

 NativeDB 1.95 for
 Sybase SQL Anywhere

 A Programmer’s Guide

Copyright © 1995-2005 Liodden Data - All rights reserved
No part of this document covered by the copyright

may be reproduced or otherwise copied
without prior written consent of the authors

NativeDB for SQL Anywhere - A Programmer's Guide Page 2

Contents
1. Introduction ... 5

1.1 Overview... 5
1.2 Copyright and licensing terms.. 6

2. Installation ... 7
2.1 Files and directories ... 7
2.2 Online help ... 9
2.3 Units and OOP structures .. 10

2.3.1 Classes .. 10
2.3.2 Unit NdbBase... 11
2.3.3 Unit NdbAsa... 12
2.3.4 Unit NdbAsaLg... 12
2.3.5 Unit NdbBasDS.. 12
2.3.6 Unit NdbAsaDS.. 13
2.3.7 Unit NdbAlert ... 13
2.3.8 Unit NdbApp .. 13

3. Component Reference.. 14
3.1 TAsaSession .. 14

3.1.1 Properties .. 14
3.1.2 Methods ... 19
3.1.3 Events .. 22

3.2 TAsaSQL .. 23
3.2.1 Properties .. 23
3.2.2 Methods ... 25
3.2.3 Events .. 30

3.3 TAsaLogin .. 30
3.3.1 Properties .. 30
3.3.2 Methods ... 31

3.4 TAsaDataset... 31
3.4.1 Properties .. 31
3.4.2 Methods ... 32
3.4.3 Events .. 33

3.5 TAsaStoredProc ... 33
3.5.1 Properties .. 34
3.5.2 Methods ... 34
3.5.3 Events .. 34

3.6 TAsaAlert.. 35
3.6.1 Properties .. 35
3.6.2 Methods ... 36
3.6.3 Events .. 36

3.7 TNativeParam .. 37
3.7.1 Properties .. 37
3.7.2 Methods ... 38

3.8 TNativeParams... 38
3.8.1 Properties .. 38
3.8.2 Methods ... 39

3.9 ENativeException ... 39
3.9.1 Properties .. 39

3.10 EAsaException ... 39
3.11 ENativeDatasetError .. 39

4. Component Usage .. 40
4.1 Working with TAsaSession... 40

4.1.1 Personal engine connection .. 40
4.1.2 Network engine connection ... 41
4.1.3 Runtime engine connection ... 41

NativeDB for SQL Anywhere - A Programmer's Guide Page 3

4.1.4 Client connection ... 41
4.1.5 Workgroup connection... 42
4.1.6 Transaction handling ... 43
4.1.7 Backing up the database ... 44
4.1.8 Server messages... 44
4.1.9 Multi-threading ... 45

4.2 Working with TAsaSQL .. 46
4.2.1 Queries .. 46
4.2.2 Datatypes... 46
4.2.3 Binary data... 47
4.2.4 Binary Large Objects (BLOBS).. 48
4.2.5 Handling NULL values... 49
4.2.6 Appending rows ... 49
4.2.7 Appending rows containing a auto-incremental column.. 50
4.2.8 Modifying rows... 50
4.2.9 Deleting rows ... 50
4.2.10 Executing SQL statements .. 50
4.2.11 Using parameters .. 51
4.2.12 Using prepared statements ... 52
4.2.13 Calling stored procedures.. 53
4.2.14 Using compound statements ... 55
4.2.15 Breaking a running stored procedure .. 55

4.3 Working with TAsaDataset ... 56
4.3.1 Queries .. 57
4.3.2 Parameters .. 57
4.3.3 Searching... 57
4.3.4 Appending rows ... 57
4.3.5 Modifying rows... 58
4.3.6 Deleting rows ... 58
4.3.7 Updating BLOBs .. 58
4.3.8 Concurrency issues ... 59

4.4 Working with TAsaStoredProc ... 62
4.4.1 Stored Procedures with INOUT and OUT parameter types 62
4.4.2 Stored Procedures returning Result sets... 62
4.4.3 Resuming a Stored Procedure .. 62

5. Appendices .. 63
5.1 Converting from BDE to NDB... 63

5.1.1 Step 1 - Replacing TDatabase or a BDE Alias.. 63
5.1.2 Step 2 - Replacing TQuery .. 64
5.1.3 Step 3 - Replacing TTable... 64
5.1.4 Step 4 - Replacing TStoredProc.. 64
5.1.5 Step 5 - Changing Sourcecode ... 65

5.2 Using NativeDB with C++Builder ... 65
5.2.1 Connecting to a running database engine... 65
5.2.2 A simple query ... 66
5.2.3 A query with host variables.. 66
5.2.4 Appending rows ... 66
5.2.5 Modifying rows... 67
5.2.6 Deleting rows ... 67
5.2.7 Executing SQL statements .. 67
5.2.8 Calling Stored Procedures... 67

5.3 Using NativeDB ActiveX with Visual Basic... 68
5.3.1 Running the VB demo.. 68
5.3.2 Getting started ... 68
5.3.3 Client connection ... 68
5.3.4 Starting and connecting to the ASA personal or runtine engines............................ 68
5.3.5 A simple query ... 69
5.3.6 A query with host variables.. 69
5.3.7 Executing SQL statements .. 70

NativeDB for SQL Anywhere - A Programmer's Guide Page 4

5.3.8 Calling Stored Procedures... 70
5.3.9 Appending rows ... 70
5.3.10 Modifying rows... 71
5.3.11 Deleting rows ... 71
5.3.12 Using Events.. 71

NativeDB for SQL Anywhere - A Programmer's Guide Page 5

1. Introduction

1.1 Overview
NativeDB is a set of Borland VCL and Microsoft ActiveX database interface components to be
installed into favorite development environment. NativeDB supports your RDBMS at a low
and direct level, skipping both the Borland Database Engine (BDE) and the Microsoft ADO
and ODBC layers. NativeDB uses the same interface as Embedded C programs (ESQL). This
provides the fastest interface available to your Sybase SQL Anywhere database engine.

Key-features
• No need to install or configure the Borland Database Engine (BDE).
• No need to configure ODBC or maintain ODBC aliases.
• No need to worry about ADO, MDAC or any MDAC version conflict issues.
• No need to maintain any system-wide Windows registry keys.
• No required system PATH settings.
• No additional Windows SYSTEM DLLs needed when deploying your end-user

application.
• Much smaller setup executable size when deploying your application without BDE or

MDAC.
• High-speed database access.
• Supports many advanced database features not supported by BDE, ODBC or ADO based

interfaces.
• Supports database callbacks, translated into VCL or ActiveX events.
• Intersession/interclient communication.
• Accurate query record-counters.
• Accurate scrollbar positioning when viewing data in VCL grids.
• Immediate access to auto-incremental or other default values when inserting rows.
• Full BLOB support.
• Supports live server-side cursors.
• Works in combination with many popular 3rd party data-access components.

Supported Development tools
• Borland Delphi 3.02
• Borland Delphi 4.03
• Borland Delphi 5.01
• Borland Delphi 6.02
• Borland Delphi 7.00
• Borland Delphi 2005 (Win32)
• Borland C++Builder 4.02
• Borland C++Builder 5.01
• Borland C++Builder 6.00
• Borland Kylix 1.00
• Borland Kylix 2.00
• Borland Kylix 3.00
• Microsoft Visual Basic (ActiveX)
• Microsoft Visual C++ (ActiveX)
• Any ActiveX enabled development environment

Supported Sybase editions
• Watcom SQL 3.2
• Watcom SQL 4
• SQL Anywhere 5
• Adaptive Server Anywhere 6

NativeDB for SQL Anywhere - A Programmer's Guide Page 6

• Adaptive Server Anywhere 7
• Adaptive Server Anywhere 8
• Adaptive Server Anywhere 9

NativeDB was developed based on our own customers need. We wanted to create a native
database interface that was easy to use and learn. With NativeDB you don’t have to write
lengthy blocks of code, instead you take advantage of our usage of passed parameters,
variants and boolean return values.

Borland note: Even though we fully support VCL data-aware components through
TAsaDataset and TAsaStoredProc, derived from TDataSet, we recommend you to investigate
the power of our foundation component TAsaSQL.

1.2 Copyright and licensing terms
Please read this License Agreement before installing Liodden Data's NativeDB software.

This License Agreement is a legal agreement between you and Liodden Data for the
NativeDB product, which includes the computer software, online documentation and
associated media.

This software, including documentation, source code, and additional materials is owned by
Liodden Data - Norway.

The registered license grants you a limited, nonexclusive, royalty-free right to use the
software with the following conditions. Your application software product:
1. is distributed as a compiled binary.
2. in no way competes, commercially or otherwise, with this software.
3. does not distribute the source code or part thereof in any form.

By installing, copying, or otherwise using the software, you agree to be bound by the terms of
this License Agreement. This software is licensed as a single product. It's component parts,
may not be separated for use by more than one developer. Each developer must register a
separate license.

This software is protected by copyright laws and international copyright treaties, as well as
other intellectual property laws and treaties. The software is licensed, not sold. The software
consists of computer software, product documentation, sample applications, technical
information and development tools.

Treat the software like any other copyrighted material except that you are authorized to either:
1. make one copy of the software solely for backup purposes, or
2. install the software on a single computer provided you keep the original solely for backup
purposes. You may not copy the printed materials, which accompany the software, if any.

Liodden Data grants to you a limited, nonexclusive, royalty-free right to reproduce and
distribute those files required for run-time execution if any of compiled applications in
conjunction with and as a part of your application software product that is created using
Borland Delphi, Kylix, C++Builder or any ActiveX enabled tool, provided that:
1. you include a valid copyright notice in your software product.
2. you do not charge separately for the runtime files.
3. you do not modify the runtime files.
4. you agree to indemnify Liodden Data from any claims or lawsuits, including attorney’s fees,
that arise or result from the use or distribution of your application software product.

This software product is provided "as is" without warranty of any kind. To the maximum extent
permitted by applicable law, Liodden Data disclaims all warranties, either expressed or
implied, including but not limited to, fitness for a particular purpose. Liodden Data's entire
liability and your exclusive remedy shall not exceed the price paid for the software.

NativeDB for SQL Anywhere - A Programmer's Guide Page 7

Without prejudice to any other rights, Liodden Data may terminate this agreement if you fail to
comply with the terms and conditions laid out here. In such event, you must destroy all copies
of the software and all of its component parts.

If you have any questions regarding this License Agreement, please contact Liodden Data.

2. Installation

2.1 Files and directories

After you completed the setup executable, you will have a NativeDB directory with the
following structure, depending on which NativeDB edition you installed:

NativeDB\

ActiveX
Bonus
CBuilder4
CBuilder5
CBuilder6
Delphi3
Delphi4
Delphi5
Delphi6
Delphi7
Delphi9
Kylix1
Kylix2
Kylix3
Demos
Doc

The component binaries are found under your compiler-named directory. If you purchased the
professional edition, you will have an additional folder containing the Object Pascal source-
codes. The ActiveX automation server is found in the ActiveX directory.

To install the Borland package, it's highly important that you follow the installation steps
below. It's important that the base class VCL package is installed BEFORE the database
specific package, or your Borland environment may refuse to load the packages properly.

Delphi 3
• Start Delphi
• Select Component | Install Packages, and press Add.
• Locate the directory "Delphi3\" from the NativeDB home directory.
• Install the package "NdbPack3.dpl" for the base classes.
• Install the package "NdbSa3.dpl" for the SA specific classes.
• Select Tools | Environment Options | Library tab | Library Path, and add the compiler

named directory to your unit search path.

Delphi 4
• Start Delphi
• Select Component | Install Packages, and press Add.
• Locate the directory "Delphi4\" from the NativeDB home directory.
• Install the package "NdbPack4.bpl" for the base classes.
• Install the package "NdbSa4.bpl" for the SA specific classes.
• Select Tools | Environment Options | Library tab | Library Path, and add the compiler

named directory to your unit search path.

NativeDB for SQL Anywhere - A Programmer's Guide Page 8

Delphi 5
• Start Delphi
• Select Component | Install Packages, and press Add.
• Locate the directory "Delphi5\" from the NativeDB home directory.
• Install the package "NdbPack5.bpl" for the base classes.
• Install the package "NdbSa5.bpl" for the SA specific classes.
• Select Tools | Environment Options | Library tab | Library Path, and add the compiler

named directory to your unit search path.

Delphi 6
• Start Delphi
• Select Component | Install Packages, and press Add.
• Locate the directory "Delphi6\" from the NativeDB home directory.
• Install the package "NdbPack6.bpl" for the base classes.
• Install the package "NdbSa6.bpl" for the SA specific classes.
• Select Tools | Environment Options | Library tab | Library Path, and add the compiler

named directory to your unit search path.

Delphi 7
• Start Delphi
• Select Component | Install Packages, and press Add.
• Locate the directory "Delphi7\" from the NativeDB home directory.
• Install the package "NdbPack7.bpl" for the base classes.
• Install the package "NdbSa7.bpl" for the SA specific classes.
• Select Tools | Environment Options | Library tab | Library Path, and add the compiler

named directory to your unit search path.

Delphi 2005
• Start Delphi
• Select Component | Install Packages, and press Add.
• Locate the directory "Delphi9\" from the NativeDB home directory.
• Install the package "NdbPack9.bpl" for the base classes.
• Install the package "NdbSa9.bpl" for the SA specific classes.
• In the left pane treeview highlight Environment Options | Delphi Options | Library – Win32

| Library Path, and add your "NativeDB\Delphi9" directory to the Library path.

C++Builder 4
• Start C++Builder
• Select Component | Install Packages, and press Add.
• Locate the directory "CBuilder4\" from the NativeDB home directory.
• Install the package "NdbPack4.bpl" for the base classes.
• Install the package "NdbSa4.bpl" for the SA specific classes.
• Select Tools | Environment Options | Library tab | Library Path, and add the compiler

named directory to your unit search path.

C++Builder 5
• Start C++Builder
• Select Component | Install Packages, and press Add.
• Locate the directory "CBuilder5\" from the NativeDB home directory.
• Install the package "NdbPack5.bpl" for the base classes.
• Install the package "NdbSa5.bpl" for the SA specific classes.
• Select Tools | Environment Options | Library tab | Library Path, and add the compiler

named directory to your unit search path.

C++Builder 6
• Start C++Builder
• Select Component | Install Packages, and press Add.

NativeDB for SQL Anywhere - A Programmer's Guide Page 9

• Locate the directory "CBuilder6\" from the NativeDB home directory.
• Install the package "NdbPack6.bpl" for the base classes.
• Install the package "NdbSa6.bpl" for the SA specific classes.
• Select Tools | Environment Options | Library tab | Library Path, and add the compiler

named directory to your unit search path.

Kylix 1
• Start Kylix
• Select Component | Install Packages, and press Add.
• Locate the directory "Kylix1" from the NativeDB home directory.
• Install the package "bplndbbask1.so" for the base classes.
• Install the package "bplndbsak1.so" for the SA specific classes.
• Select Tools | Environment Options | Library tab | Library Path, and add the compiler

named directory to your unit search path.

Kylix 2
• Start Kylix
• Select Component | Install Packages, and press Add.
• Locate the directory "Kylix2" from the NativeDB home directory.
• Install the package "bplndbbask2.so" for the base classes.
• Install the package "bplndbsak2.so" for the SA specific classes.
• Select Tools | Environment Options | Library tab | Library Path, and add the compiler

named directory to your unit search path.

Kylix 3
• Start Kylix
• Select Component | Install Packages, and press Add.
• Locate the directory "Kylix3" from the NativeDB home directory.
• Install the package "bplndbbask3.so" for the base classes.
• Install the package "bplndbsak3.so" for the SA specific classes.
• Select Tools | Environment Options | Library tab | Library Path, and add the compiler

named directory to your unit search path.

ActiveX
• Locate the directory "ActiveX” from the NativeDB home directory.
• Open a Command window in this directory and type “regsvr32 ndbasa32.dll”.
• Refer to chapter “5.3 Using the ActiveX library with Visual Basic” for further information in

how to use NativeDB ActiveX.

NativeDB is designed around a OOP hierarchy. This is done to make it easy to move your
application to another database, or support more than one database in the same application.
With this structure, we can also easily add new database interfaces in the future, overriding
virtual methods only.

2.2 Online help
This section describes how to install the NativeDB online help system for Borland Delphi and
C++Builder.

Delphi 3 or Delphi 4
• Quit Delphi.
• Locate Delphi's Help directory (e.g. C:\Program Files\Borland\Delphi 3/4\Help).
• In the same directory, edit the text file Delphi3.cfg or Delphi4.cfg and add the following

line to the "Third-party Help" section:
:Link <NativeDB home>\Doc\NdbAsa.hlp
Where <NativeDB home> is the directory where you installed NativeDB.

• Delete the hidden files Delphi3.gid or Delphi4.gid, and NdbAsa.gid (if present). These
files will be recreated the next time you access the help system.

NativeDB for SQL Anywhere - A Programmer's Guide Page 10

C++Builder 4
• Quit C++Builder.
• Locate C++Builder 's Help directory (e.g. C :\Program Files\Borland\CBuilder4\Help).
• In the same directory, edit the text file bcb4.cfg and add the following line to the "Third-

party Help" section:
:Link <NativeDB home>\Doc\NdbAsa.hlp
Where <NativeDB home> is the directory where you installed NativeDB.

• Delete the hidden files bcb4.gid and NdbAsa.gid (if present). These files will be recreated
the next time you access the help system.

Delphi 5, 6, 7 or C++Builder 5,6
• Start Delphi or C++Builder.
• From the main menu choose Help | Customize…
• Select the Index tab.
• Choose Edit | Add Files..., then locate and open NdbAsa.hlp.
• Select the Link tab.
• Choose Edit | Add Files..., then locate and open NdbAsa.hlp.
• Choose File | Save Project, then File | Exit.

2.3 Units and OOP structures
This chapter lists all the units in the NativeDB for SQL Anywhere package. This includes
available classes, types, procedures and functions.

NativeDB is shipped as six Borland VCL based classes and two ActiveX classes to access
your SQL Anywhere database.

Class Description
TAsaSession Used to connect to the database.
TAsaSQL Used to execute queries, DML statements and stored procedures.
TAsaLogin Used to connect to the database using a connection expert-dialog.
TAsaDataset Used to work with data-aware components (TDBEdit, TDBGrid, etc.)
TAsaStoredProc Used to work with stored procedures and data-aware components.
TAsaAlert Used to implement intersession communication.
XAsaSession ActiveX dual interface to TAsaSession
XAsaSQL ActiveX dual interface to TAsaSQL

2.3.1 Classes
Inherited from the base class TNativeSession, TAsaSession is the connection and session
class used to connect to your SQL Anywhere database. Based on the VCL ancestor class
TComponent, TAsaSession inherits from the immediate ancestor class TNativeSession.

NativeDB for SQL Anywhere - A Programmer's Guide Page 11

NativeDB includes a low-level class used to access all the available SQL Anywhere database
features. This includes queries, stored procedures, DML, DDL statements. Also based on the
common TComponent VCL class, TAsaSQL inherits from the immediate ancestor class
TNativeSQL.

NativeDB fully support Borland data-aware components. Two classes are available to meet
this requirement. The dataset and cursor oriented component TAsaDataset and the class to
access SA stored procedures TAsaStoredProc. Both are originated from the common VCL
ancestor class TDataSet.

2.3.2 Unit NdbBase
The NdbBase unit contains declarations of the common ancestor classes, inherited by the SA
specific descendants.

ActiveX note: N/A

NativeDB for SQL Anywhere - A Programmer's Guide Page 12

Components
TNativeSession
TNativeSQL

Types
ENativeException
TNativeFieldTypes
TNativeGraphicType
TNativeFieldDef = class
TNativeFieldDefs = class

NdbEmptyParam: Variant
A convenient global variable used to indicate a list of empty host variables. This variable is
especially useful in Delphi 6 (and later), BCB6 or Kylix because the variant System.Null has
changed its behavior with these compilers. NdbEmptyParam is also convenient as a standard
way of indicating an empty list of host variables, to achieve code compatibility between all the
different Borland compilers.

2.3.3 Unit NdbAsa
The NdbAsa unit contains declarations of the SA specific classes.

ActiveX note: N/A

Components
TAsaSession
TAsaSQL

Types
EAsaException
TAsaServerType
TAsaTransIsolation
TServerMessageType

2.3.4 Unit NdbAsaLg
The NdbAsaLg unit contains the declaration and implementation of the TAsaLogin
component.

ActiveX note: N/A

Components
TAsaLogin

Types
TAsaLoginOption
TAsaLoginOptions

2.3.5 Unit NdbBasDS
The NdbBasDS unit contains declarations of the common ancestor classes, inherited by the
SA specific data-aware descendants.

ActiveX note: N/A

Components
TNativeDataset
TNativeCustomDataset
TNativeCustomStoredProc

NativeDB for SQL Anywhere - A Programmer's Guide Page 13

TNativeParams
TNativeParam

Types
ENativeDatasetError
TNativeParamType
TNativeParamDataType

2.3.6 Unit NdbAsaDS
The NdbAsaDS unit contains declarations of the NativeDB data-aware classes specific to SA.

ActiveX note: N/A

Components
TAsaCustomDataset
TAsaCustomStoredProc
TAsaDataset
TAsaStoredProc

Types
ENativeDatasetError

2.3.7 Unit NdbAlert
The NdbAlert unit contains the declarations of the NativeDB intersession communication
class.

Components
TAsaAlert

Types
EAsaAlertException
TSubscriptionType

2.3.8 Unit NdbApp
The NdbApp unit declares some common utility functions used to manage the NativeDB
classes on a global level. Be aware that this unit uses the VCL Forms (or CLX QForms) unit
and will potentially increase the size of your executable. An increased size of the executable
will only be an issue if you don't use Forms in other parts of your application. In addition,
Forms also creates the global VCL Application instance. So don't put NdbApp in your uses
class if you don't need it. NdbApp is designed this way, to maintain the modularity of
NativeDB. The following functions are currently available:

ActiveX note: N/A

procedure NdbGetDatabaseNames(List: TStrings)
Fills the List with all available TAsaSession objects. The list will be filled with all active
TAsaSession objects found in forms and datamodules, as well as run-time created instances
that was created with a valid owner. The List will only contain TAsaSession instances that
have the LoginDatabase set.

function NdbFindDatabase(const DatabaseName: string): TNativeSession
Returns an instance of a TAsaSession object that matches the LoginDatabaseName property
with the DatabaseName parameter. The function returns the immediate ancestor class of
TAsaSession, so you must typecast the return value to a TAsaSession variable.

NativeDB for SQL Anywhere - A Programmer's Guide Page 14

uses NdbApp;
.
.
function TForm1.GetUserForDatabase(const ADatabase: string): string;
var
AsaSession: TComponent; // Could be declared as TNativeSession

begin
Result := '';
AsaSession := NdbFindDatabase(ADatabase);
if Assigned(AsaSession) then // Did we find it?
Result := (AsaSession as TAsaSession).LoginUser;

end;

procedure NdbGetTableNames(const DatabaseName: string; SystemTables,
 Creators: Boolean; List: TStrings; CursorClass: TNativeDatasetClass);
Retrieves a list of tables associated with a given database. DatabaseName specifies the
name of the database (TAsaSession.LoginDatabase) from which to retrieve all table names.
Setting SystemTables to True, will populate the List with both data tables and system tables.
Set Creators to True to prefix each table name with the creator/owner ID. List is a string list
object, created and maintained by the application, into which to return the table names.
CursorClass is a class-type parameter, used by the function, to create a temporary cursor
class to query the system tables for the table names. You should pass the class-type
TAsaDataset to this parameter.

NdbGetTableNames('asademo', False, True, Listbox1.Items, TAsaDataset);

procedure NdbGetStoredProcNames(const DatabaseName: string; Creators: Boolean;
 List: TStrings; CursorClass: TNativeDatasetClass);
Retrieves a list of stored procedures associated with a given database. DatabaseName
specifies the name of the database (TAsaSession.LoginDatabase) from which to retrieve all
stored procedure names. Set Creators to True to prefix each stored procedure name with the
creator/owner ID. List is a string list object, created and maintained by the application, into
which to return the stored procedure names. CursorClass is a class-type parameter, used by
the function, to create a temporary cursor class to query the system tables for the stored
procedures. You should pass the class-type TAsaDataset to this parameter.

NdbGetStoredProcNames('asademo', True, Listbox1.Items, TAsaDataset);

procedure NdbGetFieldNames(const DatabaseName, TableName: string; List: TStrings;
 CursorClass: TNativeDatasetClass);
Populates a string list with the names of fields in a table. Call NdbGetFieldNames to retrieve a
list of fields in a table. The names of the fields are put into the already-existing string list
object specified in the List parameter. Specify the table for which to retrieve the names of
fields in the TableName parameter.

NdbGetFieldNames('asademo', 'employee', ListBox1.Items, TAsaDataset);

3. Component Reference

This chapter is a reference to all the available components in the NativeDB package.

3.1 TAsaSession

 This component is the link to your SQL Anywhere database. With this component,
you control the connection specific details.

ActiveX note: The class interface is named XAsaSession.

3.1.1 Properties

NativeDB for SQL Anywhere - A Programmer's Guide Page 15

AutoCommit: boolean
Specifies, if SQL statements should be automatically committed or manually committed. If you
use manual commit (AutoCommit:=False) you must explicitly use the Commit or Rollback
methods to commit or rollback the current transaction. Note that the AutoCommit is
temporarily disabled inside a transaction (see StartTransaction) and re-enforced after a call to
Commit or Rollback.

ClientParams: string
Specifies client side connection parameters. This property is used to specify network and
client-side connection parameters. Separate each parameter with semicolon (;), when more
than one parameter is used.
See the section 'Network communications parameters' in the SA online help, focusing on the
client side. Example client connection parameters include:

Product version ClientParams examples
Watcom SQL 4 network requestor start=dbclient.exe -x tcpip
SQL Anywhere 5 network client start=dbclient.exe -x tcpip
ASA6 network client commlinks=tcpip{host=server;to=5};astop=false
ASA7 network client commlinks=tcpip{host=server;to=5}
ASA8 network client commlinks=tcpip{host=server;to=5}
ASA9 network client commlinks=tcpip{host=server;to=5}

CommitOnDisconnect: boolean
Indicates whether or not any pending transactions should be committed upon database
disconnection.

Connected: boolean
Used to connect to, or disconnect from the database. To connect, assign a true boolean value
to this property. Disconnect with false.

ConnectOnLoading: boolean;
A design-time connection made during development is typically not very useful when your
application is distributed to end-users. An end-user would normally need to login to the
database with his own username and password. By setting this property to False, the design-
time values of the properties Connected, LoginUser and LoginPassword will be cleared at
run-time. This way you can ensure that your application is distributed unchanged, without
affecting your design-time connection during development.

ActiveX note: N/A

DataSetCount: integer
Indicates the number of active datasets (TDataset descendants) associated with the
TAsaSession component.

ActiveX note: N/A

DataSets[Index: integer]: TComponent
Provides an indexed array of all active datasets (TDataset descendants) for a TAsaSession
component. The following example shows how to use this property to close all datasets
associated with the TAsaSession component without disconnecting from the database server.

procedure CloseDataSets;
var
I: Integer;
DataSet: TAsaDataset;

begin
with AsaSession1 do
begin
for I := DataSetCount - 1 downto 0 do
if DataSets[I] is TAsaDataset then
TAsaDataset(DataSets[I]).Close;

end;

NativeDB for SQL Anywhere - A Programmer's Guide Page 16

end;

ActiveX note: N/A

Handle: pointer
Runtime public property to allow one TAsaSession instance to share an existing connection of
another TAsaSession instance. Assigning a value to this property makes it possible to let
multiple TAsaSession instances share the same connection channel to the database.
However note that it's illegal to share a connection handle between two TAsaSession
instances that reside in separate threads. This property is especially useful when you want to
share a single database connection between TAsaSession instances that reside in Dynamic
Link Libraries.

ActiveX note: N/A

InTransaction: boolean
Public property to indicate whether a user defined database transaction is in progress or not.
Calling StartTransaction sets InTransaction to True. Calling Commit or Rollback sets
InTransaction to False.

KeepConnection: boolean
Specifies whether an application remains connected to a database even if no datasets are
open. When KeepConnection is True (the default) the connection is maintained. When
KeepConnection is False the connection is dropped when there are no open datasets.

ActiveX note: N/A

LastErrorCode: integer
Returns the low-level error code returned from SQL Anywhere after an unsuccessful
database access call. Consider values greater than 0 (zero) as WARNINGS, while values
less than 0 (zero) are ERRORS. 0 means SUCCESS.

LastError: string
Returns the low-level error message returned from SQL Anywhere after an unsuccessful
database access call.

LastStatement: string
Returns the last requested database query or statement. Any query or SQL statement as
processed by a dataset will report the executing statement to its linked TAsaSession instance.
This property is typically used to log or monitor failed statements for later debugging
purposes. The following shows an example using the property with a TAsaSession.OnError
event handler.

procedure TForm1.AsaSession1Error(Sender: TObject);
begin
ShowMessage(Format('%s. Caused by statement: %s'#10,
[AsaSession1.LastError, AsaSession1.LastStatement]));

end;

LibraryFile: string
Specifies the name of the SQL Anywhere interface DLL (or Linux .so) used to communicate
with the server engine. This must be the same library interface as used by embedded C
programs. For SA version 7 on Windows, this is 'dblib7.dll', which is the default. This is a
useful property to easily upgrade to future SA versions.

Product version Client library
Watcom SQL 4 (WSQL) dbl40t.dll
SQL Anywhere 5 (SA5) dbl50t.dll
Adaptive Server Anywhere 6 (ASA6) dblib6.dll
Adaptive Server Anywhere 7 (ASA7) dblib7.dll
Adaptive Server Anywhere 8 (ASA8) dblib8.dll

NativeDB for SQL Anywhere - A Programmer's Guide Page 17

Product version Client library
Adaptive Server Anywhere 9 (ASA9) dblib9.dll
Adaptive Server Anywhere 6 (ASA6 – Linux) libdblib6.so
Adaptive Server Anywhere 7 (ASA7 – Linux) libdblib7.so
Adaptive Server Anywhere 8 (ASA8 – Linux) libdblib8.so
Adaptive Server Anywhere 9 (ASA9 – Linux) libdblib9.so

LibraryPath: string
Full path to the SQL Anywhere interface DLLs and executables directory. If blank,
TAsaSession uses the system PATH to locate these files. The path typically points to your SA
Win32 directory as installed by the SA setup. If you decided to deploy the minimum required
SA files along with your application, the LibraryPath should point to this location instead. This
feature allows you to bundle your application with SA for an easy and compact distribution of
your application. In general, the LibraryPath should specify the directory where the LibraryFile
is located.

Linux note: This property is not applicable in the Linux environment. Assign your library path
through the “LD_LIBRARY_PATH” environment variable instead.
If you don't want to set your “LD_LIBRARY_PATH”, edit your /etc/ld.so.conf instead and add
the location of the directory containing libdblib?.so to the list and then run ldconfig (as root).
But in addition to this, you would also need to set the environment variable ASANY to point to
your application’s directory where your deployed ASA files are stored.

LoginEngineName: string
Enter the name of the SQL Anywhere server engine to connect to. If empty, SA extracts the
file prefix of the LoginDatabase property, and uses this as the engine name. If you have a
running server with multiple databases, use LoginEngineName and LoginDatabase to
distinguish the different databases loaded by the same server engine.

LoginDatabase: string
LoginUser: string
LoginPassword: string
These three properties specify your logon to the database. You can use a full path, including
UNC path, to the database file for both a client and a server connection. By default, SA will
extract the file prefix and use it to name the database.
If you are making a client connection, it’s optional to enter just the name of the database,
without the full path and filename to the .db file.

OEMConvert: boolean
OEMConvert controls whether to convert string values between the ANSI character set and
OEM characters, when reading from or writing to the database. Note that this feature utilizes
the CharToOem and OemToChar Win32 API functions. These functions rely on your current
Windows setting, and that these setting are the same as the OEM collation used in your
database. To verify the OEM Windows settings, look up the registry key
\\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Nls\CodePage, and compare
the value of OEMCP against your current collation.

Linux note: N/A

ServerParams: string
Used to specify the SQL Anywhere server startup line. If ServerType is stClient this property
is ignored. If more than one parameter is specified, separate them with semicolon. As an
example, starting the ASA 7 personal database engine, assign a value 'start=dbeng7.exe' to
this property. If you want to include a specification of SA’s cache size, network protocol and
quietmode, you could change it to 'start=dbeng7.exe -c 4096K -x tcpip{to=5} -Q'. Refer to the
Adaptive Server Anywhere Reference manual for details. Some typical server parameters
include:

SQL Anywhere version ServerParams examples
Watcom SQL 4 personal engine start=dbeng40.exe

NativeDB for SQL Anywhere - A Programmer's Guide Page 18

Watcom SQL 4 network engine start=dbsrv40.exe
SQL Anywhere 5 network engine start=dbsrv50.exe -c 4096K -x tcpip{to=5}
SQL Anywhere 5 personal engine start=dbeng50.exe -c 4096K
SQL Anywhere 5 runtime engine start=rtdsk50.exe
ASA6 network engine start=dbsrv6.exe -c 4096K -x tcpip{to=5} -gd all -Z
ASA6 personal engine start=dbeng6.exe -c 4096K -Q;astop=False
ASA6 runtime engine start=rteng6.exe
ASA7 network engine start=dbsrv7.exe -x tcpip -gd all
ASA7 personal engine start=dbeng7.exe
ASA7 runtime engine start=rteng7.exe
ASA8 network engine start=dbsrv8.exe -x tcpip -gd all
ASA8 personal engine start=dbeng8.exe
ASA8 runtime engine start=rteng8.exe
ASA9 network engine start=dbsrv9.exe -x tcpip -gd all
ASA9 personal engine start=dbeng9.exe
ASA9 runtime engine start=rteng9.exe
ASA6 personal engine (Linux) start=dbeng6
ASA7 network engine (Linux) start=dbsrv7 -x tcpip
ASA8 network engine (Linux) start=dbsrv8 -x tcpip

ServerType: TServerType
Specifies the type of connection. Valid options are (stClient, stServer, stWorkgroup). The
default server type is stClient. The following rules applies to the different options:

ServerType Rule
stClient Connects to a running SA server using the ClientParams property.
stServer First executes the engine specified by the ServerParams property. Then

connects to it, using ClientParams.
stWorkgroup First tries to connect as stClient. If this fails, then tries to connect as

stServer.

TransIsolation: TTransIsolation
Sets the locking isolation level used within the current connection. This allows you to control
the degree to which the operations in one transaction are visible to the operations in other
concurrent transactions. Valid options are (atUnchanged, atReadUncommitted,
atReadCommitted, atReapeatableRead, atSerializable. The relationship between the
TTransIsolation type and the low-level SA types is listed in the following table:

TTransIsolation level SA isolation level
atUnchanged Keeps the current isolation level unchanged
atReadUncommitted Level 0
atReadCommitted Level 1
atReapeatableRead Level 2
atSerializable Level 3

Refer to your SA Reference manual for details.

TrimBlanks: boolean
Specifies whether right-padded space characters in character fields (strings) should be
removed. When TrimBlanks = False any right-padded space characters remain in the string
field. This property is useful if your database was initially (dbinit) created with the "-b" switch,
specifying that blanks should be ignored in comparisons. In this state, ESQL will pad every
character field with space characters.

WantExceptions: boolean
Control if exceptions are raised or not. TAsaSession raises an EAsaException for errors if this
property is true. The default is False. The property does not affect critical errors.

NativeDB for SQL Anywhere - A Programmer's Guide Page 19

WantRowCounts: boolean
Controls if rowcounts should be accurate for cursors opened for this session. The default is
True. When True the TAsaSQL property RowCount will hold an accurate value, after a cursor
is opened. If False, the RowCount will hold an estimated value. There is a small performance
hit if this property is True. (see TAsaSQL.RowCount).
Note: When using TAsaDataset it's recommended to set WantRowCounts to True to be able
to properly relocate the correct row after a TAsaDataset.Refresh call. Refresh is also
internally used after a successful TAsaDataset.Post and TAsaDataset.Delete call. Also note
that if WantRowCounts is False, data-aware scrollbars will only be shown in a 3-state
position.

3.1.2 Methods

constructor Create(AOwner: TComponent)
Creates a TAsaSession object instance.

ActiveX note: N/A

destructor Destroy
Destroys a TAsaSession object instance.

ActiveX note: N/A

function GetLibraryVersion: string
Returns the current SQL Anywhere version string (EBF).

function Backup(AFilePath: string; ABackupType: TBackupType): boolean;
This method utilizes the online backup feature of SQL Anywhere. It takes a backup of the
database, the transaction log and the mirror log file if any. AFilePath specifies the target
directory of the backup. ABackupType specifies the type of backup to execute. Valid values
include btFull, btFullRenameLog, btRenameLog, btFullRenameLocalLog, btRenameLocalLog,
btFullRestartLog, btRestartLog. A return value of True, indicates a successful operation. The
following table lists each backup type, their meaning and their corresponding ASA dbbackup
flags.

Backup type Description dbbackup
btFull Full backup of .db, .log and .mlg. -d -t -w
btFullRenameLog Full backup and renames transaction log. -d -t -w -r
btRenameLog Renames the transaction log only. -r
btFullRenameLocalLog Full backup and renames local transaction log to

match server.
-d -t -w -r -n

btRenameLocalLog Backup and renames local transaction log to match
server.

-t -r -n

btFullRestartLog Full backup. Deletes and restarts the transaction log. -d -t -w -x
btRestartLog Deletes and restarts the transaction log only. -xo

procedure Close
Closes all open datasets associated with the database component and disconnects from the
database server. A database connection can also be closed by setting the Connected
property to False.

procedure Commit
Commits the current transaction.

function GetConnectionInfo(ConnInfo: TAsaConnectionInfo; var Value: string): boolean
Used to retrieve connection information for the current connected database. The information
to retrieve is specified by ConnInfo, and the result is returned in Value. Valid connection
information options, as given by ConnInfo, are ciEngineVersion, ciEngineName or

NativeDB for SQL Anywhere - A Programmer's Guide Page 20

ciDatabaseName. This method is typically used in cases where you connect to the default
server engine, without specifying LoginEngineName or LoginDatabase. The method returns
True if the information was retrieved successfully.

if AsaSession1.GetConnectionInfo(ciEngineName, szValue) then
Caption := szValue;

function GetOption(Option: PChar; var Value: string): boolean
Used to retrieve SQL Anywhere database options. See your SQL Anywhere Reference
manual. Returns True if the option was successfully retrieved.

if AsaSession1.GetOption('date_order', szValue) then
Caption := szValue;

function GetProperty(PropType: TAsaPropertyType; var Value: string): boolean
Used to retrieve properties of an ASA8 (or later) database or server. Currently, only one
property ptServerAddress is supported. This property is used to obtain the address of the
server to which you are currently connected. Other database properties can also be obtained
by executing a regular SELECT statement (e.g. select db_property('PageSize')).

if AsaSession1.GetProperty(ptServerAddress, szValue) then
Caption := szValue;

function IsWorking: boolean
Returns True if your application has a database request in progress using the same
TasaSession instance. This function can be called asynchronously. Refer to your SA
documentation on the "db_is_working" function for more details.

function LocateServers: boolean
This method implements the same functionality as the ASA7 "dblocate.exe" utility. The
LocateServers method locates all available ASA (7.00 and later) servers on the local network
that are listening on TCP/IP. LocateServers is only supported by ASA7.01 or later. When
executed, the OnLocateServers event is called for each server engine found.

function NeedQuotes(Identifier: PChar): boolean
Returns a Boolean value that indicates whether the string requires double quotes around it
when it is used as a SQL identifier. Refer to your SA documentation on the
"sql_needs_quotes" function for more details.

procedure Open
Connects to a database server. Setting Connected to True also connects to the database
server.

function Ping(Params: PChar): boolean
This method implements the same functionality as the ASA DBPing utility, introduced with
ASA version 6.02. Typically used to assist in diagnosing connection problems. The function
returns true if the specified database server engine is found. If Ping is used with SQL
Anywhere 5.5 or earlier releases, it uses the SA db_find_engine function. The following
example shows result information after the function call.

if not AsaSession1.Ping('eng=asademo;links=tcpip{host=server}') then
ShowMessage(AsaSession1.LastError)

else
ShowMessage('Ping server successful.');

if AsaSession1.Ping('eng=sademo') then
ShowMessage('Engine found.');

procedure Rollback
Rolls back the current transaction.

function SetOption(Option, Value: PChar): boolean
Used to set a SQL Anywhere database option. Returns True if the option was updated
successfully. See your SQL Anywhere Reference manual.

NativeDB for SQL Anywhere - A Programmer's Guide Page 21

AsaSession1.SetOption('date_order', 'MDY');

procedure StartTransaction
Used to mark a beginning of a new user defined transaction against the database server.
Check the status of the InTransaction property and adjust the setting of the TransIsolation
property as desired, before calling StartTransaction. If InTransaction is True, indicating that a
user transaction is already in progress, any subsequent call to StartTransaction without first
calling Commit or Rollback to end the current transaction, raises a ENativeException.

function StartDatabase(UtilityConnParams: PChar): boolean
Used to start the database LoginDatabase on an existing server LoginEngineName, if it's not
already running. Typically used to start LoginDatabase, on a remote engine. With ASA6 or
later, if the start or stop requests are protected by a password, you can optionally use the
UtilityConnParams parameter to connect through the utility database. To use the utility
database, the file 'util_db.ini' must exist in the same directory as the server engine
executable. See the section 'Utility database server security' in the ASA User's Guide. The
following example shows how to start the LoginDatabase on a remote engine with ASA6 or
later, using the utility database:

AsaSession1.LoginEngineName := 'asademo';
AsaSession1.LoginDatabase := 'c:\Sybase\Asa6\asademo.db';
AsaSession1.ClientParams := 'links=tcpip{dobroadcast=no;host=srv}'
if not AsaSession1.StartDatabase('eng=srv;dbn=utility_db;uid=dba;pwd=sql') then
ShowMessage(AsaSession1.LastError)

else
ShowMessage('Started database successfully.');

The following example shows how to start a database without using the utility database, or
with SA 5 or earlier releases:

if not AsaSession1.StartDatabase('') then
ShowMessage(AsaSession1.LastError)

else
ShowMessage('Started database successfully.');

function Stop: boolean
Stops or breaks the currently active database server request. Useful to let another thread stop
a running stored procedure or another long running SA server request, executed by a
different thread. This function can be called asynchronously. Returns true if the operation was
successful. Can also be called from the OnServerWait callback event, in case of a single
threaded environment.

function StopDatabase(UtilityConnParams: PChar): boolean
Used to stop the database identified by LoginDatabase on the server identified by
LoginEngineName. See TAsaSession.StartDatabase. With ASA6 or later, you can even stop
a database that has connected users. To force a database stop in this situation, add the
'unc=yes' (unconditional stop) parameter to ClientParams. Note, if you encounter problems
starting and stopping your database, check the '-gd' switch available with ASA6 or later.

function TimeChange: boolean
This is an optional function to be used to notify an ASA8 (or later) server that the time has
changed on the client. For WIN32 clients only, it is recommended that the client application
calls this function in response to a WM_TIMECHANGE message. The WM_TIMECHANGE
message is sent to all top-level windows after changing the system time. Internally the
function recalculates any time zone adjustment and sends it to the server. This will make sure
that UTC timestamps are consistent over time changes, time zone changes, or daylight
savings time changeovers. This function has no effect if not connected to an ASA8 (or later)
server.

type
TForm1 = class(TForm)
private
procedure WMTimeChange(var Message: TWMTimeChange); message WM_TIMECHANGE;

NativeDB for SQL Anywhere - A Programmer's Guide Page 22

end;

procedure TForm1.WMTimeChange(var Message: TWMTimeChange);
begin
AsaSession1.TimeChange;

end;

3.1.3 Events

AfterConnect: TNotifyEvent
Triggers right after a successful connection is made.

BeforeConnect: TNotifyEvent
Triggers just before a connection attempt is made.

AfterDisconnect: TNotifyEvent
Triggers right after a successful disconnection is made.

BeforeDisconnect: TNotifyEvent
Triggers just before a disconnection attempt is made.

OnBackup: TBackupEvent
Triggers for each page backed up from the database file(s). This event is useful for displaying
a progress bar, showing the status of the running backup.
TBackupEvent = procedure(Sender: TObject; BackupFile: string; CurrPage, NumOfPages:
Integer; var AbortBackup: Boolean).
BackupFile represent the current file been backed up (Mydb.db, Mydb.wri, Mydb.log).
NumOfPages specifies the total number of buffer pages the current file consists of, while
CurrPage specifies the page number currently backed up. Assigning True to AbortBackup will
immediately stop the backup.

OnConnectionDropped: TNotifyEvent
This event notifies the client whenever the client interface DLL is about to drop a connection
caused by liveness timeouts. The event is only supported in ASA 7.01 or later releases.
TAsaSession.Connected is NOT forced to False because of ESQL reentrancy rules. To force
Connected to False, using this event, in your own application, you must avoid reentrancy. A
possible solution is to use a Win32 API PostMessage call, and post a user defined message
to your window handle. In the message handler you can toggle the Connected property to
reconnect to the server engine.

OnConnectionTerminated: TNotifyEvent
This event is called when a database connection is lost or dropped. Upon calling the event
Connected is forced to False, cursors are closed, and all internal buffers are freed. It's fully
possible to reconnect in this event handler, but note that all transactions in progress are
invalidated, and all cursors and statements need to be re-executed.

OnDebugMessage: TDebugMessageEvent
This event will get called once for each client-side debug message which normally only goes
to a debug log file.
TDebugMessageEvent = procedure(Sender: TObject; Msg: string) of object;
Msg specifies string containing the text of the debug message.
This event is only supported in ASA 8.00 or later releases.

OnError: TNotifyEvent
Triggers when an error occurs. LastError is updated just before the event. Useful for logging
error messages in a common event. OnError is of type TNotifyEvent = procedure (Sender:
TObject).

OnLocateServers: TLocateServersEvent
This event is called by TAsaSession.LocateServers for each server engine it locates on the

NativeDB for SQL Anywhere - A Programmer's Guide Page 23

Local Area Network.
TLocateServersEvent = procedure(Sender: TObject; ServerName, ServerAddress: string;
ServerPort: Integer; var AbortLocate: Boolean) of object;
ServerName specifies the name of the server engine that was located.
ServerAddress specifies the name of the computer hosting the server engine.
ServerPort specifies the server engine listening port number.
If you assign True to AbortLocate, TAsaSession.LocateServers will stop iterating through
servers. This event is only supported with ASA 7.01 or later releases.

OnServerFinish: TNotifyEvent
This event is called after the responds to the database request has been received by the
client. Note: Spending too much time in the event handler could lead to a performance hit with
the current database request. For more information regarding this event, locate the index
"db_register_a_callback" in SA/ASA online help.

OnServerMessage: TServerMessageEvent
This event is used to enable the application to handle messages received from the server
during the processing of a request. The event is only supported in ASA 6.01 or later releases.
TServerMessageEvent = procedure(Sender: TObject; MessageType: TServerMessageType;
MessageCode: integer; Msg: string)
MessageType states how important the message is, and you may wish to handle different
message types in different ways. Available message types are smtUnknown, smtInfo,
smtWarning, smtAction and smtStatus. MessageCode is an additional message identifier.
Msg specifies the message. For more information regarding this event, locate the
'db_register_a_callback' index in SA/ASA online help, or refer to the "MESSAGE statement"
index for a discussion of the 'MESSAGE ??? TO CLIENT' statement.

OnServerStart: TNotifyEvent
This event is called just before a database request is sent to the server. Note: Spending too
much time in event handler could lead to a performance hit in the current database request.
For more information regarding this event, locate the index 'db_register_a_callback' in
SA/ASA online help.

OnServerWait: TServerWaitEvent
This event is called repeatedly while the database server or client library is busy processing
your database request.
TServerWaitEvent = procedure(Sender: TObject; var AbortRequest: Boolean)
AbortRequest allows the event handler to stop or break the current database request. Note
that this event is subject to reentrancy. So be careful to avoid reentrant code while the server
is busy processing your request. A call to TAsaSession.Stop or TAsaSession.IsWorking is the
only safe methods to call in this context. Also note that spending too much time in the event
handler could lead to a performance hit with the current database request. For more
information regarding this event, locate the index 'db_register_a_callback' in SA/ASA online
help.

3.2 TAsaSQL

 This component is used to execute any SQL statement. Set the Session property to
define the TAsaSession in which the SQL statements will execute. TAsaSQL have many
easy-to-use methods for retrieving data with “select” statements, DML statements or stored
procedure calls.

ActiveX note: The class interface is named XAsaSQL.

3.2.1 Properties

NativeDB for SQL Anywhere - A Programmer's Guide Page 24

BlobSize: integer
Used to control the size of the inline fetch buffer used to pre-fetch BLOBs. The default value
zero (0) means that the SA BLOB functions will be used to fetch BLOBs, while a value greater
than zero indicates that the SA BLOB functions will be used only when BlobSize isn't large
enough to fetch the entire BLOB. This property is mainly used to increase the speed of fetch
operations, and assume you can predefine the maximum size of the BLOB. If none of these
reasons suites you, leave this property to zero (0).

ActiveX note: N/A

CursorType: TAsaCursorType
Specifies the SA/ASA generic cursor type to be used when opening cursors. Valid values are
actDynamicScroll, actFixedScroll, actInsensitive, actNoScroll and actUnique. actDefault
currently corresponds to the actDynamicScroll cursor but may change with future versions.

CursorType Description
actDynamicScroll Implements the ESQL DYNAMIC SCROLL cursor type. This cursor type

is sensitive to table changes made by other cursors/users, either local
or remote.

actFixedScroll This cursor type conforms to the ESQL SCROLL cursor. Similar to the
actDynamicScroll cursor, the actFixedScroll cursor is also sensitive to
table changes made by other users, but will produce a "hole" in the
cursor if another cursor/user deletes a row in the same table. Accessing
data in this "hole" will produce a "-197 No current row of cursor" error.
This behavior can be useful in circumstances when you want to inform
the user that another user has deleted the row. In this case you could
easily translate the "-197" error into a more descriptive message like
"The information in this record has been deleted by another user!".

actInsensitive An insensitive cursor has its membership fixed when it is opened. This
cursor type conforms to the ODBC requirements for a static cursor.
This cursor type is especially useful if you don't want other users
commits to be immediately visible to the current user. An additional
benefit from this cursor type is that it will allow a unidirectional cursor,
obtained from a proxy-table, to scroll. If you ever experience a "-668:
Cursor is restricted to FETCH NEXT operations" error, when a proxy-
table is involved, use the actInsensitive cursor instead. The
actInsensitive cursor conforms to the ESQL INSENSITIVE cursor type.

actNoScroll This cursor is forward-only and conforms to the ESQL NO SCROLL
cursortype. A forward-only cursor is also known as a unidirectional
cursor.

actUnique The ESQL UNIQUE cursor type will automatically include any column
that is part of the primary key and make these columns available to the
cursor to guarantee uniquely identifiably rows.

IsPreparedOpen: boolean
A readonly property indicating if a query statement is currently prepared with PrepareOpen.

IsPreparedExecute: boolean
A readonly property indicating if a SQL statement is currently prepared with PrepareExecute.

LastErrorCode: integer
Returns the low-level error code returned from SQL Anywhere after an unsuccessful
database access call. Consider values greater than 0 (zero) as WARNINGS, while values
less than 0 (zero) is ERRORS. 0 means SUCCESS.

LastError: string
Returns the low-level error message returned from SQL Anywhere after an unsuccessful
database access call.

NativeDB for SQL Anywhere - A Programmer's Guide Page 25

MaxFetchCount: integer
Used to control the maximum size of the fetch-buffer for readonly cursors. If the cursor
contains one or more BLOBs or if ReadOnly = False, then a fetch-buffer of 1 is always used.
The default fetch-buffer size is 25. Valid values are between 1 and 1000. Experimenting with
this setting can dramatically improve the performance, depending on the particular cursor
type. For prepared cursors, remember to set this property before the call to PrepareOpen.
With non-prepared cursors, it's sufficient to set the size before the call to OpenRead.

Opened: boolean
A readonly property indicating if a cursor is currently open.

RowCount: integer
Public property that returns the accurate number of rows in the current open cursor. Accurate
only if TAsaSession.WantRowCounts is enabled. If WantRowCounts is disabled it holds the
estimated number of rows. This property is useful to size a progressbar or scrollbar after a
cursor is opened successfully. RowCount is set right after a cursor is opened.

RowPos: integer
Public property that returns the current row position, starting from zero (0) of the current open
cursor. RowPos is not guaranteed to be accurate unless TAsaSession.WantRowCounts is
True.

RowsProcessed: integer
A readonly property to retrieve the number of rows processed by the last insert, update or
delete SQL statement. Typically used after the last call to Execute.

Session: TNativeSession
Required property to link with a TAsaSession object.

ActiveX note: Link this property to an XAsaSession object instance.

StillInProc: boolean
Public property to return the current state of a running stored procedure. A return value of
True indicates that the stored procedure is still executing but has returned because of a result
set (a cursor). In this state the stored procedure can be resumed.

TableName: string
Used to return the name of the current active table. TAsaSQL extracts the tablename from the
last successful opened query.

TransIsolation: TTransIsolation
Sets the locking isolation level individually for the cursor. See TAsaSession.TransIsolation for
further details.

WantExceptions: boolean
Control if exceptions are raised or not. TAsaSQL raises an EAsaException for errors if this
property is true. The default is false. The property does not affect critical errors, which always
raises an exception. This property gives you a convenient way of avoiding the need to handle
exceptions in large exception handlers, after the query returns. Simply having to check for a
boolean result of True or False, after a OpenRead or OpenWrite, is very useful for lookup
types of queries. Still, with more critical queries, setting WantExecption to True, better
protects important sections of your code.

3.2.2 Methods

constructor Create(AOwner: TComponent)
Creates a TAsaSQL object instance.
ActiveX note: N/A

NativeDB for SQL Anywhere - A Programmer's Guide Page 26

destructor Destroy
Destroys a TAsaSQL object instance.
ActiveX note: N/A

function PrepareOpen(AQry: string): boolean
Used to prepare the specified query. Should be used in combination with OpenPrepared,
OpenReadPrepared or OpenWritePrepared.

function Open(AQry: string; const VarValues: array of variant; ReadOnly: boolean):
boolean
Similar to OpenRead when ReadOnly = True, or OpenWrite when ReadOnly = False. But in
contrast to these methods it will return True even with an empty result-set. The cursor will be
positioned at the “crack” row before the first. So upon a successful return, use Next to fetch
the first row.

function OpenPrepared(const VarValues: array of variant; ReadOnly: boolean):
boolean
Similar to OpenReadPrepared when ReadOnly = True, or OpenWritePrepared when
ReadOnly = False. But in contrast to these methods it will return True even with an empty
result-set. The cursor will be positioned at the “crack” row before the first. So upon a
successful return, use Next to fetch the first row.

function OpenReadPrepared(const VarValues: array of variant): boolean
Same as OpenRead, but requires the query to prepared with PrepareOpen.

function OpenWritePrepared(const VarValues: array of variant): boolean
Same as OpenWrite, but requires the query to prepared with PrepareOpen.

function OpenRead(AQry: string; const VarValues: array of variant): boolean
Opens a cursor for the specified query statement. AQry can also specify a stored function, but
it must return a valid result-set. The result set is always read-only. Returns True if the result-
set has a valid cursor and holds at least one row. Returns False in any other case. Upon a
successful return, an implicit fetch Next operation is done and the cursor is positioned at the
first row of the result-set. Use OpenRead as much as possible for better performance over
OpenWrite. OpenRead utilizes an optimised array-fetch mechanism. If the result set is empty
the return value is False, but the Opened property would still be True. When you use host
variables, you pass the variable values in the VarValues parameter, in a 1 to 1
correspondence with the host variables in the query statement.

function OpenWrite(AQry: string; const VarValues: array of variant): boolean
Same as OpenRead, but the result set allows the Append, Delete or Modify calls to update
the current row of the table.

function Describe(AQry: string): boolean
Describes a SQL statement. Follow this call to one of the GetField???? functions, to get field
and schema information. A successful (True) return value indicates that the described
statement represents a result set (cursor), while False means that the statement is a DML or
DDL statement.

procedure Close
Closes the cursor opened by Open, OpenPrepared, OpenRead, OpenWrite,
OpenReadPrepared and OpenWritePrepared. It's optional to call this method explicitly. It's
called automatically whenever a new query is opened.

procedure UnprepareOpen
Drops the prepared statement as prepared by PrepareOpen.

function PrepareExecute(ASQL: string): boolean
Used to prepare the specified SQL statement. Should be used in combination with
ExecutePrepared.

NativeDB for SQL Anywhere - A Programmer's Guide Page 27

function ExecutePrepared(const VarValues: array of variant): boolean
Same as Execute, but requires that the SQL statement is prepared with PrepareExecute
before executed.

function Execute(ASQL: string; const VarValues: array of variant): boolean
Executes any SQL statement. Returns true on success, false on failure. If WantExceptions is
enabled, an EAsaException exception is raised. If no host variables are required, specify a
Null variant value in the VarValues parameter (e.g NdbEmptyParam). When host variables
are used, pass the variable values, in VarValues, in a 1 to 1 relationship to the host variables
in the SQL statement.

procedure UnprepareExecute
Drops the prepared SQL statement as prepared by PrepareExecute.

function GetOutVar(const AVarName: variant): variant
Returns the current value of the specified host variable name. Typically used after a call to
Execute or ExecutePrepared, to retrieve INOUT, OUT or any types of "execute-into" host
variables. It is optional to identify the host variable by position, starting from 0 (zero), instead
of name.

function ExecuteImmediate(ASQL: string): boolean
Execute any SQL statement that has NO host variables for INPUT and/or OUTPUT. This
function utilizes the ESQL EXECUTE IMMEDIATE command. This method executes the
statement without preparing it first. This method results in an error if your statement contains
any host variables. If host variables are require, use Execute or ExecutePrepared instead.

function Explain: string
Used to retrieve a text specification of the optimization strategy used for the current open
query (opened by OpenRead or OpenWrite). See the EXPLAIN statement (ESQL) in your
SQL Anywhere Reference Manual. Also known as "the explain plan".

function Resume: boolean
Resumes the execution of a stored procedure after the processing of a result set (cursor)
within the SP. See the RESUME statement (ESQL) in your SQL Anywhere Reference
Manual.

function First: boolean
Navigates to the first row in the current open cursor. It's not necessary to call First right after
OpenRead, OpenWrite, OpenReadPrepared or OpenWritePrepared. These methods position
the cursor on the first row by default. Only allowed for scrollable cursors. Returns False if the
result-set is empty.

function Last: boolean
Navigates to the last row in the result set. Only allowed for scrollable cursors. Returns False if
the result-set is empty.

function Curr: boolean
Re-reads the current row in the result set.

function Next: boolean
Navigates to the next row in the result set. Returns False if an EOF state is detected and the
EOF property will be updated accordingly.

function Prev: boolean
Navigates to the prior row in the result set. Only allowed for scrollable cursors. Returns False
if a BOF state is detected and the BOF property will be updated accordingly.

NativeDB for SQL Anywhere - A Programmer's Guide Page 28

function MoveTo(ARowPos: integer): boolean
Moves to the row given by ARowPos, starting from row zero (0). Only allowed for scrollable
cursors.

function MoveToFirst: boolean
Moves the cursor to the “crack” row before the first row. Only allowed for scrollable cursors.

function MoveToLast: boolean
Moves the cursor to the “crack” row after the last row. Only allowed for scrollable cursors.

function Lock: Boolean
Places a write-lock on the current row, preventing others from updating the row. The lock will
be held on the row until an explicit Commit or Rollback, or, if in AutoCommit mode, until the
cursor is closed or updated.

procedure Clear
Clear all fields in the current row buffer. Each field is cleared (zeroed), and sets the NULL
indicator.

procedure ClearNotNull
Clear all fields in the current row buffer. Each field is cleared (zeroed), and sets the NOT
NULL indicator.

procedure ClearField(const FieldName: string)
Clears the specified field and sets the NULL indicator.

procedure ClearFieldNotNull(const FieldName: string)
Clears the specified field and sets the NOT NULL indicator.

function Modify: boolean
Updates the current row in the result set.

function Append: boolean
Appends the current row to the result set.

function Delete: boolean
Deletes the current row in the result set.

function FindField(const FieldName: string): boolean
Returns true if FieldName is found in the current open query.

function GetFieldCount: integer
Returns the number of fields in the current open query.

function GetFieldName(const FieldNo: integer): string
Returns the fieldname for FieldNo. FieldNo is the zero based field number in the current open
cursor.

function GetFieldType(const FieldName: variant): TNativeFieldTypes
Returns the type of the field specified by FieldName. Valid types are (ntUnknown, ntString,
ntInteger, ntInt64, ntFloat, ntCurrency, ntDate, ntTime, ntDateTime, ntBoolean, ntBinary,
ntMemo, ntBlob). The TNativeFieldTypes are declared in the NdbBase unit, so when
referencing field types, remember to include NdbBase in your uses clause. The FieldName
parameter is declared a variant, to allow you to specify the string name of the field, or the zero
based field number.

function GetFieldSize(const FieldName: variant): integer
Returns the data size of the field specified by FieldName. FieldName can be either the
fieldname literal or the field reference number.

NativeDB for SQL Anywhere - A Programmer's Guide Page 29

function GetFieldLength(const FieldName: variant): integer
Returns the display length of the field specified by FieldName. FieldName can be either the
fieldname literal or the field reference number.

function GetFieldPrecision(const FieldName: variant): integer
Returns the numeric precision of NUMERIC and DECIMAL fields. FieldName can be either
the fieldname literal or the field reference number.

function GetFieldDecimals(const FieldName: variant): integer
Returns the number of decimals for ntFloat or ntCurrency fieldtypes. FieldName can be either
the fieldname literal or the field reference number.

function GetFieldNulls(const FieldName: variant): boolean
Returns True if a NULL value is a allowed in the specified field. FieldName can be either the
fieldname literal or the field reference number.

function IsFieldNull(const FieldName: variant): boolean
Returns True if the specified field has the database field-state of NULL. FieldName can be
either the fieldname literal or the field reference number.

function IsFieldDirty(const FieldName: variant): boolean
Returns True if the specified field has been changed. FieldName can be either the fieldname
literal or the field reference number.

function IsDirty: boolean
Returns True if ANY field in the current row has been changed.

function CanModify: boolean
Returns true if a valid cursor is opened by OpenWrite.

function GetOldValue(const FieldName: variant): variant
Returns the original value of the field before any new values was assigned to it. FieldName
can be either the fieldname literal or the field reference number.

function GetFieldValue(const FieldName: variant): variant
This is the default class method used to retrieve field values. You don’t need to call this
directly. Use square brackets with the object name instead. (e.g.
MyStr:=MySQL[‘first_name’]). FieldName can be either the fieldname literal or the field
reference number.

procedure SetFieldValue(const FieldName: variant; const Value: variant)
This is the default class method to assign values to the specified field. You don’t need to call
this directly. Use square brackets with the object name instead. Assign a Null variant to a field
to set it to the NULL state (e.g NdbEmptyParam).

function StrToVarByte(StrBuf: PChar; BufLen: integer): variant
Converts a character buffer of BufLen to a variant array of byte. Used when passing binary
data to functions that require the variant array of byte datatype.
ActiveX note: N/A

function StreamToVarByte(AStream: TMemoryStream): variant
Converts a memory stream to a variant array of byte. Used when passing binary data to
functions that require the variant array of byte datatype.
ActiveX note: N/A

function StreamToStr(AStream: TMemoryStream): string
Converts a memory stream to a string.
ActiveX note: N/A

procedure StreamToBlob(const FieldName: variant; AStream: TStream)

NativeDB for SQL Anywhere - A Programmer's Guide Page 30

Assigns AStream to the specified BLOB field.
ActiveX note: N/A

procedure BlobToStream(const FieldName: variant; AStream: TStream)
Assigns a BLOB field to AStream.
ActiveX note: N/A

procedure GraphicToBlob(const FieldName: variant; APicture: TPicture;
AGraphicType: TNativeGraphicType)
Assigns a Picture object, of the specified type, to a BLOB field. Valid options for the
AGraphicType parameter are (gtBitmap, gtMetafile, gtIcon).
ActiveX note: N/A
Linux note: N/A

procedure BlobToGraphic(const FieldName: variant; APicture: TPicture;
AGraphicType: TNativeGraphicType)
Assigns a BLOB field to a Picture of the specified type.
ActiveX note: N/A
Linux note: N/A

3.2.3 Events

AfterOpen: TNotifyEvent
Triggers right after a cursor is successfully opened.

BeforeOpen: TNotifyEvent
Triggers just before an attempt to open a cursor is made.

AfterClose: TNotifyEvent
Triggers right after a cursor is closed.

BeforeClose: TNotifyEvent
Triggers just before a cursor is closed.

AfterPrepare: TNotifyEvent
Triggers right after a statement has been prepared.

AfterUnprepare: TNotifyEvent
Triggers right after a statement has been unprepared.

3.3 TAsaLogin

 This component provides a convenient method to connect to the database by using a
standard login dialog box. The login dialog has built-in support for many SQL Anywhere
specific connection features. When calling the Execute method, the connection properties of
the linked TAsaSession are used as default. Similar, when the Execute method returns with a
successful connection to the database, the current dialog settings are copied back to the
TAsaSession component.

ActiveX note: N/A

3.3.1 Properties

Session: TAsaSession
A required property to link with a TAsaSession object. This specifies the session to use when
connecting to the database.

NativeDB for SQL Anywhere - A Programmer's Guide Page 31

Options: TAsaLoginOptions
Specifies different options to control the behavior and appearance of the login dialog. Valid
values include a combination of loAutoConnect, loAutoLibraryPath, loAllowDetails and
loAlwaysDetails.

Options Description
loAutoConnect Will cause the Execute method to connect to the database without

showing the dialog, if the connection attempt is successful.
loAutoLibraryPath Will cause TAsaSession.LibraryPath to be assigned the extracted path

of the selected database file, if any.
loAllowDetails Will enable a “More” button on the login dialog to allow the user to

enter additional connection parameters.
loAlwaysDetails The login dialog will always show all the connection parameters.

3.3.2 Methods

constructor Create(AOwner: TComponent)
Creates a TAsaLogin object instance.

destructor Destroy
Destroys a TAsaLogin object instance.

procedure Execute;
Executes the login dialog box. The Connected property of the linked TAsaSession will be
True if the login attempt was successful.

procedure TForm1.btnLoginClick(Sender: TObject);
begin
AsaLogin1.Options := [loAutoConnect, loAllowDetails];
AsaLogin1.Execute;

end;

3.4 TAsaDataset

 This is the component you use with Borland data-aware components. To support
these components, you link a TAsaDataset instance to a TAsaSession with its
TAsaDataset.Session property. Then you link a TDataSource to the TAsaDataset with its
TDataSource.Dataset property. Finally, you link the data-ware components (i.e TDBGrid,
TDBEdit) to the datasource with the Datasource property.
Consider TAsaDataset for smaller databases and simpler forms, while TAsaSQL will be the
best choice when working with large databases.
TAsaDataset inherits all the properties and methods from TDataset. In addition some
specialized properties and methods were added. Our goal is to make TAsaDataset as close
as possible to the VCL component TQuery. In most of the cases, you should expect
compatibility between the two.

ActiveX note: N/A

3.4.1 Properties
The following properties were added to those already inherited from TDataset:

DataSource: TDataSource
Used to extract current field values from another dataset, to use to bind otherwise unassigned
parameters in the SQL statement in this component’s SQL property. Typically used to define
a master-detail relationship, between two tables.

NativeDB for SQL Anywhere - A Programmer's Guide Page 32

CursorType: TAsaCursorType
See TAsaSQL.CursorType.

IndexedLocate: Boolean
Used to control if you want Locate and LocateNext to attempt to use a compatible index when
searching. The default value is True. In situations when your current database collation is
incompatible with the default system locale, it could be necessary to disable the indexed
search.

ParamCheck: Boolean
Parameters are automatically build, based on the current query, if this property is true.

Params: TNativeParams
Used to manage parameters assigned to the dataset.

ParamCount: Word
Used to determine how many parameters are defined in the Params property. If the
ParamCheck property is True, ParamCount always corresponds to the number of actual
parameters in the SQL statement for the query. Same as Params.Count.

Prepared: Boolean
Determines whether or not the SQL statement is prepared for execution.

ReadOnly: Boolean
Indicates if the dataset allows editing.

RowsAffected: Integer
To determine how many rows were updated or deleted by the last query operation. If
RowsAffected is zero, the query did not update or delete any rows.

Session: TAsaSession
A required property to link to a TAsaSession object.

StillInProc: Boolean
Public property to return the current state of a running stored procedure. A return value of
True indicates that the stored procedure is still executing but has returned because of a result
set (a cursor). In this state the stored procedure can be resumed.

SyncInserts: Boolean
This property is used to avoid the "lost inserts" affect in TAsaDataset. A row inserted into a
cursor has no position in the result set, and will cause the row to disappear from view when
using data-aware controls. When this property is set to True, it uses the primary key (if any) of
the table to reposition the cursor to the inserted row (if it still matches the WHERE clause
criteria in the refreshed result set) and it will also make any auto-incremental value or other
column defaults immediately visible. If the table doesn't include any primary key, ALL fields
are used to synchronize the inserted row with the new result set. The default value is False.

SQL: TStrings
Used to define the query to be executed.

3.4.2 Methods
The following methods were added to those already inherited from TDataset:

procedure ExecSQL
To execute the INSERT, UPDATE, or DELETE statement currently assigned to the SQL
property. ExecSQL is also used to execute data definition statements.

NativeDB for SQL Anywhere - A Programmer's Guide Page 33

function FindKey(const KeyValues: array of const): Boolean;
Use FindKey to search for a specific record in a dataset. KeyValues contains a comma-
delimited array of field values, called a key. Each value in the key can be a literal, a variable,
a null, or nil. If the number of values passed in KeyValues is less than the number of columns
in the index used for the search, the missing values are assumed to be null. The key is
matched against the index built up by the current ORDER BY clause assigned to the query
statement. If a search is successful, FindKey positions the cursor on the matching record and
returns True. Otherwise the cursor is not moved, and FindKey returns False.

procedure FindNearest(const KeyValues: array of const);
Use FindNearest to move the cursor to a specific record in a dataset or to the first record in
the dataset that is greater than the values specified in the KeyValues parameter. KeyValues
contains a comma-delimited array of field values, called a key. If the number of values passed
in KeyValues is less than the number of columns in the index used for the search, the missing
values are assumed to be null. The key is matched against the index built up by the current
ORDER BY clause assigned to the query statement.

function Locate(const KeyFields: string; const KeyValues: Variant; Options:
TLocateOptions): Boolean
To search a dataset for a specified record and makes that record the current record. Returns
True if it finds a matching record, and makes that record the current one.

function LocateNext(const KeyFields: string; const KeyValues: Variant; Options:
TLocateOptions): Boolean
To search a dataset for a record after the current cursor position. Returns True if it finds a
matching record, and makes that record the current one.

function Lookup(const KeyFields: string; const KeyValues: Variant; const
ResultFields: string): Variant
To retrieve field values from a record that matches specified search values.

function ParamByName(const Value: string): TNativeParam
To set or use parameter information for a specific parameter based on its name. Value is the
name of the parameter for which to retrieve information. The return value is an instance of the
TNativeParam class described in section 3.4 and 3.5.

procedure Prepare
Prepares the SQL statement for later execution.

procedure Resume
Resumes the execution of a stored procedure after the processing of a result set (cursor)
within the SP. See also TAsaSQL.Resume.

procedure UnPrepare
Frees the resources and un-prepares the current prepared SQL statement.

3.4.3 Events
No additional events are added to the events derived from TDataset.

3.5 TAsaStoredProc

 This is the component you use to access SA stored procedures in a Borland
VCL/CLX data-aware manner. You can either use the component independently or connect it
to a TDataSource component. TAsaStoredProc supports both DML based SP's or SP's that
return one or more result sets.
TAsaStoredProc inherits all the properties and methods from TDataset. In addition some
specialized properties and methods were added. Our goal is to make TAsaStoredProc as

NativeDB for SQL Anywhere - A Programmer's Guide Page 34

close as possible to the VCL component TStoredProc. In most of the cases, you should
expect compatibility between the two.

ActiveX note: N/A

3.5.1 Properties
The following properties were added to those already inherited from TDataset:

Params: TNativeParams
Used to manage parameters assigned to the stored procedure.

ParamCount: Word
Used to determine how many parameters are defined in the Params property. Same as
Params.Count.

Prepared: Boolean
Determines whether or not the SQL statement is prepared for execution.

Session: TAsaSession
A required property to link with a TAsaSession object.

StillInProc: boolean
Public property to return the current state of a running stored procedure. A return value of
True indicates that the stored procedure is still executing but has returned because of a result
set (a cursor). In this state the stored procedure can be resumed.

StoredProcName: string
Used to specify the name of the stored procedure.

3.5.2 Methods
The following methods were added to those already inherited from TDataset:

procedure CopyParams(Value: TNativeParams)
Copies a stored procedure’s parameters into another parameter list.

procedure ExecProc
Executes the stored procedure. If the SP returns a result set, use Open (Active=True) instead.

function ParamByName(const Value: string): TNativeParam
To set or use parameter information for a specific parameter based on its name. Value is the
name of the parameter for which to retrieve information. The return value is an instance of the
TNativeParam class described in section 3.4 and 3.5.

procedure Prepare
Prepares the stored procedure for later execution.

procedure Resume
Resumes the execution of a stored procedure after the processing of a result set (cursor)
within the SP. Also see TAsaSQL.Resume.

procedure UnPrepare
Frees the resources and un-prepares the current prepared stored procedure.

3.5.3 Events
No additional events are added to the events derived from TDataset.

NativeDB for SQL Anywhere - A Programmer's Guide Page 35

3.6 TAsaAlert

 The TAsaAlert component is used in an application that needs to send or receive
messages to/from other connected clients. TAsaAlert requires a set of server-side external
procedures available by the product "NativeDB Alerts". Refer to our website or support Email
service for further information about "NativeDB Alerts".

TAsaAlert executes in a separate working thread, in the background, without interfering with
the normal program flow or main thread of your application. When a message is received the
OnReceive event is called, which is synchronized with the application's main thread.

After dropping a TAsaAlert component on a form or by creating it in your application, link it to
a TAsaSession by setting the Session property. To receive messages, set the
SubscriptionType property, and specify one or more message names in the MessageNames
property, separated by semicolons. Write an OnReceive event handler to react on incoming
messages. If you want to know that no messages has arrived in a specified amount of time,
set the Timeout property accordingly, and write an OnTimeout event handler. Also write an
OnStopped event handler if you want know if the process waiting for incoming messages has
stopped caused by an unsuccessful call to Start or as the result of an explicit call to Stop.

When calling the Start method of TAsaAlert, it will login using a duplicated TAsaSession and
create the background working thread. Then it will start to wait for incoming messages. Each
time a new message arrive the OnReceive event handler will be called. To stop the TAsaAlert
component, call the Stop method. When a TAsaAlert component is destroyed, the Stop
method is automatically called. The Stop method will also logoff the duplicated session and
destroy the working thread.

To send a message, call the Send method of TAsaAlert, identify the message by the
MsgName parameter and supply the message contents using the Msg and MsgParam
parameters. If the messsage has currently no subscribers, an EAsaAlertException exception
is raised.

3.6.1 Properties

MessageNames: string
The MessageNames property defines the name(s) of the message(s) to subscribe for or
signal interest in. If you want to subscribe for multiple message-types, separate the names by
semicolons. When one of multiple messages is received, the OnReceive event will provide
the actual message-name.

SubscriptionType: TSubscriptionType
The SubscriptionType property should be considered in combination with the MessageNames
property. Valid values are mtByNames, mtByUserID and mtByUserIDAndNames. Together
with MessageNames it builds a final subscription request to be used when the Start method is
called.

SubscriptionType Message Subscription
mtByNames The complete subscription request will include the

MessageNames property only.
mtByUserID The complete subscription request will include the

Session.LoginUser only.
mtByUserIDAndNames The complete subscription request will include both the

Session.LoginUser and the MessageNames property.

Session: TAsaSession
A required property to link with a TAsaSession object. When calling the Start method this
TAsaSession will be duplicated to avoid interference with other database access in your
application. The calls to Clear and Send will use the original linked Session as is.

NativeDB for SQL Anywhere - A Programmer's Guide Page 36

Timeout: Integer
Defines how many seconds to wait before a new message is received before the OnTimeout
event handler is called. If the value is 0, the OnTimeout event will not occur.

3.6.2 Methods

procedure Clear(const MsgName: string)
Removes all messages from the message queue identified by a case insensitive MsgName
parameter.

function IsWaiting: Boolean
Indicates if TAsaEvent is currently waiting for messages.

procedure Send(const MsgName: string; const Msg: string; MsgParam: Integer)
Posts a new message in the message queue identified by a case insensitive MsgName
parameter. Msg and the optional MsgParam parameter define the actual contents of the
message.

procedure Start
Start to wait for the incoming messages.

function SubscribingFor: string
Returns the final subscription request string depending on MessageNames, SubscriptionType
and Session.LoginUser.

procedure Stop
Stops the TAsaAlert component from waiting for incoming messages.

3.6.3 Events

OnReceive: TReceiveEvent
type TReceiveEvent = procedure(Sender: TObject; const MsgName: String;
const Msg: string; MsgParam: Integer) of object;

Called when a new message is received. The following is an example of a simple event
handler that will list all incoming messages in a memo:

procedure TForm1.AsaAlert1Receive(Sender: TObject; const MsgName,
Msg: String; MsgParam: Integer);

begin
Memo1.Lines.Add('A message "' + Msg + '" identified by "' + MsgName +
'" has arrived!);

end;

OnStopped: TNotifyEvent
Called as a result of an unsuccessful call to Start or when an explicit call to Stop is made.

OnTimeout: TTimeoutEvent
type TTimeoutEvent = procedure(Sender: TObject; var Continue: Boolean) of object;

Called when the number of seconds specified by the Timeout property has passed since the
last message was received. Set the Continue parameter to False to stop the TAsaAlert
component.

NativeDB for SQL Anywhere - A Programmer's Guide Page 37

3.7 TNativeParam
When you access parameters or host variables through TAsaDataset the class type returned
is an instance of TNativeParam. TNativeParam is designed very close to the familiar TParam
VCL class, as used by the VCL TQuery component.

ActiveX note: N/A

3.7.1 Properties

AsBlob: string
Specifies the value of the parameter when it represents a binary large object (BLOB) field.

AsBoolean: boolean
Specifies the value of the parameter when it represents a boolean field.

AsCurrency: double
Specifies the value of the parameter when it represents a field of type Currency.

AsDate: TDateTime
Specifies the value of the parameter when it represents a date field.

AsDateTime: TDateTime
Specifies the value of the parameter when it represents a date-time field.

AsFloat: double
Specifies the value of the parameter when it represents a float field.

AsInteger: longint
Specifies the value of the parameter when it represents an integer field.

AsSmallInt: longint
Specifies the value of the parameter when it represents a small integer field.

AsMemo: string
Specifies the value of the parameter when it represents a memo field.

AsString: string
Specifies the value of the parameter when it represents a string field.

AsTime: TDateTime
Specifies the value of the parameter when it represents a time field.

AsWord: longint
Specifies the value of the parameter when it represents a word field.

Bound: Boolean
Indicates if the parameter has been assigned a value.

DataType: TNativeParamDataType
Indicates the type of field whose value the parameter represents. TNativeParamDataType is
based on the TNativeFieldTypes type. Valid types are (ntUnknown, ntString, ntInteger,
ntInt64, ntFloat, ntCurrency, ntDate, ntTime, ntDateTime, ntBoolean, ntBinary, ntMemo,
ntBlob). Parameters of SmallInt and Word are internally treated as an ntInteger.

IsNull: boolean
Indicates whether the value assigned to the parameter is NULL (blank).

NativeDB for SQL Anywhere - A Programmer's Guide Page 38

ParamType: TNativeParamType
Indicates the parameter type used to bind host variables. Valid values are (nptUnknown,
nptInput, nptInputOutput, nptOutput, nptResult).

Text: string
Represents the value of the parameter as a string. This property is the same as using
AsString.

Value: variant
Represents the value of the parameter as a Variant.

3.7.2 Methods

procedure Assign(Source: TPersistent)
Used to assign another TNativeParam instance to this TNativeParam instance.

procedure AssignField(Field: TField)
Assigns a TField descendant's value and properties to this TNativeParam instance.

procedure AssignFieldValue(Field: TField; const Value: Variant)
Assigns a TField descendant's value to this TNativeParam instance.

procedure Clear
Assigns the NULL state indicator to this TNativeParam instance.

procedure GetData(Buffer: Pointer)
Returns the raw binary data currently assigned to the parameter.

function GetDataSize: Integer
Returns the size of the data currently assigned to the parameter.

procedure LoadFromFile(const FileName: string; BlobType: TNativeParamBlobType)
Loads the BLOB parameter with data from a file. TNativeParamBlobType is a subset of
TNativeParamDataType and can be either set to ntMemo or ntBlob.

procedure LoadFromStream(Stream: TStream; BlobType: TNativeParamBlobType)
Loads the BLOB parameter with data from a stream. TNativeParamBlobType is a subset of
TNativeParamDataType and can be either set to ntMemo or ntBlob.

procedure SetBlobData(Buffer: Pointer; Size: Integer)
Assigns raw binary data to the BLOB parameter.

procedure SetData(Buffer: Pointer)
Assigns raw binary data to the parameter.

3.8 TNativeParams
TNativeParams manages a list of TParam instances. To add or remove parameters from the
list, use TNativeParams methods. TNativeParams is designed very close to the familiar
TParams VCL class, as used by the VCL TQuery component.

ActiveX note: N/A

3.8.1 Properties

Items[Index: word]: TNativeParam

NativeDB for SQL Anywhere - A Programmer's Guide Page 39

Default class property. e.g. You can access the required parameter using [Index] only. The
return value is an instance of TNativeParam.

3.8.2 Methods

procedure Assign(Source: TPersistent)
Used to assign another TNativeParams instance to this TNativeParams instance.

procedure AddParam(Value: TNativeParam)
Adds a parameter to the list.

procedure RemoveParam(Value: TNativeParam)
Removes a parameter from the list.

function Count: Integer
Returns the current number of parameters.

procedure Clear
Clears the list of parameters.

function ParamByName(const Value: string)
Returns an instance of TNativeParam as given by Value.

3.9 ENativeException
Derived from the base Exception class, ENativeException exceptions are raised for errors in
base class operations.
ENativeException is only raised when TAsaSession.WantExceptions or TAsaSQL.
WantExceptions are set to True.

ActiveX note: N/A

3.9.1 Properties
The following properties were added to those already inherited from Exception:

ErrorCode: integer
Contain the error code that caused the exception. Zero (0) mean unspecified error.

3.10 EAsaException
Derived from ENativeException, EAsaException exceptions are raised for errors in SA
specific database operations.
EAsaException is only raised when TAsaSession.WantExceptions or TAsaSQL.
WantExceptions are set to True.
The ErrorCode property inherited from ENativeException contains the low-level database
error code that caused the exception

ActiveX note: N/A

3.11 ENativeDatasetError
Derived from the base EDatabaseError class, ENativeDatasetError exceptions are raised for
errors in the TAsaDataset class.
EDatabaseError exception is raised for errors in base class operations, while a
ENativeDatasetError is raised for errors in SA specific database operations.

NativeDB for SQL Anywhere - A Programmer's Guide Page 40

ActiveX note: N/A

The following exception handler, illustrates how to catch specific low level SA database error
codes:

try
AsaDataset1.Active := True;

except
on E:ENativeDatasetError do
begin
if (E.ErrorCode = -101) then ShowMessage('NOT_CONNECTED!') else
if (E.ErrorCode = -308) then ShowMessage('CONNECTION_DROP!') else
raise;

end;
end;

4. Component Usage

4.1 Working with TAsaSession
To connect to a SA database you need at least to set the LoginDatabase, LoginUser and
LoginPassword. Once these properties are established, either run time or design time, you
can connect to the database with the "Connected" property or “Open” method.

Windows note: When TAsaSession tries to connect to SA, it uses the LibraryPath to find the
SA server engine and the interface libraries. This includes in general SA files in the win32\
directory. Which client interface library to use, is specified by the LibraryFile property. The
need for the different SA library files depends on what connection type you are using. If
LibraryPath is not specified, NativeDB uses the system path to locate the SA interface files. If
you want to bundle SA with your application in a sub-directory controlled by your app., you
should use the LibraryPath. If LibraryPath is empty, TAsaSession relies on the system PATH
to find the client library files. The SA files you need, is a subset of the files in the SA Win32\
directory. If you want to know only the minimum required files, see the “SQL Anywhere User’s
Guide” or the “Online Help”. In general, you need at least one of the server engine
executables (e.g. dbeng7.exe) and a few DLLs.

Linux note: The SA library files (.so) is always attempted loaded through the Linux
environment variable LD_LIBRARY_PATH or through the configuration file /etc/ld.so.conf.
See the description on LibraryPath for further details.

4.1.1 Personal engine connection
SA supports a personal database connection. This connection is meant to connect an
application in a standalone environment. The personal connection will allow one PC only, and
will not allow any PC clients (except of a maximum of 10 simultaneous connections on the
same PC). To connect with a personal engine, you specify stServer as the ServerType before
you try to connect (this means personal server).

AsaSession1: TAsaSession;
.
.
try
AsaSession1.ServerParams := 'start=dbeng7.exe';
AsaSession1.ServerType := stServer;
AsaSession1.LoginDatabase := 'c:\MyApp\MyDB.db';
AsaSession1.LoginUser := 'dba';
AsaSession1.LoginPassword := 'sql';
AsaSession1.Connected := True;

except
on E: EAsaException do ShowMessage(E.Message);

end;

NativeDB for SQL Anywhere - A Programmer's Guide Page 41

Running the personal engine in the Linux environment would require a coding similar to this:

AsaSession1: TAsaSession;
.
.
try
AsaSession1.ServerParams := 'start=dbeng7';
AsaSession1.ServerType := stServer;
AsaSession1.LoginDatabase := '/home/frank/myapp/mydb.db';
AsaSession1.LoginUser := 'dba';
AsaSession1.LoginPassword := 'sql';
AsaSession1.Connected := True;

except
on E: EAsaException do ShowMessage(E.Message);

end;

4.1.2 Network engine connection
To run your application as a SA network server, you specify stServer in the ServerType
property and ‘start=dbsrv7.exe’ in the ServerParams property. In addition, you should also
specify the network protocol or protocols to use. The SA engine name defaults to the file
prefix of the database filename. If the LoginDatabase is “c:\MyApp\MyDB.db”, the server
engine is named “MyDB”. To override this behavior you can set the LoginEngineName. From
the client side, it’s optional to use the database name without the path to it in the
LoginDatabase property, but TAsaSession will do the naming extraction, if you specify the full
database file path at the client side too.

AsaSession1: TAsaSession;
.
.
try
AsaSession1.ServerParams := 'start=dbsrv7.exe –x tcpip';
AsaSession1.ServerType := stServer;
AsaSession1.LoginEngineName := 'MyDB'; // Optional
AsaSession1.LoginDatabase := 'c:\MyApp\MyDB.db';
AsaSession1.LoginUser := 'dba';
AsaSession1.LoginPassword := 'sql';
AsaSession1.Connected := True;

except
on E: EAsaException do ShowMessage(E.Message);

end;

4.1.3 Runtime engine connection
For small apps distributed to many users, the SA runtime is convenient. You connect to the
runtime version of SA, the same way as with the personal engine.

AsaSession1: TAsaSession;
.
.
try
AsaSession1.ServerParams := 'start=rteng7.exe';
AsaSession1.ServerType := stServer;
AsaSession1.LoginDatabase := 'c:\MyApp\MyDB.db';
AsaSession1.LoginUser := 'dba';
AsaSession1.LoginPassword := 'sql';
AsaSession1.Connected := True;

except
on E: EAsaException do ShowMessage(E.Message);

end;

4.1.4 Client connection
When you do a client connection, a running SA server must be found in your immediate
network or through a WAN using a “host=” parameter in the ClientParams property. The
server could be either a dedicated server or it could be your application running SA as a
network server. To connect to your server, you need to specify stClient in the ServerType

NativeDB for SQL Anywhere - A Programmer's Guide Page 42

property, and the necessary connection parameters in the ClientParams property. In addition,
you need to specify the database name either as the fully qualified database filename or only
the prefix part of the file. In addition, you can also specify the database engine name in
LoginEngineName. Typically, useful if the server holds more than one database in the same
server engine.

AsaSession1: TAsaSession;
.
.
try
AsaSession1.ClientParams := 'links=tcpip';
AsaSession1.ServerType := stClient;
AsaSession1.LoginEngineName := 'MyEngine';
AsaSession1.LoginDatabase := 'MyDB';
AsaSession1.LoginUser := 'dba';
AsaSession1.LoginPassword := 'sql';
AsaSession1.Connected := True;

except
on E: EAsaException do ShowMessage(E.Message);

end;

If you want to connect to a SQL Anywhere 5 server you need to run the SQL Anywhere client
executable as well. The following is an example of a client connection to SQL Anywhere 5:

AsaSession1: TAsaSession;
.
.
try
AsaSession1.ClientParams := 'start=dbclient.exe -x tcpip';
AsaSession1.LibraryFile :='dbl50t.dll';
AsaSession1.ServerType := stClient;
AsaSession1.LoginEngineName := 'MyEngine';
AsaSession1.LoginDatabase := 'MyDB';
AsaSession1.LoginUser := 'dba';
AsaSession1.LoginPassword := 'sql';
AsaSession1.Connected := True;

except
on E: EAsaException do ShowMessage(E.Message);

end;

If you want to connect to a SQL Anywhere 7 server (either running on Linux or Windows)
using a Linux desktop machine, consider the following example:

AsaSession1: TAsaSession;
.
.
try
AsaSession1.ClientParams := 'links=tcpip{host=<server IP address>';
AsaSession1.LibraryFile :='libdblib7.so';
AsaSession1.ServerType := stClient;
AsaSession1.LoginEngineName := 'MyEngine';
AsaSession1.LoginDatabase := 'MyDB';
AsaSession1.LoginUser := 'dba';
AsaSession1.LoginPassword := 'sql';
AsaSession1.Connected := True;

except
on E: EAsaException do ShowMessage(E.Message);

end;

4.1.5 Workgroup connection
The workgroup connection occasionally decides which PC in the LAN that becomes the
network server. First, it tries to be stClient. If this fails it tries to be stServer. This option is
convenient for small LANs with a peer-to-peer network, with no dedicated server. If the
application that occasionally becomes the server exits, the running SA server on that PC will
not stop until the last client disconnects from it.
Be aware though, that this connection type will potentially run the server engine on a different
computer than the one storing the database file. This could lead to a performance problem on

NativeDB for SQL Anywhere - A Programmer's Guide Page 43

slow LANs with heavy network traffic. But the workgroup connection is still very convenient
from a SW distribution point of view.
Also note, that this connection type should be used with a shared network drive or a UNC
specified path to the database file. This is required to allow any computer that participates in
the workgroup to become the server.

WARNING! Sybase does not recommend running the server engine and DB file on separate
computers. The authors are not to be held responsible of any data loss due to a workgroup
connection.

AsaSession1: TAsaSession;
.
.
try
AsaSession1.ServerParams := 'start=dbsrv7.exe –x tcpip';
AsaSession1.ServerType := stWorkgroup;
AsaSession1.LoginEngineName := 'MyDB'; // Optional
AsaSession1.LoginDatabase := '\\NTServer\c-drive\MyApp\MyDB.db';
AsaSession1.LoginUser := 'dba';
AsaSession1.LoginPassword := 'sql';
AsaSession1.Connected := True;

except
on E: EAsaException do ShowMessage(E.Message);

end;

4.1.6 Transaction handling
Every database application should have a clear strategy in how to handle transaction isolation
levels, commits and rollbacks.

Uncommitted updates will potentially block other clients from updating rows fetched and
updated by the client doing the updates. It could block other clients, i.e. they seem to "freeze"
forever, until the client, that placed the lock, commits the update. The blocking behavior can
be controlled by the "BLOCKING" database option.
Due to this behavior, consider "TAsaSession.Autocommit=True", or design your database
updates in tight blocks, i.e.

// Autocommit is False
try
// Do database updates here using:
// SQL.Append, SQL.Modify, SQL.Delete or SQL.Execute
// These methods could potentially block other clients!

finally
AsaSession1.Commit; // Force a commit. This will unblock other clients

end;

Dataaccess combined with the use of the Borland data-aware components (TDBEdit,
TDBGrid), using " TAsaSession.Autocommit=True" could be a convenient strategy.

In other cases when you need to group SQL statements together in a single user transaction,
the following code construct will handle this:

AsaSession1.StartTransaction;
try
// Do database updates here with TAsaSQL or TAsaDataset or both.
// Remember to enable WantExceptions
AsaSession1.Commit; // Commit the changes on success

except
AsaSession1.Rollback; // Undo changes on failure
raise;

end;

If one client blocks another client, while it waits for it to commit, you can define a
OnServerWait event, which will be repeatedly called by the database engine, while it waits. In
this event, you can give the user a chance to stop the database request, or display an option
to "Abort, Retry, Ignore".

NativeDB for SQL Anywhere - A Programmer's Guide Page 44

procedure TForm1.AsaSession1ServerWait(Sender: TObject; var AbortRequest: Boolean);
begin
Application.ProcessMessages; // Let user press a STOP button

end;

procedure TForm1.btnStopClick(Sender: TObject);
begin
AsaSession1.Stop;

end;

4.1.7 Backing up the database
The TAsaSession.Backup method is useful to take a full online database backup or an
incremental backup by renaming and restarting the transaction log. The backup includes the
main database file, the transaction log and the mirror log file if any. To backup you must first
be connected to the database.
The backup method returns true if it backed up the database successfully. The first parameter
indicates were the backup should be stored. The second parameter allows you to handle the
transaction log file in different ways (refer to TAsaSession.Backup for a description on each
available backup type).
An additional feature includes the usage of the TAsaSession.OnBackup event to display
progress information while the backup executes.

procedure TForm1.BackupClick(Sender: TObject);
begin
AsaSession1.OnBackup := AsaSession1Backup;
if not AsaSession1.Backup('c:\MyApp\BackupDir', btFull) then
ShowMessage(SQL.LastError);

end;

The code in the OnBackup event used to update a progress bar could be:

procedure TForm1.AsaSession1Backup(Sender: TObject; BackupFile: String; CurrPage,
NumOfPages: Integer; var AbortBackup: Boolean);
begin
Caption := BackupFile; // Includes both file and path
ProgressBar1.Max := NumOfPages;
ProgressBar1.Position := CurrPage;

end;

4.1.8 Server messages
Introduced with ASA version 6.01, the MESSAGE statement was improved to support the "TO
CLIENT" extended syntax. All server messages with this syntax are sent to the
TAsaSession.OnServerMessage event. When messages are sent to the client, a properly
defined OnServerMessage handler should check the MessageType parameter. This
parameter specifies the importance level of the message. Messages in the smtInfo and
smtStatus class are notification messages, while smtWarning and smtAction messages,
signal more important messages.

The following stored procedure notifies the client with an information message:

create procedure dba.notify_client()
begin
message 'Hello NativeDB!' type info to client

end

When executed ASA triggers a callback, and the incoming message could be handled in the
following event:

procedure TForm1.AsaSession1ServerMessage(Sender: TObject; MessageType:
TServerMessageType; MessageCode: Integer; Msg: String);
begin
case MessageType of
smtInfo: lbInfoListbox.Items.Add('Info message: ' + Msg);
smtWarning: MessageDlg(Msg, mtWarning, [mbOk], 0);
smtAction: MessageDlg(Msg, mtInformation, [mbOk], 0);

NativeDB for SQL Anywhere - A Programmer's Guide Page 45

smtStatus: lbStatListbox.Items.Add('Status message: ' + Msg);
end;

end;

The above event handler could also be an interesting starting point for a simple SQL Monitor.
By sending client messages from the client itself, one can trace queries as they are sent to
the database engine. The following event handler is attached to the TAsaDataset.AfterOpen
event, and uses a TAsaSQL instance to supply messages to the client. This sample also
shows the strength of TAsaSQL and TAsaDataset, when used together.

procedure TForm1.AsaDataset1AfterOpen(DataSet: TDataSet);
begin
AsaSQL1.Execute('message :stmt type info to client', [(DataSet as

TAsaDataset).SQL.Text]);
end;

The event implements a general handler and could easily be attached to every TAsaDataset
instance throughout the application.

Client messages could also be a convenient way of setting up a communication link to the
current TAsaSession object, in cases when you don't have access to its parent form. In this
way, you could simulate the traditional PostMessage and SendMessage Win32 API calls, to
communicate with the TAsaSession instance. Further, you could define your own set of
commands, and send them as messages to be executed on a global level.

4.1.9 Multi-threading
Many times an application needs to use multiple threads. These threads might also access
the database. In cases of multi-tier server applications or when you don't want the user to be
locked-up by a long running database operation, multiple threads are a convenient resource.
A second thread is also convenient when you want to break a long running database request.
But note that a long running database request can also be stopped, in a single-threaded
environment, through the server message event OnServerWait.

There are typically two types of configurations for a multi-threaded application.

Multiple threads, using a single database session
In this configuration, one singleTAsaSession instance is accessed by multiple threads.
Because the SA SQLCA connection handle can only make one database request at the same
time, all simultaneous database access must be serialized. When you use a single connection
to be accessed by multiple threads, executing SQL statements at the same time, you are
restricted to one active request at a time, per connection. Threads can be serialized by using
the Win32 thread synchronization API's. Semaphores, events and critical sections are all
objects to control thread synchronization.
When threads are synchronized, they block each other when they are accessing the
database. In this configuration, additional session synchronization must also take place, when
threads are connecting and disconnecting to and from the server.

Multiple threads, using multiple database sessions
With this configuration, each thread uses its own separate TAsaSession instance. The client
and server can process requests for these threads simultaneously. The result is an optimized
use of resources and a non-blocking behavior in the client application.

In both configurations, access to the same TAsaSQL and TAsaDataset instances must
always be restricted to a single thread.

Linux note: A thread safe version of the DBLIB client library is available with ASA for Linux.
Consider the below replacement versions of DBLIB, if multiple threads and thread-safety is an
issue in your Linux/Kylix application.

Product version Thread-safe client libraries
Adaptive Server Anywhere 6 (ASA6 – Linux) libdblib6_r.so

NativeDB for SQL Anywhere - A Programmer's Guide Page 46

Product version Thread-safe client libraries
Adaptive Server Anywhere 7 (ASA7 – Linux) libdblib7_r.so
Adaptive Server Anywhere 8 (ASA8 – Linux) libdblib8_r.so

ActiveX note: The COM classes XAsaSession and XAsaSQL uses the “apartment” threading
model.

4.2 Working with TAsaSQL

After creating an instance of TAsaSQL, you must assign a valid TAsaSession object to its
Session property.

Runtime, you can specify:

AsaSQL1: TAsaSQL;

AsaSQL1.Session := AsaSession1;
AsaSQL1.WantExceptions := True;

At design time, you use the published Session property to do this assignment.

4.2.1 Queries
The TAsaSQL component is typically used to query data from your database. To do this you
would typically use either the OpenRead or OpenWrite methods.

Listbox1.Clear;
if AsaSQL1.OpenRead('select * from customer where city=:city', ['New York']) then
begin
repeat
Listbox1.Items.Add(AsaSQL1['fname'] + ' ' + AsaSQL1['lname']);

until not AsaSQL1.Next;
end else
ShowMessage(AsaSQL1.LastError);

In this example, exceptions are turned off, so we rely on the boolean return value to indicate
success or failure. If the query fails, we display a message box showing the SQL.LastError
string.
In the last parameter to OpenRead, we specify the host variable value to replace with the
":city" host indicator. This is optional. We could build “New York” directly into the string
passed to OpenRead, and then passed a Null variant in the last parameter (e.g
NdbEmptyParam or square brackets).
Note: It's also optional to use question marks as host variable indicators:

if AsaSQL1.OpenRead('select * from customer where city=?', ['New York']) then

As the example shows, to fill up the listbox, we retrieve the field values from each row using
the SQL object’s default property (specified by square brackets). This will return the field
values as variant types, which in this case consists of strings.

4.2.2 Datatypes
NativeDB supports the following datatypes, with the corresponding database and variant
datatype listed in the table. These enumerated constants are defined in the NdbBase unit.

Datatype ASA datatype Variant type
ntUnknown <unspecified type> varNull
ntString char, varchar varString
ntInteger integer, smallint, tinyint, unsigned int, unsigned smallint varInteger
ntInt64 bigint, unsigned bigint varInt64
ntFloat float, double, decimal, numeric, bigint varDouble

NativeDB for SQL Anywhere - A Programmer's Guide Page 47

ntCurrency numeric(10,4), numeric (19,4) or numeric (20,4) varDouble
ntDate date varDate
ntTime time varDate
ntDateTime timestamp varDate
ntBoolean bit varBoolean
ntBinary binary, varbinary varByte
ntMemo long varchar varString
ntBlob long binary varByte

To access field data, for both reading and writing, you use TAsaSQL's default property.
The default property is TAsaSQL.FieldValues that you access with square brackets, i.e.
SQL[‘myfield’].
It’s the programmer’s responsibility to make sure that the left-hand side is assignment
compatible with the right-hand side of the expression.

var
S: string;
I: integer;

begin
S := AsaSQL1['AStringField']; // Correct
I := AsaSQL1['AStringField']; // Wrong

end;

The last assignment results in a “Variant type conversion error”.

4.2.3 Binary data
The datatype ntBinary is used for binary data with a maximum of 32K in size. The datatype
represents SA’s binary or varbinary type, and are accessed as a zero-based variant array of
bytes (varByte). To access this byte-array with highest possible performance, use the
VarArrayLock and VarArrayUnlock functions. To check the size of the value you can use
either the VarArrayHighBound function or TAsaSQL.GetFieldLength.

The examples assume that the TAsaSQL object is opened properly with either OpenRead or
OpenWrite.

var
BinData: variant;
PBytes: PByte;
Size: integer;

begin
BinData := AsaSQL1['binary_field'];
Size := VarArrayHighBound(BinData, 1) + 1;
PBytes := VarArrayLock(BinData);

// Use PBytes here

VarArrayUnLock(BinData);

... or the short version

var
PBytes: PByte;

begin
PBytes := VarArrayLock(AsaSQL1['binary_field']);
// Use PBytes here

... or even shorter without VarArrayLock, accepting slower performance

var
TheFirstByte: byte;

begin
TheFirstByte := Byte(AsaSQL1['binary_field'][0];

To write to a binary field, just assign a variant array of byte to AsaSQL1[‘binary_field’].

NativeDB for SQL Anywhere - A Programmer's Guide Page 48

var
BinData: variant;
Size: integer;

begin
Size := AsaSQL1.GetFieldLength('binary_field');
BinData := VarArrayCreate([0, Size - 1], varByte);
BinData[0] := ord('A');
BinData[1] := ord('B');
BinData[2] := ord('C');
AsaSQL1['binary_field'] := BinData;

To post the changes to the underlying table you must call one of the methods to update or
insert the row.

If you prefer to work with PChar's or other buffered binary data types instead, the
TAsaSQL.StrToVarByte will do the conversion to a "variant array of byte" automatically for
you. The following code shows how to utilize this function to modify a table with a binary field:

var
Bin_Data: array[0..3] of byte;

begin
if AsaSQL1.OpenWrite('select * from atable where id=100', []) then
begin
Bin_Data[0] := 6;
Bin_Data[1] := 16;
Bin_Data[2] := 12;
Bin_Data[3] := 18;
AsaSQL1['binary_field'] := AsaSQL1.StrToVarByte(@Bin_Data, 4);
if not AsaSQL1.Modify then
ShowMessage(AsaSQL1.LastError);

end else
ShowMessage(AsaSQL1.LastError);

end;

4.2.4 Binary Large Objects (BLOBS)
A BLOB (Binary Large OBject) is a convenient data type to store general-purpose data of a
large number of bytes. Bitmaps and documents are example of such data types. To access
BLOB fields with NativeDB you can use direct field-to-field access, or use some of the BLOB
helper methods.

For example to read a picture stored in BLOB field named "picture", you can call:

AsaSQL1.BlobToGraphic('picture', Image1.Picture, gtBitmap);
Image1.Picture.SaveToFile('c:\pictures\picture.bmp');

... to update a picture, loaded from a file, you can call:

Image1.Picture.LoadFromFile('c:\pictures\picture.bmp');
AsaSQL1.GraphicToBlob('picture', Image1.Picture, gtBitmap);

To read a long text memo from a ntMemo field, you simply call:

Memo1.Text := AsaSQL1['a_memo'];

... or to update the same memo you can call:

AsaSQL1['a_memo'] := Memo1.Text;

You can also optinally use the BLOB helper methods BlobToStream and StreamToBlob to
access a memo or an image field.

To post the changes to the underlying table you must call one of the methods to update or
insert the row.

All examples assume that a valid cursor is already obtained.

NativeDB for SQL Anywhere - A Programmer's Guide Page 49

4.2.5 Handling NULL values
Un-assigned fields in a table will typically default to the NULL SQL state, unless a default
value is given to the field by the database engine.
When the cursor is positioned on a valid row, you can check the current field’s NULL state by
using the IsFieldNull method. Pass the field name as the parameter to this method:

if AsaSQL1.OpenRead('select * from employee where emp_id=100', []) then
begin
if not AsaSQL1.IsFieldNull('birth_date') then
Caption := DateToStr(AsaSQL1['birth_date'])

else
Caption := 'NULL';

end else
ShowMessage(AsaSQL1.LastError);

To append a new row to a table, assigning only a few fields, you can use the following:

if AsaSQL1.OpenWrite('select * from employee', []) then
begin
AsaSQL1.Clear; // Set all field buffers to NULL
AsaSQL1['emp_fname'] := 'Frank';
AsaSQL1['emp_lname'] := 'Johnsen';
if not AsaSQL1.Append then
ShowMessage(AsaSQL1.LastError);

end else
ShowMessage(AsaSQL1.LastError);

The un-assigned fields will potentially be given a default value as defined in your database
(e.g. auto-incremental fields).
To change a field from a value to the NULL state, assign a Null variant to the field:

if AsaSQL1.OpenWrite('select * from employee', []) then
begin
AsaSQL1['emp_lname'] := Null;
if not AsaSQL1.Modify then
ShowMessage(AsaSQL1.LastError);

end else
ShowMessage(AsaSQL1.LastError);

If you need to check if a given field is allowed to be NULL, use the GetFieldNulls method,
passing the fieldname as a parameter. A database error will return if you try to assign (and
update) a NULL value to a field, which don’t allow NULLS.

4.2.6 Appending rows
To append new records to a table you need to get a write-able result set first. This is done by
a call to OpenWrite in contrast to OpenRead. When a record is appended, the current row's
field values are assigned to the new row. You must explicitly call Clear to clear the fields. In
the following example, WantExceptions is turned off, so we can properly check the boolean
return value of Append as an indicator of success or failure. Note the use of the Clear method
to empty the current row buffer before assigning any new values. In many cases, it can be
useful to avoid the call to Clear, if you want to duplicate many rows, changing only a few fields
in a loop.

AsaSQL1.OpenWrite('select * from customer', []);
if AsaSQL1.Opened then
begin
AsaSQL1.Clear; // Set all columns to the NULL state
AsaSQL1['fname'] := 'Frank';
AsaSQL1['lname'] := 'Johnsen';
if not AsaSQL1.Append then
ShowMessage(AsaSQL1.LastError);

end else
ShowMessage(AsaSQL1.LastError);

NativeDB for SQL Anywhere - A Programmer's Guide Page 50

4.2.7 Appending rows containing a auto-incremental column
When a row is appended to the database, columns with NULL states will be added to the
database as NULL or by their database default value, if any. An example of a column default
value is the auto-incremental type.
To let the SA database engine use the default value, we must ensure that the column initial
state is NULL, before the call to Append is made. If the state is non-NULL the value currently
assigned to the column will be used.
If the SA database engine uses the default value and assigns the next incremental value to
the column, this value is immediately available in the field buffer, without any need to refresh
the query, or execute a separate "select @@identity" query. This feature also applies to other
type of column-defaults, as well.
The following example uses the customer table in the "asademo" database, to show how
auto-incremental values are available to the client, after a call to Append. The customer table
defines a field "id" with the auto-incremental default value.

AsaSQL1.OpenWrite('select * from customer', []);
if AsaSQL1.Opened then
begin
AsaSQL1.Clear; // Set all columns to the NULL state
AsaSQL1['fname'] := 'Frank';
AsaSQL1['lname'] := 'Johnsen';
if not AsaSQL1.Append then
ShowMessage(AsaSQL1.LastError)

else
ShowMessage('Autoinc value is: ' + IntToStr(AsaSQL1['id']);

end else
ShowMessage(AsaSQL1.LastError);

4.2.8 Modifying rows
To modify a record in a table you need to get a write-able result set first. This is done by a call
to OpenWrite in contrast to OpenRead.

if AsaSQL1.OpenWrite('select * from customer where lname=''Johansen''', []) then
begin
AsaSQL1['lname'] := 'Johnsen';
if not AsaSQL1.Modify then
ShowMessage(AsaSQL1.LastError);

end else
ShowMessage(AsaSQL1.LastError);

The current row is the row being modified. You can use the navigational methods (First, Next
etc) to make another row, the current.

4.2.9 Deleting rows
To delete a record in a table call Delete after a successful call to OpenWrite. This will delete
the current row in the above result set.

if AsaSQL1.OpenWrite('select * from customer where lname=''Johansen''', []) then
begin
if not AsaSQL1.Delete then
ShowMessage(AsaSQL1.LastError);

end else
ShowMessage(AsaSQL1.LastError);

4.2.10 Executing SQL statements
You can achieve the same result using the Execute method instead of the Append, Modify
and Delete methods, except that Execute is not aware of a current row in the result set.
So, to delete a row using Execute you could use the following code:

if not AsaSQL1.Execute('delete from customer where fname=''John''', []) then
ShowMessage(AsaSQL1.LastError);

NativeDB for SQL Anywhere - A Programmer's Guide Page 51

With parameters:

if not AsaSQL1.Execute('delete from customer where fname=?, ['John']) then
ShowMessage(AsaSQL1.LastError);

In fact, you can use any valid SQL statement, with the Execute method.
Using the second, you can supply host variable values for both input and output.

var
AFirstName: string;

if not AsaSQL1.Execute('delete from customer where fname=?, [AFirstName]) then
ShowMessage(AsaSQL1.LastError);

If you have more than one parameter to bind, separate each value with a comma in the
variant array parameter:

if not AsaSQL1.Execute('delete from customer where fname=? and lname=?', [AFirstName,
ALastName]) then
ShowMessage(AsaSQL1.LastError);

4.2.11 Using parameters
Using host variables with SQL statements is convenient when using the same statement
more than once. Using parameters instead of fixed statements also have some performance
benefits with the SA server.
When you use host variables with NativeDB, you are responsible of passing the same
number of values as the number of parameters contained in the SQL statement, in a 1 to 1
relationship from left to right.

When you use parameters with your queries, you pass the host variable values in the
VarValues open array parameter to OpenRead, OpenWrite, OpenReadPrepared and
OpenWritePrepared.

if AsaSQL1.OpenRead('select * from customer where fname=:p1 and lname=:p2', ['John',
'Smith']) then

When you use parameters with to your DML statements, you pass the values with the
Execute and ExecutePrepared methods.

if AsaSQL1.Execute('delete from customer where lname=:p1', ['Smith']) then

The following table shows the SA datatypes and the corresponding variant types.

ASA type Variant type
NULL varNull
char, varchar varString
integer, smallint, tinyint, unsigned int, unsigned smallint varInteger
float, double, decimal, numeric, bigint, unsigned bigint varDouble
numeric(10,4), numeric(19,4) or numeric(20,4) varCurrency or varDouble
date varDate
time varDate
timestamp varDate
bit varBoolean
binary, varbinary varByte
long varchar varString
long binary varByte

For example, if you bind a timestamp value to a parameter for a timestamp field, you can
pass a TDateTime variable.

NativeDB for SQL Anywhere - A Programmer's Guide Page 52

var
bdate: TDateTime;

begin
AsaSQL1.Execute('insert into employee (birth_date) values (?)', [bdate]);

end;

Note: It's optional to use a question mark ("?") instead of host variable name. Also note that
when passing strings as host variable values, you can use fixed strings, string variables or
general string types.

The following example uses parameters/host variables to update a BLOB field:

var
AStream: TMemoryStream;
LongBinaryData: variant;
LongVarcharData: variant;

begin
AStream := TMemoryStream.Create;
try
AStream.LoadFromFile('c:\mypics\sister.bmp');
LongBinaryData := AsaSQL1.StreamToVarByte(AStream);
AStream.LoadFromFile('c:\mydocs\sister.doc');
LongVarcharData := AsaSQL1.StreamToStr(AStream);
AsaSQL1.Execute('update family_album set picture=:p1, document=:p2 where id=:id',

[LongBinaryData, LongVarcharData, 1]);
finally
AStream.Free;

end;
end;

4.2.12 Using prepared statements
The OpenRead, OpenWrite and Execute family of methods are very powerful. These
methods, wraps the "prepare-action-unprepare" behavior into one single call. In some
situations, you may want to split up this behavior, and control the preparation,
execution/action and un-preparation statements separately.
A typical usage of prepared SQL statements and queries are to do the preparation in your
application initialization code. Use the action methods with your regular program code flow,
and finally un-prepare the statements in your application exit code.

The preparation family of methods consists of PrepareOpen and PrepareExecute. The action
methods used together with these methods are OpenReadPrepared, OpenWritePrepared and
ExecutePrepared. To un-prepare the statements at program exit, you use UnprepareOpen
and UnprepareExecute. Note: If these methods are not called upon exit, they are implicit
called internally by NativeDB.
To check if a statement is already prepared, you use the IsPreparedOpen or
IsPreparedExecute read-only properties.

After a statement is prepared, it stays prepared throughout the lifetime of your TAsaSQL
object, or until an explicit call is made to one of the unprepare methods.

The following code sample shows a typical usage of prepared statements.

procedure TForm1.FormCreate(Sender: TObject);
begin
AsaSQL1.PrepareOpen('select * from customer where id=:id');
AsaSQL2.PrepareExecute('insert into customer (id, fname, lname) values (?,?,?)');

end;

procedure TForm1.btnActionClick(Sender: TObject);
begin
if AsaSQL1.IsPreparedOpen and

AsaSQL1.OpenReadPrepared([StrToInt(Edit1.Text)]) then
begin
Listbox1.Items.Add(AsaSQL1['fname'] + ' ' + AsaSQL1['lname']);
if AsaSQL2.IsPreparedExecute then
if not AsaSQL2.ExecutePrepared([StrToInt(Edit2.Text), Edit3.Text, Edit4.Text])

then

NativeDB for SQL Anywhere - A Programmer's Guide Page 53

ShowMessage(AsaSQL2.LastError);
end;

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
AsaSQL1.UnprepareOpen;
AsaSQL2.UnprepareExecute;

end;

4.2.13 Calling stored procedures
Stored procedures (SPs) are procedures or functions stored in your database, and processed
by the server engine. To call SPs, you use either Execute or ExecutePrepared. If the SP
returns a cursor, you use OpenRead or OpenReadPrepared. To retrieve values returned by
OUT or INOUT parameters, you use the GetOutVar method, after the execution of the SP.

Assume a SA stored function to return the full name of a customer:

create function fullname(in firstname char(30), in lastname char(30)) returns char(61)
begin
declare name char(61);
set name = firstname || ' ' || lastname;
return(name);

end

You can call this function, with the following code:

begin
if AsaSQL1.OpenRead('select * from customer where lname=?', ['Smith']) and

AsaSQL1.Execute('?=call fullname(?,?), [AsaSQL1['fname'], AsaSQL1['lname']]) then
ShowMessage('Name: ' + AsaSQL1.GetOutVar('fullname'));

end;

Note that in the above code its required to use a host variable assignment for functions that
return a single value. e.g. '? = call' or ':a_result = call'. Upon the return from the stored
function use the NAME of the function to retrieve the returned value.

Stored procedures can supply both IN and OUT parameters (and INOUT). Assume the
procedure:

create procedure greater(in a integer, in b integer, out c integer)
begin
if a>b then
set c=a

else
set c=b

end if
end

You can call it with:

if AsaSQL1.Execute('call greater(?,?,?)', [10,20]) then
ShowMessage(FloatToStr(AsaSQL1.GetOutVar('c'));

You only need to supply host variable values for the IN and INOUT parameters.
If the stored procedure you are calling returns a result set, use the OpenRead or
OpenReadPrepared method instead. Your SA database includes many system procedures.
To retrieve useful information about the current connection you can use the following stored
procedure:

if AsaSQL1.OpenRead('call sa_db_info', []) then
repeat
// Read the fields here

until not AsaSQL1.Next;

If you want to call a stored procedure the same way as "Interactive SQL" you could:

NativeDB for SQL Anywhere - A Programmer's Guide Page 54

if AsaSQL1.Execute('create variable c int', []) then
begin
if AsaSQL1.Execute('call greater(100,150,c)', []) and

AsaSQL1.OpenRead('select c', []) then
ShowMessage(IntToStr(AsaSQL1['c']));

AsaSQL1.Execute('drop variable c', []);
end;

The following sample shows how you use the GetOutVar method to retrieve values for
INOUT, OUT and function result variables:

create procedure sp_get_customer(in i_id integer, out o_fname char(15), out o_lname
char(20), out o_city char(20))
begin
select fname, lname, city
into o_fname, o_lname, o_city
from customer
where id = a_id

end

You can call this SP from your application with the following code:

if AsaSQL1.Execute('call sp_get_customer(?,?,?,?)', [100]) then
begin
edCust_fname.Text := AsaSQL1.GetOutVar('r_fname');
edCust_fname.Text := AsaSQL1.GetOutVar('r_lname'));
edCust_fname.Text := AsaSQL1.GetOutVar('r_last_updated'));

end else
ShowMessage(AsaSQL1.LastError);

A stored procedure can return multiple result sets, or code that follows the first result set.
To be able to continue execution of a SP after the processing of cursor, the Resume method
is used:

create procedure multi_cust()
begin
select id,fname from customer order by id asc;
select id,lname,address from customer order by id asc

end

This SP returns multiple result sets. To handle this properly you can use the following code:

Listbox1.Clear;
if AsaSQL1.OpenRead('call multi_cust', []) then
begin
repeat
repeat
S := '';
for I := 0 to AsaSQL1.GetFieldCount - 1 do
S := S + VarToStr(AsaSQL1 [I]) + ' ';

Listbox1.Items.Add(S);
until not AsaSQL1.Next;

until not AsaSQL1.Resume;
end else
ShowMessage(AsaSQL1.LastError);

The following SP returns a result set depending on a condition, which is passed to the SP as
a parameter.

create procedure conditional_cust(in who integer)
begin
if who = 1 then
select id,fname from customer order by id asc

else
select id,lname,address from customer order by id asc

end if
end

And the code to call it:

Listbox1.Clear;
if AsaSQL1.OpenRead('call conditional_cust(?)', [StrToInt(Edit1.Text)]) then

NativeDB for SQL Anywhere - A Programmer's Guide Page 55

begin
repeat
Listbox1.Items.Add(IntToStr(AsaSQL1 ['id']);

until not AsaSQL1.Next;
AsaSQL1.Resume;

end else
ShowMessage(AsaSQL1.LastError);

4.2.14 Using compound statements
In contrast to stored procedures, compound statements are executed "on the fly" by the client
application. Compound statements can also be used in batches or groups of operations. A
compound statement starts with the keyword BEGIN and ends with the keyword END. In
cases where you don't want to write stored procedures, groups of statements can be very
convenient.

ABatch := 'begin' +

' declare cust_id int;' +
' set cust_id = 101;' +
' select * from customer where id=cust_id;' +
'end';

AsaSQL1.OpenRead(ABatch, []);

Or using an atomic compound statement that doesn't return a cursor:

ABatch := 'begin atomic' +

' declare cust_id int;' +
' declare phone_no char(12);' +
' set cust_id = 101;' +
' set phone_no = ''3175558414'';' +
' update customer set phone=phone_no where id=cust_id;' +
'end';

AsaSQL1.Execute(ABatch, []);

4.2.15 Breaking a running stored procedure
The TAsaSession.Stop method is convenient to stop or break a running server request. This
method works the same way as the “Stop-button” in the Command window of the Interactive
SQL utility (ISQL), as part of the SQL Anywhere product.
This method can be called asynchronously be a second thread. The method is typically used
to allow the user break a long running stored procedure, currently executed by the SA server
engine. To use the Stop method you could define two threads. One thread could be used to
execute a stored procedure and a second to break it.

The following example illustrates this scenario by allowing the main thread to create and stop
a stored procedure, while a worker thread runs it:

procedure TForm1.ExecuteClick(Sender: TObject);
var
AThread: TTestThread;

begin
if AsaSQL1.Execute(

'create procedure run_for_awhile() ' +
'begin'+
' declare I integer;' +
' set I = 0;' +
' while I < 50000 loop' + // Dummy loop
' set I = I + 1;' +
' end loop;' +
'end', []) then

begin

// Let second thread execute it
AThread := TTestThread.Create;

// Let second thread run uninterrupted for 2 seconds
Sleep(2000);

// Main thread tries to stop the running stored procedure

NativeDB for SQL Anywhere - A Programmer's Guide Page 56

if not AsaSession1.Stop then
ShowMessage(AsaSession1.LastError);

end else
ShowMessage(AsaSQL1.LastError);

end;

And the code for the TTestThread class that executes the procedure:

constructor TTestThread.Create;
begin
FreeOnTerminate := True;
inherited Create(False);

end;

procedure TTestThread.Execute;
begin
// Execute procedure created by the main thread
Form1.AsaSQL1.Execute('call run_for_awhile', []);

end;

The code to break the running stored procedure would normally be executed by a “Stop-
button” OnClick event, as in Interactive SQL. Then we can, as specified in the previous
example, omit the “Sleep” Win32 API function, and have the following declaration instead:

procedure TForm1.StopClick(Sender: TObject);
begin
// Main thread tries to stop the running stored procedure
if not AsaSession1.Stop then
ShowMessage(AsaSession1.LastError);

end;

... or if TAsaSession.WantExeptions are turned on:

procedure TForm1.StopClick(Sender: TObject);
begin
// Main thread tries to stop the running stored procedure
AsaSession1.Stop;

end;

A second technique, to stop a running server process, is to use the event
TAsaSession.OnServerWait instead of a second thread. This event is called repeatedly while
the database server or client library is busy processing a database request.

procedure TForm1.AsaSession1ServerWait(Sender: TObject; var AbortRequest: Boolean);
begin
if StopButtonIsPressed then
AsaSession1.Stop;

end;

Or you could also decide to use the AbortRequest parameter to achieve the same result:

procedure TForm1.AsaSession1ServerWait(Sender: TObject; var AbortRequest: Boolean);
begin
if StopButtonIsPressed then
AbortRequest := True;

end;

4.3 Working with TAsaDataset

The TAsaDataset component is typically used to replace Borland VCL's TQuery database
component. In most cases you should expect compatibility between the two.
The typical usage of TAsaDataset includes:

1. Drop a TAsaSession on the form.
2. Drop a TAsaDataset on the form
3. Drop a TDatasource on the form.
4. Drop data-aware components on the form.

NativeDB for SQL Anywhere - A Programmer's Guide Page 57

5. Connect the TAsaDataset to the TAsaSession.
6. Connect the TDataSource to the TAsaDataset.
7. Connect the data-aware components to the TDatasource.

4.3.1 Queries
To execute a query, you need to assign it to the SQL property.

AsaDataset1.Close;
AsaDataset1.SQL.Clear;
AsaDataset1.SQL.Add('select * from customer order by id');
AsaDataset1.Open;

4.3.2 Parameters
A query/dataset can contain parameters prefixed by a colon. The following example assumes
that the ParamCheck property is True.

AsaDataset1.Close;
AsaDataset1.SQL.Clear;
AsaDataset1.SQL.Add('select * from customer where id=:id');
AsaDataset1.ParamByName('id').AsInteger := 101;
AsaDataset1.Open;

4.3.3 Searching
To search for a row containing specified values, you use either Locate or Lookup.

if AsaDataset1.Locate('id', 110, []) then
ShowMessage('Row found!');

To search for a row containing more than one value:

if AsaDataset1.Locate('id;lname', VarArrayOf(110, 'Agliori'), []) then
ShowMessage('Row found!');

To search for a row without moving the current row pointer, you use Lookup.

AResult := AsaDataset1.Lookup('id', 110, 'lname');
if not VarIsNull(AResult) then
ShowMessage('Customer last name is: ' + AResult);

TAsaDataset.FindKey, FindNearest and LocateNext can also be used for searching. Refer to
the description of these methods for further details.

4.3.4 Appending rows
To append or insert a row to a table, you can use ExecSQL or one of the Insert or Append
methods.

To insert a row using ExecSQL:

AsaDataset1.Close;
AsaDataset1.SQL.Clear;
AsaDataset1.SQL.Add('insert into customer (fname, lname)');
AsaDataset1.SQL.Add('values (''John'', ''Smith'')');
AsaDataset1.ExecSQL;

To insert a row using Insert:

AsaDataset1.Close;
AsaDataset1.SQL.Clear;
AsaDataset1.SQL.Add('select * from customer order by id');
AsaDataset1.Open;
AsaDataset1.Insert;

NativeDB for SQL Anywhere - A Programmer's Guide Page 58

AsaDataset1.FieldByName('fname').AsString := 'John';
AsaDataset1.FieldByName('lname').AsString := 'Smith';
AsaDataset1.Post;

Do note that newly inserted row has no position in the result set, and will cause the row to
disappear from view when using data-aware controls. To avoid this affect, set the
TAsaDataset property SyncInserts to True. For further details refer to the TAsaDataset.
SyncInserts property.

4.3.5 Modifying rows
To modify an existing row of a table, you can use ExecSQL or the Edit method.

To modify a row using ExecSQL:

AsaDataset1.Close;
AsaDataset1.SQL.Clear;
AsaDataset1.SQL.Add('update customer set fname=''Johnny''');
AsaDataset1.SQL.Add('where lname=''Smith''');
AsaDataset1.ExecSQL;

To modify a row using Edit:

AsaDataset1.Close;
AsaDataset1.SQL.Clear;
AsaDataset1.SQL.Add('select * from customer where lname=''Smith''');
AsaDataset1.Open;
AsaDataset1.Edit;
AsaDataset1.FieldByName('fname').AsString := 'Johnny';
AsaDataset1.Post;

4.3.6 Deleting rows
To delete a row of a table, you can use ExecSQL or the Delete method.

To delete a row using ExecSQL:

AsaDataset1.Close;
AsaDataset1.SQL.Clear;
AsaDataset1.SQL.Add('delete from customer where lname=''Smith''');
AsaDataset1.ExecSQL;

To delete a row using Delete:

AsaDataset1.Close;
AsaDataset1.SQL.Clear;
AsaDataset1.SQL.Add('select * from customer where lname=''Smith''');
AsaDataset1.Open;
AsaDataset1.Delete;

4.3.7 Updating BLOBs
To update a BLOB using ExecSQL:

AsaDataset1.Close;
AsaDataset1.SQL.Clear;
AsaDataset1.SQL.Add('update pictures set pic=:pic where id=:id');
AsaDataset1.ParamByName('id').AsInteger := 101;
AsaDataset1.ParamByName('pic').Assign(Image1.Picture);
AsaDataset1.ExecSQL;

… or

AsaDataset1.Close;
AsaDataset1.SQL.Clear;
AsaDataset1.SQL.Add('update pictures set pic=:pic where id=:id');
AsaDataset1.ParamByName('id').AsInteger := 101;

NativeDB for SQL Anywhere - A Programmer's Guide Page 59

AsaDataset1.ParamByName('pic').LoadFromFile('c:\picture.bmp, ntBlob);
AsaDataset1.ExecSQL;

… or

AsaDataset1.Close;
AsaDataset1.SQL.Clear;
AsaDataset1.SQL.Add('update memos set a_memo=:a_memo where id=:id');
AsaDataset1.ParamByName('id').AsInteger := 101;
AsaDataset1.ParamByName('a_memo').Assign(Memo1.Lines);
AsaDataset1.ExecSQL;

To modify a row using Edit:

AsaDataset1.Close;
AsaDataset1.SQL.Clear;
AsaDataset1.SQL.Add('select * from pictures where id=:id');
AsaDataset1.ParamByName('id').AsInteger := 101;
AsaDataset1.Open;
AsaDataset1.Edit;
AsaDataset1.FieldByName('pic').Assign(Image1.Picture);
AsaDataset1.Post;

4.3.8 Concurrency issues
In most cases its convenient and wise to let the database server handle the situations when
two or more users concurrently update a table. Handling row-locks and simultaneous data
access is an issue normally left to the database server to safely deal with. In SA, this is the
default behavior controlled by the database option BLOCKING=ON. This setting will cause
the client thread to block until conflicting updates, protected by locks, are released by the
other transaction holding these locks. However in some cases it could be necessary and
handy to control row-locks and simultaneous data access yourself. Handling concurrency
issues, from the client-side, is what this chapter is about.

In a typical TAsaDataset Edit-Post scenario, when two users attempt to edit the same record,
one of them will get a “Couldn't perform the edit because another user changed the record"-
exception. This is the standard concurrency behavior in both Borland’s BDE (TQuery) and
NativeDB’s TAsaDataset.

But in some cases you would rather want to prevent the second user from even starting to
edit the same row. So instead of the "Couldn't perform the edit…" error, you want the current
user to be fully locked-out from editing the row and instead being notified with a “'This row is
currently being worked on by another user” kind of message. The "Couldn't perform the
edit…" error will be raised on the attempt to place the dataset in edit-mode
(TAsaDataset.Edit), BUT ONLY AFTER the second user posts his update
(TAsaDataset.Post). But this is not soon enough if you want to totally prevent concurrent row-
access in your multi-user application.

To solve this requirement, you would need to place an explicit lock on the current row on the
attempt to place the dataset in edit-mode (TAsaDataset.Edit).

Among our first considerations are to minimize implicit database locks and allow all users to
read any rows. To meet this requirement we decide to use an optimistic concurrency-schema
at isolation level 0 (e.g. TAsaSession.TransIsolation := atReadUncommitted). Also to get any
row-lock errors immediately returned back to the client, we need to set the database option
BLOCKING to OFF.

AsaSession1.SetOption('blocking', 'off');

The next step is to code a TAsaDataset.BeforeEdit event to properly handle the concurrency
issue. The event handler should both lock the current row and check if another user already
has placed a lock on that row.

NativeDB for SQL Anywhere - A Programmer's Guide Page 60

procedure TForm1.AsaDataset1BeforeEdit(DataSet: TDataSet);
var
CurrCustID: Extended;
TempCursor: TAsaDataset;

begin
if not AsaSession1.InTransaction then
AsaSession1.StartTransaction;

CurrCustID := DataSet.FieldByName('custno').AsFloat;
TempCursor := TAsaDataset.Create(nil);
try
TempCursor.Session := TAsaDataset(Dataset).Session;
TempCursor.SQL.Clear;

// Post a "dummy" change to force the current row to be locked.
TempCursor.SQL.Add('update customer set custno=custno where custno=:custno');
TempCursor.ParamByName('custno').AsFloat := CurrCustID;
try
TempCursor.ExecSQL;

except
on E: ENativeDatasetError do
begin
if E.ErrorCode = -210 then

// Show a more "human-readable" error-message !
DatabaseError('This row is currently being worked on by another user.’ +

'The full error message reads:' + #10 +
TempCursor.Session.LastError + #10 +
IntToStr(TempCursor.Session.LastErrorCode))

else
if E.ErrorCode = 100 then
DatabaseError('This row has been deleted.' +

'The full error message reads:' + #10 +
TempCursor.Session.LastError + #10 +
IntToStr(TempCursor.Session.LastErrorCode))

else
raise;

end;
end;

finally
TempCursor.Free;

end;
end;

Note: Instead of posting the above “dummy” update to force the row-lock, we could have used
the TAsaSQL.Lock method and achieved the same result.

We are now preventing a second user from editing the current row if it’s in use by the other
transaction. So at this point we could also decide to ignore the “Couldn't perform the edit…"-
exception by the following code.

procedure TForm1.AsaDataset1EditError(DataSet: TDataSet; E: EDatabaseError;
var Action: TDataAction);

begin
Action := daRetry;

end;

As a concluding note, the recommended usage of the above event handlers is to design the
edit-post code in such a way that it avoids any user-interaction between the physical locking
of the current record and the final commit (or rollback). Ignoring this could potentially leave
the locks on “forever” if the user (holding the locks) leaves the office. Keep this in mind if you
plan to use VCL data-aware controls (i.e. DBGrid's, DBEdit's etc.) with this solution. If you
still want/need to use data-aware user-input controls, at least consider the SA “-ti” database
switch as a safeguard. This switch will cause inactive connections to be disconnected from
the database when a certain amount of time has elapsed and will in turn cause any active
locks to be released.

The above example more or less assumes that the client-side lock protection schema is
executed through VCL data-aware controls. But in some situations it could also be convenient
to use the same row-lock technique to protect a critical block of code in an “outermost” level
before any attempt is made to execute the code in the “innermost” parts. The following

NativeDB for SQL Anywhere - A Programmer's Guide Page 61

example shows a very tight and protected code-block that uses a very simple table to protect
other transactions from reaching the "inner-most" code, if it’s in use by a current transaction.

create table seat_table
(

seat integer not null, ; Seat number
status integer null, ; 0=Vacant, 1=Occupied
primary key (seat)

)

procedure TForm1.ReserveSeat(ASeat: Integer);
// Ticket reservation.
var
szBlocking: string;

begin
if AsaSession1.GetOption('blocking', szBlocking) and (szBlocking = 'ON') then
AsaSession1.SetOption('blocking', 'OFF');

if not AsaSession1.InTransaction then
AsaSession1.StartTransaction;

try
// The following line(s) (OpenWrite) will not "freeze" other clients
// (e.g. BLOCKING=OFF) when accessing the same seat, but will
// immediately show a "Seat # is taken/occupied"-message instead.
// The call to TAsaSQL.Lock will put a write-lock on the current row,
// causing a second user's request for the same seat, to fail.
// ESQL: "EXEC SQL OPEN CURSOR FOR UPDATE"
// ESQL: "EXEC SQL FETCH RELATIVE 0 FOR UPDATE".
if AsaSQL1.OpenWrite('select * from seat_table where seat=? and status=0',

[ASeat]) and
AsaSQL1.Lock then

begin

// To make the client-side lock handling worth all the efforts
// (e.g. BLOCKING=OFF), the code to add here would typically
// take some time to execute. Thus, the above write-lock will
// avoid to do the credit-card validation and the ticket printout
// for a second user, trying to reserve the same seat. Say f.ex.
// that both operations take 30-60 secs. to execute. i.e. this
// code would prevent a "conflicting" user's workstation from being
// blocked/"freezed" in 30-60 secs. Also remember that any blocked
// clients (e.g. in BLOCKING=ON mode) shouldn't attempt to do these
// operations on the occupied seat anyway.

ValidateCreditCard;
PrintTicket;

// For testing purposes, comment in the following line if you
// want to simulate a code-flow that will take some time to execute.
// This will allow you to experience what happens if a second user
// try to reserve the same seat.

// ShowMessage(Format('Seat %d is write-locked', [ASeat]));

// And finally update the seat_table
AsaSQL1['status'] := 1;

// ESQL: "EXEC SQL UPDATE"
AsaSQL1.Modify;

// ESQL: "EXEC SQL CLOSE"
AsaSQL1.Close;

// ESQL: "EXEC SQL COMMIT"
AsaSession1.Commit;

end else
begin
if AsaSQL1.LastErrorCode = 100 then
raise Exception.Create(Format('Seat %d is occupied or doesn''t exist !',

[ASeat]))
else
if AsaSQL1.LastErrorCode = -210 then
raise Exception.Create(Format('Seat %d is (about to be) taken !', [ASeat]))

else
raise Exception.Create(AsaSQL1.LastError)

NativeDB for SQL Anywhere - A Programmer's Guide Page 62

end;
except
// ESQL: "EXEC SQL ROLLBACK"
AsaSession1.Rollback;
raise;

end;
end;

4.4 Working with TAsaStoredProc

The TAsaStoredProc component is typically used to replace Borland VCL's TStoredProc
database component. In most cases you should expect compatibility between the two.

Although you can use TAsaDataset with most stored procedures, TAsaStoredProc is handy if
your SP includes OUT or INOUT parameters.

4.4.1 Stored Procedures with INOUT and OUT parameter types
Consider the following SP:

create procedure greater(in a integer, in b integer, out c integer)
begin
if a>b then
set c=a

else
set c=b

end if
end

You can call it with the following code:

AsaStoredProc1.StoredProcName := 'greater';
AsaStoredProc1.Prepare;
AsaStoredProc1.ParamByName('a').AsInteger := StrToInt(Edit1.Text);
AsaStoredProc1.ParamByName('b').AsInteger := StrToInt(Edit2.Text);
AsaStoredProc1.ExecProc;
ShowMessage(AsaStoredProc1.ParamByName('c').AsString);

4.4.2 Stored Procedures returning Result sets
Your SA database ships with many useful system procedures. The sa_conn_info procedure
returns a result-set (cursor) with information about current active database connections. The
following code uses TAsaStoredproc to call it:

AsaStoredProc1.StoredProcName := 'sa_conn_info';
AsaStoredProc1.Prepare;
AsaStoredProc1.ParamByName('connidparm').Clear;
AsaStoredProc1.Open;

4.4.3 Resuming a Stored Procedure
Stored procedures that return one ore more result-sets (cursors) can be instructed to resume
execution after the client has finished processing the result set.
Consider the following SP:

create procedure multi_cust()
begin
 select id,fname from customer order by id asc;
 select id,lname,address from customer order by id asc
end

NativeDB for SQL Anywhere - A Programmer's Guide Page 63

When first called, the SP makes the first cursor available to the client. When the client has
finished processing the result-set, it should allow the SP to continue execution. The SP must
be explicitly told to continue by the call to TAsaStoredProc.Resume.

AsaStoredProc1.StoredProcName := 'multi_cust';
AsaStoredProc1.Open;
repeat
while not AsaStoredProc1.EOF do
// Process the rows here

AsaStoredProc1.Resume;
until not AsaStoredProc1.StillInProc;

5. Appendices

5.1 Converting from BDE to NDB

This chapter discusses some of the concerns when converting an existing BDE based
application to NativeDB.

A typical Borland BDE based application consists of one or more datamodules and forms. On
these forms one have a TDatabase and one or more TQuery's and TTable's. We assume that
this is a single-threaded application, and that the default TSession is used. To feed data-
aware components with data, a TDataSource is also used as the link between the controls
and the dataset.

5.1.1 Step 1 - Replacing TDatabase or a BDE Alias
• Replace the TDatabase instance with a TAsaSession instance. If you use a fixed BDE

alias instead of a TDatabase alias, to represent the connection, you still need a
TAsaSession instance.

• Name the TAsaSession (Name property) the same as the TDatabase.DatabaseName
property. This will later ease the understanding of the link between your TAsaDataset's
and the TAsaSession.

• If you use TDatabase's default login prompt to provide login information, change to the
TAsaLogin component instead for the same purpose.

• Your current BDE alias is linked to a ODBC alias that contain the different SQL Anywhere
database parameters. Look up the ODBC alias. Assign the "Server name" parameter, if
any, to TAsaSession.LoginEngineName. Assign the "Start line" parameter, if any, to
TAsaSession.ServerParams. Insert a "start=" in front of the string. Assign either
"Database name" or "Database file" to TAsaSession.LoginDatabase. This depends on
whether you are setting up a client connection or a personal engine (server) connection.
Set TAsaSession.ServerType accordingly. Assign the "Network" options to
TAsaSession.ClientParams.

• Verify TAsaSession.LibraryFile with your current SA version.
• Verify that TAsaSession.LibraryPath is pointing to the location of were LibraryFile

resides. (N/A on Linux), or leave it empty to rely on the system PATH.
• Consider TAsaSession.OEMConvert if your database contains OEM based characters.
• Lookup up your BDE alias setting SHARED PASSTHROUGHMODE. If the current

setting is SHARED AUTOCOMMIT the set TAsaSession.AutoCommit = True. Otherwise
False.

• Compare TDatabases.TransIsolation to TAsaSession.TransIsolation.
• If your project relies heavily on exception handlers, set TAsaSession.WantExceptions to

True.
• Set TAsaSession.Connected equal to TDatabase.Connected.

NativeDB for SQL Anywhere - A Programmer's Guide Page 64

5.1.2 Step 2 - Replacing TQuery
• Replace the TQuery components with TAsaDataset components.
• Name them equally.
• Compare TQuery.DatabaseName to TAsaDataset.Session. Given equal database names

at step 1, they should be equal.
• Assign TQuery.SQL to TAsaDataset.SQL.
• Change any TQuery.Filter into a WHERE clause with TAsaDataset.SQL.
• Compare TQuery.ParamCheck and TQuery.Params to TAsaDataset.ParamCheck and

TAsaDatatset.Params.
• Assign TQuery.Datasource to TAsaDataset.Datasource, to feed parameter values based

on another query.
• Assign TQuery.AutoCalcFields to TAsaDataset.AutoCalcFields.
• TQuery.RequestLive=False is the same as TAsaDataset.ReadOnly=True. Note: If

RequestLive is True and you are inserting rows into this query, also set
TAsaDataset.SyncInserts to True.

• Verify all events.
• Double-click the TAsaDataset component and verify that all TField descendants are the

same as defined with TQuery.
• For persistent lookup-fields, it’s recommended to enable the LookupCache property of

these fields.
• Set TAsaQuery.Active equal to TAsaDataset.Active.
• Verify that all TDataSource components are pointing to the new TAsaDataset

components.

5.1.3 Step 3 - Replacing TTable
• TTable's are not designed for use with RDBMS based databases. It's highly

recommended to replace them with true query based classes. In other words, replace the
TTable components with TAsaDataset components. Do note that the TTable's searching
capabilities FindKey and FindNearest are available with TAsaDataset.

• Name them equally.
• Compare TTable.DatabaseName to TAsaDataset.Session. Given equal database names

at step 1, they should be equal.
• Assign to TAsaDataset.SQL a query like "select * from <TTable.TableName> order by

<TTable.IndexFieldNames>".
• Change any TTable.Filter into a WHERE clause with TAsaDataset.SQL.
• Set TAsaDataset.Datasource equal to TTable.MasterSource.
• Consider TTable.MasterFields, and replace the master fields by updating

TAsaDataset.SQL's WHERE clause to include parameters as placeholders for the master
fields.

• Assign TTable.AutoCalcFields to TAsaDataset.AutoCalcFields.
• Assign TTable.ReadOnly to TAsaDataset.ReadOnly. Note: If ReaOnly is False and you

are inserting rows into this table, also set TAsaDataset.SyncInserts to True.
• Verify all events.
• Double-click the TAsaDataset component and verify that all TField descendants are the

same as defined with TTable.
• For persistent lookup-fields, it’s recommended to enable the LookupCache property of

these fields.
• Set TAsaQuery.Active equal to TAsaDataset.Active.
• Verify that all TDataSource components are pointing to the new TAsaDataset

components.

5.1.4 Step 4 - Replacing TStoredProc
• Replace the TStoredProc components with TAsaStoredProc components.
• Name them equally.

NativeDB for SQL Anywhere - A Programmer's Guide Page 65

• Compare TStoredProc.DatabaseName to TAsaStoredProc.Session. Given equal
database names at step 1, they should be equal.

• Assign TStoredProc.StoredProcName to TAsaStoredProc.StoredProcName.
• Compare parameters assigned to TStoredProc.Params with TAsaStoredProc.Params.
• Assign TStoredProc.AutoCalcFields to TAsaStoredProc.AutoCalcFields.
• Verify all events.
• Double-click the TAsaStoredProc component and verify that all TField descendants are

the same as defined with TStoredProc.
• Set TStoredProc.Active equal to TAsaStoredProc.Active.

5.1.5 Step 5 - Changing Sourcecode
• Remove any USES references to the BDE and DBTables units.
• Replace any direct BDE function calls (dbiXXXX).
• Remove any reference to the Session VCL global variable.
• Replace any TDatabase, TQuery, TStoredProc class references or type casts, to either

the generic TDataset class, to TAsaSession, TAsaDataset or TAsaStoredProc.
• Coded usage of TQuery.Filter is not supported by TAsaDataset, and should be changed

into parameter values assigned through TAsaDataset.ParamByName instead. This will
feed a WHERE clause with the given parameter values.

• Change any TQuery cached updates into regular SA transactions.
• The TDatabase EDBEngineError exceptions must be updated to reference the

ENativeException and EAsaException classes instead.
• The TQuery and TStoredProc EDBEngineError must be updated to reference the

ENativeDatasetError instead.
• TQuery.RequestLive=False is the same as TAsaDataset.ReadOnly=True.
• Consider BLOBs back into the project, if they were removed caused by some known BDE

BLOB issues (e.g. BLOBs larger than 1MB). Large BLOBs are fully supported by
TAsaDataset.

Another approach to consider, if you want to ease the conversion process, is to implement
your own derived data access classes. This will allow you to handle most of the above
requirements inside your own class. The "MyNdb.pas" unit found in the \Bonus directory will
be a convenient starting-point to implement your own descendant classes. These classes will
also allow you to switch back and forth between BDE and NDB throughout your conversion
process.

5.2 Using NativeDB with C++Builder
The following sections show some code samples by using Borland C++Builder instead of
Delphi. The samples focus on the generic class TAsaSQL and assume you have the basic
knowledge of the VCL class TDataset (i.e. TAsaDataset) already.

5.2.1 Connecting to a running database engine
The following code sample connects the client to a running ASA server engine one the LAN.

TAsaSession *AsaSession1;
.
.
try
{
AsaSession1->ClientParams = "links=tcpip";
AsaSession1->ServerType = stClient;
AsaSession1->LoginEngineName = "MyEngine";
AsaSession1->LoginDatabase = "MyDB";
AsaSession1->LoginUser = "dba";
AsaSession1->LoginPassword = "sql";
AsaSession1->Connected = True;

NativeDB for SQL Anywhere - A Programmer's Guide Page 66

}
catch(const EAsaException &E)
{
ShowMessage(E.Message);

}

5.2.2 A simple query
The sample below uses TAsaSQL to open a cursor using a simple query without any host
variables.

if (AsaSQL1->OpenRead("select * from customer where city='New York'", &NdbEmptyParam,
0))
{
do
ListBox1->Items->Add(AsaSQL1->FieldValues["fname"] + String(" ") + AsaSQL1-

>FieldValues["lname"]);
while (AsaSQL1->Next());

}
else
ShowMessage(AsaSQL1->LastError);

5.2.3 A query with host variables
A query can also include host variables or parameters bound to the statement.

if (AsaSQL1->OpenRead("select * from customer where city=:city", OPENARRAY(Variant,
("New York"))))
{
do
ListBox1->Items->Add(AsaSQL1->FieldValues["fname"] + String(" ") + AsaSQL1-

>FieldValues["lname"]);
while (AsaSQL1->Next());

}
else
ShowMessage(AsaSQL1->LastError);

More host variables can be passed in the second parameter.

if (AsaSQL1->OpenRead("select * from customer where id=:id and city=:city",
OPENARRAY(Variant, (103, "New York"))))

You can also use the short abbreviation form (?) when specifying the host variables.

if (AsaSQL1->OpenRead("select * from customer where id=? and city=?",
OPENARRAY(Variant, (103, "New York"))))

5.2.4 Appending rows
You can use an open cursor to append new rows.

AsaSQL1->OpenWrite("select * from customer", &NdbEmptyParam, 0);
if (AsaSQL1->Opened)
{
AsaSQL1->Clear(); // Set all columns to the NULL state
AsaSQL1->FieldValues["fname"] = "Frank";
AsaSQL1->FieldValues["lname"] = "Johnsen";
if (!AsaSQL1->Append())
ShowMessage(AsaSQL1->LastError);

}
else
ShowMessage(AsaSQL1->LastError);

You can also add a new row to an empty cursor (no rows in the result set). In this case it's no
need to call Clear to empty the row.

AsaSQL1->OpenWrite("select * from customer where A<>A", &NdbEmptyParam, 0);
if (AsaSQL1->Opened)

NativeDB for SQL Anywhere - A Programmer's Guide Page 67

{
AsaSQL1->FieldValues["fname"] = "Frank";
AsaSQL1->FieldValues["lname"] = "Johnsen";
if (!AsaSQL1->Append())
ShowMessage(AsaSQL1->LastError);

}
else
ShowMessage(AsaSQL1->LastError);

5.2.5 Modifying rows
An open cursor can also be used when modifying existing rows.

if (AsaSQL1->OpenWrite("select * from customer where lname='Johnsen'", &NdbEmptyParam,
0))
{
AsaSQL1->FieldValues["lname"] = "Johnston";
if (!AsaSQL1->Modify())
ShowMessage(AsaSQL1->LastError);

}
else
ShowMessage(AsaSQL1->LastError);

5.2.6 Deleting rows
As required when modifying and appending rows, you must obtain a write-able result set to
delete a record in a table.

if (AsaSQL1->OpenWrite("select * from customer where lname='Johnston'", &Null, 0))
{
if (!AsaSQL1->Delete())
ShowMessage(AsaSQL1->LastError);

}
else
ShowMessage(AsaSQL1->LastError);

5.2.7 Executing SQL statements
You can use TAsaSQL.Execute to execute any general purpose (DML) SQL statements.
So, to delete a row using Execute you could use the following code.

if (!AsaSQL1->Execute("delete from customer where fname='John'", &NdbEmptyParam, 0))
ShowMessage(AsaSQL1->LastError);

5.2.8 Calling Stored Procedures
The following sample demonstrates an SP that returns a value (Stored Function).

create function fullname(in firstname char(30), in lastname char(30)) returns char(61)
begin
declare name char(61);
set name = firstname || ' ' || lastname;
return(name);

end

And the code to call it.

if (AsaSQL1->Execute("?=call fullname(?,?)", OPENARRAY(Variant, ("Frank",
"Johnsen"))))
ShowMessage("Name: " + AsaSQL1->GetOutVar("fullname"));

Stored procedures can supply both IN and OUT parameters (and INOUT).

create procedure greater(in a integer, in b integer, out c integer)
begin
if a>b then
set c=a

NativeDB for SQL Anywhere - A Programmer's Guide Page 68

else
set c=b

end if
end

And the code to call it.

if (AsaSQL1->Execute("call greater(?,?,?)", OPENARRAY(Variant, (10,20))))
ShowMessage(FloatToStr((float)AsaSQL1->GetOutVar("c")));

5.3 Using NativeDB ActiveX with Visual Basic
After you have registered the NativeDB ActiveX automation server according to the
installation instructions in chapter 2, you are ready to begin development with NativeDB
(NDBAX) and Microsoft Visual Basic. The following sections demonstrate the most commonly
used features in the NDBAX library. The library is named “NDBASA” and includes two main
dual-class interfaces to access Sybase SQL Anywhere. These are “XAsaSession” to control
the connection and transaction handling against the database, and “XAsaSQL” to execute
any valid SQL statement. Refer to section 3.1 and 3.2 for the complete reference, including
property and methods instruction details.

5.3.1 Running the VB demo
Start Visual Basic and open the VBDemo project found in the directory "Demos\VBDemo",
relative to the NativeDB home directory. Compile and execute the application. Work with this
example for a while to get familiarized with the most basic NDBAX features.

5.3.2 Getting started
Create a new blank VB project or open an existing. Select Project | References and include
the NativeDB ActiveX automation server with your application. The two main classes are
declared in VB with the following code:

Dim AsaSession1 As NDBASA.XAsaSession
Dim AsaSQL1 As NDBASA.XAsaSQL

Then create the object instances:

Set AsaSession1 = New NDBASA.XAsaSession
Set AsaSQL1 = New NDBASA.XAsaSQL

5.3.3 Client connection
The following code sample connects to an already running ASA server engine on the LAN.

AsaSession1.ClientParams = "links=tcpip"
AsaSession1.ServerType = stClient
AsaSession1.LoginEngineName = "MyEngine"
AsaSession1.LoginDatabase = "MyDB"
AsaSession1.LoginUser = "dba"
AsaSession1.LoginPassword = "sql"
AsaSession1.Connected = True 'Optionally use AsaSession1.Open

5.3.4 Starting and connecting to the ASA personal or runtine engines
The below code demonstrates how to launch and connect to an ASA engine implicitly from
your application.

AsaSession1.ServerParams = "start=dbeng7.exe"
AsaSession1.ServerType = stServer
AsaSession1.LoginDatabase = "c:\MyApp\MyDB.db"
AsaSession1.LoginUser = "dba"
AsaSession1.LoginPassword = "sql"

NativeDB for SQL Anywhere - A Programmer's Guide Page 69

AsaSession1.Connected = True

5.3.5 A simple query
Before you can execute any SQL statements you must first link the statement object
(XAsaSQL) to the connection object (XAsaSession).

AsaSQL1.Session = AsaSession1

The example below uses XAsaSQL to open a simple query without any host variables.

If AsaSQL1.OpenRead("select * from customer where city='New York'") Then
Do While Not AsaSQL1.EOF
List1.AddItem(AsaSQL1("fname") & " " & AsaSQL1("lname "))
AsaSQL1.Next

Loop
Else
MsgBox(AsaSQL1.LastError)

End If

Slightly more compact code can be written when checking the return value of XAsaSQL.Next
instead of watching the EOF state.

If AsaSQL1.OpenRead("select * from customer where city='New York'") Then
Do
List1.AddItem (AsaSQL1("fname") & " " & AsaSQL1("lname "))

Loop Until Not AsaSQL1.Next
Else
MsgBox(AsaSQL1.LastError)

End If

It’s also optional to use a subroutine-based coding style, which relies on proper error handling
through exceptions, instead of the function-base style (True/False) we did in the first two
examples.

AsaSQL1.WantExceptions = True
AsaSQL1.OpenRead "select * from customer where city='New York'"
Do While Not AsaSQL1.EOF
List1.AddItem(AsaSQL1("fname") & " " & AsaSQL1("lname "))
AsaSQL1.Next

Loop

5.3.6 A query with host variables
A query can also contain host variables or parameters bound to the statement.

If AsaSQL1.OpenRead("select * from customer where city=:city", "New York") Then
Do While Not AsaSQL1.EOF
List1.AddItem(AsaSQL1("fname") & " " & AsaSQL1("lname "))
AsaSQL1.Next

Loop
Else
MsgBox(AsaSQL1.LastError)

End If

If the statement contains multiple host variables a VB Variant Array is required to pass the
parameters.

If AsaSQL1.OpenRead("select * from customer where id=:id and city=:city", _

Array(103, "New York")) Then
List1.AddItem(AsaSQL1("fname") & " " & AsaSQL1("lname "))

End If

It’s optional to use the short abbreviation form, using a question mark (?) as the parameter
placeholder, when specifying the host variables.

NativeDB for SQL Anywhere - A Programmer's Guide Page 70

If AsaSQL1.OpenRead("select * from customer where id=? and city=?", _
Array(103, "New York")) Then

.

.
End If

5.3.7 Executing SQL statements
The XAsaSQL.Execute method can be used to execute any general purpose (DML)
statement. The below examples illustrate a call to delete a customer record.

If Not AsaSQL1.Execute("delete from customer where fname='John'")
MsgBox(AsaSQL1.LastError)

End If

Or …

If Not AsaSQL1.Execute("delete from customer where fname=?", "John")
MsgBox(AsaSQL1.LastError)

End If

5.3.8 Calling Stored Procedures
The following example demonstrates an SP that returns a value (Stored Function) and how to
call it.

create function fullname(in firstname char(30), in lastname char(30)) returns char(61)
begin
declare name char(61);
set name = firstname || ' ' || lastname;
return(name);

end

If AsaSQL1.Execute("?=call fullname(?,?)", Array("Frank","Johnsen")) Then
MsgBox("Name: " & AsaSQL1.GetOutVar("fullname"))

End If

A Stored procedure can supply both IN and OUT parameters (and INOUT).

create procedure greater(in a integer, in b integer, out c integer)
begin
if a>b then
set c=a

else
set c=b

end if
end

And the code to call it.

If AsaSQL1.Execute("call greater(?,?,?)", Array(10,20)) Then
MsgBox("Result: " & AsaSQL1.GetOutVar("c"))

End If

5.3.9 Appending rows
In addition to the regular INSERT, UPDATE and DELETE SQL statements executed by
XAsaSQL.Execute, you can insert new rows into an open cursor. This becomes handy when
you want to retrieve database assigned column-defaults or auto-incremental values directly
into your application.

AsaSQL1.OpenWrite "select * from customer"
If AsaSQL1.Opened Then
AsaSQL1.Clear 'Set all columns to the NULL state
AsaSQL1("fname") = "Frank"
AsaSQL1("lname") = "Johnsen"
If Not AsaSQL1.Append Then

NativeDB for SQL Anywhere - A Programmer's Guide Page 71

MsgBox(AsaSQL1.LastError)
Else
'Column defaults or auto-incremental values are available here by regular
'field retrieval methods.
MsgBox("The new auto-inc value is: " & AsaSQL1("id")

End If
Else
MsgBox(AsaSQL1.LastError)

End If

5.3.10 Modifying rows
An open cursor can also be used to update an existing row.

If AsaSQL1.OpenWrite("select * from customer where lname='Johansen'") Then
AsaSQL1("lname") = "Johnsen"
If Not AsaSQL1.Modify Then
MsgBox(AsaSQL1.LastError)

End If
Else
MsgBox(AsaSQL1.LastError)

End If

5.3.11 Deleting rows
As required when modifying or appending rows, you must first obtain a write-able result set to
delete a record in the table.

If AsaSQL1.OpenWrite("select * from customer where lname='Johansen'") Then
If Not AsaSQL1.Delete Then
MsgBox(AsaSQL1.LastError)

End If
Else
MsgBox(AsaSQL1.LastError)

End If

5.3.12 Using Events
In many situations SQL Anywhere notifies the client of an event through a callback function.
These callback functions are translated into ActiveX events and are immediately available to
your application. Sections 3.1.3 and 3.2.3 lists all available events. The ASA MESSAGE TO
CLIENT statement is a nice example of a useful event to handle in your end-user application.
Note: The MESSAGE statement is available in ASA 6.01 or later releases.

To enable event support in your VB project, you must first include the keyword “WithEvents”
in your object declaration.

Dim WithEvents AsaSession1 As NDBASA.XAsaSession

The following stored procedure notifies the client-application with an information message:

create procedure dba.notify_client()
begin
message 'Hello NativeDB!' type info to client

end

When executed, ASA triggers a callback, and the incoming message could be handled in an
event routine similar to the following:

Private Sub AsaSession1_OnServerMessage(ByVal Sender As IXAsaSession, ByVal
MessageType As ServerMessageType, ByVal MessageCode As Long, ByVal Msg As String)
Select Case MessageType
Case smtInfo
List1.AddItem("Event OnServerMessage raised = smtInfo: " & Msg)

Case smtWarning
List1.AddItem("Event OnServerMessage raised = smtWarning: " & Msg)

Case smtAction

NativeDB for SQL Anywhere - A Programmer's Guide Page 72

List1.AddItem("Event OnServerMessage raised = smtAction: " & Msg)
Case smtStatus
List1.AddItem("Event OnServerMessage raised = smtStatus: " & Msg)

End Select
End Sub

