 LASTREC().

 Examples

 USE Tests
 DBGOTOP()
 ? RECNO()
 DBGOBOTTOM()
 ? RECNO()
 USE

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

BOF()
EOF()
DBSKIP()
DBSEEK()
DBGOTOP()

DBGOTO()
Position the record pointer to a specific location.

 Syntax

 DBGOTO(<xRecordNumber>) --> NIL

 Arguments

 <xRecordNumber> Record number or unique identity

 Returns

 DBGOTO() always returns NIL.

 Description

 This function places the record pointer,if working with a .DBF file, in
 selected or aliased work area at the record number specified by
 <xRecordNumber>.The position if not affected by an active index or by any
 enviromental SET condiction.

 Issuing a DBGOTO(RECNO()) call in a network enviroment will refresh the
 database and index buffers.This is the same as a DBSKIP(0) call. The parameter
 <xRecordNumber> may be something other than a record number.In some data formats,
 for example, the value of <xRecordNumber> is a unique primary key while in other
 formats,<xRecordNumber> could be an array offset if the data set was an array.

 Examples

 The following example uses DBGOTO() to iteratively process
 every fourth record:

 DBUSEAREA(.T., "DBFNTX", "Sales", "Sales", .T.)
 //
 // toggle every fourth record
 DO WHILE !EOF()
 DBGOTO(RECNO() + 4)
 Sales->Group := "Bear"
 ENDDO

 Status

 Ready
 This function is CA-Clipper compliant.

 Files

 Library is rdd

See Also:

BOF()
EOF()
DBGOTOP()
DBGOBOTTOM()
DBSEEK()
DBSKIP()

DBGOTOP()
Moves the record pointer to the bottom of the database.

 Syntax

 DBGOTOP() --> NIL

 Returns

 DBGOTOP() always returns NIL.

 Description

 This function moves the record pointer in the selected or aliased work area
 to the top of the file.The position of the record pointer is affected by the
 values in the index key or by an active FILTER condition.Otherwise,if no index is
 active or if no filter condition is present,the value of RECNO() will be 1.

 Examples

 USE Tests
 DBGOTOP()
 ? RECNO()
 DBGOBOTTOM()
 ? RECNO()
 USE

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

BOF()
EOF()
DBSKIP()
DBSEEK()
DBGOBOTTOM()

DBRECALL()
Recalls a record previousy marked for deletion.

 Syntax

 DBRECALL() --> NIL

 Returns

 DBRECALL() always returns NIL.

 Description

 This function unmarks those records marked for deletion nd reactivates them
 in the aliased or selected work area.If a record is DELETED and the DELETED
 setting is on, the record will still be visible for a DBRECALL() provided that the
 database record pointer has not been skipped.Once a record marked for deletion with
 the DELETE setting ON has been skipped, it no longer canbe brought back with
 DBRECALL().

 Examples

 USE Test NEW
 DBGOTO(10)
 DBDELETE()
 ? DELETED()
 DBRECALL()
 ? DELETED()
 USE

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

DBDELETE()

DBRLOCK()
This function locks the record basedon identify

 Syntax

 DBRLOCK([<xIdentity>]) --> lSuccess

 Arguments

 <xIdentity> Record indetifier

 Returns

 DBRLOCK() returns a logical true (.T.) if lock was successful

 Description

 This function attempts to lock a record which is indentified by <xIdentity>
 in the active data set.If the lock is successful the function will return a
 logical true (.T.) value;otherwise a logical false (.F.) will be returned.If
 <xIdentity> is not passed it will be assumed to lock the current active record/data
 item.

 Examples

 FUNCTION Main()
 LOCAL x:=0
 USE Tests New
 FOR x:=1 to reccount()
 IF !DBRLOCK()
 DBUNLOCK()
 ENDIF
 NEXT
 USE

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

DBUNLOCK()
DBUNLOCKALL()
FLOCK()
RLOCK()

DBRLOCKLIST()
This function return a list of records in the database work area

 Syntax

 DBRLOCKLIST() --> aRecordLocks

 Returns

 <aRecordList> is an array of lock records

 Description

 This function will return an array of locked records in a given and active
 work area.If the return array is an empty array (meaning no elements in it),then
 there are no locked record in that work area.

 Examples

 FUNCTION Main()
 LOCAL aList:={}
 LOCAL x:=0
 USE Tests NEW
 DBGOTO(10)
 RLOCK()
 DBGOTO(100)
 RLOCK()
 aList:=DBRLOCKLIST()
 FOR x:=1 TO LEN(aList)
 ? aList[x]
 NEXT
 USE
 RETURN NIL

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

RLOCK()
DBRLOCK()
DBRUNLOCK()

DBRUNLOCK()
Unlocks a record base on its indentifier

 Syntax

 DBRUNLOCK([<xIdentity>]) --> NIL

 Arguments

 <xIdentity> Record indentifier,tipicaly a record number

 Returns

 DBRUNLOCK() always returns NIL.

 Description

 This function will attempt to unlock the record specified as
 <xIdentity>,which in a .DBF format is the record number.If not specified,them the
 current active record/data item will be unlocked

 Examples

 FUNCTION Main()
 USE Tests New
 DBGOTO(10)
 IF RLOCK()
 ? Tests->ID
 DBRUNLOCK()
 ENDIF
 USE
 RETURN NIL

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

RLOCK()
DBRLOCK()
DBRLOCKLIST()

DBSEEK()
Searches for a value based on an active index.

 Syntax

 DBSEEK(<expKey>, [<lSoftSeek>],[<lFindLast>]) --> lFound

 Arguments

 <expKey> Any expression

 <lSoftSeek> Toggle SOFTSEEK condition

 <lFindLast> is an optional logical value that set the current record
 position to the last record if successful

 Returns

 DBSEEK() returns logical true (.T.) if found, otherwise false

 Description

 This function searches for the first record in a database file whose index
 key matches <expKey>. If the item is found, the function will return a logical
 true (.T.), the value of FOUND() wilI be a logical true (.T.), and the value of
 EOF() wilI be a logical false (.F.). If no item is found. then the function will
 return a logical false, the value of FOUND() will be a logical false (.F.), and
 the value of EOF() will be a logical true (.T.).

 This function always "rewinds" the database pointer and starts the search from
 the top of the file.

 If the SOFTSEEK flag is on or if <lSoftSeek> is set to a logical true (.T.)
 the value of FOUND() wilI be a logical false and EOF() will he a logical false if
 there is an item in the index key with a greater value than the key expression
 <expKey>; at this point the record pointer will position itself on that record.
 However, if there is no greater key in the index,EOF() will return a logical true
 (.T.) value. If <lSoftSeek> is not passed, the function will look to the internal
 status of SOFTSEEK before performing the operation. The default of <lSoftSeek> is a
 logical false (.F.)

 Examples

 FUNCTION Main()
 USE Tests New INDEX Tests
 DBGOTO(10)
 nId:=Tests->nId
 IF Tests->(DBSEEK(nId))
 IF RLOCK()
 ? Tests->Name
 DBRUNLOCK()
 ENDIF
 ENDIF
 USE
 RETURN NIL

 ACCEPT "Employee name: " TO cName
 IF (Employee->(DBSEEK(cName)))
 Employee->(ViewRecord())
 ELSE
 ? "Not found"
 END

 Status

 Started

 Compliance

 DBSEEK() is Compatible with CA-Clipper 5.3

 Files

 Library is rdd

See Also:

DBGOBOTTOM()
DBGOTOP()
DBSKIP()
EOF()
BOF()
FOUND()

DBSELECTAREA()
Change to another work area

 Syntax

 DBSELECTAREA(<xArea>) --> NIL

 Arguments

 <xArea> Alias or work area

 Returns

 DBSELECTAREA() always returns NIL.

 Description

 This function moves the Harbour internal primary focus to the work area
 designated by <xArea>. If <xArea> is numeric, them it will select the numeric work
 area;if <xArea> is character,then it will select the work area with the alias name.

 DBSELECTAREA(0) will select the next avaliable and unused work area. Up to
 255 work areas are supported.Each work area has its own alias and record pointer,
 as well as its own FOUND(),DBFILTER(),DBRSELECT(), and DBRELATION() function
 values.

 Examples

 FUNCTION Main()
 LOCAL nId
 USE Tests NEW INDEX Tests
 USE Tests1 NEW INDEX Tests1
 DBSELECTAREA(1)
 nId:=Tests->Id
 DBSELECTAREA(2)
 IF DBSEEK(nId)
 ? Tests1->cName
 ENDIF
 DBCLOSEALL()
 RETURN NIL

 Status

 Ready

 Compliance

 This function is CA-CLIPPER compatible.

 Files

 Library is rdd

See Also:

DBUSEAREA()
SELECT()

DBSETDRIVER()
Establishes the name of replaceable daabas driver for a selected work area

 Syntax

 DBSETDRIVER([<cDriver>]) --> cCurrentDriver

 Arguments

 <cDriver> Optional database driver name

 Returns

 DBSETDRIVER() returns the name of active driver

 Description

 This function returns the name of the current database driver for the
 selected work area. The default will be "DBFNTX". If specified,<cDriver> contains
 the name of the database driver that should be used to activate and manage the work
 area.If the specified driver is not avaliable,this function will have no effect.

 Examples

 DBSETDRIVER("ADS")

 Status

 Ready

 Compliance

 This function is CA-Clipper compatible

 Files

 Library is rdd

See Also:

DBUSEAREA()

DBSKIP()
Moves the record pointer in the selected work area.

 Syntax

 DBSKIP([<nRecords>]) --> NIL

 Arguments

 <nRecords> Numbers of records to move record pointer.

 Returns

 DBSKIP() always returns NIL.

 Description

 This function moves the record pointer <nRecords> in the selected or aliased
 work area.The default value for <nRecords> will be 1. A DBSKIP(0) will flush and
 refresh the internal database bufer and make any changes made to the record visible
 without moving the record pointer in either direction.

 Examples

 FUNCTION Main()
 USE Tests NEW
 DBGOTOP()
 WHILE !EOF()
 ? Tests->Id,Tests->Name
 DBSKIP()
 ENDDO
 USE
 RETURN NIL

 Status

 Ready

 Compliance

 This function is CA-CLIPPER compatible

 Files

 Library is rdd

See Also:

BOF()
DBGOBOTTOM()
DBGOTOP()
DBSEEK()
EOF()

DBSETFILTER()
Establishes a filter condition for a work area.

 Syntax

 DBSETFILTER(<bCondition>, [<cCondition>]) --> NIL

 Arguments

 <bCondition> Code block expression for filtered evaluation.

 <cCondition> Optional character expression of code block.

 Returns

 DBSETFILTER() always returns NIL.

 Description

 This function masks a database so that only those records that meet the
 condition prescribed by the expression in the code block <bCondition> and
 literally expressed as <cCondition> are visible. If <cCondition> is not passed to
 this function,then the DBFILTER() function will return an empty string showing no
 filter in that work area which in fact,would be not correct.

 Examples

 FUNCTION Main()
 USE Tests NEW
 DBSETFILTER({|| Tests->Id <100},"Tests->Id <100")
 DBGOTOP()

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant.

 Files

 Library is rdd

See Also:

DBFILTER()
DBCLEARFILTER()

DBSTRUCT()
Creates a multidimensional array of a database structure.

 Syntax

 DBSTRUCT() --> aStruct

 Returns

 DBSTRUCT() returns an array pointer to database structure

 Description

 This function returns a multidimensional array.This array has array pointers
 to other arrays,each of which contains the characteristic of a field in the active
 work area.The lenght of this array is based in the number of fields in that
 particular work area.In other words, LEN(DBSTRUCT()) is equal to the value obtained
 from FCOUNT(). Each subscript position

 Examples

 FUNCTION Main()
 LOCAL aStru,x
 USE Tests NEW
 aStru:=DBSTRUCT()
 FOR x:=1 TO LEN(aStru)
 ? aStru[x,1]
 NEXT
 USE
 RETURN NIL

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd Header is DbStruct.ch

See Also:

AFIELDS()

DBUNLOCK()
Unlock a record or release a file lock

 Syntax

 DBUNLOCK() --> NIL

 Returns

 DBUNLOCK() always returns NIL.

 Description

 This function releases the file or record lock in the currently selected or
 aliased work area.It will not unlock an associated lock in a related data- bases.

 Examples

 nId:=10
 USE TestId INDEX TestId NEW
 IF TestId->(DBSEEK(nId))
 IF TestId->(RLOCK())
 DBDELETE()
 ELSE
 DBUNLOCK()
 ENDIF
 ENDIF
 USE

 Status

 Ready

 Compliance

 This function is CA-Clipper compatible.

 Files

 Library is rdd

See Also:

DBUNLOCKALL()
FLOCK()
RLOCK()

DBUNLOCKALL()
Unlocks all records and releases all file locks in all work areas.

 Syntax

 DBUNLOCKALL() --> NIL

 Returns

 DBUNLOCKALL() always returns NIL.

 Description

 This function will remove all file and record locks in all work area.

 Examples

 nId:=10
 USE Tests INDEX TestId NEW
 USE Tests1 INDEX Tests NEW
 IF TestId->(DBSEEK(nId))
 IF TestId->(RLOCK())
 DBDELETE()
 ELSE
 DBUNLOCK()
 ENDIF
 ELSE
 DBUNLOCKALL()
 ENDIF
 USE

 Status

 Ready

 Compliance

 This function is CA Clipper compliant

 Files

 Library is rdd

See Also:

DBUNLOCK()
FLOCK()
RLOCK()

DBUSEAREA()
Opens a work area and uses a database file.

 Syntax

 DBUSEAREA([<lNewArea>], [<cDriver>], <cName>, [<xcAlias>],
 [<lShared>], [<lReadonly>]) --> NIL

 Arguments

 <lNewArea> A optional logical expression for the new work area

 <cDriver> Database driver name

 <cName> File Name

 <xcAlias> Alias name

 <lShared> Shared/exclusive status flag

 <lReadonly> Read-write status flag.

 Returns

 DBUSEAREA() always returns NIL.

 Description

 This function opens an existing database named <cName> in the current work
 area. If <lNewArea> is set to a logical true (.T.) value, then the database
 <cName> will be opened in the next available and unused work area. The default
 value of <lNewArea> is a logical false (.F.). If used, <cDriver> is the name of the
 database driver associated with the file <cName> that is opened. The default for
 this will be the value of DBSETDRlVER().

 IF used, <xcAlias> contains the alias name for that work area, If not
 specified, the root name of the database specified in <cName> will be used.

 If <lShared> is set to a logical true (.T.) value, the database that is
 specified in <cName> will be opened by the user EXCLUSIVELY. Thus locking it from
 all other nodes or users on the network. If <lShared> is set to a logical false
 (.F.) value, then the database will be in SHARED mode. If <lShared> is not passed,
 then the function will turn to the internal setting of SET EXCLUSIVE to determine a
 setting.

 If <lReadOnly> is specified, the file will be set to READ ONLY mode. If it is
 not specified, the file will he opened in normal read-write mode.

 Examples

 DBUSEAREA(.T.,,"Tests")

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

DBCLOSEAREA()
DBSETDRIVER()
SELECT()
SET()

__DBZAP()
Remove all records from the current database file

 Syntax

 __DbZap() -> NIL

 Returns

 __DbZap() will always return nil

 Description

 __DbZap(is a database command that permanently removes all records from
 files open in the current work area. This includes the current database file,
 index files, and associated memo file. Disk space previously occupied by the
 ZAPped files is released to the operating system. __DbZap() performs the same
 operation as DELETE ALL followed by PACK but is almost instantaneous.

 To ZAP in a network environment, the current database file must be USEd
 EXCLUSIVEly.

 This example demonstrates a typical ZAP operation in a network
 environment:

 USE Sales EXCLUSIVE NEW
 IF !NETERR()
 SET INDEX TO Sales, Branch, Salesman
 __dbZAP()
 CLOSE Sales
 ELSE
 ? "Zap operation failed"
 BREAK
 ENDIF

 Status

 Ready

 Compliance

 This function is CA Clipper compliant

 Files

 Library is rdd

ORDBAGEXT()
Returns the Order Bag extension

 Syntax

 ORDBAGEXT() --> cBagExt

 Arguments

 Returns

 <cBagExt> The Rdd extension name.

 Description

 This function return th character name of the RDD extension for the order
 bag.This is determined by the active RDD for the selected work area.

 This function replaces the Indexord() function.

 Examples

 USE Tests NEW VIA "DBFNTX"
 ? ORDBAGEXT() // Returns .ntx
 DBCLOSEAREA()
 USE Tests NEW VIA "DBFCDX"
 ? ORDBAGEXT() // Returns .cdx
 DBCLOSEAREA()

 Status

 Started

 Compliance

 This function is CA Clipper compliant

 Platforms

 All

 Files

 Library is rdd

See Also:

INDEXEXT()
ORDBAGNAME()

ORDBAGNAME()
Returns the Order Bag Name.

 Syntax

 ORDBAGNAME(<nOrder> | <cOrderName>) --> cOrderBagName

 Arguments

 <nOrder> A numeric value representing the Order bag number.

 <cOrderName> The character name of the Order Bag.

 Returns

 ORDBAGNAME() returns the Order bag name

 Description

 This function returns the name of the order bag for the specified work area.
 If <nOrder> is specidied,it will represent the position in the order list of the
 target order.If <cOrderName> is specified, it will represent the name of the target
 order.In essence,it will tell the name of the database (if That Rdd is in use) for
 a given index name or index order number.If <cOrderName> is not specified or
 <nOrder> is 0, the Current active order will be used.

 Examples

 USE Tests VIA "DBFCDX" NEW
 Set index to TESTs
 ORDBAGNAME("TeName") // Returns: Customer
 ORDBAGNAME("TeLast") // Returns: Customer
 ORDBAGNAME("teZip") // Returns: Customer
 Set Order to Tag TeName
 ? OrderBagName() //Return Custumer

 Tests

 See Examples

 Status

 Started

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rdd

See Also:

INDEXORD()
ORDBAGEXT()
ALIAS()

ORDCONDSET()
Set the Condition and scope for an order

 Syntax

 ORDCONSET([<cForCondition>],
 [<bForCondition>],
 [<lAll>],
 [<bWhileCondition>],
 [<bEval>],
 [<nInterval>],
 [<nStart>],
 [<nNext>],
 [<nRecord>],
 [<lRest>],
 [<lDescend>],
 [<lAdditive>],
 [<lCurrent>],
 [<lCustom>],
 [<lNoOptimize>])

 Arguments

 <cForCondition> is a string that specifies the FOR condition for the order.
 <bForCondition> is a code block that defines a FOR condition that each record
 within the scope must meet in order to be processed. If a record does not meet the
 specified condition,it is ignored and the next record is processed.Duplicate keys
 values are not added to the index file when a FOR condition is Used.

 Returns

 Description

 Status

 Started
 ORDCONDSET() is CA-Clipper compliant

 Files

 Library is rdd

ORDCREATE()
Create an Order in an Order Bag

 Syntax

 ORDCREATE(<cOrderBagName>,[<cOrderName>], <cExpKey>,
 [<bExpKey>], [<lUnique>]) --> NIL

 Arguments

 <cOrderBagName> Name of the file that contains one or more Orders.

 <cOrderName> Name of the order to be created.

 <cExpKey> Key value for order for each record in the current work area

 <bExpKey> Code block that evaluates to a key for the order for each record
 in the work area.

 <lUnique> Toggle the unique status of the index.

 Returns

 ORDCREATE() always returns NIL.

 Description

 This function creates an order for the current work area.It is similar to the
 DBCREATEINDEX() except that this function allows different orders based on the RDD
 in effect.The name of the file <cOrderBagName> or the name of the order
 <cOrderName> are technically both considered to be "optional" except that at least
 one of two must exist in order to create the order.

 The parameter <cExpKey> is the index key expression;typically in a .DBF
 driver,the maximum length of the key is 255 characters.

 If <bExpKey> is not specified,then the code block is create by macro
 expanding the value of <cExpKey>.

 If <lUnique> is not specified,then the current internal setting of SET UNIQUE
 ON or OFF will be observed.

 The active RDD driver determines the capacity in the order for a specific
 order bag.

 If the name <cOrderBagName> is found in the order bag can contain a single
 order,the the name <cOrderBagName> is erased and a new order is added to the order
 list in the current or specified work area.On the other hand,if it can contain
 multiples tags and if <cOrderBagName> does not already exist in the order list,then
 it is added.It is does exist,then the <cOrderBagName> replaces the former name in
 the order list in the current or specified work area.

 Examples

 USE TESTS VIA "DBFNDX" NEW
 ORDCREATE("FNAME",, "Tests->fName")

 USE TEsts VIA "DBFCDX" NEW
 ORDCREATE(, "lName", "tests->lName")

 Tests

 See examples

 Status

 Started

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rdd

See Also:

ARRAY()
ORDNAME()
ORDSETFOCUS()

ORDDESTROY()
Remove an Order from an Order Bag

 Syntax

 ORDDESTROY(<cOrderName> [, <cOrderBagName>]) --> NIL

 Arguments

 <cOrderName> Name of the order to remove

 <cOrderBagName> Name of the order bag from which order id to be removed

 Returns

 ORDDESTROY() always returns NIL.

 Description

 This function attempts to remove the order named <cOrderName> from the file
 containing the order bag name <cOrderBagName>. If <cOrderBagName> is not
 specified,then the name of the file will be based on the value of the ORDNAME()
 function.If the extension is not included with the name of the order file,then the
 extension will be obtained from the default extension of the current and active
 RDD.

 The DBFNTX driver do not support multiple order bags;therefore,there cannot
 be an order to "destroy" from a bag.This function only works for those drivers
 with support multiple orders bags (e.q. DBFCDX and RDDADS drivers).

 Examples

 USE TEsts VIA "DBFCDX" NEW
 ORDdestroy("lName", "tests")

 Tests

 See examples

 Status

 Started

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rdd

See Also:

ORDCREATE()

ORDFOR()
Return the FOR expression of an Order

 Syntax

 ORDFOR(<xOrder>[, <cOrderBagName>]) --> cForExp

 <xOrder> It the name of the target order,or the numeric position of the
 order.

 <cOrderBagName> Name of the order bag.

 Returns

 ORDFOR() returns a expression containing the FOR condition for an order.

 Description

 This function returns a character string that is the expression for the FOR
 condition for the specified order.The order may be specified if <xOrder> is the
 name of the order.However,<xOrder> may be an numeric which represent the position
 in the order list of the desired Order.

 Examples

 USE Tests NEW via _DBFCDX
 INDEX ON Tests->Id ;
 TO TESTS ;
 FOR Tests->Id > 100

 ORDFOR("Tests") // Returns: Tests->Id > 100

 Tests

 See examples

 Status

 Started

 Compliance

 This function is Ca-Clipper compliant with one exception. If the <xOrder>
 paramter is not specified or <xOrder> is 0, the current active order is used.

 Platforms

 All

 Files

 Library is rdd

See Also:

ORDKEY()
ORDCREATE()
ORDNAME()
ORDNUMBER()

ORDKEY()
Return the key expression of an Order

 Syntax

 ORDKEY(<cOrderName> | <nOrder> [, <cOrderBagName>]) --> cExpKey

 Arguments

 <xOrder> It the name of the target order,or the numeric position of the
 order.

 <cOrderBagName> Name of the order bag.

 Returns

 <cExpKey> Returns a character string, cExpKey.

 Description

 ORDKEY() is an Order management function that returns a character expression,
 cExpKey, that represents the key expression of the specified Order.

 You may specify the Order by name or with a number that represents its
 position in the Order List. Using the Order name is the preferred method.

 The active RDD determines the Order capacity of an Order Bag. The default
 DBFNTX and the DBFNDX drivers only support single-Order Bags, while other RDDs may
 support multiple-Order Bags (e.g., the DBFCDX and DBFMDX drivers).

 Examples

 USE Customer NEW via _DBFCDX
 INDEX ON Customer->Acct ;
 TO Customer ;
 FOR Customer->Acct > "AZZZZZ"
 Index on Custumer->Id to Cusid

 ORDKEY("Customer") // Returns: Customer->Acct
 Set order to 2
 ORDKEY() // Returns: Custumer->Id

 Status

 Started

 Compliance

 This function is Ca-Clipper compliant with one exception. If the <xOrder>
 paramter is not specified or <xOrder> is 0, the current active order is used.

 Platforms

 All

 Files

 Library is rdd

See Also:

ORDFOR()
ORDNAME()
ORDNUMBER()
ORDKEY()

ORDLISTADD()
Add Orders to the Order List

 Syntax

 ORDLISTADD(<cOrderBagName>
 [, <cOrderName>]) --> NIL

 Arguments

 <cOrderBagName> is the name of a disk file containing one or more Orders.
 You may specify <cOrderBagName> as the filename with or without the pathname or
 appropriate extension. If you do not include the extension as part of
 <cOrderBagName> HARBOUR uses the default extension of the current RDD.

 <cOrderName> the name of the specific Order from the Order Bag to be added
 to the Order List of the current work area. If you do not specify <cOrderName>,
 all orders in the Order Bag are added to the Order List of the current work area.

 Returns

 ORDLISTADD() always returns NIL.

 Description

 ORDLISTADD() is an Order management function that adds the contents of an
 Order Bag , or a single Order in an Order Bag, to the Order List. This function
 lets you extend the Order List without issuing a SET INDEX command that, first,
 clears all the active Orders from the Order List.

 Any Orders already associated with the work area continue to be active. If the
 newly opened Order Bag contains the only Order associated with the work area, it
 becomes the controlling Order; otherwise, the controlling Order remains unchanged.

 After the new Orders are opened, the work area is positioned to the first
 logical record in the controlling Order.

 ORDLISTADD() is similar to the SET INDEX command or the INDEX clause of the
 USE command, except that it does not clear the Order List prior to adding the new
 order(s).

 ORDLISTADD() supersedes the DBSETINDEX() function.

 The active RDD determines the Order capacity of an Order Bag. The default
 DBFNTX and the DBFNDX drivers only support single-Order Bags, while other RDDs may
 support multiple-Order Bags (e.g., the DBFCDX and DBPX drivers). When using RDDs
 that support multiple Order Bags, you must explicitly SET ORDER (or ORDSETFOCUS())
 to the desired controlling Order. If you do not specify a controlling Order, the
 data file will be viewed in natural Order.

 Examples

 In this example Customer.cdx contains three orders, CuAcct,
 CuName, and CuZip. ORDLISTADD() opens Customer.cdx but only uses the
 order named CuAcct:

 USE Customer VIA "DBFCDX" NEW
 ORDLISTADD("Customer", "CuAcct")

 Tests

 Status

 Started

 All

 Files

 Library is rdd

See Also:

ARRAY()

ORDLISTCLEAR()
Clear the current Order List

 Syntax

 ORDLISTCLEAR() --> NIL

 Arguments

 Returns

 ORDLISTCLEAR() always returns NIL.

 Description

 ORDLISTCLEAR() is an Order management function that removes all Orders from
 the Order List for the current or aliased work area. When you are done, the Order
 List is empty.

 This function supersedes the function DBCLEARINDEX().

 USE Sales NEW
 SET INDEX TO SaRegion, SaRep, SaCode
 .
 . < statements >
 .
 ORDLISTCLEAR() // Closes all the current indexes

 Tests

 Status

 Started

 All

 Files

 Library is rdd

See Also:

ARRAY()

ORDLISTREBUILD()
Rebuild all Orders in the Order List of the current work area

 Syntax

 ORDLISTREBUILD() --> NIL

 Arguments

 Returns

 ORDLISTREBUILD() always returns NIL.

 Description

 ORDLISTREBUILD() is an Order management function that rebuilds all the orders
 in the current or aliased Order List.

 To only rebuild a single Order use the function ORDCREATE().

 Unlike ORDCREATE(), this function rebuilds all Orders in the Order List. It is
 equivalent to REINDEX.

 USE Customer NEW
 SET INDEX TO CuAcct, CuName, CuZip
 ORDLISTREBUILD() // Causes CuAcct, CuName, CuZip to
 // be rebuilt

 Tests

 Status

 Started

 All

 Files

 Library is rdd

See Also:

ORDCREATE()

ORDNAME()
Return the name of an Order in the Order List

 Syntax

 ORDNAME(<nOrder>[,<cOrderBagName> --> cOrderName

 Arguments

 <nOrder> is an integer that identifies the position in the Order List of the
 target Order whose database name is sought.

 <cOrderBagName> is the name of a disk file containing one or more Orders.
 You may specify <cOrderBagName> as the filename with or without the pathname or
 appropriate extension. If you do not include the extension as part of
 <xcOrderBagName> HARBOUR uses the default extension of the current RDD.

 Returns

 ORDNAME() returns the name of the specified Order in the current Order List
 or the specified Order Bag if opened in the Current Order list.

 Description

 ORDNAME() is an Order management function that returns the name of the
 specified Order in the current Order List.

 If <cOrderBagName> is an Order Bag that has been emptied into the current
 Order List, only those Orders in the Order List that correspond to <cOrderBagName>
 Order Bag are searched.

 The active RDD determines the Order capacity of an Order Bag. The default
 DBFNTX and the DBFNDX drivers only support single-Order Bags, while other RDDs may
 support multiple-Order Bags (e.g., the DBFCDX and DBPX drivers).

 Examples

 This example retrieves the name of an Order using its position
 in the order list:

 USE Customer NEW
 SET INDEX TO CuAcct, CuName, CuZip
 ORDNAME(2) // Returns: CuName

 This example retrieves the name of an Order given its position
 within a specific Order Bag in the Order List:

 USE Customer NEW
 SET INDEX TO Temp, Customer
 // Assume Customer contains CuAcct, CuName, CuZip
 ORDNAME(2, "Customer") // Returns: CuName

 Tests

 Status

 Started

 All

 Files

 Library is rdd

See Also:

ORDFOR()
ORDKEY()
ORDNUMBER()

ORDNUMBER()
Return the position of an Order in the current Order List

 Syntax

 ORDNUMBER(<cOrderName> [, <cOrderBagName>]) --> nOrderNo

 Arguments

 <cOrderName> the name of the specific Order whose position in the Order List
 is sought.

 <cOrderBagName> is the name of a disk file containing one or more Orders.
 You may specify <cOrderBagName> as the filename with or without the pathname or
 appropriate extension. If you do not include the extension as part of
 <cOrderBagName> HARBOUR uses the default extension of the current RDD.

 Returns

 the Order List.

 Description

 ORDNUMBER() is an Order management function that lets you determine the
 position in the current Order List of the specified Order. ORDNUMBER() searches
 the Order List in the current work area and returns the position of the first Order
 that matches <cOrderName>. If <cOrderBagName> is the name of an Order Bag newly
 emptied into the current Order List, only those orders in the Order List that have
 been emptied from <cOrderBagName> are searched.

 If <cOrderName> is not found ORDNUMBER() raises a recoverable runtime error.

 The active RDD determines the Order capacity of an Order Bag. The default
 DBFNTX driver only supports single-Order Bags, while other RDDs may support
 multiple-Order Bags (e.g., the DBFCDX and DBPX drivers).

 Examples

 USE Customer VIA "DBFNTX" NEW
 SET INDEX TO CuAcct, CuName, CuZip
 ORDNUMBER("CuName") // Returns: 2

 Tests

 Status

 Started

 All

 Files

 Library is rdd

See Also:

INDEXORD()

ORDSETFOCUS()
Set focus to an Order in an Order List

 Syntax

 ORDSETFOCUS([<cOrderName> | <nOrder>]
 [,<cOrderBagName>]) --> cPrevOrderNameInFocus

 <cOrderName> is the name of the selected Order, a logical ordering of a
 database. ORDSETFOCUS() ignores any invalid values of <cOrderName>.

 <nOrder> is a number representing the position in the Order List of the
 selected Order.

 <cOrderBagName> is the name of a disk file containing one or more Orders.
 You may specify <cOrderBagName> as the filename with or without the pathname or
 appropriate extension. If you do not include the extension as part of
 <cOrderBagName> HARBOUR uses the default extension of the current RDD.

 Returns

 ORDSETFOCUS() returns the Order Name of the previous controlling Order.

 Description

 ORDSETFOCUS() is an Order management function that returns the Order Name of
 the previous controlling Order and optionally sets the focus to an new Order.

 If you do not specify <cOrderName> or <nOrder>, the name of the currently
 controlling order is returned and the controlling order remains unchanged.

 All Orders in an Order List are properly updated no matter what <cOrderName>
 is the controlling Order. After a change of controlling Orders, the record
 pointer still points to the same record.

 The active RDD determines the Order capacity of an Order Bag. The default
 DBFNTX driver only supports single-Order Bags, while other RDDs may support
 multiple-Order Bags (e.g., the DBFCDX and DBPX drivers).

 ORDSETFOCUS() supersedes INDEXORD().

 Examples

 USE Customer VIA "DBFNTX" NEW
 SET INDEX TO CuAcct, CuName, CuZip
 ? ORDSETFOCUS("CuName") // Displays: "CuAcct"
 ? ORDSETFOCUS() // Displays: "CuName"

 Status

 Started

 All

 Files

 Library is rdd

INDEXEXT()
Returns the file extension of the index module used in an application

 Syntax

 INDEXEXT() --> <cExtension>

 Arguments

 Returns

 <cExtension> Current driver file extension

 Description

 This function returns a string that tells what indexes are to be used or will
 be created in the compiled application.The default value is ".NTX". This is
 controled by the particular database driver that is linked with the application,.

 Examples

 IF INDEXEXT()==".NTX"
 ? "Current driver being used is DBFNTX"
 Endif

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rdd

See Also:

INDEXKEY()
INDEXORD()

INDEXKEY()
Yields the key expression of a specified index file.

 Syntax

 INDEXKEY(<nOrder>) --> <cIndexKey>

 Arguments

 <nOrder> Index order number

 Returns

 <cIndexKey> The index key

 Description

 This function returns a character string stored in the header of the index
 file

 The index key is displayed for an index file that is designated by
 <nOrder>,its position in the USE...INDEX or SET INDEX TO command in the currently
 selected or designated work area.If there is no corresnponding index key at the
 specified order position,a NULL byte will be returned.

 Examples

 USE TESTS NEW INDEX TEST1
 ? INDEXKEY(1)

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rdd

See Also:

INDEXORD()

INDEXORD()
Returns the numeric position of the controlling index.

 Syntax

 INDEXORD() --> <nPosition>

 Arguments

 Returns

 <nPosition> Ordinal position of a controling index

 Description

 The INDEXORD() function returns the numeric position of the current
 controlling index in the selected or designated work area. A returned value of 0
 indicated that no active index is controlling the database,which therefore is in
 the natural order.

 Examples

 USE TESTS NEW INDEX TEST1
 IF INDEXORD()>0
 ? "Current order is ",INDEXORD()
 Endif

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rdd

See Also:

INDEXKEY()

AFIELDS()
Fills referenced arrays with database field information

 Syntax

 AFields(<aNames>[,<aTypes>][,<aLen>][,<aDecs>]) --> <nFields>

 Arguments

 <aNames> Array of field names

 <aTypes> Array of field names

 <aLens> Array of field names

 <aDecs> Array of field names

 Returns

 <nFields> Number od fields in a database or work area

 Description

 This function will fill a series of arrays with field names,field types,field
 lenghts, and number of field decimal positions for the currently selected or
 designed database. Each array parallels the different descriptors of a file's
 structure.The first array will consist of the names of the fields in the current
 work area.All other arrays are optional and will be filled with the corrensponding
 data. This function will return zero if no parameters are specified or if no
 database is avaliable in the current work area.Otherwise, the number of fields or
 the lenght of the shortest array argument, witchever is smaller, will be returned.

 Examples

 FUNCTION Main()
 LOCAL aNames:={},aTypes:={},aLens:={},aDecs:={},nFields:=0

 USE Test

 dbGoTop()
 nFields:=aFields(aNames,aTypes,aLens,aDecs)

 ? "Number of fields", nFields

 RETURN NIL

 Status

 Ready

 Compliance

 AFIELDS() is fully CA-Clipper compliant.

 Files

 Library is rdd

ALIAS()
Returns the alias name of a work area

 Syntax

 Alias([<nWorkArea>]) --> <cWorkArea>

 Arguments

 <nWorkArea> Number of a work area

 Returns

 <cWorkArea> Name of alias

 Description

 This function returns the alias of the work area indicated by <nWorkArea> If
 <nWorkArea> is not provided, the alias of the current work area is returned.

 Examples

 FUNCTION Main()

 USE Test
 select 0
 qOut(IF(Alias()=="","No Name",Alias()))
 Test->(qOut(Alias())
 qOut(Alias(1))

 RETURN NIL

 Status

 Ready

 Compliance

 ALIAS() is fully CA-Clipper compliant.

 Files

 Library is rdd

See Also:

DBF()

BOF()
Test for the beggining-of-file condition

 Syntax

 BOF() --> <lBegin>

 Returns

 BOF() Logical true (.T.) or false (.F.)

 Description

 This function determines if the beggining of the file marker has been
 reached. If so, the function will return a logical true (.T.); otherwise, a
 logical false(.F.) will be returned. By default, BOF() will apply to the currently
 selected database unless the function is preceded by an alias

 Examples

 FUNCTION Main()
 USE Tests NEW
 DBGOTOP()
 ? "Is Eof()",EOF()
 DBGOBOTTOM()
 ? "Is Eof()",EOF()
 USE
 RETURN NIL

 Status

 Ready

 Compliance

 BOF() is fully CA-Clipper compliant.

 Files

 Library is rdd

See Also:

EOF()
FOUND()
LASTREC()

ZAP
Remove all records from the current database file

 Syntax

 ZAP

 Description

 This command removes all of the records from the database in the current work
 area.This operation also updates any index file in use at the time of this
 operation.In addition, this command removes all items within an associated memo
 file. In a network enviroment,any file that is about to be ZAPped must be used
 exclusively.

 Examples

 USE Tests NEW index Tests
 ZAP
 USE

 Status

 Ready

 Compliance

 This command is CA Clipper compliant

See Also:

ARRAY()
PACK
ARRAY()

DELETED()
Tests the record's deletion flag.

 Syntax

 DELETED() --> lDeleted

 Returns

 DELETED() return a logical true (.T.) or false (.F.).

 Description

 This function returns a logical true (.T.) is the current record in the
 selected or designated work area ha ben marked for deletion.If not, the function
 will return a logical false (.F.).

 Examples

 FUNCTION Main()
 USE Test New
 DBGOTO()
 DBDELETE()
 ? "Is Record Deleted",Test->(DELETED())
 DBRECALL()
 USE
 RETURN NIL

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

DBDELETE()

EOF()
Test for end-of-file condition.

 Syntax

 EOF() --> <lEnd>

 Returns

 <lEnd> A logical true (.T.) or false (.F.)

 Description

 This function determines if the end-of-file marker has been reached. If it
 has, the function will return a logical true (.T.); otherwise a logical false
 (.F.) will be returnd

 Examples

 FUNCTION Main()
 USE Tests NEW
 DBGOTOP()
 ? "Is Eof()",EOF()
 DBGOBOTTOM()
 ? "Is Eof()",EOF()
 USE
 RETURN NIL

 Status

 Ready

 Compliance

 EOF() is fully CA-Clipper compliant.

 Files

 Library is rdd

See Also:

BOF()
FOUND()
LASTREC()

FCOUNT()
Counts the number of fields in an active database.

 Syntax

 FCOUNT() --> nFields

 Returns

 <nFields> Return the number of fields

 Description

 This function returns the number of fields in the current or designated work
 area.If no database is open in this work area, the function will return 0.

 Examples

 FUNCTION Main()
 USE Tests NEW
 ? "This database have ",Tests->(FCOUNT()),"Fields"
 USE
 RETURN Nil

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

FIELDNAME()
TYPE()

FIELDGET()
Obtains the value of a specified field

 Syntax

 FIELDGET(<nField>) --> ValueField

 Arguments

 <nField> Is the numeric field position

 Returns

 <ValueField> Any expression

 Description

 This function returns the value of the field at the <nField>th location in
 the selected or designed work area.If the value in <nField> does not correspond to
 n avaliable field position in this work area, the function will return a NIL data
 type.

 Examples

 FUNCTION Main()
 USE Test NEW
 ? Test->(FieldGet(1))
 USE
 RETURN NIL

 Status

 Ready

 Compliance

 This function is CA-Clipper Compliant.

 Files

 Library is rdd

See Also:

FIELDPUT()

FIELDNAME()
Return the name of a field at a numeric field location.

 Syntax

 FIELDNAME/FIELD(<nPosition>) --> cFieldName

 Arguments

 <nPosition> Field order in the database.

 Returns

 <cFieldName> returns the field name.

 Description

 This function return the name of the field at the <nPosition>th position. If
 the numeric value passed to this function does not correspond to an existing field
 in the designated or selected work area,this function will return a NULL byte.

 Examples

 FUNCTION Main()
 LOCAL x
 USE Tests NEW
 FOR x := 1 to Tests->(FCOUNT())
 ? "Field Name",FieldName(x)
 NEXT
 USE
 RETURN Nil

 Status

 Ready

 Compliance

 This function is CA-Clipper compatible.

 Files

 Library is rdd

See Also:

DBSTRUCT()
FCOUNT()
LEN()
VALTYPE()

FIELDPOS()
Return the ordinal position of a field.

 Syntax

 FIELDPOS(<cFieldName>) --> nFieldPos

 Arguments

 <cFieldName> Name of a field.

 Returns

 <nFieldPos> is ordinal position of the field.

 Description

 This function return the ordinal position of the specified field <cField> in
 the current or aliased work areaIf there isn't field under the name of <cField>
 or of no database is open in the selected work area, the func- tion will return a
 0.

 Examples

 FUNCTION Main()
 USE Test NEW
 ? Test->(FIELDPOS("ID"))
 USE
 RETURN NIL

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant.

 Files

 Library is rdd

See Also:

FIELDGET()
FIELDPUT()

FIELDPUT()
Set the value of a field variable

 Syntax

 FIELDPUT(<nField>, <expAssign>) --> ValueAssigned

 Arguments

 <nField> The field numeric position

 <expAssign> Expression to be assigned to the specified field

 Returns

 <ValueAssigned> Any expression

 Description

 This function assings the value in <expAssing> to the <nField>th field in the
 current or designated work area.If the operation is successful,the return value of
 the function will be the same value assigned to the specified field.If the
 operation is not successful, the function will return a NIL data type

 Examples

 USE Tests New
 FIELDPUT(1,"Mr. Jones")
 USE

 Status

 Ready

 Compliance

 This function is CA-Clipper compatible.

 Files

 Library is rdd

See Also:

FIELDGET()

FLOCK()
Locks a file

 Syntax

 FLOCK() --> lSuccess

 Returns

 <lSuccess> A true (.T.) value, if the lock was successful;otherwise false
 (.F.)

 Description

 This function returns a logical true (.T.0 if a file lock is attempted and is
 successfully placed on the current or designated database.This function will also
 unlock all records locks placed by the same network station.

 Examples

 USE Tests New
 IF FLOCK()
 SUM Tests->Ammount
 ENDIF
 USE

 Status

 Ready

 Compliance

 This function is CA-Clipper compatible

 Files

 Library is rdd

See Also:

RLOCK()

FOUND()
Determine the success of a previous search operation.

 Syntax

 FOUND() --> lSuccess

 Arguments

 Returns

 <lSuccess> A logical true (.T.) is successful;otherwise, false (.F.)

 Description

 This function is used to test if the previous SEEK,LOCATE,CONTINUE, or FIND
 operation was successful.Each wrk area has its own FOUND() flag,so that a FOUND()
 condition may be tested in unselected work areas by using an alias.

 Examples

 nId:=100
 USE Tests NEW INDEX Tests
 SEEK nId
 IF FOUND()
 ? Tests->Name
 ENDIF
 USE

 Status

 Ready

 Compliance

 This function is CA-Clipper compatible

 Files

 Library is rdd

See Also:

EOF()

HEADER()
Return the length of a database file header

 Syntax

 HEADER() --> nBytes

 Returns

 <nBytes> The numeric size of a database file header in bytes

 Description

 This function returns the number of bytes in the header of the selected
 database ot the database in the designated work area.

 If used in conjunction with the LASTREC(),RECSIZE() and DISKSPACE()
 functions,this functions is capable of implementing a backup and restore routine.

 Examples

 USE Tests New
 ? Header()

 Status

 Ready

 Compliance

 This function is CA-Clipper compatible

 Files

 Library is rdd

See Also:

DISKSPACE()
LASTREC()
RECSIZE()

LASTREC()
Returns the number of records in an active work area or database.

 Syntax

 LASTREC() | RECCOUNT()* --> nRecords

 Returns

 <nRecords > The number of records

 Description

 This function returns the number of records present in the database in the
 selected or designated work area.If no records are present the value of this
 function will be 0.Additionaly,if no database is in use in the selected or
 designated work area,this function will return a 0 value as well.

 Examples

 USE Tests NEW
 ? LASTREC(), RECCOUNT()

 Status

 Ready

 Compliance

 This function is CA Clipper compatible

 Platforms

 All

 Files

 Library is rdd

See Also:

EOF()

LUPDATE()
Yields the date the database was last updated.

 Syntax

 LUPDATE() --> dModification

 Arguments

 Returns

 <dModification> The date of the last modification.

 Description

 This function returns the date recorded by the OS when the selected or
 designated database was last written to disk.This function will only work for
 those database files in USE.

 Examples

 Function Main

 Use Tests New
 ? Lupdate() // 04/25/2000
 Use
 Return Nil

 Status

 Ready

 Compliance

 This function is CA Clipper compliant

 Platforms

 All

 Files

 Library is rdd

See Also:

FIELDNAME()
LASTREC()
RECSIZE()

NETERR()
Tests the success of a network function

 Syntax

 NETERR([<lNewError>]) --> lError

 Arguments

 <lNewError> Is a logical Expression.

 Returns

 <lError> A value based on the success of a network operation or function.

 Description

 This function return a logical true (.T.) is a USE,APPEND BLANK, or a
 USE...EXCLUSIVE command is issue and fails in a network enviroment. In the case of
 USE and USE...EXCLUSIVE commands,a NETERR() value of .T. would be returned if
 another node of the network has the exclusive use of a file.And the case of the
 APPEND BLANK command, NETERR() will return a logical true (.T.) if the file or
 record is locked by another node or the value of LASTREC() has been advanced The
 value of NETERR() may be changed via the value of <lNewError>. This allow the
 run-time error-handling system to control the way certains errors are handled.

 Examples

 USE TEST NEW Index Test
 If !NetErr()
 Seek Test->Name="HARBOUR"
 If Found()
 ? Test->Name
 Endif
 Endif
 USE

 Status

 Ready

 Compliance

 This function is CA Clipper compliant

 Files

 Library is rdd

See Also:

FLOCK()
RLOCK()

RECCOUNT()
Counts the number of records in a database.

 Syntax

 RECCOUNT()* | LASTREC() --> nRecords

 Arguments

 Returns

 <nRecords> The number of records

 Description

 This function returns the number of records present in the database in the
 selected or designated work area.If no records are present the value of this
 function will be 0.Additionaly,if no database is in use in the selected or
 designated work area,this function will return a 0 value as well.

 Examples

 Use Test NEW
 USE Harbour NEW
 ? Reccount()
 ? Test->(RECCOUNT())
 CLOSE ALL

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Files

 Library is rdd

See Also:

EOF()
LASTREC()
RECNO()
DBGOBOTTOM()

RECNO()
Returns the current record number or identity.

 Syntax

 RECNO() --> Identity

 Arguments

 Returns

 RECNO() The record number or indentity

 Description

 This function returns the position of the record pointer in the currently
 selected ot designated work area. If the database file is empty and if the RDD is
 the traditional .DBF file,the value of this function will be 1.

 Examples

 USE Tests NEW
 DBGOTOP()
 RECNO() // Returns 1
 DBGOTO(50)
 RECNO() // Returns 50

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Files

 Library is rdd

See Also:

DBGOTO()
DBGOTOP()
DBGOBOTTOM()
LASTREC()
EOF()
BOF()

RECSIZE()
Returns the size of a single record in an active database.

 Syntax

 RECSIZE() --> nBytes

 Arguments

 Returns

 <nBytes> The record size.

 Description

 This function returns the number os bytes used by a single record in the
 currently selected or designated database file.If no database is in use in this
 work area,the return value from this function will be 0.

 Examples

 USE Tests NEW
 DBGOTOP()
 RECSIZE() // Returns 1
 DBGOTO(50)
 RECSIZE()

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Files

 Library is rdd

See Also:

DISKSPACE()
FIELDNAME()
HEADER()
LASTREC()

RLOCK()
Lock a record in a work area

 Syntax

 RLOCK() --> lSuccess

 Arguments

 Returns

 RLOCK() True (.T.) if record lock is successful; otherwise, it returns false
 (.F.).

 Description

 This function returns a logical true (.T.) if an attempt to lock a specific
 record in a selected or designated work area is successful. It will yield a false
 (.F.) if either the file or the desired record is currently locked. A record that
 is locked remains locked until another RLOCK() is issued or until an UNLOCK command
 is executed. On a Network enviroment the follow command need that the record is
 locked:

 @...GET

 DELETE (single record)

 RECALL (single record)

 REPLACE (single record)

 Examples

 nId:=10
 USE TestId INDEX TestId NEW
 IF TestId->(DBSEEK(nId))
 IF TestId->(RLOCK())
 DBDELETE()
 ENDIF
 ENDIF
 USE

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Files

 Library is rdd

See Also:

FLOCK()

SELECT()
Returns the work area number for a specified alias.

 Syntax

 SELECT([<cAlias>]) --> nWorkArea

 Arguments

 <cAlias> is the target work area alias name.

 Returns

 SELECT() returns the work area number.

 Description

 This function returns the work area number for the specified alias name
 <cAlias>.If no parameter is specified,the current work area will be the return
 value of the function.

 Examples

 USE TESTS NEW
 USE NAMES NEW
 cOldArea:=SELECT("NAMES")
 select TEST
 LIST
 SELECT cOldArea

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Files

 Library is rdd

See Also:

ALIAS()
USED()

USED()
Checks whether a database is in use in a work area

 Syntax

 USED() --> lDbfOpen

 Arguments

 Returns

 <lDbfOpen> True is a database is Used;otherwise False

 Description

 This function returns a logical true (.T.) if a database file is in USE in
 the current or designated work area. If no alias is specified along with this
 function , it will default to the currently selected work area.

 Examples

 Use TESTS NEW
 USE Names New
 ? USED() // .T.
 ? TESTS->(USED()) //.t.
 CLOSE
 ? USED() // .F.
 Select TESTS
 ? USED() //.T.

 Status

 Ready

 Compliance

 This function is Ca-clipper Compliant

 Files

 Library is rdd

See Also:

ALIAS()
SELECT()

PACK
Remove records marked for deletion from a database

 Syntax

 PACK

 Description

 This command removes records that were marked for deletion from the currently
 selected database.This command does not pack the contents of a memo field;those
 files must be packed via low-level fuctions.

 All open index files will be automatically reindexed once PACK command has
 completed its operation.On completion,the record pointer is placed on the first
 record in the database.

 Examples

 USE Tests NEW index Tests
 DBGOTO(10)
 DELETE NEXT 10
 PACK
 USE

 Status

 Ready

 Compliance

 This command is CA Clipper compliant

See Also:

DBEVAL()
ARRAY()
DELETED()
ZAP
ARRAY()

OVERVIEW
HARBOUR Read me

 Description

 The Harbour project

 **
 * This file contains information on obtaining, installing, and using *
 * Harbour. Please read it *completely* before asking for help. *
 **

 Harbour is a free implementation of an xBase language compiler. It is designed to
 be source code compatible with the CA-Clipper(r) compiler. That means that if
 you've got some code that would compile using CA-Clipper(r) then it should compile
 under Harbour. The Harbour-Project web page is:
 http://www.Harbour-Project.org/

 Status and other information is always available from the web site. There is a
 Harbour mailing list. Harbour is still at a very early stage of development, so
 the mailing list is very much a Developers only list, although every body is
 welcome to join in the discussions.

 We would like you to join the Harbour development team. If you are interested you
 may suscribe to our mailing list and start contributing to this free public
 project.

 Please feel free to report all questions, ideas, suggestions, fixes, code, etc.
 you may need and want. With the help of all of you, the Harbour compiler and
 runtime libraries will become a reality very soon.

 What this distribution contains
 ===============================

 This distribution is a Source code only distribution. It does not contain any
 executable files. Executable versions of Harbour are available from the web site.
 Executable versions of Harbour DO NOT create runable programs. Harbour at the
 moment produces C output code, which must be compiled with the Harbour Virtual
 Machine and the support libraries in order to create a functioning program.
 Please test running Harbour against your Clipper source code and report any
 problems that might occur.

 Very important: The preprocessor functionality is now working.

 Installation

 1. Unzip with Harbour zip file using pkunzip or equivalent.
 E.G. pkunzip -d build72.zip
 This will create Harbour/ directory and all the relevant sub directories.

 2. Compile Harbour using your C compiler. Make files for different platforms are
 included in the <WHERE ARE THEY?> directory.

 --- COPYRIGHT ---

 What copyright information do we have

 --- LICENCE ---

 Information about the License for usage of Harbour is available in the file
 LICENCE.TXT (when we have a license)

 --- DISCLAIMER ---

 Participants of The Harbour Project assume no responsibility for errors or
 omissions in these materials.

 THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

 Participants of The Harbour Project further do not warrant the accuracy or
 completeness of the code, information, text, output or any other items contained
 within these materials. Participants of The Harbour Project shall not be liable for
 any special, direct, indirect, incidental, or consequential damages, including
 without limitation, lost revenues or lost profits, which may result from the use or
 mis-use of these materials.

 The information in The Harbour Project is subject to change without notice and
 does not represent any future commitment by the participants of The Harbour
 Project.

 The Harbour Project

See Also:

License

__SETCENTURY()
Set the Current Century

 Syntax

 __SETCENTURY([<lFlag> | <cOnOff>]) --> lPreviousValue

 Arguments

 setting (4-digit years) .F. or "OFF" to disable the century setting (2-digit
 years)

 Returns

 Files

 Library is rtl

SET()
Changes or evaluated enviromental settings

 Syntax

 Set(<nSet> [, <xNewSetting> [, <xOption>]]) --> xPreviousSetting

 Arguments

 <nSet> Set Number

 <xNewSetting> Any expression to assing a value to the seting

 <xOption> Logical expression

 <nSet> <xNewSetting> <xOption>

 _SET_ALTERNATE <lFlag> | <cOnOff>

 file has been opened or created with _SET_ALTFILE. If disabled, which is the
 default, QOUT() and QQOUT() only write to the screen (and/or to the PRINTFILE).
 Defaults to disabled.

 _SET_ALTFILE <cFileName> <lAdditive>

 <lAdditive> is TRUE and the file already exists, the file is opened and positioned
 at end of file. Otherwise, the file is created. If a file is already opened, it is
 closed before the new file is opened or created (even if it is the same file). The
 default file extension is ".txt". There is no default file name. Call with an empty
 string to close the file.

 _SET_AUTOPEN <lFlag> | <cOnOff>

 _SET_AUTORDER <lFlag> | <cOnOff>

 _SET_AUTOSHARE <lFlag> | <cOnOff>

 _SET_BELL <lFlag> | <cOnOff>

 when a GET validation fails. Disabled by default.

 _SET_CANCEL <lFlag> | <cOnOff>

 program. When disabled, both keystrokes can be read by INKEY(). Note: SET KEY has
 precedence over SET CANCEL.

 _SET_COLOR <cColorSet>

 "<standard>,<enhanced>,<border>,<background>, <unselected>". Each color pair uses
 the format "<foreground>/<background>". The color codes are space or "N" for
 black, "B" for blue, "G" for green, "BG" for Cyan, "R" for red, "RB" for magenta,
 "GR" for brown, "W" for white, "N+" for gray, "B+" for bright blue, "G+" for
 bright green, "BG+" for bright cyan, "R+" for bright red, "RB+" for bright magenta,
 "GR+" for yellow, and "W+" for bright white. Special codes are "I" for inverse
 video, "U" for underline on a monochrome monitor (blue on a color monitor), and
 "X" for blank. The default color is "W/N,N/W,N,N,N/W".

 _SET_CONFIRM <lFlag> | <cOnOff>

 default, typing past the end will leave a GET.

 _SET_CONSOLE <lFlag> | <cOnOff>

 disabled, screen output is suppressed (Note: This setting does not affect OUTSTD()
 or OUTERR()).

 _SET_CURSOR <nCursorType>

 the screen cursor is hidden.

 _SET_DATEFORMAT <cDateFormat>

 to American ("mm/dd/yy"). Other formats include ANSI ("yy.mm.dd"), British

 ("dd/mm/yy"), French ("dd/mm/yy"), German ("dd.mm.yy"), Italian ("dd-mm-yy"),
 Japan ("yy/mm/dd"), and USA ("mm-dd-yy"). SET CENTURY modifies the date format. SET
 CENTURY ON replaces the "y"s with "YYYY". SET CENTURY OFF replaces the "y"s with
 "YY".

 _SET_DEBUG <lStatus>

 the default, Alt+D can be read by INKEY(). (Also affected by AltD(1) and AltD(0))

 _SET_DECIMALS <nNumberOfDecimals>

 when SET FIXED is ON. Defaults to 2. If SET FIXED is OFF, then SET DECIMALS is
 only used to determine the number of decimal digits to use after using EXP(),
 LOG(), SQRT(), or division. Other math operations may adjust the number of decimal
 digits that the result will display. Note: This never affects the precision of a
 number. Only the display format is affected.

 _SET_DEFAULT <cDefaultDirectory>

 to current directory (blank).

 _SET_DELETED <lFlag> | <cOnOff>

 deleted records will be ignored.

 _SET_DELIMCHARS <cDelimiters>

 _SET_DELIMITERS <lFlag> | <cOnOff>

 delimiters are used.

 _SET_DEVICE <cDeviceName>

 to the printer device or file set by _SET_PRINTFILE. When set to anything else,
 all output is sent to the screen. Defaults to "SCREEN".

 _SET_EPOCH <nYear>

 2-digit year is greater than or equal to the year part of the epoch, the century
 part of the epoch is added to the year. When a 2-digit year is less than the year
 part of the epoch, the century part of the epoch is incremented and added to the
 year. The default epoch is 1900, which converts all 2-digit years to 19xx.
 Example: If the epoch is set to 1950, 2-digit years in the range from 50 to 99 get
 converted to 19xx and 2-digit years in the range 00 to 49 get converted to 20xx.

 _SET_ESCAPE <lFlag> | <cOnOff> *

 pressing Esc during a READ is ignored, unless the Esc key has been assigned to a
 function using SET KEY.

 _SET_EVENTMASK <nEventCodes>

 events. INKEY_LDOWN allows the left mouse button down click. INKEY_LUP allows the
 left mouse button up click. INKEY_RDOWN allows the right mouse button down click.
 INKEY_RUP allows the right mouse button up clock. INKEY_KEYBOARD allows keyboard
 keystrokes. INKEY_ALL allows all of the preceding events. Events may be combined
 (e.g., using INKEY_LDOWN + INKEY_RUP will allow left mouse button down clicks and
 right mouse button up clicks). The default is INKEY_KEYBOARD.

 _SET_EXACT <lFlag> | <cOnOff>

 checking for equality. When disabled, which is the default, all string
 comparisons other than "==" treat two strings as equal if the right hand string is
 "" or if the right hand string is shorter than or the same length as the left hand
 string and all of the characters in the right hand string match the corresponding
 characters in the left hand string.

 _SET_EXCLUSIVE <lFlag> | <cOnOff>

 mode. When disabled, all database files are opened in shared mode. Note: The
 EXCLUSIVE and SHARED clauses of the USE command can be used to override this
 setting.

 _SET_EXIT <lFlag> | <cOnOff>

 enables them as exit keys, and false (.F.) disables them. Used internally by the
 ReadExit() function.

 _SET_EXTRA <lFlag> | <cOnOff>

 _SET_EXTRAFILE <cFileName> <lAdditive>

 <lAdditive> is TRUE and the file already exists, the file is opened and positioned
 at end of file. Otherwise, the file is created. If a file is already opened, it is
 closed before the new file is opened or created (even if it is the same file). The
 default file extension is ".prn". There is no default file name. Call with an empty
 string to close the file.

 _SET_FIXED <lFlag> | <cOnOff>

 decimal digits set by SET DECIMALS, unless a PICTURE clause is used. When
 disabled, which is the default, the number of decimal digits that are displayed
 depends upon a variety of factors. See _SET_DECIMALS for more.

 _SET_INSERT <lFlag> | <cOnOff>

 which is the default, characters typed in a GET or MEMOEDIT overwrite. Note: This
 setting can also be toggled between on and off by pressing the Insert key during a
 GET or MEMOEDIT.

 _SET_INTENSITY <lFlag> | <cOnOff>

 enhanced color setting. When disabled, GETs and PROMPTs are displayed using the
 standard color setting.

 _SET_LANGUAGE <cLanguageID>

 _SET_MARGIN <nColumns>

 reflects the printer's column position including the margin (e.g., SET MARGIN TO 5
 followed by DEVPOS(5, 10) makes PCOL() return 15).

 _SET_MBLOCKSIZE <nMemoBlockSize>

 _SET_MCENTER <lFlag> | <cOnOff>

 default, display PROMPTS at column position 0 on the MESSAGE row.

 _SET_MESSAGE <nRow>

 PROMPTs are displayed on the set row. Note: It is not possible to display prompts
 on the top-most screen row, because row 0 is reserved for the SCOREBOARD, if
 enabled.

 _SET_MFILEEXT <cMemoFileExt>

 _SET_OPTIMIZE <lFlag> | <cOnOff>

 _SET_PATH <cDirectories>

 located in the DEFAULT directory. Defaults to no path (""). Directories must be
 separated by a semicolon (e.g., "C:\DATA;C:\MORE").

 _SET_PRINTER <lFlag> | <cOnOff>

 file has been opened or created with _SET_ALTFILE. If disabled, which is the
 default, QOUT() and QQOUT() only write to the screen (and/or to the ALTFILE).

 _SET_PRINTFILE <cFileName> <lAdditive>

 <lAdditive> is TRUE and the file already exists, the file is opened and positioned
 at end of file. Otherwise, the file is created. If a file is already opened, it is
 closed before the new file is opened or created (even if it is the same file). The
 default file extension is ".prn". The default file name is "PRN", which maps to the
 default printer device. Call with an empty string to close the file.

 _SET_SCOREBOARD <lFlag> | <cOnOff>

 screen row 0. When disabled, READ and MEMOEDIT status messages are suppressed.

 _SET_SCROLLBREAK <lFlag> | <cOnOff>

 _SET_SOFTSEEK <lFlag> | <cOnOff>

 that is higher than the sought after key or to LASTREC() + 1 if there is no higher
 key. When disabled, which is the default, a SEEK that fails will position the
 record pointer to LASTREC()+1.

 _SET_STRICTREAD <lFlag> | <cOnOff>

 _SET_TYPEAHEAD <nKeyStrokes>

 and the maximum is 4096.

 _SET_UNIQUE <lFlag> | <cOnOff>

 indexes are allowed duplicate keys.

 _SET_VIDEOMODE <nValue>

 _SET_WRAP <lFlag> | <cOnOff>

 and from the first position to the last. When disabled, which is the default,
 there is a hard stop at the first and last positions.

 Returns

 SET() The current or previous setting

 Files

 Library is rtl

__SetFunction()
Assign a character string to a function key

 Syntax

 __SetFunction(<nFunctionKey>, [<cString>]) --> NIL

 Arguments

 <nFunctionKey> is a number in the range 1..40 that represent the function
 key to be assigned.

 <cString> is a character string to set. If is not specified, the function
 key is going to be set to NIL releasing by that any previous __SetFunction() or
 SETKEY() for that function.

 Returns

 __SetFunction() always return NIL.

 Description

 __SetFunction() assign a character string with a function key, when this
 function key is pressed, the keyboard is stuffed with this character string.
 __SetFunction() has the effect of clearing any SETKEY() previously set to the same
 function number and vice versa.

 Key to be setnFunctionKey

F1 .. F121 .. 12

Shift-F3 .. Shift-F1013 .. 20

Ctrl-F1 .. Ctrl-F1021 .. 30

Alt-F1 .. Alt-F1031 .. 40

 SET FUNCTION command is preprocessed into __SetFunction() function during
 compile time.

 Examples

 // Set F1 with a string
 CLS
 __SetFunction(1, "I Am Lazy" + CHR(13))
 cTest := SPACE(20)
 @ 10, 0 SAY "type something or F1 for lazy mode " GET cTest
 READ
 ? cTest

 Status

 Ready

 Compliance

 Harbour use 11 and 12 to represent F11 and F12, while CA-Clipper use 11 and
 12 to represent Shift-F1 and Shift-F2.

 Platforms

 All

 Files

 Library is rtl

See Also:

INKEY()
SETKEY()
__KEYBOARD()

SET KEY

SET FUNCTION
Assign a character string to a function key

 Syntax

 SET FUNCTION <nFunctionKey> TO [<cString>]

 Arguments

 <nFunctionKey> is a number in the range 1..40 that represent the function
 key to be assigned.

 <cString> is a character string to set. If is not specified, the function
 key is going to be set to NIL releasing by that any previous Set Function or
 SETKEY() for that function.

 Description

 Set Function assign a character string with a function key, when this
 function key is pressed, the keyboard is stuffed with this character string. Set
 Function has the effect of clearing any SETKEY() previously set to the same
 function number and vice versa.

 Key to be setnFunctionKey

F1 .. F121 .. 12

Shift-F3 .. Shift-F1013 .. 20

Ctrl-F1 .. Ctrl-F1021 .. 30

Alt-F1 .. Alt-F1031 .. 40

 SET FUNCTION command is preprocessed into __SetFunction() function during
 compile time.

 Examples

 // Set F1 with a string
 CLS
 Set Function 1 to "I Am Lazy" + CHR(13)
 cTest := SPACE(20)
 @ 10, 0 SAY "type something or F1 for lazy mode " GET cTest
 READ
 ? cTest

 Status

 Ready

 Compliance

 Harbour use 11 and 12 to represent F11 and F12, while CA-Clipper use 11 and
 12 to represent Shift-F1 and Shift-F2.

 Platforms

 All

See Also:

INKEY()
SETKEY()
__KEYBOARD()

SETKEY()
Assign an action block to a key

 Syntax

 SETKEY(<anKey> [, <bAction> [, <bCondition>]])

 Arguments

 <anKey> is either a numeric key value, or an array of such values

 <bAction> is an optional code-block to be assigned

 <bCondition> is an optional condition code-block

 Returns

 Description

 The SetKey() function returns the current code-block assigned to a key when
 called with only the key value. If the action block (and optionally the condition
 block) are passed, the current block is returned, and the new code block and
 condition block are stored. A group of keys may be assigned the same code
 block/condition block by using an array of key values in place on the first
 parameter.

 Examples

 local bOldF10 := setKey(K_F10, {|| Yahoo() })
 ... // some other processing
 SetKey(K_F10, bOldF10)
 ... // some other processing
 bBlock := SetKey(K_SPACE)
 if bBlock != NIL ...

 // make F10 exit current get, but only if in a get - ignores other
 // wait-states such as menus, achoices, etc...
 SetKey(K_F10, {|| GetActive():State := GE_WRITE },;
 {|| GetActive() != NIL })

 Tests

 None definable

 Status

 Ready

 Compliance

 SETKEY() is mostly CA-Clipper compliant. The only difference is the addition
 of the condition code-block parameter, allowing set-keys to be conditionally
 turned off or on. This condition-block cannot be returned once set - see
 SetKeyGet()

 Files

 Library is rtl

See Also:

HB_SETKEYSAVE()

HB_SetKeyGet()
Determine a set-key code block & condition-block

 Syntax

 HB_SETKEYGET(<nKey> [, <bConditionByRef>])

 Arguments

 <anKey> is an numeric key value

 <bConditionByRef> is an optional return-parameter

 Returns

 Description

 The HB_SetKeyGet() function returns the current code-block assigned to a key,
 and optionally assignes the condition-block to the return-parameter

 Examples

 local bOldF10, bOldF10Cond
 bOldF10 := HB_SetKeyGet(K_F10, @bOldF10Cond)
 ... // some other processing
 SetKey(K_F10, bOldF10, bOldF10Cond)

 Tests

 See test code above

 Status

 Ready

 Compliance

 HB_SETKEYGET() is a new function and hence not CA-Clipper compliant.

 Files

 Library is rtl

See Also:

SETKEY()
HB_SETKEYSAVE()
HB_SetKeyCheck()

HB_SETKEYSAVE()
Returns a copy of internal set-key list, optionally overwriting

 Syntax

 HB_SETKEYSAVE([<OldKeys>])

 Arguments

 <OldKeys> is an optional set-key list from a previous call to
 HB_SetKeySave(), or NIL to clear current set-key list

 Returns

 Description

 HB_SetKeySave() is designed to act like the set() function which returns the
 current state of an environment setting, and optionally assigning a new value. In
 this case, the "environment setting" is the internal set-key list, and the optional
 new value is either a value returned from a previous call to SetKeySave() - to
 restore that list, or the value of NIL to clear the current list.

 Examples

 local aKeys := HB_SetKeySave(NIL) // removes all current set=keys
 ... // some other processing
 HB_SetKeySave(aKeys)

 Tests

 None definable

 Status

 Ready

 Compliance

 HB_SETKEYSAVE() is new.

 Files

 Library is rtl

See Also:

SETKEY()

HB_SetKeyCheck()
Impliments common hot-key activation code

 Syntax

 HB_SetKeyCheck(<nKey> [, <p1>][, <p2>][, <p3>])

 Arguments

 <nKey> is a numeric key value to be tested code-block, if executed

 <p1>..<p3> are optional parameters that will be passed to the code-block

 Returns

 False If there is a hot-key association (before checking any condition): - if
 there is a condition-block, it is passed one parameter - <nKey> - when the hot-key
 code-block is called, it is passed 1 to 4 parameters, depending on the parameters
 passed to HB_SetKeyCheck(). Any parameters so passed are directly passed to the
 code-block, with an additional parameter being <nKey>

 Description

 HB_SetKeyCheck() is intended as a common interface to the SetKey()
 functionality for such functions as ACHOICE(), DBEDIT(), MEMOEDIT(), ACCEPT,
 INPUT, READ, and WAIT

 Examples

 // within ReadModal()
 if HB_SetKeyCheck(K_ALT_X, GetActive())
 ... // some other processing
 endif
 // within TBrowse handler
 case HB_SetKeyCheck(nInkey, oTBrowse)
 return
 case nInKey == K_ESC
 ... // some other processing

 Tests

 None definable

 Status

 Ready

 Compliance

 HB_SETKEYCHECK() is new.

 Files

 Library is rtl

See Also:

SETKEY()
HB_SETKEYSAVE()

SET KEY
Assign an action block to a key

 Syntax

 SET KEY <anKey> to p<bAction>] [when <bCondition>])

 Arguments

 <anKey> is either a numeric key value, or an array of such values

 <bAction> is an optional code-block to be assigned

 <bCondition> is an optional condition code-block

 Description

 The Set Key Command function is translated to the SetKey() function witch
 returns the current code-block assigned to a key when called with only the key
 value. If the action block (and optionally the condition block) are passed, the
 current block is returned, and the new code block and condition block are stored.
 A group of keys may be assigned the same code block/condition block by using an
 array of key values in place on the first parameter.

 Examples

 local bOldF10 := setKey(K_F10, {|| Yahoo() })
 ... // some other processing
 Set Key K_F10 to bOldF10)
 ... // some other processing
 bBlock := SetKey(K_SPACE)
 if bBlock != NIL ...

 // make F10 exit current get, but only if in a get - ignores other
 // wait-states such as menus, achoices, etc...
 SetKey(K_F10, {|| GetActive():State := GE_WRITE },;
 {|| GetActive() != NIL })

 Tests

 None definable

 Status

 Ready

 Compliance

 SET KEY is mostly CA-Clipper compliant. The only difference is the addition
 of the condition code-block parameter, allowing set-keys to be conditionally
 turned off or on. This condition-block cannot be returned once set - see
 SetKeyGet()

See Also:

HB_SETKEYSAVE()

SETTYPEAHEAD()
Sets the typeahead buffer to given size.

 Syntax

 SETTYPEAHEAD(<nSize>) --> <nPreviousSize>

 Arguments

 <nSize> is a valid typeahead size.

 Returns

 <nPreviousSize> The previous state of _SET_TYPEAHEAD

 Description

 This function sets the typeahead buffer to a valid given size as is Set(
 _SET_TYPEAHEAD) where used.

 Examples

 // Sets typeahead to 12
 SetTypeahead(12)

 Status

 Ready

 Compliance

 SETTYPEAHEAD() is fully CA-Clipper compliant.

 Files

 Library is rtl

See Also:

ARRAY()
__INPUT()

__XHELP()
Looks if a Help() user defined function exist.

 Syntax

 __XHELP() --> <xValue>

 Arguments

 Returns

 Description

 This is an internal undocumented Clipper function, which will try to call the
 user defined function HELP() if it's defined in the current application. This is
 the default SetKey() handler for the F1 key.

 Status

 Ready

 Compliance

 __XHELP() is fully CA-Clipper compliant.

 Files

 Library is rtl

SET DEFAULT
Establishes the Harbour search drive and directory.

 Syntax

 SET DEFAULT TO [<cPath>]

 Arguments

 <cPath> Drive and/or path.

 Description

 This command changes the drive and directory used for reading and writting
 database,index,memory, and alternate files.Specifying no parameters with this
 command will default the operation to the current logged drive and directory.

 Examples

 SET DEFAULT to c:\TEMP

 Status

 Ready

 Compliance

 This command is Ca-Clipper Compliant.

See Also:

SET PATH
CURDIR()
SET()

SET WRAP
Toggle wrapping the PROMPTs in a menu.

 Syntax

 SET WRAP on | OFF | (<lWrap>

 Arguments

 <lWrap> Logical expression for toggle

 Description

 This command toggles the highlighted bars in a @...PROMPT command to wrap
 around in a bottom-to-top and top-to-bottom manner.If the value of the logical
 expression <lWrap> is a logical false (.F.), the wrapping mode is set
 OFF;otherwise,it is set ON.

 Examples

 See Tests/menutest.prg

 Status

 Ready

 Compliance

 This command is Ca-Clipper Compliant.

See Also:

@...PROMPT
MENU TO

SET MESSAGE
Extablishes a message row for @...PROMPT command

 Syntax

 SET MESSAGE TO [<nRow> [CENTER]]

 Arguments

 <nRow> Row number to display the message

 Description

 This command is designed to work in conjuntion with the MENU TO and
 @...PROMPT commands.With this command, a row number between 0 and MAXROW() may be
 specified in <nRow>.This establishes the row on witch any message associated with
 an @...PROMPT command will apear.

 If the value of <nRow> is 0,all messages will be supressed. All messaged will
 be left-justifies unless the CENTER clause is used.In this case,the individual
 messages in each @...PROMPT command will be centered at the designated row (unless
 <nRow> is 0).All messages are independent;therefor,the screen area is cleared out
 by the centered message will vary based on the length of each individual message.

 Specifying no parameters with this command set the row value to 0, witch
 suppresses all messages output. The British spelling of CENTRE is also supported.

 Examples

 See Tests/menutest.prg

 Status

 Ready

 Compliance

 This command is Ca-Clipper Compliant.

See Also:

SET()
SET WRAP
@...PROMPT
MENU TO

SET PATH
Specifies a search path for opening files

 Syntax

 SET PATH TO [<cPath>]

 Arguments

 <cPath> Search path for files

 Description

 This command specifies the search path for files required by most commands
 and functions not found in the current drive and directory. This pertains
 primarily,but not exclusively, to databases,indexes, and memo files,as well as to
 memory,labels,and reports files. The search hirarchy is: 1 Current drive and
 directory,2 The SET DEFAULT path;3 The SET PATH path.

 Examples

 SET PATH TO c:\Harbour\Test

 Status

 Ready

 Compliance

 This command is Ca-Clipper Compliant.

See Also:

SET DEFAULT
CURDIR()
SET()

SET INTENSITY
Toggles the enhaced display of PROMPT's and GETs.

 Syntax

 SET INTENSITY ON | off | (<lInte>)

 Arguments

 <lInte> Logical expression for toggle command

 Description

 This command set the field input color and @...PROMPT menu color to either
 highlighted (inverse video) or normal color. The default condition is ON
 (highlighted).

 Examples

 SET INTENSITY ON

 Status

 Ready

 Compliance

 This command is Ca-Clipper Compliant.

See Also:

@...Get
@...PROMPT
@...SAY
SET()

SET ALTERNATE
Toggle and echos output to an alternate file

 Syntax

 SET ALTERNATE to <cFile> [ADDITIVE]
 SET ALTERNATE on | OFF | (<lAlter>)

 Arguments

 <cFile> Name of alternate file.

 <lAlter> Logical expression for toggle

 Description

 This command toggles and output console information to the alternate file
 <cFile>,provided that the command is toggled on or the condition <lAlter> is set
 to a logical true (.T.). If <cFile> does not has a file extension, .TXT will be
 assumed.The file name may optionally have a drive letter and/or directory path.If
 none is speficied, the current drive and directory will be used. If the ALTERNATE
 file is created but no ALTERNATE ON command is issued,nothing will be echoed to the
 file. If ADDITIVE clause is used,then the information will be appended to the
 existing alternate file.Otherwise,a new file will be created with the specified
 name (or an existing one will be overwritten) and the information will be appended
 to the file.The default is to create a new file. A SET ALTERNATE TO command will
 close the alternate file

 Examples

 SET ALTERNATE TO test.txt
 SET ALTERNATE ON
 ? 'Harbour'
 ? "is"
 ? "Power"
 SET ALTERNATE TO
 SET ALTERNATE OFF

 Status

 Ready

 Compliance

 This command is Ca-Clipper Compliant.

See Also:

ARRAY()
SET PRINTER
SET CONSOLE
SET()

SET CENTURY
Toggle the century digits in all dates display

 Syntax

 SET CENTURY on | OFF | (<lCent>)

 Arguments

 <lCent> Logical expression for toggle

 Description

 This command allows the input and display of dates with the century prefix.It
 will be in the standart MM/DD/YYYY format unless specified by the SET DATE command
 or SET() function.If <lCent> is a logical true (.T.),the command will be set
 on;otherwise, the command will be set off

 Examples

 SET CENTURY ON
 ? DATE()
 SET CENTURY OFF

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant

See Also:

SET DATE
SET EPOCH
CTOD()
DATE()
DTOC()
SET()

SET DATE
Assings a date format or chooses a predefined date data set.

 Syntax

 SET DATE FORMAT [TO] <cFormat>
 SET DATE [TO] [ANSI / BRITISH / FRENCH / GERMAN / ITALIAN / JAPAN
 / USA / AMERICAN]

 Arguments

 <cFormat> Keyword for date format

 Description

 This command sets the date format for function display purposes. If
 specified,<cFormat> may be a customized date format in which the letters d,m and y
 may be used to desing a date format.The default is an AMERICAN date
 format;specifying no parameters will set the date format to AMERICAN.Below is a
 table of the varius predefined dates formats.

 Date FormatSyntax

yy.mm.ddANSI

dd/mm/yyBRITISH

dd/mm/yyFRENCH

dd.mm.yyGERMAN

dd-mm-yyITALIAN

yy.mm.ddJAPAN

mm-dd-yyUSA

mm/dd/yyAMERICAN

 Examples

 SET DATE JAPAN
 ? DATE()
 SET DATE GERMAN
 ? Date()

 Tests

 See tests/dates.prg

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant

See Also:

SET DATE
SET EPOCH
CTOD()
DATE()
DTOC()
SET()

SET EPOCH
Specifie a base year for interpreting dates

 Syntax

 SET EPOCH TO <nEpoch>

 Arguments

 <nEpoch> Base Century.

 Description

 This command sets the base year value for dates that have only two digits.The
 default setting is 1900.Dates between 01/01/0100 and 12/31/2999 are fully
 supported.

 Examples

 SET EPOCH TO 2000

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant

See Also:

SET DATE
SET CENTURY
CTOD()
DATE()
DTOC()
SET()

SET FIXED
Set the number of decimal position to be displayed

 Syntax

 SET FIXED on | OFF | (<lFixed>)

 Arguments

 <lFixed> Logical expression for toggle

 Description

 This command activates a system wide fixed placement of decimals places shown
 for all numeric outputs.If the value of <lFixed> is a logical true (.T.),FIXED
 will be turned ON;otherwise it will be turned OFF.

 When SET DECIMALS OFF is used, the follow rules aply to the number of decimal
 placed displayed.

 Same as operand with the greatest number of decimal digitsAddition

Same as operand with the greatest number of decimal digitsSubraction

Sum of operand decimal digitsMultiplication

Determined by SET DECIMAL TODivision

Determined by SET DECIMAL TOExponential

Determined by SET DECIMAL TOLOG()

Determined by SET DECIMAL TOEXP()

Determined by SET DECIMAL TOSQRT()

Determined by SET DECIMAL TOVAL()

 Examples

 SET FIXED ON
 ? 25141251/362
 SET FIXED OFF

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant

See Also:

SET DECIMALS
EXP()
LOG()
SQRT()
VAL()
SET()

SET PRINTER
Toggles the printer and controls the printer device

 Syntax

 SET PRINTER on | OFF
 SET PRINTER (<lPrinter>)
 SET PRINTER TO [<cPrinter>] [ADDITIVE]

 Arguments

 <lFixed> Logical condition by which to toggle the printer <cPrinter> A
 device name or an alternate name

 Description

 This command can direct all output that is not controled by the @...SAY
 command and the DEVPOS() and DEVOUT() functions to the printer.If specified,the
 condition <lPrinter> toggles the printer ON if a logical true (.T.) and OFF if a
 logical false (.F.).If no argument is specified in the command, the alternate file
 (if one is open) is closed, or the device is reselected and the PRINTER option is
 turned OFF.

 If a device is specified in <cPrinter>, the outpur will be directed to that
 device instead of to the PRINTER.A specified device may be a literal string or a
 variable, as long as the variable is enclosed in parentheses.For a network,do not
 use a trailing colon when redirecting to a device.

 If an alternate file is specified,<cPrinter> becomes the name of a file that
 will contain the output.If no file extension is specified an extension of.PRN will
 be defaulted to.

 If the ADDITIVE clause is specified,the information will be appended to the
 end of the specified output file.Otherwise, a new file will be created with the
 specified name (or an existing file will first be cleared) and the information will
 then be appended to the file. The default is to create a new file.

 Examples

 SET PRINTER ON
 SET PRINTER TO LPT1
 ? 25141251/362
 SET PRINTER .F.

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant

See Also:

SET DEVICE
SET CONSOLE
ARRAY()
SET()

SET CONSOLE
Toggle the console display

 Syntax

 SET CONSOLE ON | off | (<lConsole>)

 Arguments

 <lConsole> Logical expression for toggle command

 Description

 This command turns the screen display either off or on for all screens
 display other then direct output via the @...SAY commands or the <-> DEVOUT()
 function.

 If <lConsole > is a logical true (.T.),the console will be turned
 ON;otherwise, the console will be turned off.

 Examples

 SET console on
 ? DATE()
 SET console off
 ? date()

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant

See Also:

SET DEVICE
SET()

SET DECIMALS
Toggle the console display

 Syntax

 SET DECIMALS TO [<nDecimal>]

 Arguments

 <nDecimal> Number of decimals places

 Description

 This command establishes the number of decimal places that Harbour will
 display in mathematical calculations,functions,memory variables, and
 fields.Issuing no parameter with this command will the default number of decimals
 to 0.For decimals to be seen,the SET FIXED ON command must be activated.

 Examples

 SET FIXED ON
 ? 25141251/362
 SET DECIMALS TO 10
 ? 214514.214/6325

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant

See Also:

SET FIXED
SET()

SET DEVICE
Directs all @...SAY output to a device.

 Syntax

 SET DEVICE TO [printer | SCREEN]

 Arguments

 Description

 This command determines whether the output from the @...SAY command and the
 DEVPOS() and DEVOUT() function will be displayed on the printer.

 When the device is set to the PRINTER,the SET MARGIN value adjusts the
 position of the column values accordingly.Also,an automatic page eject will be
 issued when the current printhead position is less than the last printed
 row.Finally,if used in conjunction with the @...GET commands,the values for the
 GETs will all be ignored.

 Examples

 SET DEVICE TO SCRENN
 ? 25141251/362
 SET DEVICE TO PRINTER
 SET PRINTER TO LPT1
 ? 214514.214/6325
 SET PRINTER OFF
 SET DEVICE TO SCREEN

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant

See Also:

@...SAY
SET PRINTER
ARRAY()
SET()

SET BELL
Toggle the bell to sound once a GET has been completed.

 Syntax

 SET BELL on | OFF | (<lBell>)

 Arguments

 <lBell> Logical expression for toggle command

 Description

 This command toggles the bell to sound whenever a character is entered into
 the last character positionof a GET,of if an invalid data type is entered into a
 GET.

 If <lBell > is a logical true (.T.),the bell will be turned ON;otherwise, the
 belle will be turned off.

 Examples

 SET BEEL ON
 cDummy:=space(20)
 ? 3,2 get cDummy
 Read
 SET bell off

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant

See Also:

SET()

ISALPHA()
Checks if leftmost character in a string is an alphabetic character

 Syntax

 ISALPHA(<cString>) --> lAlpha

 Arguments

 <cString> Any character string

 Returns

 Description

 This function return a logical true (.T.) if the first character in <cString>
 is an alphabetic character.If not, the function will return a logical false (.F.).

 Examples

 QOUT("isalpha('hello') = ", isalpha('hello'))
 QOUT("isalpha('12345') = ", isalpha('12345'))

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

ISDIGIT()
ISLOWER()
ISUPPER()
LOWER()
UPPER()

ISDIGIT()
Checks if leftmost character is a digit character

 Syntax

 ISDIGIT(<cString>) --> lDigit

 Arguments

 <cString> Any character string

 Returns

 Description

 This function takes the caracter string <cString> and checks to see if the
 leftmost character is a digit,from 1 to 9.If so, the function will return a
 logical true (.T.);otherwise, it will return a logical false (.F.).

 Examples

 QOUT("isdigit('12345') = ", isdigit('12345'))
 QOUT("isdigit('abcde') = ", isdigit('abcde'))

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

ISALPHA()
ISLOWER()
ISUPPER()
LOWER()
UPPER()

ISUPPER()
Checks if leftmost character is an uppercased letter.

 Syntax

 ISUPPER(<cString>) --> lUpper

 Arguments

 <cString> Any character string

 Returns

 Description

 This function takes the caracter string <cString> and checks to see if the
 leftmost character is a uppercased letter.If so, the function will return a
 logical true (.T.);otherwise, it will return a logical false (.F.).

 Examples

 QOUT("isupper('Abcde') = ", isupper('Abcde'))
 QOUT("isupper('abcde') = ", isupper('abcde'))

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

ISALPHA()
ISLOWER()
ISDIGIT()
LOWER()
UPPER()

ISLOWER()
Checks if leftmost character is an lowercased letter.

 Syntax

 ISLOWER(<cString>) --> lLower

 Arguments

 <cString> Any character string

 Returns

 Description

 This function takes the caracter string <cString> and checks to see if the
 leftmost character is a lowercased letter.If so, the function will return a
 logical true (.T.);otherwise, it will return a logical false (.F.).

 Examples

 QOUT("islower('Abcde') = ", islower('Abcde'))
 QOUT("islower('abcde') = ", islower('abcde'))

 Status

 Ready

 Compliance

 This function is CA-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

ISALPHA()
ISDIGIT()
ISUPPER()
LOWER()
UPPER()

LTRIM()
Removes leading spaces from a string

 Syntax

 LTRIM(<cString>) --> <cReturn>

 Arguments

 <cString> Character expression with leading spaces

 Returns

 <cReturn> The same character expression with leading spaces removed

 Description

 This function trims the leading space blank

 Examples

 ? QOUT(LTRIM("HELLO "))

 Status

 Ready

 Compliance

 This functions is CA-CLIPPER compatible

 Platforms

 All

 Files

 Library is rtl

See Also:

TRIM()
RTRIM()
ALLTRIM()

AT()
Locates the position of a substring in a main string.

 Syntax

 AT(<cSearch>,<cString>) --> nPos

 Arguments

 <cSearch> Substring to search for

 <cString> Main string

 Returns

 AT() return the starting position of the first occurrence of the substring
 in the main string

 Description

 This function searches the string <cString> for the characters in the first
 string <cSearch>. If the substring is not contained within the second
 expression,the function will return 0.

 Examples

 QOUT("at('cde', 'abcdefgfedcba') = '" +;
 at('cde', 'abcsefgfedcba') + "'")

 Status

 Ready

 Compliance

 This function is CA-Clipper compatible.

 Platforms

 All

 Files

 Library is rtl

See Also:

RAT()

RAT()
Searches for a substring from the right side of a string.

 Syntax

 RAT(<cSearch>,<cString>) --> nPos

 Arguments

 <cSearch> Substring to search for

 <cString> Main string

 Returns

 RAT() return the location of beginnig position.

 Description

 This function searches througt <cString> for the first existence of
 <cSearch>.The search operation is performed from the right side of <cString> to
 the left. If the function is unable to find any occurence of <cSearch> in
 <cString>,the value of the function will be 0.

 Examples

 QOUT("rat('cde', 'abcdefgfedcba') = '" +;
 rat('cde', 'abcsefgfedcba') + "'")

 Status

 Ready

 Compliance

 Will not work with a search string > 64 KB on some platforms

 Platforms

 All

 Files

 Library is rtl

See Also:

AT()
SUBSTR()
RIGHT()

LEFT()
Extract the leftmost substring of a character expression

 Syntax

 LEFT(<cString>,<nPos>) --> <cReturn>

 Arguments

 <cString> Main character to be parsed

 <nPos> Number of bytes to return beggining at the leftmost position

 Returns

 <cReturn> Substring of evaluation

 Description

 This functions returns the leftmost <nPos> characters of <cString>. It is
 equivalent to the following programing expression: SUBSTR(<cString>,1,<nPos>

 Examples

 ? QOUT(LEFT('HELLO HARBOUR',5))

 Status

 Ready

 Compliance

 This functions is CA CLIPPER compatible

 Platforms

 All

 Files

 Library is rtl

See Also:

SUBSTR()
RIGHT()
AT()
RAT()

RIGHT()
Extract the rightmost substring of a character expression

 Syntax

 SUBSTR(<cString>,<nPos>) --> <cReturn>

 Arguments

 <cString> Character expression to be parsed

 <nPos> Number of bytes to return beggining at the rightmost position

 Returns

 <cReturn> Substring of evaluation

 Description

 This functions returns the rightmost <nPos> characters of <cString>.

 Examples

 ? QOUT(RIGHT('HELLO HARBOUR',5))

 Status

 Ready

 Compliance

 This functions is CA CLIPPER compatible

 Platforms

 All

 Files

 Library is rtl

See Also:

SUBSTR()
LEFT()
AT()
RAT()

SUBSTR()
Returns a substring from a main string

 Syntax

 SUBSTR(<cString>,<nStart>[,<nLen>)] --> <cReturn>

 Arguments

 <cString> Character expression to be parsed

 <nStart> Start position

 <nLen> Number of characters to return

 Returns

 <cReturn> Substring of evaluation

 Description

 This functions returns a character string formed from <cString>, starting at
 the position of <nStart> and continuing on for a lenght of <nLen> characters. If
 <nLen> is not specified, the value will be all remaining characters from the
 position of <nStart>.

 The value of <nStart> may be negative. If it is, the direction of operation
 is reversed from a default of left-to-right to right-to-left for the number of
 characters specified in <nStart>.

 Examples

 FUNCTION MAIN()
 LOCAL X:=REPLICATE('ABCD',70000)

 ? QOUT(SUBSTR(X,65519,200)

 RETURN NIL

 Tests

 ? QOUT(SUBSTR('HELLO HARBOUR',5)

 Status

 Ready

 Compliance

 This functions is CA CLIPPER compatible with the execption that CA CLIPPER
 will generate an error if the passed string is >65519 bytes and Harbour depends of
 plataform.

 Platforms

 All

 Files

 Library is rtl

See Also:

LEFT()
AT()
RIGHT()

STR()
Convert a numeric expression to a character string.

 Syntax

 STR(<nNumber>, [<nLength>], [<nDecimals>]) --> cNumber

 Arguments

 <nNumber> is the numeric expression to be converted to a character string.

 <nLength> is the length of the character string to return, including decimal
 digits, decimal point, and sign.

 <nDecimals> is the number of decimal places to return.

 Returns

 STR() returns <nNumber> formatted as a character string. If the optional
 length and decimal arguments are not specified, STR() returns the character string
 according to the following rules:

 Return Value LengthExpression

Field length plus decimalsField Variable

Minimum of 10 digits plus decimalsExpressions/constants

Minimum of 3 digitsVAL()

3 digitsMONTH()/DAY()

5 digitsYEAR()

7 digitsRECNO()

 Description

 STR() is a numeric conversion function that converts numeric values to
 character strings. It is commonly used to concatenate numeric values to character
 strings. STR() has applications displaying numbers, creating codes such as part
 numbers from numeric values, and creating index keys that combine numeric and
 character data.

 STR() is like TRANSFORM(), which formats numeric values as character strings
 using a mask instead of length and decimal specifications.

 The inverse of STR() is VAL(), which converts character numbers to numerics.

 * If <nLength> is less than the number of whole number digits in <nNumber>,
 STR() returns asterisks instead of the number.

 * If <nLength> is less than the number of decimal digits required for the
 decimal portion of the returned string, Harbour rounds the number to the available
 number of decimal places.

 * If <nLength> is specified but <nDecimals> is omitted (no decimal places),
 the return value is rounded to an integer.

 Examples

 ? STR(10, 6, 2) // " 10.00"
 ? STR(-10, 8, 2) // " -10.00"

 Tests

 see the regression test suit for comprehensive tests.

 Status

 Ready

 Compliance

 CA-Clipper compatible.

 Files

 Library is rtl

See Also:

STRZERO()
TRANSFORM()
VAL()

STRZERO()
Convert a numeric expression to a character string, zero padded.

 Syntax

 STRZERO(<nNumber>, [<nLength>], [<nDecimals>]) --> cNumber

 Arguments

 <nNumber> is the numeric expression to be converted to a character string.

 <nLength> is the length of the character string to return, including decimal
 digits, decimal point, and sign.

 <nDecimals> is the number of decimal places to return.

 Returns

 STRZERO() returns <nNumber> formatted as a character string. If the
 optional length and decimal arguments are not specified, STRZERO() returns the
 character string according to the following rules:

 Return Value LengthExpression

Field length plus decimalsField Variable

Minimum of 10 digits plus decimalsExpressions/constants

Minimum of 3 digitsVAL()

3 digitsMONTH()/DAY()

5 digitsYEAR()

7 digitsRECNO()

 Description

 STRZERO() is a numeric conversion function that converts numeric values to
 character strings. It is commonly used to concatenate numeric values to character
 strings. STRZERO() has applications displaying numbers, creating codes such as part
 numbers from numeric values, and creating index keys that combine numeric and
 character data.

 STRZERO() is like TRANSFORM(), which formats numeric values as character
 strings using a mask instead of length and decimal specifications.

 The inverse of STRZERO() is VAL(), which converts character numbers to
 numerics.

 * If <nLength> is less than the number of whole number digits in <nNumber>,
 STR() returns asterisks instead of the number.

 * If <nLength> is less than the number of decimal digits required for the
 decimal portion of the returned string, Harbour rounds the number to the available
 number of decimal places.

 * If <nLength> is specified but <nDecimals> is omitted (no decimal places),
 the return value is rounded to an integer.

 Examples

 ? STRZERO(10, 6, 2) // "010.00"
 ? STRZERO(-10, 8, 2) // "-0010.00"

 Tests

 see the regression test suit for comprehensive tests.

 Status

 Ready

 Compliance

 CA-Clipper compatible (it was not mentioned in the docs though).

 Files

 Library is rtl

See Also:

STR()

HB_VALTOSTR()
Converts any scalar type to a string.

 Syntax

 HB_VALTOSTR(<xValue>) --> cString

 Arguments

 <xValue> is any scalar argument.

 Returns

 <cString> A string representation of <xValue> using default conversions.

 Description

 HB_VALTOSTR can be used to convert any scalar value to a string.

 Examples

 ? HB_VALTOSTR(4)
 ? HB_VALTOSTR("String")

 Tests

 ? HB_VALTOSTR(4) == " 4"
 ? HB_VALTOSTR(4.0 / 2) == " 2.00"
 ? HB_VALTOSTR("String") == "String"
 ? HB_VALTOSTR(CTOD("01/01/2001")) == "01/01/01"
 ? HB_VALTOSTR(NIL) == "NIL"
 ? HB_VALTOSTR(.F.) == ".F."
 ? HB_VALTOSTR(.T.) == ".T."

 Status

 Ready

 Compliance

 HB_VALTOSTR() is a Harbour enhancement.

 Files

 Library is rtl

See Also:

STR()

LEN()
Returns size of a string or size of an array.

 Syntax

 LEN(<cString> | <aArray>) --> <nLength>

 Arguments

 <acString> is a character string or the array to check.

 Returns

 Description

 This function returns the string length or the size of an array. If it is
 used with a multidimensional array it returns the size of the first dimension.

 Examples

 ? Len("Harbour") --> 7
 ? Len({ "One", "Two" }) --> 2

 Tests

 function Test()
 LOCAL cName := ""
 ACCEPT "Enter your name: " TO cName
 ? Len(cName)
 return nil

 Status

 Ready

 Compliance

 LEN() is fully CA-Clipper compliant.

 Files

 Library is rtl

See Also:

EMPTY()
RTRIM()
LTRIM()
AADD()
ASIZE()

EMPTY()
Checks if the passed argument is empty.

 Syntax

 EMPTY(<xExp>) --> <lIsEmpty>

 Arguments

 <xExp> is any valid expression.

 Returns

 false (.F.).

 Description

 This function checks if an expression has empty value and returns a logical
 indicating whether it the expression is empty or not.

 Examples

 ? Empty("I'm not empty")

 Tests

 function Test()
 ? Empty(1) --> .f.
 ? Empty(Date()) --> .f.
 ? Empty(.f.) --> .t.
 return nil

 Status

 Ready

 Compliance

 EMPTY() is fully CA-Clipper compliant.

 Files

 Library is rtl

See Also:

LEN()

DESCEND()
Inverts an expression of string, logical, date or numeric type.

 Syntax

 DESCEND(<xExp>) --> <xExpInverted>

 Arguments

 <xExp> is any valid expression.

 Returns

 Description

 This function converts an expression in his inverted form. It is useful to
 build descending indexes.

 Examples

 // Seek for Smith in a descending index
 SEEK DESCEND("SMITH")

 Tests

 DATA->(DBSEEK(DESCEND("SMITH")))
 will seek "SMITH" into a descending index.

 Status

 Ready

 Compliance

 DESCEND() is fully CA-Clipper compliant.

 Files

 Library is rtl

See Also:

ARRAY()
ARRAY()

HB_ANSITOOEM()
Convert a windows Character to a Dos based character

 Syntax

 HB_ANSITOOEM(<cString>) -> cDosString

 Arguments

 <cString> Windows ansi string to convert to DOS oem String

 Returns

 <cDosString> Dos based string

 Description

 This function converts each character in <cString> to the corresponding
 character in the MS-DOS (OEM) character set.The character expression <cString>
 should contain characters from the ANSI character set. If a character in <cString>
 doesn't have a MS-DOS equivalent, the character is converted to a similar MS-DOS
 character.

 Examples

 ? HB_OEMTOANSI("Harbour")

 Status

 Ready

 Compliance

 This function is a Harbour extension

 Platforms

 This functions work only on Windows Plataform

 Files

 Library is rtl

See Also:

HB_OEMTOANSI()

HB_OEMTOANSI()
Convert a DOS(OEM) Character to a WINDOWS (ANSI) based character

 Syntax

 HB_OEMTOANSI(<cString>) -> cDosString

 Arguments

 <cString> DOS (OEM) string to convert to WINDOWS (ANSI) String

 Returns

 <cDosString> WINDOWS based string

 Description

 This function converts each character in <cString> to the corresponding
 character in the Windows (ANSI) character set.The character expression <cString>
 should contain characters from the OEM character set. If a character in <cString>
 doesn't have a ANSI equivalent, the character is remais the same.

 Examples

 ? HB_OEMTOANSI("Harbour")

 Status

 Ready

 Compliance

 This function is a Harbour extension

 Platforms

 This functions work only on Windows Plataform

 Files

 Library is rtl

See Also:

HB_ANSITOOEM()

LOWER()
Universally lowercases a character string expression.

 Syntax

 LOWER(<cString>) --> cLowerString

 Arguments

 <cString> Any character expression.

 Returns

 <cLowerString> Lowercased value of <cString>

 Description

 This function converts any character expression passes as <cString> to its
 lowercased representation.Any nonalphabetic character withing <cString> will
 remain unchanged.

 Examples

 ? Lower("HARBOUR")
 ? Lower("Hello All")

 Status

 Ready

 Compliance

 This function is CA-Clipper compatible

 Platforms

 ALL

 Files

 Library is rtl

See Also:

UPPER()
ISLOWER()
ISUPPER()

UPPER()
Converts a character expression to uppercase format

 Syntax

 UPPER(<cString>) --> cUpperString

 Arguments

 <cString> Any character expression.

 Returns

 <cUpperString> Uppercased value of <cString>

 Description

 This function converts all alpha characters in <cString> to upper case values
 and returns that formatted character expression.

 Examples

 ? UPPER("harbour")
 ? UPPER("Harbour")

 Status

 Ready

 Compliance

 This function is CA-Clipper compatible

 Platforms

 All

 Files

 Library is rtl

See Also:

LOWER()
ISUPPER()
ISLOWER()

CHR()
Converts an ASCII value to it character value

 Syntax

 CHR(<nAsciiNum>) --> cReturn

 Arguments

 <nAsciiNum> Any ASCII character code.

 Returns

 <cReturn> Character expression of that ASCII value

 Description

 This function returns the ASCII character code for <nAsciiNum>.The number
 expressed must be an interger value within the range of 0 to 255 inclusive.The
 CHR() function will send the character returned to whatever device is presently
 set.

 The CHR() function may be used for printing special codes as well as normal
 and graphics character codes.

 Examples

 ? CHR(32)
 ? chr(215)

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

ASC()
INKEY()

ASC()
Returns the ASCII value of a character

 Syntax

 ASC(<cCharacter>) --> nAscNumber

 Arguments

 <cCharacter> Any character expression

 Returns

 <nAscNumber> ASCII value

 Description

 This function return the ASCII value of the leftmost character of any
 character expression passed as <cCharacter>.

 Examples

 ? ASC("A")
 ? ASC("¹")

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

CHR()

PADC()
Centers an expression for a given width

 Syntax

 PADC(<xVal>,<nWidth>,<cFill>) --> cString

 Arguments

 <xVal> An number,Character or date to pad

 <nWidth> Width of output string

 <cFill> Character to fill in the string

 Returns

 <cString> The Center string of <xVal>

 Description

 This function takes an date,number,or character expression <xVal> and attempt
 to center the expression within a string of a given width expressed as
 <nWidth>.The default character used to pad either side of <xVal> will be an blank
 space;however,this character may be explicitly specified the value of <cFill>.

 If the lenght of <xVal> is longer then <nWidth>,this function will truncate
 the string <xVal> from the leftmost side to the lenght of <nWidth>.

 Examples

 ? PADC('Harbour',20)
 ? PADC(34.5142,20)
 ? PADC(Date(),35)

 Tests

 See Examples

 Status

 Ready

 Compliance

 This function is Ca-Clipper compilant

 Platforms

 All

 Files

 Library is rtl

See Also:

ALLTRIM()
PADL()
PADR()

PADL()
Left-justifies an expression for a given width

 Syntax

 PADL(<xVal>,<nWidth>,<cFill>) --> cString

 Arguments

 <xVal> An number,Character or date to pad

 <nWidth> Width of output string

 <cFill> Character to fill in the string

 Returns

 <cString> The left-justifies string of <xVal>

 Description

 This function takes an date,number,or character expression <xVal> and attempt
 to left-justify it within a string of a given width expressed as <nWidth>.The
 default character used to pad left side of <xVal> will be an blank
 space;however,this character may be explicitly specified the value of <cFill>.

 If the lenght of <xVal> is longer then <nWidth>,this function will truncate
 the string <xVal> from the leftmost side to the lenght of <nWidth>.

 Examples

 ? PADC('Harbour',20)
 ? PADC(34.5142,20)
 ? PADC(Date(),35)

 Tests

 See examples

 Status

 Ready

 Compliance

 This function is Ca-Clipper compilant

 Platforms

 All

 Files

 Library is rtl

See Also:

ALLTRIM()
PADC()
PADR()

PADR()
Right-justifies an expression for a given width

 Syntax

 PADR(<xVal>,<nWidth>,<cFill>) --> cString

 Arguments

 <xVal> An number,Character or date to pad

 <nWidth> Width of output string

 <cFill> Character to fill in the string

 Returns

 <cString> The right-justifies string of <xVal>

 Description

 This function takes an date,number,or character expression <xVal> and attempt
 to right-justify it within a string of a given width expressed as <nWidth>.The
 default character used to pad right side of <xVal> will be an blank
 space;however,this character may be explicitly specified the value of <cFill>.

 If the lenght of <xVal> is longer then <nWidth>,this function will truncate
 the string <xVal> from the leftmost side to the lenght of <nWidth>.

 Examples

 ? PADC('Harbour',20)
 ? PADC(34.5142,20)
 ? PADC(Date(),35)

 Tests

 See examples

 Status

 Ready

 Compliance

 This function is Ca-Clipper compilant

 Platforms

 All

 Files

 Library is rtl

See Also:

ALLTRIM()
PADC()
PADL()

ALLTRIM()
Removes leading and trailing blank spaces from a string

 Syntax

 ALLTRIM(<cString>) --> cExpression

 Arguments

 <cString> Any character string

 Returns

 <cExpression> An string will all blank spaces removed from <cString>

 Description

 This function returns the string <cExpression> will all leading and trailing
 blank spaces removed.

 Examples

 ? ALLTRIM("HELLO HARBOUR")
 ? ALLTRIM(" HELLO HARBOUR")
 ? ALLTRIM("HELLO HARBOUR ")
 ? ALLTRIM(" HELLO HARBOUR ")

 Tests

 See Examples

 Status

 Ready

 Compliance

 This function is Ca-Clipper compilant

 Platforms

 All

 Files

 Library is rtl

See Also:

LTRIM()
RTRIM()
TRIM()

RTRIM()
Remove trailing spaces from a string.

 Syntax

 RTRIM(<cExpression>) --> cString

 Arguments

 <cExpression> Any character expression

 Returns

 <cString> A formated string with out any blank spaced.

 Description

 This function returns the value of <cString> with any trailing blank removed.

 This function is indentical to RTRIM() and the opposite of LTRIM(). Together
 with LTRIM(),this function equated to the ALLTRIM() function.

 Examples

 ? RTrim("HELLO") // "HELLO"
 ? RTrim("") // ""
 ? RTrim("UA ") // "UA"
 ? RTrim(" UA") // " UA"

 Tests

 See Examples

 Status

 Ready

 Compliance

 This function is Ca-Clipper compilant

 Platforms

 All

 Files

 Library is rtl

See Also:

ALLTRIM()
LTRIM()
TRIM()

TRIM()
Remove trailing spaces from a string.

 Syntax

 TRIM(<cExpression>) --> cString

 Arguments

 <cExpression> Any character expression

 Returns

 <cString> A formated string with out any blank spaced.

 Description

 This function returns the value of <cString> with any trailing blank removed.

 This function is indentical to RTRIM() and the opposite of LTRIM(). Together
 with LTRIM(),this function equated to the ALLTRIM() function.

 Examples

 ? Trim("HELLO") // "HELLO"
 ? Trim("") // ""
 ? Trim("UA ") // "UA"
 ? Trim(" UA") // " UA"

 Tests

 See Examples

 Status

 Ready

 Compliance

 This function is Ca-Clipper compilant

 Platforms

 All

 Files

 Library is rtl

See Also:

RTRIM()
LTRIM()
ALLTRIM()

REPLICATE()
Repeats a single character expression

 Syntax

 REPLICATE(<cString>,<nSize>) --> cReplicateString

 Arguments

 <cString> Character string to be replicated

 <nSize> Number of times to replicate <cString>

 Returns

 <cReplicateString> A character expression containg the <cString> fill
 character.

 Description

 This function returns a string composed of <nSize> repetitions of
 <cString>.The lenght of the character string returned by this function is limited
 to the memory avaliable.

 A value of 0 for <nSize> will return a NULL string.

 Examples

 ? Replicate('a',10) // aaaaaaaaaa
 ? Replicate('b',100000)

 Tests

 See Examples

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant in all aspects, with the exception
 don't have the Clipper 64Kb string length.

 Platforms

 All

 Files

 Library is rtl

See Also:

SPACE()
PADC()
PADL()
PADR()

SPACE()
Returns a string of blank spaces

 Syntax

 SPACE(<nSize>) --> cString

 Arguments

 <nSize> The lenght of the string

 Returns

 <cString> An string containing blank spaces

 Description

 This function returns a string consisting of <nSize> blank spaces. If the
 value of <nSize> is 0,a NULL string will be returned.

 This function is useful to declare the lenght of a character memory variable.

 Examples

 FUNC MAIN
 LOCAL cBigString
 LOCAL cFirst
 LOCAL cString := Space(20) //Create an characte memory variable
 // with lenght 20
 ? len(cString) // 20
 cBigString:=space(100000) // create a memory variable with 100000
 // blank spaces
 ? len(cBigString)
 Use Tests New
 cFirst:= makeempty(1)
 ? len(cFirst)
 Return Nil

 Function MakeEmpty(xField)
 LOCAL nRecord
 LOCAL xRetValue

 If !empty(alias())
 nRecord:=recno()
 dbgoto(0)
 if valtype(xField)=="C"
 xField:= ascan(dbstruct(),{|aFields| aFields[1]==upper(xfield)})
 else
 default xField to 0
 if xField < 1 .or. xField>fcount()
 xfield:=0
 endif
 endif
 if !(xfield ==0)
 xRetvalue:=fieldget(xfield)
 endif
 dbgoto(nrecord)
 endif
 return(xRetvalue)

 Tests

 See examples

 Status

 Ready

 Compliance

 This function is Ca-Clipper compliant in all aspects, with the exception
 don't have the Clipper 64Kb string length.

 Platforms

 All

 Files

 Library is Rtl

See Also:

PADC()
PADL()
PADR()
REPLICATE()

VAL()
Convert a number from a character type to numeric

 Syntax

 VAL(<cNumber>) --> nNumber

 Arguments

 <cNumber> Any valid character string of numbers.

 Returns

 <nNumber> The numeric value of <cNumber>

 Description

 This function converts any number previosly defined as an character
 expression <cNumber> into a numeric expression.

 This functions is the oppose of the STR() function.

 Examples

 ? VAL('31421') // 31421

 Tests

 See regression test

 Status

 Ready

 Compliance

 This function is Ca-Clipper compatible

 Platforms

 All

 Files

 Library is RTL

See Also:

STR()
TRANSFORM()

STRTRAN()
Translate substring valuw with a main string

 Syntax

 STRTRAN(<cString>, <cLocString>, <cRepString>, <nPos>, <nOccurences>) --> cReturn

 Arguments

 <cString> The main string to search

 <cLocString> The string to locate in the main string

 <cRepString> The string to replace the <cLocString>

 <nPos> The first occurence to be replaced

 <nOccurences> Number of occurence to replace

 Returns

 <cReturn> Formated string

 Description

 This function searches for any occurence of <cLocString> in <cString> and
 replacesit with <cRepString>.If <cRepString> is not specified, a NULL byte will
 replace <cLocString>.

 If <nPos> is used,its value defines the first occurence to be replaced.The
 default value is 1.Additionally,if used,the value of <nOccurences> tell the
 function how many occurrences of <cLocString> in <cString> are to the replaced.The
 default of <nOccurences> is all occurrences.

 Examples

 ? StrTran("Harbour Power"," "," ") // Harbour Power
 ? StrTran("Harbour Power The Future of xBase"," "," ",,2) // Harbour Power The future of xBase

 Tests

 See regression test

 Status

 Ready

 Compliance

 Will not work with a search string of > 64 KB on some platforms

 Platforms

 All

 Files

 Libraty is rtl

See Also:

SUBSTR()
AT()

TRANSFORM()
Formats a value based on a specific picture template.

 Syntax

 TRANSFORM(<xExpression>, <cTemplate>) --> cFormated

 Arguments

 <xExpression> Any expression to be formated.

 <cTemplate> Character string with picture template

 Returns

 <cFormated> An formatted expression in character format

 Description

 This function returns <xExpression> in the format of the picture expression
 passed to the function as <cTemplate>.

 Their are two components that can make up <cTemplate> : a function string and
 a template string.Function strings are those functions that globally tell what the
 format of <xExpression> should be.These functions are represented by a single
 character precede by the @ symbol.

 There are a couple of rules to follow when using function strings and
 template strings:

 - First, a single space must fall between the function template and the
 template string if they are used in conjunction with one another.

 - Second,if both components make up the value of <cTemplate>,the function
 string must precede the template string.Otherwise,the function string may appear
 with out the template string and vice versa.

 The table below shows the possible function strings avaliable with the
 TRANSFORM() function.

 Left justify the string within the format.@B

Issue a CR after format is numbers are positive.@C

Put dates in SET DATE format.@D

Put dates in BRITISH format.@E

Make a zero padded string out of the number.@L

Insert nontemplate characters.@R

Issue a DB after format is numbers are negative.@X

Display any zero as blank spaces.@Z

Quotes around negative numbers@(

Convert alpha characters to uppercased format.@!

 The second part of <cTemplate> consists of the format string.Each character
 in the string may be formated based on using the follow characters as template
 markers for the string.

 Any data typeA,N,X,9,#

Shows logical as "T" or "F"L

Shows logical as "" or "N"Y

Convert to uppercase!

Dolar sing in place of leading spaces in numeric expression$

Asterisks in place of leading spaces in numeric expression*

Commas position,

Decimal point position.

 Examples

 local cString := 'This is harbour'
 local nNumber := 9923.34
 local nNumber1 := -95842.00
 Local lValue := .T.
 Local dDate := DATE()
 ? 'working with String'
 ? "Current String is" ,cString
 ? "All uppercased",transform(cString,"@!")
 ? "Date is",ddate
 ? "Date is ",transform(ddate,"@D")
 ? Transform(nNumber , "@L 99999999") // , "009923.34"
 ? Transform(0 , "@L 9999") // "0000"

 Tests

 See regression Test

 Status

 Ready

 Compliance

 The @L function template is a FOXPRO/Xbase Extension

 Platforms

 All

 Files

 Library is rtl

See Also:

@...SAY
DEVOUTPICT()

TClass()
TClass() is used in the creation of all classes

 Syntax

 oClass := TClass():New("TMyClass")
 -or-
 TClass() is usually accessed by defining a class with the commands
 defined in hbclass.h:
 CLASS TGetList// Calls TClass() to create the TGetList class
 ...
 ENDCLASS

 Arguments

 Returns

 create the classes you define.

 Description

 TClass is a class that ... The class methods are as follows:

 New() Create a new instance of the class

 Examples

 FUNCTION TestObject()
 local oObject

 oObject := TClass():New("TMyClass")
 oObject:End()

 RETURN Nil

 Status

 Ready

 Compliance

 Object Oriented syntax in Harbour is compatible with CA-CLIPPER. But Clipper
 only allowed creation of objects from a few standard classes, and did not let the
 programmer create new classes. In Harbour, you can create your own
 classes--complete with Methods, Instance Variables, Class Variables and
 Inheritance. Entire applications can be designed and coded in Object Oriented
 style.

 Platforms

 All

 Files

 Library is rtl

See Also:

__objHasData()
ARRAY()
CLASS

__XSaveScreen()
Save whole screen image and coordinate to an internal buffer

 Syntax

 __XSaveScreen() --> NIL

 Arguments

 Returns

 __XSaveScreen() always return NIL.

 Description

 __XSaveScreen() save the image of the whole screen into an internal buffer,
 it also save current cursor position. The information could later be restored by
 __XRestScreen(). Each call to __XSaveScreen() overwrite the internal buffer.

 SAVE SCREEN command is preprocessed into __XSaveScreen() function during
 compile time. Note that SAVE SCREEN TO is preprocessed into SAVESCREEN() function.

 __XSaveScreen() is a compatibility function, it is superseded by SAVESCREEN()
 which allow you to save part or all the screen into a variable.

 Examples

 // save the screen, display list of files than restore the screen
 SAVE SCREEN
 DIR *.*
 WAIT
 RESTORE SCREEN

 Status

 Ready

 Compliance

 __XSaveScreen() works exactly like CA-Clipper's __XSaveScreen()

 Platforms

 __XSaveScreen() is part of the GT API, and supported only by some platforms.

 Files

 Library is rtl

See Also:

RESTORE SCREEN
ARRAY()
ARRAY()

SAVE SCREEN
Save whole screen image and coordinate to an internal buffer

 Syntax

 SAVE SCREEN

 Arguments

 Returns

 Description

 SAVE SCREEN save the image of the whole screen into an internal buffer, it
 also save current cursor position. The information could later be restored by REST
 SCREEN. Each call to SAVE SCREEN overwrite the internal buffer.

 SAVE SCREEN command is preprocessed into __XSaveScreen() function during
 compile time. Note that SAVE SCREEN TO is preprocessed into SAVESCREEN() function.

 Examples

 // save the screen, display list of files than restore the screen
 SAVE SCREEN
 DIR *.*
 WAIT
 RESTORE SCREEN

 Status

 Ready

 Compliance

 __XSaveScreen() works exactly like CA-Clipper's __XSaveScreen()

 Platforms

 __XSaveScreen() is part of the GT API, and supported only by some platforms.

See Also:

RESTORE SCREEN
__XRestScreen()
__XSaveScreen()

__XRestScreen()
Restore screen image and coordinate from an internal buffer

 Syntax

 __XRestScreen() --> NIL

 Arguments

 Returns

 __XRestScreen() always return NIL.

 Description

 __XRestScreen() restore saved image of the whole screen from an internal
 buffer that was saved by __XSaveScreen(), it also restore cursor position. After a
 call to __XRestScreen() the internal buffer is cleared.

 RESTORE SCREEN command is preprocessed into __XRestScreen() function during
 compile time. Note that RESTORE SCREEN FROM is preprocessed into RESTSCREEN()
 function.

 __XRestScreen() is a compatibility function, it is superseded by RESTSCREEN()
 which allow you to restore the screen from a variable.

 Examples

 // save the screen, display list of files than restore the screen
 SAVE SCREEN
 DIR *.*
 WAIT
 RESTORE SCREEN

 Status

 Ready

 Compliance

 __XRestScreen() works exactly like CA-Clipper's __XRestScreen()

 Platforms

 __XRestScreen() is part of the GT API, and supported only by some platforms.

 Files

 Library is rtl

See Also:

__XRestScreen()
SAVE SCREEN
__XSaveScreen()

RESTORE SCREEN
Restore screen image and coordinate from an internal buffer

 Syntax

 RESTORE SCREEN

 Arguments

 Returns

 Description

 Rest Screen restore saved image of the whole screen from an internal buffer
 that was saved by Save Screen, it also restore cursor position. After a call to
 Rest Screen the internal buffer is cleared.

 RESTORE SCREEN command is preprocessed into __XRestScreen() function during
 compile time. Note that RESTORE SCREEN FROM is preprocessed into RESTSCREEN()
 function.

 Examples

 // save the screen, display list of files than restore the screen
 SAVE SCREEN
 DIR *.*
 WAIT
 RESTORE SCREEN

 Status

 Ready

 Compliance

 Rest Screen() works exactly like CA-Clipper's Rest Screen

 Platforms

 Rest Screen is part of the GT API, and supported only by some platforms.

See Also:

__XRestScreen()
SAVE SCREEN
__XSaveScreen()

ALERT()
Display a dialog box with a message

 Syntax

 ALERT(<xMessage>, [<aOptions>], [<cColorNorm>], [<nDelay>]) --> nChoice or NIL

 Arguments

 <xMessage> Message to display in the dialog box. can be of any Harbour
 type. If <xMessage> is an array of Character strings, each element would be
 displayed in a new line. If <xMessage> is a Character string, you could split the
 message to several lines by placing a semicolon (;) in the desired places.

 <aOptions> Array with available response. Each element should be Character
 string. If omitted, default is { "Ok" }.

 <cColorNorm> Color string to paint the dialog box with. If omitted, default
 color is "W+/R".

 <nDelay> Number of seconds to wait to user response before abort. Default
 value is 0, that wait forever.

 Returns

 ALERT() return Numeric value representing option number chosen. If ESC was
 pressed, return value is zero. The return value is NIL if ALERT() is called with
 no parameters, or if <xMessage> type is not Character and HB_C52_STRICT option was
 used. If <nDelay> seconds had passed without user response, the return value is 1.

 Description

 ALERT() display simple dialog box on screen and let the user select one
 option. The user can move the highlight bar using arrow keys or TAB key. To select
 an option the user can press ENTER, SPACE or the first letter of the option.

 If the program is executed with the //NOALERT command line switch, nothing is
 displayed and it simply returns NIL. This switch could be overridden with
 __NONOALERT().

 If the GT system is linked in, ALERT() display the message using the full
 screen I/O system, if not, the information is printed to the standard output using
 OUTSTD().

 Examples

 LOCAL cMessage, aOptions, nChoice

 // harmless message
 cMessage := "Major Database Corruption Detected!;" + ;
 "(deadline in few hours);;" + ;
 "where DO you want to go today?"

 // define response option
 aOptions := { "Ok", "www.jobs.com", "Oops" }

 // show message and let end user select panic level
 nChoice := ALERT(cMessage, aOptions)
 DO CASE
 CASE nChoice == 0
 // do nothing, blame it on some one else
 CASE nChoice == 1
 ? "Please call home and tell them you're gonn'a be late"
 CASE nChoice == 2
 // make sure your resume is up to date
 CASE nChoice == 3
 ? "Oops mode is not working in this version"
 ENDCASE

 Status

 Ready

 Compliance

 This function is sensitive to HB_C52_STRICT settings during the compilation

 of source/rtl/alert.prg

 defined: <xMessage> accept Character values only and return NIL if
 other types are passed.

 undefined: <xMessage> could be any type, and internally converted to
 Character string. If type is Array, multi-line message is displayed.

 defined: Only the first four valid <aOptions> are taken.

 undefined: <aOptions> could contain as many as needed options.

 If HB_COMPAT_C53 was define during compilation of source/rtl/alert.prg the
 Left-Mouse button could be used to select an option.

 The interpretation of the //NOALERT command line switch is done only if
 HB_C52_UNDOC was define during compilation of source/rtl/alert.prg

 <cColorNorm> is a Harbour extension, or at least un-documented in Clipper 5.2
 NG.

 <nDelay> is a Harbour extension.

 Files

 Library is rtl

See Also:

@...PROMPT
MENU TO
OUTSTD()
__NONOALERT()

__NONOALERT()
Override //NOALERT command line switch

 Syntax

 __NONOALERT() --> NIL

 Arguments

 Returns

 __NONOALERT() always return NIL.

 Description

 The //NOALERT command line switch cause Clipper to ignore calls to the
 ALERT() function, this function override this behavior and always display ALERT()
 dialog box.

 Examples

 // make sure alert are been displayed
 __NONOALERT()

 Status

 Ready

 Files

 Library is rtl

 Compliance

 __NONOALERT() is an undocumented CA-Clipper function and exist only if
 HB_C52_UNDOC was defined during the compilation of source/rtl/alert.prg

HB_OSNEWLINE()
Returns the newline character(s) to use with the current OS

 Syntax

 HB_OSNewLine() --> cString

 Returns

 <cString> A character string containing the character or characters required
 to move the screen cursor or print head to the start of a new line. The string
 will hold either CHR(10) or CHR(13) + CHR(10).

 Description

 Returns a character string containing the character or characters required to
 move the screen cursor or print head to the start of a new line for the operating
 system that the program is running on (or thinks it is running on, if an OS
 emulator is being used).

 Examples

 // Get the newline character(s) for the current OS using defaults.
 STATIC s_cNewLine
 ...
 s_cNewLine := HB_OSNewLine()
 ...
 OutStd("Hello World!" + s_cNewLine)
 ...

 Tests

 valtype(HB_OSNewLine()) == "C"
 LEN(HB_OSNewLine()) == 1

 Status

 Ready

 Compliance

 This is an add-on Operating System Tool function.

 Platforms

 Under OS_UNIX_COMPATIBLE operating system the return value is the Line-Feed
 (0x0a) character CHR(10), with other operating systems (like DOS) the return value
 is the Carriage-Return plus Line-Feed (0x0d 0x0a) characters CHR(13)+CHR(10).

 Files

 Library is rtl

See Also:

OS()
OUTSTD()
OUTERR()

hb_ColorIndex()
Extract one color from a full Clipper colorspec string.

 Syntax

 hb_ColorIndex(<cColorSpec>, <nIndex>)

 Arguments

 <cColorSpec> is a Clipper color list

 <nIndex> is the position of the color item to be extracted, the first
 position is the zero.

 Returns

 Description

 Clipper has a color spec string, which has more than one color in it,
 separated with commas. This function is able to extract a given item from this
 list. You may use the manifest constants defined in color.ch to extract common
 Clipper colors.

 Examples

 ? hb_ColorIndex("W/N, N/W", CLR_ENHANCED) // "N/W"

 Tests

 see the regression test suit for comprehensive tests.

 Status

 Ready

 Compliance

 Was not part of CA-Clipper.

 Files

 Library is rtl

See Also:

ARRAY()

DEVOUTPICT()
Displays a value to a device using a picture template

 Syntax

 DEVOUTPICT(<xExp>,<cPicture>[,<cColorString>]) --> NIL

 Arguments

 <xExp> is any valid expression.

 <cPicture> is any picture transformation that TRANSFORM() can use.

 <cColorString> is an optional string that specifies a screen color to use in
 place of the default color when the output goes to the screen.

 Returns

 Description

 Outputs any expression using a picture transformation instead of using the
 default transformation for the type of expression.

 Examples

 // Output a negative dollar amount using debit notation.
 DEVOUTPICT(-1.25, "@D$ 99,999.99)

 Tests

 @ 3,1 SAY -1.25 PICTURE "@D$ 99,999.99"
 will display "$(1.25)" starting on row four, column two of the
 current device (without the double quotation marks, of course).

 Status

 Ready

 Compliance

 DEVOUTPICT() is mostly CA-Clipper compliant. Any differences are due to
 enhancements in the Harbour TRANSFORM() over CA-Clipper.

 Files

 Library is rtl

See Also:

ARRAY()
TRANSFORM()

__INPUT()
Stops application

 Syntax

 __INPUT(<cMessage>) --> <cString>

 Arguments

 <cMessage> is any valid expression.

 Returns

 Description

 This function waits for a console input and returns macroed expression
 entered.

 Status

 Started

 Compliance

 __INPUT() is fully CA-Clipper compliant.

 Files

 Library is rtl

See Also:

__WAIT()
ARRAY()

__TextSave()
Redirect console output to printer or file and save old settings

 Syntax

 __TextSave(<cFile>) --> NIL

 Arguments

 <cFile> is either "PRINTER" (note the uppercase) in which console output is
 SET to PRINTER, or a name of a text file with a default ".txt" extension, that is
 used to redirect console output.

 Returns

 __TextSave() always return NIL.

 Description

 __TextSave() is used in the preprocessing of the TEXT TO command to redirect
 the console output while saving old settings that can be restored later by
 __TextRestore().

 Status

 Ready

 Compliance

 __TextSave() is an Undocumented CA-Clipper function

 Platforms

 ALL

 Files

 Library is rtl

See Also:

SET()
SET ALTERNATE
SET PRINTER
ARRAY()
__TextRestore()

__TextRestore()
Restore console output settings as saved by __TextSave()

 Syntax

 __TextRestore() --> NIL

 Arguments

 Returns

 __TextRestore() always return NIL.

 Description

 __TextRestore() is used in the preprocessing of the TEXT TO command to
 restore console output settings that were previously saved by __TextSave().

 Status

 Ready

 Compliance

 __TextRestore() is an Undocumented CA-Clipper function

 Platforms

 All

 Files

 Library is rtl

See Also:

SET()
SET ALTERNATE
SET PRINTER
ARRAY()
__TextSave()

__WAIT()
Stops the application until a key is pressed.

 Syntax

 __WAIT(<cMessage>) --> <cKey>

 Arguments

 <cMessage> is a string.

 Returns

 Description

 This function stops the application until a key is pressed. The key must be
 in the range 32..255. Control keys are not processed.

 Examples

 // Wait for a key stroke
 __Wait("Press a key to continue")

 Tests

 do while cKey != "Q"
 cKey := __Wait("Press 'Q' to continue")
 end do

 Status

 Ready

 Compliance

 __WAIT() is fully CA-Clipper compliant.

 Files

 Library is rtl

See Also:

ARRAY()
__INPUT()

OUTSTD()
Write a list of values to the standard output device

 Syntax

 OUTSTD(<xExp,...>) --> NIL

 Arguments

 <xExp,...> is a list of expressions to display. Expressions are any mixture
 of Harbour data types.

 Returns

 OUTSTD() always returns NIL.

 Description

 OUTSTD() write one or more values into the standard output device. Character
 and Memo values are printed as is, Dates are printed according to the SET DATE
 FORMAT, Numeric values are converted to strings, Logical values are printed as .T.
 or .F., NIL are printed as NIL, values of any other kind are printed as empty
 string. There is one space separating each two values. Note that Numeric value can
 take varying length when converted into string depending on its source (see STR()
 for detail).

 OUTSTD() is similar to QQOUT() with the different that QQOUT() send its
 output to the Harbour console stream, which can or can not be redirected according
 with the screen driver, and OUTSTD() send its output to the standard output device
 (STDOUT) and can be redirected.

 Examples

 OUTSTD("Hello") // Result: Hello

 OUTSTD(1, .T., NIL, "A")
 OUTSTD("B") // Result: 1 .T. NIL AB

 Status

 Ready

 Compliance

 OUTSTD() works exactly as in CA-Clipper

 Files

 Library is rtl

See Also:

ARRAY()
ARRAY()
ARRAY()
DEVOUTPICT()
ARRAY()
ARRAY()
OUTERR()
ARRAY()
ARRAY()
STR()

OUTERR()
Write a list of values to the standard error device

 Syntax

 OUTERR(<xExp,...>) --> NIL

 Arguments

 <xExp,...> is a list of expressions to display. Expressions are any mixture
 of Harbour data types.

 Returns

 OUTERR() always returns NIL.

 Description

 OUTERR() write one or more values into the standard error device. Character
 and Memo values are printed as is, Dates are printed according to the SET DATE
 FORMAT, Numeric values are converted to strings, Logical values are printed as .T.
 or .F., NIL are printed as NIL, values of any other kind are printed as empty
 string. There is one space separating each two values. Note that Numeric value can
 take varying length when converted into string depending on its source (see STR()
 for detail).

 There is an undocumented CA-Clipper command line switch //STDERR which can
 set the file handle to write output from OUTERR(). If not specified the default
 STDERR is used, //STDERR or //STDERR:0 set OUTERR() to output to the same file
 handle as OUTSTD(), //STDERR:n set output to file handle n. Like other undocumented
 features this switch is available only if source/rtl/console.c was compiled with
 the HB_C52_UNDOC flag.

 Examples

 // write error log information
 OUTERR(DATE(), TIME(), "Core meltdown detected")

 Status

 Ready

 Compliance

 OUTERR() works exactly as in CA-Clipper

 Files

 Library is rtl

See Also:

ARRAY()
ARRAY()
ARRAY()
DEVOUTPICT()
ARRAY()
ARRAY()
OUTSTD()
ARRAY()
ARRAY()
STR()

EJECT
Issue an command to advance the printer to the top of the form

 Syntax

 EJECT

 Arguments

 Description

 This command issue an form-feed command to the printer.If the printer is not
 properly hooked up to the computer,an error will not be generated and the command
 will be ignored.

 Once completed,the values of PROW() and PCOL(),the row and column indicators
 to the printer,will be set to 0.Their values,however,may be manipulated before or
 after ussuing an EJECT by using the DEVPOS() function.

 On compile time this command is translated into __EJECT() function.

 Examples

 Use Clientes New
 Set Device to Printer
 CurPos:=0
 While !Eof()
 ? Clientes->nome,Clientes->endereco
 Curpos++
 if Curpos >59
 Curpos:=0
 Eject
 Endif
 Enddo
 Set Device to Screen
 Use

 Tests

 See examples

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant

 Platforms

 All

See Also:

ARRAY()
SET PRINTER
ARRAY()
ARRAY()

COL()
Returns the current screen column position

 Syntax

 COL() --> nPosition

 Arguments

 Returns

 <nPosition> Current column position

 Description

 This function returns the current cursor column position.The value for this
 function can range between 0 and MAXCOL().

 Examples

 ? Col()

 Status

 Ready

 Compliance

 This Functions is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

ROW()
MAXROW()
MAXCOL()

ROW()
Returns the current screen row position

 Syntax

 ROW() --> nPosition

 Arguments

 Returns

 <nPosition> Current screen row position

 Description

 This function returns the current cursor row location.The value for this
 function can range between 0 and MAXCOL().

 Examples

 ? Row()

 Status

 Ready

 Compliance

 This Functions is Ca-Clipper compliant

 Platforms

 All

 Files

 Library is rtl

See Also:

COL()
MAXROW()
MAXCOL()

MAXCOL()
Returns the maximun number of columns in the current video mode

 Syntax

 MAXCOL() --> nPosition

 Arguments

 Returns

 <nPosition> The maximun number of columns possible in current video mode

 Description

 This function returns the current cursor column position.The value for this
 function can range between 0 and MAXCOL().

 Examples

 ? MAXCol()

 Status

 Ready

 Compliance

 This Functions is Ca-Clipper compliant.

 Platforms

 It works in all platform with some remarks:Under Linux and OS/2 the number of
 columns avaliable depends of the current Terminal screen size.Under Win32, the
 return value of MAXCOL() function is only affected if called after an SETMODE()
 function

 Files

 Library is rtl

See Also:

ROW()
MAXROW()
COL()

MAXROW()
Returns the current screen row position

 Syntax

 MAXROW() --> nPosition

 Arguments

 Returns

 <nPosition> The maximun number of rows possible in current video mode

 Description

 This function returns the current cursor row location.The value for this
 function can range between 0 and MAXCOL().

 Examples

 ? MAXROW()

 Status

 Ready

 Compliance

 This Functions is Ca-Clipper compliant

 Platforms

 It works in all platform with some remarks:Under Linux and OS/2 the number of
 columns avaliable depends of the current Terminal screen size.Under Win32, the
 return value of MAXROW() function is only affected if called after an SETMODE()
 function

 Files

 Library is rtl

See Also:

COL()
ROW()
MAXCOL()

READVAR()
Return variable name of current GET or MENU

 Syntax

 READVAR([<cVarName>]) --> cOldVarName

 Arguments

 <cVarName> is a new variable name to set.

 Returns

 READVAR() return the old variable name. If no variable previously was set,
 READVAR() return "".

 Description

 READVAR() is set inside a READ or MENU TO command to hold the uppercase name
 of the GET / MENU TO variable, and re-set back to old value when those commands
 finished. You should not normally set a variable name but rather use it to retrieve
 the name of a GET variable when executing a VALID or WHEN clause, or during SET KEY
 execution and you are inside a READ or MENU TO.

 Examples

 // display a menu, press F1 to view the MENU TO variable name
 CLS
 @ 1, 10 PROMPT "blood sucking insect that infect beds "
 @ 2, 10 PROMPT "germ; virus infection "
 @ 3, 10 PROMPT "defect; snag; (source of) malfunctioning"
 @ 4, 10 PROMPT "small hidden microphone "
 @ 6, 10 SAY "(Press F1 for a hint)"
 SET KEY 28 TO ShowVar
 MENU TO What_Is_Bug

 PROCEDURE ShowVar
 ALERT(READVAR()) // WHAT_IS_BUG in red ALERT() box

 Status

 Ready

 Compliance

 READVAR() works exactly like CA-Clipper's READKEY(), note however, that the
 <cVarName> parameter is not documented and used internally by CA-Clipper.

 Platforms

 All

 Files

 Library is rtl

See Also:

@...Get
@...PROMPT
MENU TO
ARRAY()
SET KEY
__AtPrompt()
__MenuTo()

LABEL FORM
Displays labels to the screen or an alternate device

 Syntax

 LABEL FORM <cLabelName> [TO PRINTER] [TO FILE <cFile>] [<cScope>] [WHILE <bWhile>]
 [FOR <bFor>] [SAMPLE] [NOCONSOLE]

 Arguments

 <cLabelName> Name of label file

 <cFile> Name of an alternate file

 <cScope> Expression of a scoping condition

 <bWhile> WHILE condition

 <bFor> FOR condition

 Description

 This command allows labels to be printed based on the format outlined in .LBL
 file specified as <cLabelName>. By default, output will go to the screen however
 this output may be rerouted with either the TO PRINTER or the TO FILE clause.

 If the TO FILE clause is specified, the name of the ASCII text file
 containing the generated labels will be <cFile>.

 If no file extension is specified a .TXT extension is added. <cScope> is the
 scope condition for this command. Valid scopes include NEXT <expN> (number of
 records to be displayed, where <expN> is the number of records), RECORD <expN> (a
 specific record to be printed), REST (all records starting from the current record
 position,and ALL (all records). The default is ALL.

 Both logical expression may work ill conjunction with one another where
 <bFor> is the logical expression for the FOR condition (for records to be
 displayed whitin a given value range) and <bWhile> for the WHILE condition (for
 records to be displayed until they fail to meet the condition).

 If the SAMPLE clause is specified, test labels will be generated.

 If the NOCONSOLE clause is specified,the console will be turned off while
 this command is being executed.

 This command follows the search criteria outlined in the SET PATH TO command.
 The path may be specified, along, with (the drive letter, in <cLabelName>

 Examples

 FUNCTION MAIN()
 USE Test New
 LABEL FORM EE
 USE
 RETURN NIL

 Status

 Ready

 Compliance

 This command is CA-Clipper compliant.

 Platforms

 ALL

 Files

 Library is Rtl.lib

See Also:

REPORT FORM

REPORT FORM
Display a report

 Syntax

 REPORT FORM <cReportName> [TO PRINTER] [TO FILE <cFile>] [<cScope>] [WHILE <bWhile>
] [FOR <bFor>] [PLAIN |HEADING <cHeading>] [NOEJECT] [SUMMARY] [NOCONSOLE]

 Arguments

 <cReportName> Name of report file

 <cFile> Name of alternate file

 <cScope> Scope.

 <bWhile> Logical expression of WHILE condition .

 <bFor> Logical expression of FOR condition.

 <cHeading> Report heading

 Returns

 Description

 This command prints out the report named <cReportName>, which is a standard
 FRM file. The file extension is not required because FRM will be assumed. The SET
 PATH TO and SET DEFAULT TO commands affect the search for the file <cReportName>;
 unless a drive and path are specified in <cReportName>, REPORT will search the path
 specified in the SET PATH command if it cannot find the report form in the current
 directory.

 The output of the report will be offset based on the setting of the SET MARGIN
 TO value.

 By default, output will go to the console; however, it may be controlled via
 either the TO PRINTER or TO FILE clause. If the output is to go to the file, the
 name of the alternate file is specified in <cFile>. Unless specified in <cFile>,
 the default file extension will be .TXT . <cScope> is the scope for this command.
 Valid scopes include NEXT <expN> (where <expN> is tile number of records), RECORD
 <expN> (a specific record to be displayed), REST (all records from the current
 record position), and ALL (all records). The default is ALL.

 Both logical expressions may work in conjuntion with one another, where <bFor>
 is the logical expression for the FOR condition (for records to be displayed
 within a given range) and <bWhile> for the WHILE condition (for records to be
 displayed until the condition fails).

 If the PLAIN clause is specified, date and page numbers are suppressed. In
 addition, there is no automatic page breaking, and the report title and column
 headings appear only once at the top of the form.

 If the HEADING clause is used, <cHeading> is displayed on the first title of
 each report page. The value of <cHeading> is evaluated only once before executing
 the report; varying the values of <cHeading> is not allowed. The PLAIN clause will
 take precedence over the HEADING clause if both are included.

 If the NOEJECT clause is used, the initial page eject on the report will not
 be issued when the output clause TO PRINTER is specified. Otherwise, this clause
 has no effect.

 If the SUMMARY Clause is specified, the report will contain only groups,
 subgroups, and grand total information. The detailed title item information will
 be ignored.

 If the NOCONSOLE clause is specified,output to the console will be turned off
 while this command is being executed.

 Examples

 FUNCTION() MAIN
 USE Test New
 Report FORM EE
 USE

 RETURN NIL

 Status

 Ready

 Compliance

 This Command is CA-Clipper compliant.

 Platforms

 ALL

 Files

 Library is Rtl.lib

See Also:

LABEL FORM

__MVPUBLIC()
This function creates a PUBLIC variable

 Syntax

 __MVPUBLIC(<variable_name>)

 Arguments

 <variable_name> = either a string that contains the variable's name or an
 one-dimensional array of strings with variable names No skeleton are allowed here.

 Returns

 Description

 This function can be called either by the harbour compiler or by user. The
 compiler always passes the item of IT_SYMBOL type that stores the name of
 variable. If a variable with the same name exists already then the new variable is
 not created - the previous value remains unchanged. If it is first variable with
 this name then the variable is initialized with .T. value.

 Examples

 None Avaliable

 Status

 Ready

 Compliance

 This function is a Harbour extension

 Files

 Library is vm

__MVPRIVATE()
This function creates a PRIVATE variable

 Syntax

 __MVPRIVATE(<variable_name>)

 Arguments

 <variable_name> = either a string that contains the variable's name or an
 one-dimensional array of strings with variable names No skeleton are allowed here.

 Returns

 Description

 This function can be called either by the harbour compiler or by user. The
 compiler always passes the item of IT_SYMBOL type that stores the name of
 variable. If a variable with the same name exists already then the value of old
 variable is hidden until the new variable is released. The new variable is always
 initialized to NIL value.

 Examples

 None Avaliable

 Status

 Ready

 Compliance

 This function is a Harbour extension

 Files

 Library is vm

__MVXRELEASE()
This function releases value stored in PRIVATE or PUBLIC variable

 Syntax

 __MVXRELEASE(<variable_name>)

 Arguments

 <variable_name> = either a string that contains the variable's name or an
 one-dimensional array of strings with variable names No skeleton are allowed here.

 Returns

 Description

 This function releases values stored in memory variable. It shouldn't be
 called directly, rather it should be placed into RELEASE command. If the released
 variable is a PRIVATE variable then previously hidden variable with the same name
 becomes visible after exit from the procedure where released variable was created.
 If you access the released variable in the same function/procedure where it was
 created the the NIL value is returned. You can however assign a new value to
 released variable without any side effects.

 It releases variable even if this variable was created in different procedure

 Examples

 PROCEDURE MAIN()
 PRIVATE mPrivate

 mPrivate :="PRIVATE from MAIN()"
 ? mPrivate //PRIVATE from MAIN()
 Test()
 ? mPrivate //PRIVATE from MAIN()

 RETURN

 PROCEDURE Test()
 PRIVATE mPrivate

 mPrivate :="PRIVATE from Test()"
 ? mPrivate //PRIVATE from TEST()
 RELEASE mPrivate
 ? mPrivate //NIL
 mPrivate :="Again in Test()"

 RETURN

 Status

 Ready
 This function is a Harbour extension

 Files

 Library is vm

__MVRELEASE()
This function releases PRIVATE variables

 Syntax

 __MVRELEASE(<skeleton>, <include_exclude_flag>)

 Arguments

 <skeleton> = string that contains the wildcard mask for variables' names
 that will be released. Supported wildcards: '*' and '?' <include_exclude_flag> =
 logical value that specifies if variables that match passed skeleton should be
 either included in deletion (if .T.) or excluded from deletion (if .F.)

 Returns

 Description

 This function releases values stored in memory variables. It shouldn't be
 called directly, it should be placed into RELEASE ALL command. If the released
 variable is a PRIVATE variable then previously hidden variable with the same name
 becomes visible after exit from the procedure where released variable was created.
 If you access the released variable in the same function/procedure where it was
 created the the NIL value is returned. You can however assign a new value to
 released variable without any side effects. PUBLIC variables are not changed by
 this function.

 Examples

 None Avaliable

 Status

 Ready

 Compliance

 This function is a Harbour extension

 Files

 Library is vm

__MVSCOPE()
If variable exists then returns its scope.

 Syntax

 __MVSCOPE(<cVarName>)

 Arguments

 <cVarName> = a string with a variable name to check

 Returns

 =variable is not declared (not found in symbol table) HB_MV_UNKNOWN =if
 variable doesn't exist (but found in symbol table) HB_MV_ERROR =if
 information cannot be obtained (memory error or argument error) HB_MV_PUBLIC
 =for public variables HB_MV_PRIVATE_GLOBAL =for private variables declared
 outside of current function/procedure HB_MV_PRIVATE_LOCAL =for private variables
 declared in current function/procedure

 Examples

 PROCEDURE MAIN()
 PUBLIC mPublic
 PRIVATE mPrivateGlobal

 CallProc()
 ? __mvScope("mPrivateLocal") //HB_MV_UNKNOWN

 RETURN

 PROCEDURE CallProc()
 PRIVATE mPrivateLocal

 ? __mvScope("mPublic") //HB_MV_PUBLIC
 ? __mvScope("mPrivateGlobal") //HB_MV_PRIVATE_GLOBAL
 ? __mvScope("mPrivateLocal") //HB_MV_PRIVATE_LOCAL
 ? __mvScope("mFindMe") //HB_MV_NOT_FOUND

 IF(__mvScope("mPublic") > HB_MV_ERROR)
 ? "Variable exists"
 ELSE
 ? "Variable not created yet"
 ENDIF

 RETURN

 Status

 Ready
 This function is a Harbour Extension

 Files

 Library is vm

See Also:

ARRAY()

__MVCLEAR()
This function releases all PRIVATE and PUBLIC variables

 Syntax

 __MVCLEAR()

 Arguments

 Returns

 Description

 This function releases all PRIVATE and PUBLIC variables. It is used to
 implement CLEAR MEMORY statement. The memory occupied by all visible variables are
 released - any attempt to access the variable will result in a runtime error. You
 have to reuse PRIVATE or PUBLIC statement to create again the variable that was
 cleared by this function.

 Status

 Ready

 Compliance

 This function is a Harbour extension

 Files

 Library is vm

See Also:

__MVPUBLIC()

__MVDBGINFO()
This function returns the information about the variables for debugger

 Syntax

 __MVDBGINFO(<nScope> [, <nPosition> [, @<cVarName>]])

 Arguments

 <nScope> = the scope of variables for which an information is asked
 Supported values (defined in hbmemvar.ch) HB_MV_PUBLIC HB_MV_PRIVATE (or any
 other value) <nPosition> = the position of asked variable on the list of variables
 with specified scope - it should start from position 1 <cVarName> = the value is
 filled with a variable name if passed by reference and <nPosition> is specified

 Returns

 Description

 This function retrieves the information about memvar variables. It returns
 either the number of variables with given scope (when the first argument is passed
 only) or a value of variable identified by its position in the variables' list
 (when second argument is passed). It also returns the name of a variable if
 optional third argument is passed by reference.

 If requested variable doesn't exist (requested position is greater then the
 number of defined variables) then NIL value is returned and variable name is set
 to "?"

 The dynamic symbols table is used to find a PUBLIC variable then the PUBLIC
 variables are always sorted alphabetically. The PRIVATE variables are sorted in
 the creation order.

 Note: Due to dynamic nature of memvar variables there is no guarantee that
 successive calls to retrieve the value of <Nth> PUBLIC variable will return the
 value of the same variable.

 Examples

 #include <hbmemvar.ch>

 LOCAL nCount, i, xValue, cName

 nCount =_mvDBGINFO(HB_MV_PUBLIC)
 FOR i:=1 TO nCount
 xValue =__mvDBGINFO(HB_MV_PUBLIC, i, @cName)
 ? i, cName, xValue
 NEXT

 #include <hbmemvar.ch>
 PROCEDURE MAIN()

 ? 'PUBLIC=', __mvDBGINFO(HB_MV_PUBLIC)
 ? 'PRIVATE=', __mvDBGINFO(HB_MV_PRIVATE)

 PUBLIC cPublic:='cPublic in MAIN'

 ? 'PUBLIC=', __mvDBGINFO(HB_MV_PUBLIC)
 ? 'PRIVATE=', __mvDBGINFO(HB_MV_PRIVATE)

 PRIVATE cPrivate:='cPrivate in MAIN'

 ? 'PUBLIC=', __mvDBGINFO(HB_MV_PUBLIC)
 ? 'PRIVATE=', __mvDBGINFO(HB_MV_PRIVATE)

 CountMemvars()

 ? 'Back in Main'
 ? 'PUBLIC=', __mvDBGINFO(HB_MV_PUBLIC)
 ? 'PRIVATE=', __mvDBGINFO(HB_MV_PRIVATE)

 RETURN

 PROCEDURE CountMemvars()
 LOCAL i, nCnt, xVal, cName
 PUBLIC ccPublic:='ccPublic'
 PRIVATE ccPrivate:='ccPrivate'

 ? 'In CountMemvars'
 ? 'PUBLIC=', __mvDBGINFO(HB_MV_PUBLIC)
 ? 'PRIVATE=', __mvDBGINFO(HB_MV_PRIVATE)

 PRIVATE cPublic:='cPublic'

 ? 'PUBLIC=', __mvDBGINFO(HB_MV_PUBLIC)
 ? 'PRIVATE=', __mvDBGINFO(HB_MV_PRIVATE)

 nCnt =__mvDBGINFO(HB_MV_PRIVATE) +1
 FOR i:=1 TO nCnt
 xVal =__mvDBGINFO(HB_MV_PRIVATE, i, @cName)
 ? i, '=', cName, xVal
 NEXT

 nCnt =__mvDBGINFO(HB_MV_PUBLIC) +1
 FOR i:=1 TO nCnt
 xVal =__mvDBGINFO(HB_MV_PUBLIC, i, @cName)
 ? i, '=', cName, xVal
 NEXT

 RETURN

 Status

 Ready

 Compliance

 This function should be called from the debugger only.

 Files

 Library is vm

__MVGET()
This function returns value of memory variable

 Syntax

 __MVGET(<cVarName>) --> <xVar>

 Arguments

 <cVarName> - string that specifies the name of variable

 Returns

 <xVar> The value of variable

 Description

 This function returns the value of PRIVATE or PUBLIC variable if this
 variable exists otherwise it generates a runtime error. The variable is specified
 by its name passed as the function parameter.

 Examples

 FUNCTION MEMVARBLOCK(cMemvar)
 RETURN {|x| IIF(PCOUNT()==0, __MVGET(cMemvar),;
 __MVPUT(cMemvar, x)) }

 Status

 Ready

 Compliance

 This function is a Harbour extension

 Files

 Library is vm

See Also:

__MVPUT()

__MVPUT()
This function set the value of memory variable

 Syntax

 __MVGET(<cVarName> [, <xValue>]) --> <xValue>

 Arguments

 <cVarName> - string that specifies the name of variable <xValue> - a value
 of any type that will be set - if it is not specified then NIL is assumed

 Returns

 <xValue> A value assigned to the given variable.

 Description

 This function sets the value of PRIVATE or PUBLIC variable if this variable
 exists otherwise it generates a runtime error. The variable is specified by its
 name passed as the function parameter. If a value is not specified then the NIL is
 assumed

 Examples

 FUNCTION MEMVARBLOCK(cMemvar)
 RETURN {|x| IIF(PCOUNT()==0, __MVGET(cMemvar),;
 __MVPUT(cMemvar, x)) }

 Status

 Ready

 Compliance

 This function is a Harbour extension

 Files

 Library is vm

See Also:

__MVPUT()

MEMVARBLOCK()
Returns a codeblock that sets/gets a value of memvar variable

 Syntax

 MEMVARBLOCK(<cMemvarName>) --> <bBlock>

 Arguments

 <cMemvarName> - a string that contains the name of variable

 Returns

 <bBlock> a codeblock that sets/get the value of variable

 Description

 This function returns a codeblock that sets/gets the value of PRIVATE or
 PUBLIC variable. When this codeblock is evaluated without any parameters passed
 then it returns the current value of given variable. If the second parameter is
 passed for the codeblock evaluation then its value is used to set the new value of
 given variable - the passed value is also returned as a value of the codeblock
 evaluation.

 Examples

 PROCEDURE MAIN()
 LOCAL cbSetGet
 PUBLIC xPublic

 cbSetGet = MEMVARBLOCK("xPublic")
 EVAL(cbSetGet, "new value")
 ? "Value of xPublic variable", EVAL(cbSetGet)

 RETURN

 Status

 Ready

 Compliance

 This function is Ca-Clipper compatible

 Files

 Library is rtl

See Also:

__MVGET()
__MVPUT()

FIELDBLOCK()
Return a code block that sets/gets a value for a given field

 Syntax

 FIELDBLOCK(<cFieldName>) --> bFieldBlock

 Arguments

 <cFieldName> is a string that contain the field name.

 Returns

 FIELDBLOCK() return a code block that when evaluate could retrieve field
 value or assigning a new value to the field. If <cFieldName> is not specified or
 from type other than character, FIELDBLOCK() return NIL.

 Description

 FIELDBLOCK() return a code block that sets/gets the value of field. When this
 code block is evaluated without any parameters passed then it returns the current
 value of the given field. If the code block is evaluated with a parameter, than its
 value is used to set a new value to the field, this value is also return by the
 block. If the block is evaluate and there is no field with the name <cFieldName>
 in the current work area, the code block return NIL.

 Note that FIELDBLOCK() works on the current work area, if you need a specific
 work area code block use FIELDWBLOCK() instead.

 Examples

 // open a file named Test that have a field named "name"
 LOCAL bField
 bFiled := FIELDBLOCK("name")
 USE Test
 ? 'Original value of field "name" :', EVAL(bField)
 EVAL(bField, "Mr X new name")
 ? 'New value for the field "name" :', EVAL(bField)

 Status

 Ready

 Compliance

 If the block is evaluate and there is no field with the name <cFieldName> in
 the current work area, the code block return NIL.

 CA-Clipper would raise BASE/1003 error if the field does not exist.

 Files

 Library is rtl

See Also:

EVAL()
FIELDWBLOCK()
MEMVARBLOCK()

FIELDWBLOCK()
Return a sets/gets code block for field in a given work area

 Syntax

 FIELDWBLOCK(<cFieldName>, <nWorkArea>) --> bFieldBlock

 Arguments

 <cFieldName> is a string that contain the field name.

 <nWorkArea> is the work area number in which <cFieldName> exist.

 Returns

 FIELDWBLOCK() return a code block that when evaluate could retrieve field
 value or assigning a new value for a field in a given work area. If <cFieldName>
 is not specified or from type other than character, or if <nWorkArea> is not
 specified or is not numeric FIELDWBLOCK() return NIL.

 Description

 FIELDWBLOCK() return a code block that sets/gets the value of field from a
 given work area. When this code block is evaluated without any parameters passed
 then it returns the current value of the given field. If the code block is
 evaluated with a parameter, than its value is used to set a new value to the field,
 this value is also return by the block. If the block is evaluate and there is no
 field with the name <cFieldName> in work area number <nWorkArea>, the code block
 return NIL.

 Examples

 LOCAL bField
 // this block work on the field "name" that exist on work area 2
 bFiled := FIELDBLOCK("name", 2)
 // open a file named One in work area 1
 // that have a field named "name"
 SELECT 1
 USE One
 // open a file named Two in work area 2
 // it also have a field named "name"
 SELECT 2
 USE Two
 SELECT 1
 ? "Original names: ", One->name, Two->name
 ? "Name value for file Two :", EVAL(bField)
 EVAL(bField, "Two has new name")
 ? "and now: ", One->name, Two->name

 Status

 Ready

 Compliance

 If the block is evaluate and there is no field with the name <cFieldName> in
 the given work area, the code block return NIL.

 CA-Clipper would raise BASE/1003 error if the field does not exist.

 Files

 Library is rtl

See Also:

EVAL()
FIELDBLOCK()
MEMVARBLOCK()

TYPE()
Retrieves the type of an expression

 Syntax

 TYPE(<cExp>) --> <cRetType>

 Arguments

 <cExp> must be a character expression.

 Returns

 <cRetType> a string indicating the type of the passed expression.

 Meaning<cRetType>

array"A"

block"B"

string"C"

date"D"

logical"L"

memo"M"

numeric"N"

object"O"

NIL, local, or static variable, or not linked-in function"U"

syntax error in the expression or invalid arguments"UE"

function with non-reserved name was requested"UI"

 Description

 This function returns a string which represents the data type of the
 argument. The argument can be any valid Harbour expression. If there is a syntax
 error in passed expression then "UE" is returned. If there is a call for any
 non-reserved Harbour function then "UI" is returned (in other words there is no
 call for passed UDF function during a data type determination - this is Clipper
 compatible behavior). Additionally if requested user defined function is not
 linked into executable then "U" is returned.

 The data type of expression is checked by invoking a macro compiler and by
 evaluation of generated code (if there is no syntax errors). This causes that
 TYPE() cannot determine a type of local or static variables - only symbols visible
 at runtime can be checked.

 Notice the subtle difference between TYPE and VALTYPE functions. VALTYPE()
 function doesn't call a macro compiler - it simply checks the type of passed
 argument of any type. TYPE() requires a string argument with a valid Harbour
 expression - the data type of this expression is returned.

 Examples

 ? TYPE("{ 1, 2 }") //prints "A"
 ? TYPE("IIF(.T., SUBSTR('TYPE',2,1), .F.)") //prints "C"
 ? TYPE("AT('OK', MyUDF())>0") //prints "UI"
 ? TYPE("{ 1, 2 }[5]") //prints "UE"

 //--

 LOCAL c
 PRIVATE a:="A", b:="B"
 ? TYPE("a + b + c") //prints: "U" ('C' variable is a local one)

 //--

 LOCAL cFilter := SPACE(60)

 ACCEPT "Enter filter expression:" TO cFilter
 IF(TYPE(cFilter) $ "CDLMN"))
 // this is a valid expression
 SET FILTER TO &cFilter
 ENDIF

 Status

 Ready

 Compliance

 - Incompatibility with Clipper: In the following code:

 PRIVATE lCond := 0 ? TYPE("IIF(lCond, 'true', MyUDF())")

 Clipper will print "UE" - in Harbour the output will be "UI"

 - if "UI" is returned then the syntax of the expression is correct. However
 invalid arguments can be passed to function/procedure that will cause runtime
 errors during evaluation of expression.

 Files

 Library is rtl

See Also:

VALTYPE()

VALTYPE()
Retrieves the data type of an expression

 Syntax

 VALTYPE(<xExp>) --> <cReturnType>

 Arguments

 <xExp> is any valid expression.

 Returns

 <cReturnType> a character indicating the type of the passed expression.

 Description

 This function returns one character which represents the date type of the
 argument.

 Examples

 See Test

 Tests

 function Test()
 ? ValType(Array(1)) --> "A"
 ? ValType({|| 1 + 1 }) --> "B"
 ? ValType("HARBOUR") --> "C"
 ? ValType(Date()) --> "D"
 ? ValType(.T.) --> "L"
 ? ValType(1) --> "N"
 ? ValType(TBrowse()) --> "O"
 ? ValType(NIL) --> "U"
 return nil

 Status

 Ready

 Compliance

 VALTYPE() is fully CA-Clipper compliant.

 Files

 Library is rtl

See Also:

TYPE()

BASE/1003
Attempt to acces nonexisting or hidden variable

 Description

 The specified variable was not found.
 If it is a database field make sure that the required database is open.
 If it is a private or public variable then you must first create it using
 PRIVATE or PUBLIC statement.

 Functions

 Status

 Clipper

BASE/1068
Invalid type of argument

 Description

 The used data is not of logical type

 Functions

 Status

 Clipper

BASE/1068
Bound error in array access

 Description

 The attempt to retrieve data from non-array value

 Functions

 Status

 Clipper

BASE/1069
Bound error in array access

 Description

 The attempt to set data to non-array value

 Functions

 Status

 Clipper

BASE/1078
Invalid type of arguments

 Description

 The type of compared arguments do not match

 Functions

 ==

 Status

 Clipper

BASE/1072
Invalid type of arguments

 Description

 The type of compared arguments do not match

 Functions

 <>

 Status

 Clipper

BASE/1073
Invalid type of arguments

 Description

 The type of compared argument do not match

 Functions

 <

 Status

 Clipper

BASE/1074
Invalid type of arguments

 Description

 The type of compared arguments do not match

 Functions

 <=

 Status

 Clipper

BASE/1075
Invalid type of arguments

 Description

 The type of compared arguments do not match

 Functions

 >

 Status

 Clipper

BASE/1076
Invalid type of arguments

 Description

 The type of compared arguments do not match

 Functions

 >=

 Status

 Clipper

BASE/1077
Invalid type of arguments

 Description

 Operation is not allowed for passed argument. The argument is not a logical
 value.

 Functions

 !

 Status

 Clipper

BASE/1078
Invalid type of arguments

 Description

 The type of one or both arguments is not a logical

 Functions

 .AND.

 Status

 Clipper

BASE/1079
Invalid type of arguments

 Description

 The type of one or both arguments is not a logical

 Functions

 .OR.

 Status

 Clipper

BASE/1076
Invalid type of arguments

 Description

 The value of argument cannot be incremented

 Functions

 ++

 Status

 Clipper

BASE/1081
Invalid type of arguments

 Description

 The plus operation is not allowed for used arguments.

 Functions

 +

 Status

 Clipper

BASE/1082
Invalid type of arguments

 Description

 The minus operation is not allowed for used arguments.

 Functions

 -

 Status

 Clipper

BASE/1100
Incorrect type of argument

 Description

 The specified argument is not a string.

 Functions

 RTRIM, TRIM

 Status

 Clipper

BASE/1101
Incorrect type of argument

 Description

 The specified argument is not a string.

 Functions

 LTRIM

 Status

 Clipper

BASE/1102
Invalid argument passed to function

 Description

 The first argument passed to a function is not a string.

 Functions

 UPPER

 Status

 Clipper

BASE/1103
Invalid argument passed to function

 Description

 The first argument passed to a function is not a string.

 Functions

 LOWER

 Status

 Clipper

BASE/1104
Incorrect type of argument

 Description

 The specified argument is not a numeric value.

 Functions

 CHR

 Status

 Clipper

BASE/1105
Invalid argument passed to function

 Description

 The arguments passed to a function are of incorrect type.

 Functions

 SPACE

 Status

 Clipper

BASE/1106
Invalid argument passed to function

 Description

 The arguments passed to a function are of incorrect type.

 Functions

 REPLICATE

 Status

 Clipper

BASE/1107
Incorrect type of argument

 Description

 The specified argument is not a string.

 Functions

 ASC

 Status

 Clipper

BASE/1108
Incorrect type of argument

 Description

 The specified argument is not a string.

 Functions

 AT

 Status

 Clipper

BASE/1076
Invalid type of arguments

 Status

 Clipper

BASE/1110
Invalid argument passed to function

 Description

 The first argument passed to a function is not a string.

 Functions

 SUBSTR

 Status

 Clipper

BASE/1110
Invalid argument passed to function

 Description

 The passed argument is neither a string nor an array.

 Functions

 LEN

 Status

 Clipper

BASE/1112
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function are of incorrect type

 Functions

 YEAR

 Status

 Clipper

BASE/1113
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function are of incorrect type

 Functions

 MONTH

 Status

 Clipper

BASE/1114
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function are of incorrect type

 Functions

 DAY

 Status

 Clipper

BASE/1115
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function are of incorrect type

 Functions

 DOW

 Status

 Clipper

BASE/1116
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function are of incorrect type

 Functions

 CMONTH

 Status

 Clipper

BASE/1117
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is of incorrect type

 Functions

 CDOW

 Status

 Clipper

BASE/1120
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is of incorrect type

 Functions

 DTOS

 Status

 Clipper

BASE/1122
Incorrect type of argument

 Description

 The argument (or arguments) passed to a function is of incorrect type

 Functions

 TRANSFORM

 Status

 Clipper

BASE/1124
Incorrect type of argument

 Description

 The first argument is not a string.

 Functions

 LEFT

 Status

 Clipper

BASE/1126
Invalid argument passed to function

 Description

 The first arguments passed to a function is not a string.

 Functions

 STRTRAN

 Status

 Clipper

BASE/1132
Bound error in array access

 Description

 The specified index into an array was greater then the number of elements in
 the array.

 Functions

 Status

 Clipper

BASE/1133
Bound error in array assigment

 Description

 The specified index into an array was greater then the number of elements in
 the array.

 Functions

 Status

 Clipper

BASE/1068
Bound error in array element assigment

 Description

 The specified index into an array was greater then the number of elements in
 the array.

 Functions

 Status

 Clipper

BASE/1085
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is not an numeric value

 Functions

 MOD

 Status

 Clipper

BASE/1089
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is not an numeric value

 Functions

 ABS

 Status

 Clipper

BASE/1090
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is not an numeric value

 Functions

 INT

 Status

 Clipper

BASE/1092
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is not an numeric value

 Functions

 MIN

 Status

 Clipper

BASE/1093
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is not an numeric value

 Functions

 MAX

 Status

 Clipper

BASE/1094
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is not an numeric value

 Functions

 ROUND

 Status

 Clipper

BASE/1095
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is not an numeric value

 Functions

 LOG

 Status

 Clipper

BASE/1096
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is not an numeric value

 Functions

 EXP

 Status

 Clipper

BASE/1097
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is not an numeric value

 Functions

 SQRT

 Status

 Clipper

BASE/1098
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is not a string value

 Functions

 VAL

 Status

 Clipper

BASE/1099
Invalid argument passed to function

 Description

 The argument (or arguments) passed to a function is not a numeric value

 Functions

 STR

 Status

 Clipper

BASE/2010
Incorrect arguments type

 Description

 Passed Run Time Errors was not strings with filenames to copy/

 Functions

 __COPYFILE

 Compliance

 Harbour specific

BASE/2012
File error

 Description

 An error has occured during the attempt to open, create or write during copy
 operation

 Functions

 __COPYFILE

 Status

 Clipper

BASE/2017
Invalid argument passed to a function

 Description

 The first argument is not an array or/and the second argument is not a code
 block

 Functions

 AEVAL

 Status

 Clipper

BASE/2020
Invalid argument passed to function

 Description

 The passed value is negative. Only values > 0 are allowed.

 Functions

 SET DECIMALS
 SET EPOCH
 SET MARGIN
 SET MESSAGE

 Status

 Clipper

BASE/3001
Incorrect argument type

 Description

 The passed argument is not an object. Only data of type OBJECT can be cloned
 by this function

 Functions

 OCLONE

 Status

 Harbour specific

BASE/3002
Super class does not return an object

 Description

 Passed argument is not a name of defined class or specified class doesn't
 have a super class

 Functions

 __INSTSUPER

 Status

 Harbour specific

BASE/3003
Cannot find super class

 Description

 Passed argument is not a name of defined class

 Functions

 __INSTSUPER

 Status

 Harbour specific

BASE/3004
Cannot modify a DATA item in a class

 Description

 The attempt to modify a data member of a class was made. Only INLINE and
 METHOD can be modified

 Functions

 CLASSMOD

 Status

 Harbour specific

BASE/3005
Incorrect arguments type

 Description

 Either the first argument was not an object or the second argument wasn't a
 string.

 Functions

 ISMESSAGE, OSEND

 Status

 Harbour specific

BASE/3007
Invalid type of argument

 Description

 The passed arguments are causing conflict in hanndling of the request. There
 is no point in waiting forever for no input events!

 Functions

 INKEY

 Status

 Harbour specific

BASE/3008
Invalid type of argument

 Description

 The passed argument(s) is not a string. It should be a string with a variable
 name or an one-dimensional array of strings.

 Functions

 __MVPRIVATE, __MVPUBLIC

 Status

 Harbour specific

BASE/3009
Incorrect argument passed to __MVGET function

 Description

 __MVGET function expects only one argument: a string with a name of variable.
 The value of this variable will be returned.

 Functions

 __MVGET

 Status

 Harbour specific

BASE/3010
Incorrect argument passed to __MVPUT function

 Description

 __MVPUT function expects at least one argument: a string with a name of
 variable. The value of this variable will be set.

 Functions

 __MVPUT

 Status

 Harbour specific

BASE/3011
Invalid argument passed to a function

 Description

 The attempt to retrieve the function argument that was not passed. The number
 of requested argument is greated then the number of passed arguments.

 Functions

 PVALUE

 Status

 Harbour specific

BASE/3012
Invalid argument passed to a function

 Description

 The first argument is not a string with function/procedure name that should
 be called.

 Functions

 DO

 Status

 Harbour specific

BASE/3101
Invalid argument passed to an object/class function

 Description

 One passed argument is not of the required type.

 Functions

 __OBJ*()

 Status

 Harbour specific

BASE/3102
A symbol should be modified or deleted from a class, but the symbol

 Description

 A symbol should be modified or deleted from a class, but the symbol doesn't
 exist.

 Functions

 __OBJ*()

 Status

 Harbour specific

BASE/3103
A symbol should be added to a class, but the symbol already exists.

 Description

 A symbol should be added to a class, but the symbol already exists.

 Functions

 __OBJ*()

 Status

 Harbour specific

TOOLS/4001
Invalid argument passed to function

 Description

 The second arguments passed to a function is not a string.

 Functions

 ISLEAPYEAR

 Status

 Harbour specific

TERM/2013
Create error

 Description

 The specified file cannot be created due some OS error.

 Functions

 SET, SET ALTERNATE TO

 Status

 Clipper

Harbour Extensions
Harbour Extensions

 Description

 Language extensions:

 * Class generation and management.

 Clipper only allowed creation of objects from a few standard classes.

 In Harbour, you can create your own classes--complete with Methods,
 Instance Variables, Class Variables and Inheritance. Entire applications can be
 designed and coded in Object Oriented style.

 * @<FunctionName>()

 Returns the pointer (address) to a function.

 The returned value is not useful to application-level programming, but is
 used at a low level to implement object oriented coding. (Internally, a class
 method is a static function and there is no symbol for it, so it is accessed via
 its address).

 * Class TGetList

 Object oriented support for GetLists management.

 * ProcName() support for class Method names.

 Class Methods can be retrieved from the call stack.

 * Memory() has new return values.

 See hbmemory.ch

 * Transform() --> new function in format string

 @0 Make a zero padded string out of the number.

 * SToD() --> dDate

 New function that converts a yyyymmdd string to a Date value.

 * Optional Compile Time STRONG TYPE declaration (and compile time TYPE MISMATCH
 warnings)

 Example: LOCAL/STATIC Var AS ...

 * The Harbour debugger provides new interesting classes:

 - Class TDbWindow could be the foundation for a generic multiplatform

 - Class TForm

 - Class TDbMenu implement both pulldown and popup menus.

 RTL enhanced functionality:

 - Directory(<cMask>, <cFlags>, <lEightDotThree>)

 The 3rd parameter is a Harbour (optional) parameter and indicates that on those
 platforms that support long filenames, that you wish to receive what would be
 considered the dos equivalant 8.3 name. Could affect Adir() and Dir if they were
 modified to take advantage of it - currently, they will return long names if the os
 supports it.

 - HB_DiskSpace(<nDrive>, <nType>)

 The second parameter is a Harbour (optional) parameter and indicates the type of
 diskinfo being requested. See en/diskspac.txt for info.

GNU License
Gnu License File Part 1

 Description

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991
 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place -
 Suite 330, Boston, MA 02111-1307, USA

 Everyone is permitted to copy and distribute verbatim copies of this license
 document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your freedom to
 share and change it. By contrast, the GNU General Public License is intended to
 guarantee your freedom to share and change free software--to make sure the software
 is free for all its users. This General Public License applies to most of the Free
 Software Foundation's software and to any other program whose authors commit to
 using it. (Some other Free Software Foundation software is covered by the GNU
 Library General Public License instead.) You can apply it to your programs, too.

 When we speak of free software, we are referring to freedom, not price. Our
 General Public Licenses are designed to make sure that you have the freedom to
 distribute copies of free software (and charge for this service if you wish), that
 you receive source code or can get it if you want it, that you can change the
 software or use pieces of it in new free programs; and that you know you can do
 these things.

 To protect your rights, we need to make restrictions that forbid anyone to
 deny you these rights or to ask you to surrender the rights. These restrictions
 translate to certain responsibilities for you if you distribute copies of the
 software, or if you modify it.

 For example, if you distribute copies of such a program, whether gratis or
 for a fee, you must give the recipients all the rights that you have. You must
 make sure that they, too, receive or can get the source code. And you must show
 them these terms so they know their rights.

 We protect your rights with two steps: (1) copyright the software, and (2)
 offer you this license which gives you legal permission to copy, distribute and/or
 vmodify the software.

 Also, for each author's protection and ours, we want to make certain that
 everyone understands that there is no warranty for this free software. If the
 software is modified by someone else and passed on, we want its recipients to know
 that what they have is not the original, so that any problems introduced by others
 will not reflect on the original authors' reputations.

 Finally, any free program is threatened constantly by software patents. We
 wish to avoid the danger that redistributors of a free program will individually
 obtain patent licenses, in effect making the program proprietary. To prevent this,
 we have made it clear that any patent must be licensed for everyone's free use or
 not licensed at all.

 The precise terms and conditions for copying, distribution and modification
 follow.

 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains a notice
 placed by the copyright holder saying it may be distributed under the terms of
 this General Public License. The "Program", below, refers to any such program or
 work, and a "work based on the Program" means either the Program or any derivative
 work under copyright law: that is to say, a work containing the Program or a
 portion of it, either verbatim or with modifications and/or translated into another
 language. (Hereinafter, translation is included without limitation in the term
 "modification".) Each licensee is addressed as "you". Activities other than
 copying, distribution and modification are not covered by this License; they are
 outside its scope. The act of running the Program is not restricted, and the output
 from the Program is covered only if its contents constitute a work based on the
 Program (independent of having been made by running the Program). Whether that is
 true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's source code
 as you receive it, in any medium, provided that you conspicuously and
 appropriately publish on each copy an appropriate copyright notice and disclaimer
 of warranty; keep intact all the notices that refer to this License and to the
 absence of any warranty; and give any other recipients of the Program a copy of
 this License along with the Program. You may charge a fee for the physical act of
 transferring a copy, and you may at your option offer warranty protection in
 exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion of it,
 thus forming a work based on the Program, and copy and distribute such
 modifications or work under the terms of Section 1 above, provided that you also
 meet all of these conditions:

 a) You must cause the modified files to carry prominent notices stating
 that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in whole or
 in part contains or is derived from the Program or any part thereof, to be
 licensed as a whole at no charge to all third parties under the terms of this
 License.

 c) If the modified program normally reads commands interactively when run,
 you must cause it, when started running for such interactive use in the most
 ordinary way, to print or display an announcement including an appropriate
 copyright notice and a notice that there is no warranty (or else, saying that you
 provide a warranty) and that users may redistribute the program under these
 conditions, and telling the user how to view a copy of this License. (Exception: if
 the Program itself is interactive but does not normally print such an announcement,
 your work based on the Program is not required to print an announcement.)

 These requirements apply to the modified work as a whole. If identifiable
 sections of that work are not derived from the Program, and can be reasonably
 considered independent and separate works in themselves, then this License, and its
 terms, do not apply to those sections when you distribute them as separate works.
 But when you distribute the same sections as part of a whole which is a work based
 on the Program, the distribution of the whole must be on the terms of this License,
 whose permissions for other licensees extend to the entire whole, and thus to each
 and every part regardless of who wrote it.

 Thus, it is not the intent of this section to claim rights or contest your
 rights to work written entirely by you; rather, the intent is to exercise the
 right to control the distribution of derivative or collective works based on the
 Program.

 In addition, mere aggregation of another work not based on the Program with
 the Program (or with a work based on the Program) on a volume of a storage or
 distribution medium does not bring the other work under the scope of this License.

 3. You may copy and distribute the Program (or a work based on it, under
 Section 2) in object code or executable form under the terms of Sections 1 and 2
 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable source
 code, which must be distributed under the terms of Sections 1 and 2 above on a
 medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three years, to
 give any third party, for a charge no more than your cost of physically performing
 source distribution, a complete machine-readable copy of the corresponding source
 code, to be distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer to
 distribute corresponding source code. (This alternative is allowed only for
 noncommercial distribution and only if you received the program in object code or
 executable form with such an offer, in accord with Subsection b above.)

 The source code for a work means the preferred form of the work for making
 modifications to it. For an executable work, complete source code means all the
 source code for all modules it contains, plus any associated interface definition
 files, plus the scripts used to control compilation and installation of the
 executable. However, as a special exception, the source code distributed need not
 include anything that is normally distributed (in either source or binary form)
 with the major components (compiler, kernel, and so on) of the operating system on

 which the executable runs, unless that component itself accompanies the executable.

 If distribution of executable or object code is made by offering access to
 copy from a designated place, then offering equivalent access to copy the source
 code from the same place counts as distribution of the source code, even though
 third parties are not compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program except as
 expressly provided under this License. Any attempt otherwise to copy, modify,
 sublicense or distribute the Program is void, and will automatically terminate your
 rights under this License. However, parties who have received copies, or rights,
 from you under this License will not have their licenses terminated so long as
 such parties remain in full compliance.

 5. You are not required to accept this License, since you have not signed it.
 However, nothing else grants you permission to modify or distribute the Program or
 its derivative works. These actions are prohibited by law if you do not accept this
 License. Therefore, by modifying or distributing the Program (or any work based on
 the Program), you indicate your acceptance of this License to do so, and all its
 terms and conditions for copying, distributing or modifying the Program or works
 based on it.

 6. Each time you redistribute the Program (or any work based on the Program),
 the recipient automatically receives a license from the original licensor to copy,
 distribute or modify the Program subject to these terms and conditions. You may not
 impose any further restrictions on the recipients' exercise of the rights granted
 herein. You are not responsible for enforcing compliance by third parties to this
 License.

See Also:

GNU License Part 2

GNU License Part 2
Gnu License File Part 2

 Description

 7. If, as a consequence of a court judgment or allegation of patent
 infringement or for any other reason (not limited to patent issues), conditions
 are imposed on you (whether by court order, agreement or otherwise) that contradict
 the conditions of this License, they do not excuse you from the conditions of this
 License. If you cannot distribute so as to satisfy simultaneously your obligations
 under this License and any other pertinent obligations, then as a consequence you
 may not distribute the Program at all. For example, if a patent license would not
 permit royalty-free redistribution of the Program by all those who receive copies
 directly or indirectly through you, then the only way you could satisfy both it and
 this License would be to refrain entirely from distribution of the Program.

 If any portion of this section is held invalid or unenforceable under any
 particular circumstance, the balance of the section is intended to apply and the
 section as a whole is intended to apply in other circumstances.

 It is not the purpose of this section to induce you to infringe any patents
 or other property right claims or to contest validity of any such claims; this
 section has the sole purpose of protecting the integrity of the free software
 distribution system, which is implemented by public license practices. Many people
 have made generous contributions to the wide range of software distributed through
 that system in reliance on consistent application of that system; it is up to the
 author/donor to decide if he or she is willing to distribute software through any
 other system and a licensee cannot impose that choice.

 This section is intended to make thoroughly clear what is believed to be a
 consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in certain
 countries either by patents or by copyrighted interfaces, the original copyright
 holder who places the Program under this License may add an explicit geographical
 distribution limitation excluding those countries, so that distribution is
 permitted only in or among countries not thus excluded. In such case, this License
 incorporates the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions of
 the General Public License from time to time. Such new versions will be similar in
 spirit to the present version, but may differ in detail to address new problems or
 concerns.

 Each version is given a distinguishing version number. If the Program
 specifies a version number of this License which applies to it and "any later
 version", you have the option of following the terms and conditions either of that
 version or of any later version published by the Free Software Foundation. If the
 Program does not specify a version number of this License, you may choose any
 version ever published by the Free Software Foundation.

 10. If you wish to incorporate parts of the Program into other free programs
 whose distribution conditions are different, write to the author to ask for
 permission. For software which is copyrighted by the Free Software Foundation,
 write to the Free Software Foundation; we sometimes make exceptions for this. Our
 decision will be guided by the two goals of preserving the free status of all
 derivatives of our free software and of promoting the sharing and reuse of software
 generally.

 NO WARRANTY
 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
 THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
 STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
 "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
 NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
 PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
 NECESSARY SERVICING, REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
 WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
 THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
 GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
 INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA

 BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
 OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
 PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 Appendix: How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest possible
 use to the public, the best way to achieve this is to make it free software which
 everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest to attach
 them to the start of each source file to most effectively convey the exclusion of
 warranty; and each file should have at least the "copyright" line and a pointer to
 where the full notice is found:

 <One line to give the program's name and an idea of what it does.> Copyright
 (C) yyyy <name of author>

 This program is free software; you can redistribute it and/or modify it under
 the terms of the GNU General Public License as published by the Free Software
 Foundation; either version 2 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful, but
 WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
 Public License for more details.

 You should have received a copy of the GNU General Public License along with
 this program; if not, write to the Free Software Foundation, Inc.,
 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

 Also add information on how to contact you by electronic and paper mail. If
 the program is interactive, make it output a short notice like this when it starts
 in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author Gnomovision comes
 with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software,
 and you are welcome to redistribute it under certain conditions; type `show c' for
 details.

 The hypothetical commands `show w' and `show c' should show the appropriate
 parts of the General Public License. Of course, the commands you use may be called
 something other than `show w' and `show c'; they could even be mouse-clicks or menu
 items--whatever suits your program.

 You should also get your employer (if you work as a programmer) or your
 school, if any, to sign a "copyright disclaimer" for the program, if necessary.
 Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 signature of Ty Coon, 1 April 1989
 Ty Coon, President of Vice

 This General Public License does not permit incorporating your program into
 proprietary programs. If your program is a subroutine library, you may consider it
 more useful to permit linking proprietary applications with the library. If this is
 what you want to do, use the GNU Library General Public License instead of this
 License.

 FSF & GNU inquiries & questions to gnu@gnu.org.
 Copyright notice above.

 Free Software Foundation, Inc.,
 59 Temple Place - Suite 330, Boston, MA 02111, USA
 Updated: 3 Jan 2000 rms

See Also:

License
GNU License

Compiler Options
Compiler Options

 Description

 Invoking the Harbour compiler:
 ==============================

 harbour <file[.prg]> [options]
 or
 harbour [options] <file[.prg]>
 or
 harbour [options] <file[.prg]> [options]

 The command line options have to be separated by at least one space. The
 option can start with either '/' character or '-' character.

 The Harbour command line options:
 =================================

 /a automatic memvar declaration
 =================

 This causes all variables declared by PARAMETER, PRIVATE or PUBLIC
 statements to be automatically declared as MEMVAR variables.

 /b debug info
 =================

 The compiler generates all information required for debugging

 /d<id>[=<val>] #define <id>
 =================

 /es[<level>] set exit severity
 =================

 /es or /es0 = all warnings are ignored and exit code returned by the
 compiler (accessed by DOS ERRORLEVEL command) is equal to 0 if there are no errors
 in compiled source file.

 /es1 = any warnings generate a non=zero exit code, but output is
 still created.

 /es2 = all warnings are treated as errors and no output file is
 created. The exit code is set to a non=zero value.

 /g<type> output type generated is <type>
 =================

 /gc output type: C source (.c) (default)

 /gf output type: Windows/DOS OBJ32 (.obj)

 /gh output type: Harbour Portable Object (.hrb)

 /gj output type: Java source (.java)

 /gp output type: Pascal source (.pas)

 /gr output type: Windows resource (.rc)

 /i<path> add #include file search path
 =================

 /l suppress line number information
 =================

 The compiler does not generate the source code line numbers in the output
 file. The PROCLINE() function will return 0 for modules compiled using this
 option.

 /m compile current module only
 =================

 /n no implicit starting procedure
 =================

 The compiler does not create a procedure with the same name as the
 compiled file. This means that any declarations placed before the first PROCEDURE
 or FUNCTION statement have file= wide scope and can be accessed/used in all
 functions/procedures defined in the compiled source file. All executable statements
 placed at the beginning of the file and before the first PROCEDURE/FUNCTION
 statement are ignored.

 /o<path> output file drive and/or path
 =================

 /p generate pre=processed output (.ppo) file
 =================

 The compiler only creates the file that contains the result of
 pre=processing the source file.

 /q quiet
 =================

 The compiler does not print any messages during compiling (except the
 copyright info).

 /q0 be really quiet and don't display even the copyright info

 /r[<lib>] request linker to search <lib> (or none)
 =================

 Currently not supported in Harbour.

 /s syntax check only
 =================

 The compiler checks the syntax only. No output file is generated.

 /t<path> path for temp file creation
 =================

 Currently not used in Harbour (the Harbour compiler does not create any
 temporary files).

 /u[<file>] use command definition set in <file> (or none)
 =================

 /v variables are assumed M=>
 =================

 All undeclared or unaliased variables are assumed MEMVAR variables
 (private or public variables). If this switch is not used then the scope of such
 variables is checked at runtime.

 /w[<level>] set warning level number (0..4, default 1)
 =================

 /w0 = no warnings

 /w or /w1 = Clipper compatible warnings

 /w2 = some useful warnings missed in Clipper

 /w3 = warnings generated for Harbour language extensions and also
 enables strong type checking but only warns against declared types, or types which
 may be calculated at compile time

 /w4 = Enables warning about suspicious operations, which means if
 you mix undeclared types, or types which can not be calculated at compile
 time,together with declared types, a warning will be generated.

 /x[<prefix>] set symbol init function name prefix (for .c only)
 =================

 Sets the prefix added to the generated symbol init function name (in C
 output currently). This function is generated automatically for every PRG module

 compiled. This additional prefix can be used to suppress problems with duplicated
 symbols during linking an application with some third party libraries.

 /y trace lex & yacc activity
 =================

 The Harbour compiler uses the FLEX and YACC utilities to parse the source
 code and to generate the required output file. This option traces the activity of
 these utilities.

 /z suppress logical shortcutting (.and. & .or.)
 =================

 /10 restrict symbol length to 10 characters
 =================

 All variable and function names are cut to maximum 10 characters.

 Compilation in batch mode.
 ==========================

 @<file> compile list of modules in <file>
 =================

 Not supported yet.

 Known incompatibilities between harbour and clipper compilers
 ===

 NOTE:

 If you want a 100% compatible compile and runtime libraries then you have to
 define HARBOUR_STRICT_CLIPPER_COMPATIBILITY. This option should be defined in the
 file include/hbsetup.h (in fact this option is placed in a comment by default = you
 need to remove the /* */ characters only). This change has to be done before
 invoking the make utility.

 Handling of undeclared variables
 ================================

 When a value is assigned to an undeclared variable and the '=v' command line
 option is not used, then the Clipper compiler assumes that the variable is a
 PRIVATE or a PUBLIC variable and generates POPM (pop memvar) opcode.

 When the value of an undeclared variable is accessed and the '=v' command
 line option is not used, the Clipper compiler generates PUSHV (push variable)
 opcode that determines the type of variable at runtime. If a field with the
 requested name exists in the current workarea then its value is used. If there is
 no field then a PRIVATE or a PUBLIC variable is used (if exists).

 The Harbour compiler generates an opcode to determine the type of variable at
 runtime (POPVARIABLE or PUSHVARIABLE) in both cases (assignment and access).

 The difference can be checked by the following code:

 PROCEDURE MAIN()
 PRIVATE myname

 DBCREATE("TEST", { { "MYNAME", "C", 10, 0} })
 USE test NEW
 SELECT test
 APPEND BLANK

 FIELD=>myname := "FIELD"
 MEMVAR=>myname := "MEMVAR"

 myname := myname + " assigned"

 // In Clipper: "FIELD", In Harbour: "FIELD assigned"
 ? FIELD=>myname

 // In Clipper: "MEMVAR assigned", In Harbour: "MEMVAR"
 ? MEMVAR=>myname

 USE

 RETURN

 Passing an undeclared variable by the reference
 ===

 The Clipper compiler uses the special opcode PUSHP to pass a reference to an
 undeclared variable ('@' operator). The type of passed variable is checked at
 runtime (field or memvar). However, field variables cannot be passed by reference.
 This means that Clipper checks the memvar variable only and doesn't look for a
 field. This is the reason why the Harbour compiler uses the usual PUSHMEMVARREF
 opcode in such cases. Notice that the runtime behavior is the same in Clipper and
 in Harbour = only the generated opcodes are different.

 Handling of object messages
 ===========================

 The HARBOUR_STRICT_CLIPPER_COMPATIBILITY setting determines the way chained
 send messages are handled.

 For example, the following code:

 a:b(COUNT()):c += 1

 will be handled as:

 a:b(COUNT()):c := a:b(COUNT()):c + 1

 in strict Clipper compatibility mode and

 temp := a:b(COUNT()), temp:c += 1

 in non=strict mode.

 In practice, Clipper will call the COUNT() function two times: the first time
 before addition and the second one after addition. In Harbour, COUNT() will be
 called only once, before addition.

 The Harbour (non=strict) method is:
 1) faster
 2) it guarantees that the same instance variable of the same object will be
 changed

 (See also: source/compiler/expropt.c)

 Initialization of static variables
 ==================================

 There is a difference in the initialization of static variables that are
 initialized with a codeblock that refers to a local variable. For example:

 PROCEDURE TEST()
 LOCAL MyLocalVar
 STATIC MyStaticVar := {|| MyLocalVar }

 MyLocalVar :=0
 ? EVAL(MyStaticVar)

 RETURN

 The above code compiles fine in Clipper, but it generates a runtime error
 Error/BASE 1132 Bound error: array access
 Called form (b)STATICS$(0)

 In Harbour this code generates a compile time error: Error E0009 Illegal
 variable (b) initializer: 'MyLocalVar'

 Both Clipper and Harbour are handling all local variables used in a codeblock
 in a special way: they are detached from the local stack of function/procedure
 where they are declared. This allows access to these variables after the exit from
 a function/procedure. However, all static variables are initialized in a separate

 procedure
 ('STATICS$' in Clipper and '(_INITSTATICS)' in Harbour) before the main
 procedure and before all INIT procedures. The local variables don't exist on the
 eval stack when static variables are initialized, so they cannot be detached.

HB_LANGSELECT()
Select a specific nation message module

 Syntax

 HB_LANGSELECT(<cNewLang>) --> cOldLang

 Arguments

 <cNewLang> The ID of the country language module The possible values for
 <cNewLang> is below as is defined in the Lang library,sorted by language.

 Returns

 <cOldLang> The old language indentifier

 Description

 This function set a default language module for date/month names, internal
 warnigs,NatMsg messages and internal errors. When a Lang ID is selected all
 messages will be output as the current lang selected until another one is selected
 or the program ends.

 Examples

 REQUEST HB_LANG_PT
 REQUEST HB_LANG_RO
 REQUEST HB_LANG_ES
 FUNCTION MAIN()
 HB_LANGSELECT('PT') // Default language is now Portuguese
 ? CDOW(DATE()) //Segunda-feira
 ? 'Old language id selected is ",HB_LANGSELECT() // PT
 HB_LANGSELECT('RO') // Default language is now Romanian
 ? CMONTH(DATE()) // Mai
 ? 'Old language id selected is ",HB_LANGSELECT() // RO
 HB_LANGSELECT('ES') // Default language is now Romanian
 ? CMONTH(DATE()) // Mayo
 ? CDOW(DATE()) // Lunes

 Return nil

 Tests

 See tests/langapi.prg

 Status

 Ready

 Compliance

 This function is a Harbour Extension.

 Platforms

 Dos,Win32,OS/2

 Files

 Libraty is rtl

See Also:

HB_LANGNAME()
NATIONMSG()

HB_LANGNAME()
Return the Name of the Current Language module in USE

 Syntax

 HB_LANGNAME() --> cLangName

 Arguments

 Returns

 <cLangName> Name of the Current language in use

 Description

 This function return the current name of the language module in use.

 Examples

 REQUEST HB_LANG_PT
 REQUEST HB_LANG_RO
 REQUEST HB_LANG_ES
 FUNCTION MAIN()
 HB_LANGSELECT('PT') // Default language is now Portuguese
 ? CDOW(DATE()) //Segunda-feira
 ? 'Current language is ",HB_LANGNAME() //Portuguese
 ? 'Old language id selected is ",HB_LANGSELECT() // PT
 HB_LANGSELECT('RO') // Default language is now Romanian
 ? CMONTH(DATE()) // Mai
 ? 'Old language id selected is ",HB_LANGSELECT() // RO
 HB_LANGSELECT('ES') // Default language is now Romanian
 ? 'Current language is ",HB_LANGNAME() //Spanish
 ? CMONTH(DATE()) // Mayo
 ? CDOW(DATE()) // Lunes

 Tests

 See tests/langapi.prg

 Status

 Ready

 Compliance

 This function is a Harbour Extension

 Platforms

 Dos,Win32,OS/2

 Files

 Library is lang

See Also:

HB_LANGSELECT()
NATIONMSG()

SETMODE()
Change the video mode to a specified number of rows and columns

 Syntax

 SETMODE(<nRows>, <nCols>) --> lSuccess

 Arguments

 <nRows> is the number of rows for the video mode to set.

 <nCols> is the number of columns for the video mode to set.

 Returns

 SETMODE() returns true if the video mode change was successful; otherwise,
 it returns false.

 Description

 SETMODE() is a function that change the video mode depend on the video card
 and monitor combination, to match the number of rows and columns specified. Note
 that there are only a real few combination or rows/cols pairs that produce the
 video mode change. The followings are availables for D.O.S:

 12 rows x 80 columns12 rows x 40 columns

25 rows x 80 columns25 rows x 40 columns

28 rows x 80 columns28 rows x 40 columns

43 rows x 80 columns50 rows x 40 columns

50 rows x 80 columns

 The follow modes are avaliable to Windows

 25 rows x 80 columns25 rows x 40 columns

43 rows x 80 columns50 rows x 40 columns

50 rows x 80 columns

 Some modes only are availables for color and/or VGA monitors. Any change
 produced on the screen size is updated in the values returned by MAXROW() and
 MAXCOL().

 Examples

 þ The first example change to a 12 lines of display mode:
 IF SETMODE(12, 40)
 ? "Hey man are you blind ?"
 ELSE
 ? "Mom bring me my glasses!"
 ENDIF

 þ Next example change to a 50 lines mode:
 IF SETMODE(50, 80)
 ? "This wonderful mode was successfully set"
 ELSE
 ? "Wait. this monitor are not made in rubber !"
 ENDIF

 Status

 Ready

 Compliance

 Some of these modes are not availables on Clipper

 Platforms

 DOS,WIN32

 Files

 Source is gtdos.c,gtwin.c

See Also:

MAXCOL()
MAXROW()

EVAL()
Evaluate a code block

 Syntax

 EVAL(<bBlock> [, <xVal> [,...]]) --> xExpression

 Arguments

 <bBlock> Code block expression to be evaluated

 <xVal> Argument to be passed to the code block expression

 <xVal...> Argument list to be passed to the code block expression

 Returns

 <xExpression> The result of the evaluated code block

 Description

 This function evaluates the code bloc expressed as <bBlock> and returns its
 evaluated value.If their are multiple expressions within the code block,the last
 expression will be value of this function.

 If the code block requires parameters to be passed to it,they are specified
 in the parameter list <xVal> and following.Each parameter is separated by a comma
 within the expression list.

 Examples

 FUNC MAIN
 LOCAL sbBlock := {|| NIL }
 ? Eval(1)
 ? Eval(@sbBlock)

 ? Eval({|p1| p1 },"A","B")
 ? Eval({|p1,p2| p1+p2 },"A","B")
 ? Eval({|p1,p2,p3| p1 },"A","B")
 Return Nil

 Tests

 See examples

 Status

 Ready

 Compliance

 This function is Ca Clipper compliant

 Platforms

 All

 Files

 Library is vm

See Also:

AEVAL()
DBEVAL()

@...Get
Creates a GET object and displays it to the screen

 Syntax

 @ <nRow>,<nCol> [SAY <cSay> [PICTURE <cSayPict>] COLOR <cSayColor>]
 GET <xVar> [PICTURE <cGetPict>] [WHEN <lWhen>] [COLOR <cGetColor>]
 [VALID <lValid> / RANGE <xStart>,<xEnd>]

 Arguments

 <nRow> The row coordinate.

 <nCol> The column coordinate.

 <cSay> Message to display.

 <cSayPict> Character expression of PICTURE displayed.

 <cSayColor> Color to be Used for the SAY expression.

 <xVar> An variable/field name.

 <cGetPict> Character expression of PICTURE to get.

 <lWhen> Logical expression to allow GET.

 <lValid> Logical expression to validate GET input.

 <xStart> Lower RANGE value.

 <xEnd> Upper RANGE value.

 <cGetColor> Color string to be used for the GET expression.

 Returns

 Description

 This command adds a GET object to the reserved array variable named GETLIST[]
 and displays it to the screen. The field or variable to be added to the GET object
 is specified in <xVar> and is displayed at row, column coordinate <nRow>, <nCol>.

 If the SAY clause is used <cSay> will be displayed starting at <nRow>,<nCol>,
 with the field variable <xVar> displayed at ROW(), COL()+ 1. If <cSayPicr>, the
 picture template for the SAY expression <cSay>, is used, all formatting rules
 contained will apply See the TRANSFORM I function for futher information.

 If <cGetPict> is specified, the PICTURE clause of <xVar> will be used for the
 GET object and all formatting rules will apply. See the table below for GET
 formatting rules.

 If the WHEN clause is specified,when <lWhen> evaluates to a logical true
 (.T.) condition, the GET object will he activated otherwise the GET object will be
 skipped and no information will be obtained via the screen. The name of a
 user-defined function returning a logical true (.T.) or false (F.) or a code block
 may be ,specified in <lWhen> This clause not activated until a READ command or
 READMODAL() function call is issued.

 If the VALID clause is specified and <lValid> evaluates to it logical true
 (.T.) condition the current GET will be considered valid and the get operation
 will continue onto the next active GET object. If not, the cursor will remain on
 this GET object until aborted or until the condition in <lValid> evaluates to true
 (.T.). The name of a user-defined function returning a logical true (.T.) or false
 (.F.) or it code block may be specified in <lValid>. This clause is not activated
 until a READ command or READMODAL() function call is issued.

 If the RANGE clause is specified instead of the VALID clause, the two
 inclusive range values for <xVar> must be specified in <xStart> and <xEnd>. Id
 <xVar> is a date data type,<xStart> and <xEnd> must also be date data types; if
 <xVar> is a numeric data type <xStart> and <xEnd> must also be numeric data types.
 If a value fails the RANGE test ,a message of OUT OF RANGE will appear in the
 SCOREBOARD area (row = 0, col = 60).The RANGE message may be turned off it the SET
 SCOREBOARD command or SET() function appropriately toggled.

 NOTE GET functions/formatting rules:

 Allows only alphabetic characters.@A

Numbers will be left justified@B

All positive numbers will be followes by CR.@C

All dates will be in the SET DATE format.@D

Dates will be in British formal: numbers in European format.@E

Allows a suggested value to be seen within the GET@K

area but clears It if any noncu sor key is pressed when

the cursor is in the first Position in the GET area.

Nontemplate characters will be inserted.@R

Allows horizontal scrolling of a field or variable that@S<nSize>

is <nSize> characters wide.

All negative numbers will be followed by DB@X

Displays zero values as blanks.@Z

Forces uppercase lettering@!

Displays negative numbers in parentheses with leading spaces.@(

Displays negative numbers in parentheses without leading
spaces.

@)

 GET templates/formatting rules:

 Only alphabetic characters allowed.A

Only alphabetic and numeric characters allowedN

Any character allowed.X

Only T or F allowed For logical data.L

Only or N allowed for logical data.Y

Only digits, including signs, will be allowed.9

Only digits, signs. and spaces will he allowed.#

Alphabetic characters are converted to Uppercase.!

Dollar will be displayed in place of leading$

spaces for numeric data types.

Asterisk,, will Be displayed in place of leading spaces*

for numeric data types.

Position of decimal point.

Position of comma.,

 Format PICTURE functions may he grouped together as well as used in
 Conjunction with a PICTURE templates;however, a blank space must be included in
 the PICTURE string if there are both functions and templates.

 Examples

 Function Main()
 Local cVar:=Space(50)
 Local nId:=0
 cls
 @ 3,1 SAY "Name" GET cVar PICTURE "@!S 30"
 @ 4,1 SAY "Id" GET nId PICTURE "999.999"
 READ
 ? "The name you entered is",cVar
 ? "The id you entered is",nId
 RETURN NIL

 Tests

 See Examples

 Status

 Ready

 Compliance

 This command is Ca-Clipper compatible

 Platforms

 All

See Also:

@...SAY
ARRAY()
TRANSFORM()

@...SAY
Displays data to specified coordinates of the current device.

 Syntax

 @ <nRow>,<nCol> SAY <xValue> [PICTURE <cPict>] [COLOR <cColor>]

 Arguments

 <nRow> Row coordinate

 <nCol> Column coordinate

 <xValue> Value to display

 <cPict> PICTURE format

 <cColor> Color string

 Returns

 Description

 This command displays the contents of <xValue> at row column coordinates
 <nRow>, <nCol>. A PICTURE clause may be speclfied in <cPict>. If the current
 device is set to the printer, the output will go to the printer; the default is for
 all output to go to the screen.

 For a complete list of PICTURES templates and functions, see the @...GET
 command.

 Examples

 Function Main
 Cls
 @ 2,1 SAY "Harbour"
 @ 3,1 SAY "is" COLOR "b/r+"
 @ 4,1 SAY "Power" PICTURE "@!"
 Return NIL

 Tests

 See Examples

 Status

 Ready

 Compliance

 This command is Ca-Clipper compliant

 Platforms

 All

 Files

See Also:

@...Get
SET DEVICE
TRANSFORM()

Strong Typing
Compile-Time type checking

 Description

 Strong Type Checking, could also be described as "Compile-Time Type
 Checking". As you might know Clipper, generates a Run-Time Error, ("Type
 Mismatch") when we attempt to perform some operations with the wrong type of
 Variable.

 Examples:

 LOCAL Var1 := "A"

 ? Var1 * 3 // Error here.

 @ Var1, 7 SAY 'Hello' // Error here.

 ? SubStr("Hello", Var1) // Error here.

 The above 3 lines would all result in Run-Time Error, because Var1 is of type
 CHARACTER but the above lines used it as if it was of type NUMERIC.

 Using Strong Type Checking, or Compile-Time Type Checking, the above problem
 would have been discovered and reported in COMPILE-TIME, rather than waiting for
 the inevitable problem to be discovered when we finally execute the program.

 Strong Typed Languages allow the programmer to "tell" the compiler (declare)
 what is the type of a each Variable, so that the Compiler in return can warn the
 programmer, when ever such Declared (Strong Typed) Variable, is used in a context
 which is incompatible with its declared type.

 For instance, if we "told" the compiler that Var1 above is of type CHARACTER
 (LOCAL Var1 AS CHARACTER) the Harbour Compiler could, in return, warn us if we
 attempted to perform the calculation:

 Var1 * 3

 because the Compiler knows we can't perform a multiplication of a Character.
 (we might allow it in some context, but this is beyond the scope of this
 discussion). Similarly we would have been warned when attempting to use Var1 as a
 Row Number (@ Var1), or as the 2nd operand of the SubStr() function SubStr(
 "Hello", Var1)), because the Compiler knows that these operations require a
 NUMERIC rather than CHARACTER type.

 The above may save us lots of time, by pointing a problem, we can not escape,
 since such code will never perform correctly once executed. So rather than wait to
 the testing cycle, for such problems to be discovered, (and some times even later,
 after we may have distributed our applications) instead we may know of such
 problems as soon as we type HARBOUR ProgName -w3

 Harbour also offers a hybrid mode, where it can report such type mismatch
 problems, even without requiring the programmer to declare the type of variables.
 This feature, is referred to as Adaptive Type Checking. The programmer, is not
 required to make any changes in his code, to take advantage of this feature. All of
 the above 3 errors would have been reported just as effectively as if the
 programmer Strong Typed (declared) Var1. Harbour would have been able to report
 such problems at compile time,because the assignment Var1 := "A" implied that Var1
 is of type CHARACTER,until it will be assigned another value. Therefore Harbour
 will "remember" that Var1 "adapted" type CHARACTER, and thus the subsequent
 multiplication Var1 * 3, will be reported as an error, as soon as you attempt to
 compile such code.

 The nice aspect of this hybrid mode, is that unlike Strong Typed
 Variables,you don't have to declare the type, so no code changes are need, the
 Type instead is assumed by implication (type of the assigned value). The other
 benefit, is that it is completely ok to assign a new value of different type, any
 time, to such undeclared (variant) variable. As soon as we assign a new type, the
 Compiler will than protect us from using the Variable in an incompatible context,
 since the variable "adapted" this type as soon as we assigned a value which implies
 a type.

 While Adapted Type Checking may be fairly effective in reporting many common
 mistakes, to take full benefits of such Compile-Time checking, it is recommended
 to do declare the Type of Variables, when ever possible.

 The Harbour Strong Type features, also allows the declaration of the expected
 parameters (including optionals) of User Defined Functions, as well as their
 return Type. Similarly, you may declare the Type of any Class Variables, Methods,
 and Methods Parameters.

The Garbage Collector
Readme for Harbour Garbage Collect Feature

 Description

 The garbage collector uses the following logic: - first collect all memory
 allocations that can cause garbage; - next scan all variables if these memory
 blocks are still referenced.

 Notice that only arrays, objects and codeblocks are collected because these
 are the only datatypes that can cause self-references (a[1]:=a) or circular
 references (a[1]:=b; b[1]:=c; c[1]:=a) that cannot be properly deallocated by
 simple reference counting.

 Since all variables in harbour are stored inside some available tables (the
 eval stack, memvars table and array of static variables) then checking if the
 reference is still alive is quite easy and doesn't require any special treatment
 during memory allocation. Additionaly the garbage collector is scanning some
 internal data used by harbour objects implementation that also stores some values
 that can contain memory references. These data are used to initialize class
 instance variables and are stored in class shared variables.

 In special cases when the value of a harbour variable is stored internally in
 some static area (at C or assembler level), for example SETKEY() stores codeblocks
 that will be evaluated when a key is pressed, the garbage collector will be not
 able to scan such values since it doesn't know their location. This could cause
 some memory blocks to be released prematurely. To prevent the premature
 deallocation of such memory blocks they have to be locked for the garbage
 collector. The memory block can be locked with hb_gcLockItem() (recommended method)
 if harbour item structure is used or hb_gcLock() function if a direct memory
 pointer is used. The memory block can be unlocked by hb_gcUnlockItem() or
 hb_gcUnlock().

 Notice however that all variables passed to a low level function are passed
 via the eval stack, so they don't require locking during the function call. The
 locking will be required if a passed value is copied into some static area to make
 it available for other low-level functions called after the exit from function that
 stored the value. This is required because the value is removed from the eval stack
 after the function call and it can be no longer be referenced by other variables.

 However, scanning of all variables can be a time consuming operation. It
 requires that all allocated arrays have to be traversed through all their elements
 to find more arrays. Also all codeblocks are scanned for detached local variables
 they are referencing. For this reason, looking for unreferenced memory blocks is
 performed during the idle states.

 The idle state is a state when there is no real application code executed.
 For example, the user code is stopped for 0.1 of a second during INKEY(0.1) -
 Harbour is checking the keyboard only during this time. It leaves however quite
 enough time for many other background tasks. One such background task can be
 looking for unreferenced memory blocks.

 Allocating memory

 The garbage collector collects memory blocks allocated with hb_gcAlloc()
 function calls. Memory allocated by hb_gcAlloc() should be released with
 hb_gcFree() function.

 Locking memory

 The memory allocated with hb_gcAlloc() should be locked to prevent automatic
 releasing if such a memory pointer is not stored within a harbour level variable.
 All harbour values (items) stored internally in static C area have to be locked.
 See hb_gcLockItem() and hb_gcUnlockItem() for more information.

 The garbage collecting

 During scanning of unreferenced memory the GC is using a mark & sweep
 algorithm. This is done in three steps:

 1) mark all memory blocks allocated by the GC with unused flag;

 2) sweep (scan) all known places and clear unused flag for memory blocks that
 are referenced there;

 3) finalize collecting by deallocation of all memory blocks that are still
 marked as unused and that are not locked.

 To speed things up, the mark step is simplified by swapping the meaning of
 the unused flag. After deallocation of unused blocks all still alive memory blocks
 are marked with the same 'used' flag so we can reverse the meaning of this flag to
 'unused' state in the next collecting. All new or unlocked memory blocks are
 automatically marked as 'unused' using the current flag, which assures that all
 memory blocks are marked with the same flag before the sweep step will start. See
 hb_gcCollectAll() and hb_gcItemRef()

 Calling the garbage collector from harbour code

 The garbage collector can be called directly from the harbour code. This is
 usefull in situations where there is no idle states available or the application
 is working in the loop with no user interaction and there is many memory
 allocations. See HB_GCALL() for explanation of how to call this function from your
 harbour code.

See Also:

hb_gcAlloc()
hb_gcFree()
hb_gcLockItem()
hb_gcUnlockItem()
hb_gcCollectAll()
hb_gcItemRef()
HB_GCALL()
HB_IdleState()

hb_gcAlloc()
Allocates memory that will be collected by the garbage collector.

 Syntax

 #include <hbapi.h>
 void *hb_gcAlloc(ULONG ulSize,
 HB_GARBAGE_FUNC_PTR pCleanupFunc);

 Arguments

 <ulSize> Requested size of memory block

 <pCleanupFunc> Pointer to HB_GARBAGE_FUNC function that will be called
 directly before releasing the garbage memory block or NULL. This function should
 release all other memory allocated and stored inside the memory block. For example,
 it releases all items stored inside the array. The functions receives a single
 parameter: the pointer to memory allocated by hb_gcAlloc().

 Returns

 Description

 hb_gcAlloc() is used to allocate the memory that will be tracked by the
 garbage collector. It allows to properly release memory in case of
 self-referencing or cross-referencing harbour level variables. Memory allocated
 with this function should be released with hb_gcFree() function or it will be
 automatically deallocated by the GC if it is not locked or if it is not referenced
 by some harbour level variable.

 Examples

 See source/vm/arrays.c

 Status

 Clipper

 Compliance

 This function is a Harbour extension

 Platforms

 All

 Files

 source/vm/garbage.c

See Also:

hb_gcFree()
hb_gcLockItem()
hb_gcUnlockItem()

hb_gcFree()
Releases the memory that was allocated with hb_gcAlloc().

 Syntax

 void hb_gcFree(void *pMemoryPtr);

 Arguments

 <pMemoryPtr> The pointer to memory for release. This memory pointer have to
 be allocated with hb_gcAlloc() function.

 Returns

 Description

 hb_gcFree() is used to deallocate the memory that was allocated with the
 hb_gcAlloc() function.

 Examples

 See source/vm/arrays.c

 Status

 Clipper

 Compliance

 This function is a Harbour extension

 Platforms

 All

 Files

 source/vm/garbage.c

See Also:

hb_gcAlloc()
hb_gcLockItem()
hb_gcUnlockItem()

hb_gcLockItem()
Locks the memory to prevent deallocation by the garbage collector.

 Syntax

 void hb_gcLockItem(HB_ITEM_PTR pItem);

 Arguments

 <pItem> The pointer to item structure that will be locked. The passed item
 can be of any datatype although arrays, objects and codeblocks are locked only.
 Other datatypes don't require locking so they are simply ignored.

 Returns

 Description

 hb_gcLockItem() is used to lock the memory pointer stored in the passed item
 structure. It suppres the memory releasing if the garbage collector will not find
 any reference to this pointer. The garbage collector is storing the lock counter -
 every call of this function increases the counter. The item is locked if this
 counter is greather then 0.

 Examples

 See source/rtl/setkey.c

 Status

 Clipper

 Compliance

 This function is a Harbour extension

 Platforms

 All

 Files

 source/vm/garbage.c

See Also:

hb_gcAlloc()
hb_gcFree()
hb_gcUnlockItem()

hb_gcUnlockItem()
Unlocks the memory to prevent deallocation by the garbage collector.

 Syntax

 void hb_gcUnlockItem(HB_ITEM_PTR pItem);

 Arguments

 <pItem> The pointer to item structure that will be unlocked. The passed item
 can be of any datatype although arrays, objects and codeblocks are unlocked only.
 Other datatypes don't require locking so they are simply ignored.

 Returns

 Description

 hb_gcUnlockItem() is used to unlock the memory pointer stored in the passed
 item structure that was previously locked with hb_gcLockItem() call. It allows to
 release the memory during garbage collecting if the garbage collector will not find
 any reference to this pointer. The garbage collector is storing the lock counter -
 every call of this function decreases the counter. This function doesn't deallocate
 memory stored inside the item - the memory can be deallocated however during the
 closest garbage collecting if the lock counter is equal to 0 and the memory pointer
 is not referenced by any harbour level variable.

 Examples

 See source/rtl/setkey.c

 Status

 Clipper

 Compliance

 This function is a Harbour extension

 Platforms

 All

 Files

 source/vm/garbage.c

See Also:

hb_gcAlloc()
hb_gcFree()
hb_gcLockItem()

hb_gcCollectAll()
Scans all memory blocks and releases the garbage memory.

 Syntax

 void hb_gcCollectAll(void);

 Arguments

 Returns

 Description

 This function scans the eval stack, the memvars table, the array of static
 variables and table of created classes for referenced memory blocks. After
 scanning all unused memory blocks and blocks that are not locked are released.

 Status

 Clipper

 Compliance

 This function is a Harbour extension

 Platforms

 All

 Files

 source/vm/garbage.c

See Also:

hb_gcAlloc()
hb_gcFree()
hb_gcLockItem()
hb_gcUnlockItem()

hb_gcItemRef()
Marks the memory to prevent deallocation by the garbage collector.

 Syntax

 void hb_gcItemRef(HB_ITEM_PTR pItem);

 Arguments

 <pItem> The pointer to item structure that will be scanned. The passed item
 can be of any datatype although arrays, objects and codeblocks are scanned only.
 Other datatypes don't require locking so they are simply ignored.

 Returns

 Description

 The garbage collector uses hb_gcItemRef() function during scanning of
 referenced memory pointers. This function checks the type of passed item and scans
 recursively all other memory blocks referenced by this item if it is an array, an
 object or a codeblock.

 NOTE: This function is reserved for the garbage collector only. It cannot be
 called from the user code - calling it can cause unpredicted results (memory
 blocks referenced by the passed item can be released prematurely during the closest
 garbage collection).

 Status

 Clipper

 Compliance

 This function is a Harbour extension

 Platforms

 All

 Files

 source/vm/garbage.c

See Also:

hb_gcAlloc()
hb_gcFree()
hb_gcLockItem()
hb_gcUnlockItem()

HB_GCALL()
Scans the memory and releases all garbage memory blocks.

 Syntax

 HB_GCALL()

 Arguments

 Returns

 Description

 This function releases all memory blocks that are considered as the garbage.

 Status

 Harbour

 Compliance

 This function is a Harbour extension

 Platforms

 All

 Files

 source/vm/garbage.c

See Also:

hb_gcCollectAll()

The idle states
Read me file for Idle States

 Description

 The idle state is the state of the harbour virtual machine when it waits for
 the user input from the keyboard or the mouse. The idle state is entered during
 INKEY() calls currently. All applications that don't use INKEY() function call can
 signal the idle states with the call of HB_IDLESTATE() function (or hb_idleState()
 on C level).

 During idle states the virtual machine calls the garbage collector and it can
 call user defined actions (background tasks). It also releases the CPU time slices
 for some poor platforms that are not smart enough (Windows NT).

 For defining the background tasks see the HB_IDLEADD() and HB_IDLEDEL()
 functions.

 For direct call for background actions see HB_IDLESTATE() function.

 For signaling the idle state from C code see the hb_idleState() API function.

See Also:

HB_IDLEADD()
HB_IDLEDEL()

HB_IDLEADD()
Adds the background task.

 Syntax

 HB_IDLEADD(<cbAction>) --> nHandle

 Arguments

 <cbAction> is a codeblock that will be executed during idle states. There
 are no arguments passed to this codeblock during evaluation.

 Returns

 <nHandle> The handle (an integer value) that identifies the task. This
 handle can be used for deleting the task.

 Description

 HB_IDLEADD() adds a passed codeblock to the list of background tasks that
 will be evaluated during the idle states. There is no limit for the number of
 tasks.

 Examples

 nTask := HB_IDLEADD({|| SayTime()})

 Status

 Ready

 Compliance

 Harbour extension similar to FT_ONIDLE() function available in NanForum
 library.

 Platforms

 All

 Files

 source/rtl/idle.c

See Also:

HB_IDLEDEL()
HB_IdleState()

HB_IDLEDEL()
Removes the background task from the list of tasks.

 Syntax

 HB_IDLEDEL(<nHandle>) --> xAction

 Arguments

 <nHandle> is the identifier of the task returned by the HB_IDLEADD()
 function.

 Returns

 <xAction> NIL if invalid handle is passed or a codeblock that was passed to
 HB_IDLEADD() function

 Description

 HB_IDLEDEL() removes the action associated with passed identifier from the
 list of background tasks. The identifer should be the value returned by the
 previous call of HB_IDLEADD() function.

 If specified task is defined then the codeblock is returned otherwise the NIL
 value is returned.

 Examples

 nTask := HB_IDLEADD({|| SayTime()})
 INKEY(10)
 cbAction := HB_IDLEDEL(nTask)

 Status

 Ready

 Compliance

 Harbour extension

 Platforms

 All

 Files

 source/rtl/idle.c

See Also:

HB_IDLEADD()
HB_IdleState()

HB_IdleState()
Evaluates a single background task and calls the garbage collector.

 Syntax

 HB_IDLESTATE()

 Arguments

 Returns

 Description

 HB_IDLESTATE() requests the garbage collection and executes a single
 background task defined by the codeblock passed with HB_IDLEADD() function. Every
 call to this function evaluates a different task in the order of task creation.
 There are no arguments passed during a codeblock evaluation.

 This function can be safely called even if there are no background tasks
 defined.

 Examples

 nTask1 := HB_IDLEADD({|| SayTime()})
 nTask2 := HB_IDLEADD({|| SaveScreen()})
 DO WHILE(!bFinished)
 bFinished :=DOSomethingVeryImportant()
 HB_IdleState()
 ENDDO
 cbAction := HB_IDLEDEL(nTask1)
 HB_IDLEDEL(nTask2)

 Status

 Ready

 Compliance

 Harbour extension similar to FT_IAMIDLE() function available in NanForum
 library.

 Platforms

 All

 Files

 source/rtl/idle.c

See Also:

HB_IDLEADD()
HB_IDLEDEL()

hb_idleState()
Evaluates a single background task and calls the garbage collector.

 Syntax

 void hb_idleState(void);

 Arguments

 Returns

 Description

 hb_idleState() is a C function that requests garbage collection and executes
 a single background task defined by the codeblock passed with HB_IDLEADD()
 function. It also releases the CPU time slices for platforms that require it.

 Every call for this function evaluates different task in the order of task
 creation. There are no arguments passed during codeblock evaluation.

 This function can be safely called even if there are no background tasks
 defined.

 This function is automatically called from the INKEY() function.

 Status

 Ready

 Platforms

 All

 Files

 source/rtl/idle.c

See Also:

HB_IDLEADD()
HB_IDLEDEL()
HB_IdleState()

Command line Utility
Compiler Options

 Description

 This spec goes for CLIPPERCMD, HARBOURCMD, Harbour compiler and #pragma
 directives in the source code.

 The command line always overrides the envvar.

 Note that some switches are not accepted in envvar,some others in #pragmas.

 First the parser should start to step through all the tokens in the string
 separated by whitespace. (or just walk through all argv[])

 1.) If the token begins with "-", it should be treated as a new style switch.

 One or more switch characters can follow this. The "-" sign inside the token
 will turn off the switch.

 If the switch has an argument all the following characters are treated as
 part of the argument.

 The "/" sign has no special meaning here.

 Result optionSwitch

(W N)-wn

(!W N)-w-n

(W I=/harbour/include/)-wi/harbour/include/

(W I=/harbour/include/n)-wi/harbour/include/n

(W ES=0 N)-wes0n

(W [invalid switch: e] N)-wen

(W ES=default(0) N)-wesn

(W S ES=default(0))-wses

(W ES=default(0) S)-wess

([invalid switch])-

(!W !N P)-w-n-p

(!W !N !P)-w-n-p-

(finally: !W)-w- -w -w-

 2.) If the token begins with "/", it should be treated as a compatibility
 style switch.

 The parser scans the token for the next "/" sign or EOS and treats the
 resulting string as one switch.

 This means that a switch with an argument containing "/" sign has some
 limitations. This may be solved by allowing the usage of quote characters. This is
 mostly a problem on systems which use "/" as path separator.

 The "-" sign has no special meaning here, it can't be used to disable a
 switch.

 Result optionSwitch

(W N)/w/n

([invalid switch: wo] N)/wo/n

(I=hello [invalid switch: world] [invalid switch: /])/ihello/world/

(I=hello/world/ W)/i"hello/world/"/w

(I=hello\world\)/ihello\world\

 3.) If the token begins with anything else it should be skipped.

 The Harbour switches are always case insensitive.

 In the Harbour commandline the two style can be used together:
 HARBOUR -wnes2 /gc0/q0 -ic:\hello

 Exceptions:

 - Handlig of the /CREDIT undocumented switch on Harbour command line is
 unusual, check the current code for this.

 - The CLIPPER, HARBOUR and Harbour application command line parsing is a
 different beast, see CMDARG.C for a NOTE.

 Notes:

 - All occurences where a path is accepted, Harbour should handle the quote
 char to specify path containing space, negative sign, slash, or any other chars
 with special meaning.

 /i"c:/hello/"
 -i"c:/hello-n"
 /i"c:/program files/"
 -i"c:/program files/"

 Just some examples for the various accepted forms:
 //F20 == /F20 == F20 == F:20 == F20X
 //TMPPATH:C:\HELLO
 F20//TMPPATH:/TEMP///F:30000000 NOIDLE
 F0NOIDLEX10
 SQUAWKNOIDLE

 "//" should always be used on the command line.

See Also:

Compiler Options

TBROWSENew()
Create a Browse Object

 Constructor syntax

 TBROWSENew(<nTop>,<nLeft>,<nBottom>,<nRight>) --> <oBrowse>

 Arguments

 <nTop> Top Row

 <nLeft> Top Left Column

 <nBottom> Bottom Row

 <nRight> Bottom Right Column

 Returns

 <oBrowse> An new Browse Object

 Description

 This function set up a browsing window at top-left coordinates of
 <nTop>,<nLeft> to bottom-right coordinates of <nBottom>,<nRight>. To browse
 Database files use TBROWSEDB() function insted.

 Data

 :aColumns Array to hold all browse columns

 :autoLite Logical value to control highlighting

 :cargo User-definable variable

 :colorSpec Color table for the TBrowse display

 :colPos Current cursor column position

 :colSep Column separator character

 :footSep Footing separator character

 :freeze Number of columns to freeze

 :goBottomBlock Code block executed by TBrowse:goBottom()

 :goTopBlock Code block executed by TBrowse:goTop()

 :headSep Heading separator character

 :hitBottom Indicates the end of available data

 :hitTop Indicates the beginning of available data

 :leftVisible Indicates position of leftmost unfrozen column in display

 :nBottom Bottom row number for the TBrowse display

 :nLeft Leftmost column for the TBrowse display

 :nRight Rightmost column for the TBrowse display

 :nTop Top row number for the TBrowse display

 :rightVisible Indicates position of rightmost unfrozen column in display

 :rowCount Number of visible data rows in the TBrowse display

 :rowPos Current cursor row position

 :skipBlock Code block used to reposition data source

 :stable Indicates if the TBrowse object is stable

 :aRedraw Array of logical items indicating, is appropriate row need to
 be redraw

 :RelativePos Indicates record position relatively position of first record
 on the screen

 :lHeaders Internal variable which indicates whether there are column
 footers to paint

 :lFooters Internal variable which indicates whether there are column
 footers to paint

 :aRect The rectangle specified with ColorRect()

 :aRectColor The color positions to use in the rectangle specified with
 ColorRect()

 :aKeys Holds the Default movement keys

 Method

 New(nTop, nLeft, nBottom, nRight) Create an new Browse class and set the
 default values

 Down() Moves the cursor down one row

 End() Moves the cursor to the rightmost visible data column

 GoBottom() Repositions the data source to the bottom of file

 GoTop() Repositions the data source to the top of file

 Home() Moves the cursor to the leftmost visible data column

 Left() Moves the cursor left one column

 PageDown() Repositions the data source downward

 PageUp() Repositions the data source upward

 PanEnd() Moves the cursor to the rightmost data column

 PanHome() Moves the cursor to the leftmost visible data column

 PanLeft() Pans left without changing the cursor position

 PanRight() Pans right without changing the cursor position

 Right() Moves the cursor right one column

 Up() Moves the cursor up one row

 ColCount() Return the Current number of Columns

 ColorRect() Alters the color of a rectangular group of cells

 ColWidth(nColumn) Returns the display width of a particular column

 Configure(nMode) Reconfigures the internal settings of the TBrowse object
 nMode is an undocumented parameter in CA-Cl*pper

 LeftDetermine() Determine leftmost unfrozen column in display

 DeHilite() Dehighlights the current cell

 DelColumn(nPos) Delete a column object from a browse

 ForceStable() Performs a full stabilization

 GetColumn(nColumn) Gets a specific TBColumn object

 Hilite() Highlights the current cell

 InsColumn(nPos, oCol) Insert a column object in a browse

 Invalidate() Forces entire redraw during next stabilization

 RefreshAll() Causes all data to be recalculated during the next
 stabilize

 RefreshCurrent() Causes the current row to be refilled and repainted on
 next stabilize

 SetColumn(nColumn, oCol) Replaces one TBColumn object with another

 Stabilize() Performs incremental stabilization

 DispCell(nColumn, cColor) Displays a single cell

 Examples

 See tests/testbrw.prg

 Tests

 See tests/testbrw.prg

 Status

 Started

 Compliance

 This functions is Compatible with Ca-Clipper 5.2. The applykey() and Setkey()
 methods are only visible if HB_COMPAT_C53 is defined.

 Platforms

 All

 Files

 Library is rtl

See Also:

TBROWSENew()
ARRAY()

SetKey()
Get an optionaly Set an new Code block associated to a inkey value

 Syntax

 SetKey(<nKey>[,<bBlock>]) --> bOldBlock

 Arguments

 <nKey> An valid inkey Code

 <bBlock> An optional action to associate to the inkey value.

 Returns

 <bOldBlock> If an Keypress has it code block changes, it will return the
 previus one; otherwise, it will return the current one

 Description

 This method Get an optionaly set an code block that is associated to an inkey
 value. The table below show the default keypress/Code Block definitions

 Code BlockInkey Value

{|Ob,nKey| Ob:Down(),0}K_DOWN

{|Ob,nKey| Ob:End(),0}K_END

{|Ob,nKey| Ob:GoBottom(),0}K_CTRL_PGDN

{|Ob,nKey| Ob:GoTop(),0}K_CTRL_PGUP

{|Ob,nKey| Ob:Home(),0}K_HOME

{|Ob,nKey| Ob:Left(),0}K_LEFT

{|Ob,nKey| Ob:PageDown(),0}K_PGDN

{|Ob,nKey| Ob:PageUp(),0}K_PGUP

{|Ob,nKey| Ob:PanEnd(),0}K_CTRL_END

{|Ob,nKey| Ob:PanHome(),0}K_CTRL_HOME

{|Ob,nKey| Ob:PanLeft(),0}K_CTRL_LEFT

{|Ob,nKey| Ob:PanRight(),0}K_CTRL_RIGHT

{|Ob,nKey| Ob:Right(),0}K_RIGHT

{|Ob,nKey| Ob:Up(),0}K_UP

{|Ob,nKey| -1 }K_ESC

 The keys handlers can be queried,added and replace an removed from the
 internal keyboard dictionary. See the example.

 oTb:SETKEY(K_TAB,{|oTb,nKey| -1})

 An default key handler can be declared by specifyin a value of 0 for
 <nKey>.It associate code block will be evaluated each time TBrowse:Applykey() is
 called with an key value that is not contained in the dictionary. For example

 oTb:SetKey(0,{|oTb,nKey| DefKeyHandler(otb,nkey}) This call the a function
 named DefKeyHandler() when nKey is not contained in the dictionary.

 To remove an keypress/code block definition, specify NIL for <bBlock>
 oTb:SetKey(K_ESC,nil)

 Examples

 oTb:SeyKey(K_F10,{|otb,nkey| ShowListByname(otb)}

Applykey()
Evaluates an code block associated with an specific key

 Syntax

 ApplyKey(<nKey>) --> nResult

 Arguments

 <nKey> An valid Inkey code

 Returns

 <nResult> Value returned from the evaluated Code Block See Table Below

 MeaningValue

User request for the browse lost input focus-1

Code block associated with <nkey> was evaluated0

Unable to locate <nKey> in the dictionary,Key was not
processed

1

 Description

 This method evaluate an code block associated with <nkey> that is contained
 in the TBrowse:setkey() dictionary.

 Examples

 while .t.
 oTb:forceStable()
 if (oTb:applykey(inkey(0))==-1)
 exit
 endif
 enddo

AddColumn()
Add an New Column to an TBrowse Object

 Syntax

 AddColumn(oCol) --> Self

 Arguments

 <oCol> Is an TbColumn object

 Returns

 <Self> The Current object

 Description

 This method add an new column object specified as <oCol> to the assigned
 browsing object.

	Document
	License
	OVERVIEW
	Harbour Extensions
	GNU License
	GNU License Part 2
	Compiler Options
	Strong Typing
	The Garbage Collector
	The idle states
	Command line Utility

	Array
	ARRAY()
	AADD()
	ASIZE()
	ATAIL()
	AINS()
	ADEL()
	AFILL()
	ASCAN()
	AEVAL()
	ACOPY()
	ACLONE()
	ASORT()
	ADIR()
	ACHOICE()

	Binary conversion
	BIN2W()
	BIN2I()
	BIN2L()
	BIN2U()
	I2BIN()
	W2BIN()
	L2BIN()
	U2BIN()

	Conversion
	WORD()
	EMPTY()
	DESCEND()

	Data input and output
	DBEDIT()*
	BROWSE()
	__TYPEFILE()
	READKEY()*
	__AtPrompt()
	__MenuTo()
	__XSaveScreen()
	__XRestScreen()
	ALERT()
	__NONOALERT()
	__INPUT()
	OUTSTD()
	OUTERR()
	READVAR()

	TBrowse class
	TBrowseDB()
	TBROWSENew()

	Database
	dbSkipper()
	__dbCopyStruct()
	__dbCopyXStruct()
	__dbCreate()
	__FLEDIT()*
	__dbStructFilter()
	RDDLIST()
	RDDNAME()
	RDDSETDEFAULT()
	__RDDSETDEFAULT()
	DBEVAL()
	DBF()
	DBAPPEND()
	DBCLEARFILTER()
	DBCLOSEALL()
	DBCLOSEAREA()
	DBCOMMIT()
	DBCOMMITALL()
	__DBCONTINUE()
	DBCREATE()
	DBDELETE()
	DBFILTER()
	DBGOBOTTOM()
	DBGOTO()
	DBGOTOP()
	DBRECALL()
	DBRLOCK()
	DBRLOCKLIST()
	DBRUNLOCK()
	DBSEEK()
	DBSELECTAREA()
	DBSETDRIVER()
	DBSKIP()
	DBSETFILTER()
	DBSTRUCT()
	DBUNLOCK()
	DBUNLOCKALL()
	DBUSEAREA()
	__DBZAP()
	ORDBAGEXT()
	ORDBAGNAME()
	ORDCONDSET()
	ORDCREATE()
	ORDDESTROY()
	ORDFOR()
	ORDKEY()
	ORDLISTADD()
	ORDLISTCLEAR()
	ORDLISTREBUILD()
	ORDNAME()
	ORDNUMBER()
	ORDSETFOCUS()
	INDEXEXT()
	INDEXKEY()
	INDEXORD()
	AFIELDS()
	ALIAS()
	BOF()
	DELETED()
	EOF()
	FCOUNT()
	FIELDGET()
	FIELDNAME()
	FIELDPOS()
	FIELDPUT()
	FLOCK()
	FOUND()
	HEADER()
	LASTREC()
	LUPDATE()
	NETERR()
	RECCOUNT()
	RECNO()
	RECSIZE()
	RLOCK()
	SELECT()
	USED()

	OOP Command
	CLASS
	DATA
	CLASSDATA
	METHOD
	MESSAGE
	ERROR HANDLER
	ON ERROR
	ENDCLASS

	Date
	CDOW()
	CMONTH()
	DATE()
	CTOD()
	DAY()
	DAYS()
	DOW()
	DTOC()
	DTOS()
	MONTH()
	YEAR()

	Time
	ELAPTIME()
	SECONDS()
	SECS()
	TIME()

	Command
	COPY STRUCTURE
	COPY STRUCTURE EXTENDED
	CREATE
	CREATE FROM
	DIR
	RENAME
	ERASE
	DELETE FILE
	TYPE
	COPY FILE
	KEYBOARD
	@...PROMPT
	MENU TO
	RUN
	ZAP
	PACK
	SET FUNCTION
	SET KEY
	SET DEFAULT
	SET WRAP
	SET MESSAGE
	SET PATH
	SET INTENSITY
	SET ALTERNATE
	SET CENTURY
	SET DATE
	SET EPOCH
	SET FIXED
	SET PRINTER
	SET CONSOLE
	SET DECIMALS
	SET DEVICE
	SET BELL
	SAVE SCREEN
	RESTORE SCREEN
	EJECT
	LABEL FORM
	REPORT FORM
	@...Get
	@...SAY

	Low Level
	DISKSPACE()
	HB_DISKSPACE()
	FOPEN()
	FCREATE()
	FREAD()
	FWRITE()
	FERROR()
	FCLOSE()
	FERASE()
	FSEEK()
	FREADSTR()
	CURDIR()
	HB_FEOF()
	DIRREMOVE()
	DIRCHANGE()
	MAKEDIR()
	ISDISK()

	File management
	__Dir()*
	FRENAME()
	FILE()

	Error recovery
	ERRORSYS()
	BREAK()

	Misc
	PROCNAME()
	PROCLINE()
	PROCFILE()
	TYPE()
	VALTYPE()

	Parameter Checks
	HB_PVALUE()
	PCOUNT()

	Events
	__QUIT()
	SETKEY()
	HB_SetKeyGet()
	HB_SETKEYSAVE()
	HB_SetKeyCheck()
	__WAIT()

	Internal
	CLIPINIT()
	__SetHelpK()
	__XHELP()
	__TextSave()
	__TextRestore()

	Utility
	DO()

	Variable Management
	__VMVARLGET()
	__MVPUBLIC()
	__MVPRIVATE()
	__MVXRELEASE()
	__MVRELEASE()
	__MVSCOPE()
	__MVCLEAR()
	__MVDBGINFO()
	__MVGET()
	__MVPUT()
	MEMVARBLOCK()

	Console input
	INKEY()
	__KEYBOARD()
	HB_KEYPUT()
	NEXTKEY()
	LASTKEY()
	MROW()
	MCOL()

	Math
	ABS()
	EXP()
	INT()
	LOG()
	MAX()
	MIN()
	MOD()
	SQRT()
	ROUND()

	Strings
	MEMOTRAN()
	HARDCR()
	ISALPHA()
	ISDIGIT()
	ISUPPER()
	ISLOWER()
	LTRIM()
	AT()
	RAT()
	LEFT()
	RIGHT()
	SUBSTR()
	STR()
	STRZERO()
	HB_VALTOSTR()
	LEN()
	HB_ANSITOOEM()
	HB_OEMTOANSI()
	LOWER()
	UPPER()
	CHR()
	ASC()
	PADC()
	PADL()
	PADR()
	ALLTRIM()
	RTRIM()
	TRIM()
	REPLICATE()
	SPACE()
	VAL()
	STRTRAN()
	TRANSFORM()

	DOS
	OS()
	__RUN()

	Environment
	VERSION()
	GETENV()
	__SETCENTURY()
	SET()
	__SetFunction()
	SETTYPEAHEAD()
	SETMODE()

	Miscellaneous
	TONE()

	Nation
	ISAFFIRM()
	ISNEGATIVE()
	NATIONMSG()
	HB_LANGSELECT()
	HB_LANGNAME()

	Object manipulation
	__objHasData()
	__objHasMethod()
	__objGetMsgList()
	__objGetMethodList()
	__objGetValueList()
	__ObjSetValueList()
	__objAddMethod()
	__objAddInline()
	__objAddData()
	__objModMethod()
	__objModInline()
	__objDelMethod()
	__objDelInline()
	__objDelData()
	__objDerivedFrom()

	Classes
	TClass()

	Operating System Specific
	HB_OSNEWLINE()

	GT
	hb_ColorIndex()
	COL()
	ROW()
	MAXCOL()
	MAXROW()

	Terminal
	DEVOUTPICT()

	Code Block
	FIELDBLOCK()
	FIELDWBLOCK()
	EVAL()

	Run Time Errors
	BASE/1003
	BASE/1068
	BASE/1068
	BASE/1069
	BASE/1078
	BASE/1072
	BASE/1073
	BASE/1074
	BASE/1075
	BASE/1076
	BASE/1077
	BASE/1078
	BASE/1079
	BASE/1076
	BASE/1081
	BASE/1082
	BASE/1100
	BASE/1101
	BASE/1102
	BASE/1103
	BASE/1104
	BASE/1105
	BASE/1106
	BASE/1107
	BASE/1108
	BASE/1076
	BASE/1110
	BASE/1110
	BASE/1112
	BASE/1113
	BASE/1114
	BASE/1115
	BASE/1116
	BASE/1117
	BASE/1120
	BASE/1122
	BASE/1124
	BASE/1126
	BASE/1132
	BASE/1133
	BASE/1068
	BASE/1085
	BASE/1089
	BASE/1090
	BASE/1092
	BASE/1093
	BASE/1094
	BASE/1095
	BASE/1096
	BASE/1097
	BASE/1098
	BASE/1099
	BASE/2010
	BASE/2012
	BASE/2017
	BASE/2020
	BASE/3001
	BASE/3002
	BASE/3003
	BASE/3004
	BASE/3005
	BASE/3007
	BASE/3008
	BASE/3009
	BASE/3010
	BASE/3011
	BASE/3012
	BASE/3101
	BASE/3102
	BASE/3103
	TOOLS/4001
	TERM/2013

	The garbage collector
	hb_gcAlloc()
	hb_gcFree()
	hb_gcLockItem()
	hb_gcUnlockItem()
	hb_gcCollectAll()
	hb_gcItemRef()
	HB_GCALL()

	The idle states
	HB_IDLEADD()
	HB_IDLEDEL()
	HB_IdleState()
	hb_idleState()

	TBrowse Method
	SetKey()
	Applykey()
	AddColumn()

