Class GaussIntegratorFactory
- java.lang.Object
-
- org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegratorFactory
-
public class GaussIntegratorFactory extends Object
Class that provides different ways to compute the nodes and weights to be used by theGaussian integration rule.- Since:
- 3.1
-
-
Constructor Summary
Constructors Constructor Description GaussIntegratorFactory()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description SymmetricGaussIntegratorhermite(int numberOfPoints)Creates a Gauss-Hermite integrator of the given order.GaussIntegratorlaguerre(int numberOfPoints)Creates a Gauss-Laguerre integrator of the given order.GaussIntegratorlegendre(int numberOfPoints)Creates a Gauss-Legendre integrator of the given order.GaussIntegratorlegendre(int numberOfPoints, double lowerBound, double upperBound)Creates a Gauss-Legendre integrator of the given order.GaussIntegratorlegendreHighPrecision(int numberOfPoints)Creates a Gauss-Legendre integrator of the given order.GaussIntegratorlegendreHighPrecision(int numberOfPoints, double lowerBound, double upperBound)Creates an integrator of the given order, and whose call to theintegratemethod will perform an integration on the given interval.
-
-
-
Constructor Detail
-
GaussIntegratorFactory
public GaussIntegratorFactory()
-
-
Method Detail
-
laguerre
public GaussIntegrator laguerre(int numberOfPoints)
Creates a Gauss-Laguerre integrator of the given order. The call to theintegratemethod will perform an integration on the interval \([0, +\infty)\): the computed value is the improper integral of \(e^{-x} f(x)\) where \(f(x)\) is the function passed to theintegratemethod.- Parameters:
numberOfPoints- Order of the integration rule.- Returns:
- a Gauss-Legendre integrator.
- Since:
- 4.0
-
legendre
public GaussIntegrator legendre(int numberOfPoints)
Creates a Gauss-Legendre integrator of the given order. The call to theintegratemethod will perform an integration on the natural interval[-1 , 1].- Parameters:
numberOfPoints- Order of the integration rule.- Returns:
- a Gauss-Legendre integrator.
-
legendre
public GaussIntegrator legendre(int numberOfPoints, double lowerBound, double upperBound)
Creates a Gauss-Legendre integrator of the given order. The call to theintegratemethod will perform an integration on the given interval.- Parameters:
numberOfPoints- Order of the integration rule.lowerBound- Lower bound of the integration interval.upperBound- Upper bound of the integration interval.- Returns:
- a Gauss-Legendre integrator.
- Throws:
NotStrictlyPositiveException- if number of points is not positive
-
legendreHighPrecision
public GaussIntegrator legendreHighPrecision(int numberOfPoints)
Creates a Gauss-Legendre integrator of the given order. The call to theintegratemethod will perform an integration on the natural interval[-1 , 1].- Parameters:
numberOfPoints- Order of the integration rule.- Returns:
- a Gauss-Legendre integrator.
- Throws:
NotStrictlyPositiveException- if number of points is not positive
-
legendreHighPrecision
public GaussIntegrator legendreHighPrecision(int numberOfPoints, double lowerBound, double upperBound)
Creates an integrator of the given order, and whose call to theintegratemethod will perform an integration on the given interval.- Parameters:
numberOfPoints- Order of the integration rule.lowerBound- Lower bound of the integration interval.upperBound- Upper bound of the integration interval.- Returns:
- a Gauss-Legendre integrator.
- Throws:
NotStrictlyPositiveException- if number of points is not positive
-
hermite
public SymmetricGaussIntegrator hermite(int numberOfPoints)
Creates a Gauss-Hermite integrator of the given order. The call to theintegratemethod will perform a weighted integration on the interval \([-\infty, +\infty]\): the computed value is the improper integral of \(e^{-x^2}f(x)\) where \(f(x)\) is the function passed to theintegratemethod.- Parameters:
numberOfPoints- Order of the integration rule.- Returns:
- a Gauss-Hermite integrator.
-
-